当前位置:文档之家› 液位测量

液位测量

液位测量
液位测量

20余种液位测量方法分析比较

物位包括液位和料位两类。液位又包括液位信号器和连续液位测量两种。液位信号器是对几个固定位置的液位进行测量,用于液位的上、下限报警等。连续液位测量是对液位连续地进行测量,它广泛地应用于石油、化工、食品加工等诸多领域,具有非常重要的意义。文中对20余种连续液位测量方法进行比较分析。

1、玻璃管法、玻璃板法、双色水位法、人工检尺法

玻璃管法:该方法利用连通器原理工作,如图1—1所示[1]。图中1-被测容器;2-玻璃管;3-指示标度尺;4、5-阀;6、7-连通管。液位直接从指示标度尺读出。

双色水位计法:该方法利用光学原理,使水显示绿色,而使水蒸汽显示红色,从而指示出水位[2]。

人工检尺法:该方法用于测量油罐液位。测量时,测量员把量油尺投入油品中,并在尺砣与罐底接触时提起量油尺。根据量油尺上的油品痕迹,读出油面高度;根据量油尺末端试水膏颜色的变化确定水垫层的高度,从而确定油高和水高[3]。

以上4种方法都是人工测量方法,具有测量简单、可靠性高、直观、成本低的优点。

2、吹气法、差压法、HTG法

吹气法:该方法的工作原理如图2—1所示[4]。图中,1-过滤器;2-减压阀;3-节流元件;4-转子流量计;5-变送器。因吹气管内压力近似等于液柱的静压力,故P=ρgH

差压法:该方法的工作原理如图2-2所示[4]。图中,1、2-阀门;3-差压变送器。对于开口容器或常压容器,阀门1及气相引压管道可以省掉。压力差与液位的关系为ΔP=P2-P1=ρgH

式中:ΔP-变送器正、负压室压力差;P2、P1-引压管压力;H-液位。差压变送器将压力差变换为4~20 mA的直流信号。如果压力处于测量范围下限时对应的输出信号大于或小于4 mA,则都需要采用调整迁移弹簧等零点迁移技术,使之等于4 mA。

HTG法:该方法应用于油罐差压液位测量中,如图2—3所示。图中:P1、P2、P3-高精度压力传感器;RTD -温度检测元件;HIU-接口单元。P1位于罐底附近的罐壳处,P2比P1高8英尺,P3位于罐顶附近的罐壳处。对于常压油罐,压力传感器P3可以省去。设压力传感器P1、P2、P3测得的压力分别为p1、p2、p3,则

式中:G-油品重量;Sav-油罐平均截面积;ρav-介于压力传感器P1、P2之间油品平均密度;g是重力加速度;H是压力传感器P1、P2之间的距离;h是油品高度;h0是压力传感器P1的高度。RTD用于测量油品温度,以对测量数值进行温度补偿。HTG测量系统价格较低,但液位测量精度较低,安装须在罐壁开孔。

以上3种方法都是利用液体的压力差来测量液位的。

3、浮子法、浮筒法、浮球法、伺服法、沉筒法

浮子法:该方法采用浮子作为液位测量元件,并驱动编码盘或编码带等显示装置,或连接电子变送器以便远距离传输测量信号。

浮筒法:该方法采用中间带孔的磁浮筒作为液位敏感元件,如图3—1所示。不锈钢套管从浮筒中间孔穿过,固定在罐顶和罐底之间。液位变化带动空心磁浮筒(内藏永久磁铁)沿套管上下移动,并吸引套管内的磁铁沿套管内壁上下移动,二次仪表根据磁铁的移动量计算出液位。

浮球法:该方法利用杠杆原理工作,如图3—2所示[4]。图中:1-浮球;2-连杆;3-转轴;4-平衡重;5-杠杆。浮球跟随液位变化而绕转轴旋转,带动转轴上的指针转动,并与杠杆另一端的平衡重平衡,同时在刻度盘上指示出液位数值。浮球法有内浮球式和外浮球式两种,如图3—2所示。浮球法主要用于测量温度高、粘度大的液位,但量程较小。

伺服法:该方法采用波动积分电路,消除抖动、延长寿命、提高液位测量精度。现代伺服液位仪的测量精度较高,已达到40 m量程内小于1 mm的精度,且一般都具有测量密度分布和平均密度的功能。

沉筒法:沉筒的位置随着液位的变化而变化,但其变化量并不与液位变化量相等。在图3-3a中[4],液位与浮筒位置的关系如下:

上式中:ΔH-液位变化量;C-弹簧的弹性系数;A-沉筒截面积;ρ液体密度;ΔX-沉筒位置变化量。通常情况下,浮筒位置变化量ΔX远小于液位变化量ΔH。图3—3b是扭力管式沉筒法原理[4],图中:1-沉筒;2-杠杆;3-扭力管;4-芯轴;5-外壳。沉筒位置随液位变化而变化,在杠杆的作用下,扭力管芯轴的扭角发生变化,二次仪表根据扭角的变化量计算出液位。

以上5种方法都是利用浮力原理来工作的。

4、电容法、电阻法、电感法

电容法:用于测量非导电液体的电容法原理如图4—1所示[4]。图4—1中,电容由两块同心的圆柱面极板组成,其电容量CH为

上式中:ε1-被测液体的相对介电常数;ε2-气相介质的相对介电常数;H-电容传感器浸入液体的深度(m);l-电容传感器垂直高度(m);R-内极板圆柱底面半径(m);r-外极板圆柱底面半径(m)。由于R、r、l等都是固定值,只要利用ε1、ε2、CH就能计算出液位H。图4—2是用于测量导电液体的电容法原理[4],其公式推导略。电容式液位仪价格较低,安装容易,且可以应用于高温、高压的场合。但电容液位仪测量重复精度较低,需定期维修和重新标定,工作寿命也不是很长。

电阻法:该方法[5]特别适用于导电液体的测量,敏感器件具有电阻特性,其电阻值随液位的变化而变化,故将电阻变化值传送给二次电路即得到液位。探针式利用跟踪测量法来测量液位,以液位上升的情形为例来说明液位测量原理,当液位上升时,提起探针完全脱离液体,然后缓慢降低探针寻找液面,则探针与液体刚接触时的位置即与液位相对应。探针式的特点是测量精度很高、控制电路复杂。

电感法:该方法[5]适用于导电液体的液位测量,特别是液态金属。电感法的原理是,液位变化使得电感元件的自感、互感或导磁率发生变化,故将该变化量送往二次电路即可得到相应的液位数值。电感法应用最为广泛的是高频液位计。该液位计的测量原理是,频率调制信号通过射频电缆耦合到传输线传感器谐振回路,谐振回路的输出电压经过检波电路和射频电缆传送给低通滤波器,然后根据低通滤波器的输出电压控制调谐电路,产生新的振荡频率,直到传感器谐振电路处于完全谐振状态为止,则此时的振荡频率即与传感器的电感量相对应,从而与液位相对应。

以上3种方法都是利用液位传感器的电参数产生变化的方法来测量液位的。

5、磁致伸缩法、超声波法、调制型光学法、微波法

磁致伸缩法:该方法用于测量油罐液位的原理如图5—1所示[6]。图5—1中有两个浮子,分别用来检测油气界面和油水界面。各浮子内都藏有一组永久磁铁,用来产生固定磁场。测量时,液位计头部发出低电流“询问”脉冲,该电流产生的磁场沿波导管向下传导。当电流磁场与浮子磁场相遇时,产生“返回”脉冲(也称“波导扭曲”脉冲)。询问脉冲与返回脉冲之间的时间差即对应油水界面和油气界面的高度。磁致伸缩液位计安装容易,测量精度很高,但液体密度变化和温度变化会带来测量误差[7],浮子沿着波导管外的护导管上下移动,容易被卡死。

超声波法:换能器将电功率脉冲转换为超声波,射向液面,经液面反射后再由换能器将该超声波转换为电信号。超声波是机械波,传播衰减小,界面反射信号强,且发射和接收电路简单,因而应用较为广泛;但超声波的传播速度受介质的密度、浓度、温度、压力等因素影响,其测量精度较低。

微波法:微波通过天线(大多为口径天线,也有平面天线)辐射出去,经液面反射后被天线接收,然后由二次电路计算发射信号与接收信号的时间差得液位。连续波雷达液位仪原理如图5—2所示,该液位仪采用三角波频率调制形式,并通过对发射信号与接收信号混频后得到的差额信号的分析,得到微波传输时间,从而计算出液位。微波速度受传播介质、温度、压力、液体介电常数的影响很小,但液体界面的波动、液体表面的泡沫、液体介质的介电常数对微波反射信号强弱有很大影响。当压力超过规定数值时,压力对液位测量精度将产生显著影响。对于介电常数小于规定数值的液体,大部分雷达液位仪都需要采用波导管,但波导管的锈蚀、弯曲和倾斜都会影响测量精度。例如:当空高h为20 m,导波管与垂直方向倾斜角度α只要超过0.573°,则引起的液位误差Δh将超过1 mm,由此证明,在倾斜角度α(单位为度)较小时,

Δh满足:

雷达液位仪特别适合于高污染度或高粘度的产品,如沥青等。雷达液位仪测量的重复精度较高,无须定期维修和重新标定,测量精度也较高,但价格较高,测量油水界面困难。

调制型光学法与微波法类似,只是采用相位或频率调制的光信号代替微波信号。图5—3是一种激光雷达液位仪原理图[8]。但光信号受水蒸汽、油蒸汽影响较大,并对液面波动很敏感,且必须采用易受污染的光学镜头。

以上3种方法都是通过检测信号传播的时间来确定液位的。设发射信号与接收信号的时间差为t,则空高h =vt/2,v为波的传播速度。

6、磁翻板法、振动法、核辐射法、光纤传感器法

磁翻板法原理如图6—1a所示[1],1-翻板指示组件;2-浮子;3-连通管组件;4-调整螺钉;5

-放泄塞。浮子装有一组永久磁铁,随液位变化而上下移动,通过磁耦合作用带动磁翻板组件翻转。当液位上升时,磁翻板的红色面朝外;液位下降时,白色面朝外。故根据磁翻板的颜色即可确定液位。浮子内磁铁与磁翻板磁性结构如图6—1b所示[5],每片翻板间的距离为10 mm。采用几台磁翻板装置串联可增大量程。

振动法的原理如图6—2所示[9]。振动液位仪由导轨、测试架、激锤、振动传感器、伺服机构等组成。伺服机构控制振锤上下爬动并激振,激振后的自由振动被振动传感器检测,该检测信号经FET变换后得到最大功率处的频率,最后由空罐时固有频率/液位关系得到液位。这种液位测量方法需要激锤、伺服机构等机械运动部件,其工作寿命不是很长,须定期维修和重新标定,安装也较复杂。

辐射法:放射性同位素在衰变过程中会辐射射线,常见的射线有α、β、γ射线。其中,γ射线的穿透力强,射程远,故在核辐射液位测量中广泛采用。实验证明,穿过物质前后γ射线强度会发生变化,并满足以下关系[5]

上式中:J0-穿过物质前的强度;J-穿透物质后的强度;μ-物质对γ射线的衰减特性;d-物质的厚度。核辐射式液位仪由放射源、探测器及处理电路组成。放射源大都采用钴-60或铯-137。探测器有电离室、记数管、闪烁计数器等几种,其作用是探测射线穿透物质后的强度。核辐射液位仪采用非接触式安装,如图6—3所示。图6—3a采用点式放射源、探测器,测量范围较小;图6—3b采用点式放射源、线状探测器,测量范围较大;图6—3c采用线状放射源、探测器,测量范围最大。除γ射线外,中子射线也可用来测量

液位。中子射线的穿透能力极强,比γ射线强10倍以上,可穿透壁厚达9英寸的钢质容器[10]。射线液位仪安装方便,测量精度能满足大罐测量的需要,有一定的应用场合。

光纤传感法:文献[11]提出了一种光纤液位传感器,当液位变化时,压力传感器的敏感弹性膜片产生位移,带动反光膜移动,使探头感受的光强发生变化,从而计算出液位。文献[12]提出了又一种光纤液位传感器,根据探头在气相和液相介质中感受到光强的差异,判断探头的位置,并控制探头跟踪液位的变化,从而得到液位数值。

7、结束语

该文对20余种液位测量方法进行了分析比较。在实际应用中,应根据价格、测量精度、被测介质的特点等因素,合理选择液位仪的种类。

(完整版)液位检测与控制试验系统设计..

液位检测与控制试验系统设计 1.发展现状: 液位检测在许多控制领域已较为普遍,各种类型的液位检测装置也不少,按原理分有浮力式、压力式、超声波式、差压式、电容式等,这各种方法都根据其需要设计完成,其结构、量程和精度各有特色, 适用于各自的场合, 但都是基于固定液箱液位检测而设计。市面上也有现成的液位计,有投入式、浮球式、弹簧式等,绝大多数价格惊人。 “水是生命之源”,不仅人们生活以及工业生产经常涉及到各种液位和流量的控制问题,例如饮料、食品加工,居民生活用水的供应,溶液过滤,污水处理,化工生产等多种行业的生产加工过程,通常要使用蓄液池。蓄液池中的液位需要维持合适的高度,太满容易溢出造成浪费,过少则无法满足需求。因此,需要设计合适的控制器自动调整蓄液池的进出流量,使得蓄液池内液位保持正常水平,以保证产品的质量和生产效益。这些不同背景的实际问题都可以简化为某种水箱的液位控制问题。因此液位是工业控制过程中一个重要的参数。特别是在动态的状态下,采用适合的方法对液位进行检测、控制,能收到很好的生产效果。高老师也进行了多次的实验得出了一些相关的数据,水箱液位控制系统的设计应用非常长广泛,可以把一个复杂的液位控制系统简化成一个水箱液位控制系统来实现。所以就选择了该题目的设计。由于液位检测应用领域的不同,性能指标和技术要求也有差异,但适用有效的测量成为共同的发展趋势,随着电子技术及计算机技术的发展,液位检测的自动控制成为其今后的发展趋势,控制过程的自动化处理以及监控软件良好的人机界面,操作人员在监控计算机上能根据控制效果及时修运行参数,这样能有效地减少工人的疲劳和失误,提高生产过程的实时性、安全性。随着计算机控制技术应用的普及、可靠性的提高及价格的下降,液位检测的微机控制必将得到更加广泛的应用。 所以,我们在此设计了这个简易的监测系统,一方面,节省了大量的经济开支;另一方面,让我们对监测系统有了更加深刻、透彻的了解,不仅增加了我们的感性认识,还促进了我们对于系统各个部分的深刻剖析,从传感器选型到整个

电厂常见液位测量方式的分析

电厂常见液位测量方式的分析 【摘要】通过分析电厂中常见的液位测量原理和方式,对比几种测量方式的优缺点,为以后电厂液位测量方式优化及设备选型提供一定的参考。 【关键词】液位;测量;分析;参考 1.前言 目前,电厂自动化要求越来越高,为此一些重要的液位测量的准确性和稳定性就显得至关重要,关系到整个机组的稳定运行。通过对以往机组和正在建造中机组的了解,我们可以知道对于电厂内容器液位测量主要采用的方式有:差压式液位变送器、隔离型变送器中的远传型、导波雷达液位计及磁伸缩液位计等来测量。以下通过对一些常见的测量方式进行分析和比较: 2.差压式液位变送器测量 以凝汽器水位为例,介绍差压式变送器测量水位。凝汽器水位是电厂中的重要的测量信号,直接影响机组的稳定运行。此液位刚好是测量容器的液位,同时又有它的特殊性,是真空状态下的液位。 目前很多凝汽器水位测量装置采用差压变送器测量水位的方式,但采用差压测量方式的装置也有两种。一种是用仪表管把正负压侧直接连接到真空容器上进行液位测量,详见附图1。另一种是通过双室平衡容器再把变送器正负压侧连接在双室平衡容器上进行液位测量的常规压力液位测量,详见附图2。 真空容器液位的测量原理的,具体以凝汽器液位测量为例来说明。通过图1(fig .1)可以看出,液位变送器的正压侧仪表管接在凝汽器底部为水侧,负压侧仪表管接在凝汽器顶部汽侧。 由图1可以看出差压变送器测得的差压为: △P=P+-P-=P凝汽器+P液H+P液H2- P凝汽器= P液H +P液H2 式(1-1) 为得到实际水位值P液H,消除由仪表管路安装位置引起的静压误差P液H2。将差压变送器零点迁移至P液H2,通过DCS修正量程范围来补偿这一部分静压。从而得到凝汽器实际水位值。 该水位测量方法虽安装简单、投用方便,无需单独注水管路等优点。但在实际应用中,由于运行工况的变化,易使汽侧导压管内产生凝结水,虽然在导压管最低点安装了集水罐,并定期对集水罐进行排水,但是仍然引起变送器负压侧压力增大,变送器差压减小,造成水位测量出现误报,影响该保护的投入。同时由于是真空容器,只要正负压侧任何阀门有微漏,都将造成液位的失准,况且对于

液位自动控制系统

控制类系统设计 ——液位自动控制系统 摘要 随着电子技术、计算机技术和信息技术的发展,工业生产中传统的检测和控制技术发生了根本性的变化。液位作为化工等许多工业生产中的一个重要参数,其测量和控制效果直接影响到产品的质量,因此液位控制成为过程控制领域中的一个重要的研究方向。 液位控制是工业中常见的过程控制,它对生产的影响不容忽视。该系统利用了常见的芯片,设计并实现了液位控制系统的智能性及显示功能。电路组成简单,调试方便,性价比高,抗干扰性好等优点,能较好的实现水位监测与控制的功能。能够广泛的应用于工业场所。 液位控制有很多方法,如,非接触传感。只需要将传感器紧贴在非金属容器的外壁,就可以侦测到容器里面液位高度变化,从而及时准确地发出报警信号,有效防止液体外溢或防止机器干烧。由于不需要与液体接触且安装简便,避免了水垢的腐蚀,可取代传统的浮球传感和金属探针传感,延长寿命。而本设计是基于纯电路的设计,低成本且抗干扰性好。在本设计中较好的实现了水位监测与控制的功能。 液位控制系统是以液位为被控参数的系统,液位控制一般是指对某控制对象的液位进行控制调节,以达到所要求的液位进行调节,以达到所要求的控制精度。

1 概述 液位控制系统是以液位为被控参数的系统,是现代工业生产中的一类常见的、重要的控制过程。而传统的液位控制多采用单回路控制,并采用传统的指针式仪表来显示液位值,使液位控制的精度和显示的直观性受到限制,而随着生产线的更新及生产过程控制要求的提高,要求液位系统有高的控制性能。基于此,本系统就设计了一种电路简单,调试方便且性价比高的系统,来完成液位的自动调控。本系统主要由四部分组成:显示模块、振荡模块、传感器模块和声光报警模块,系统简单易行。 系统框图如下: 2 硬结构与功能 2.1 该设计的总体结构 该设计是一块集多种电子芯片于一体的多功能实验板,实现了液位系统的控制及显示。主要功能器件包括:电源部分的7808,定时部分的555定时器,数字分段的LM3914等。 电路原理图如下图所示:

储油罐液位测量技术比较

储油罐液位测量技术比较 作者姓名:张靓 作者单位:集输公司管道分公司 摘要:从目前集输公司原油储罐常用的液位测量仪表的测量原理和方法方面,分析了原油储罐液位测量技术的现状,主要归纳为以下几种:人工检尺、雷达液位测量仪表、浮子钢带式液位测量仪表等。对现采用的油罐测量技术作对比,选用合适的测量技术,保证原油储罐的安全,降低劳动强度,取得良好的经济效益。 关键词:储油罐;液位测量;仪表;现状; 1.储油罐液位测量技术现状 液位测量主要是对储油罐中油品的液位、体积和重量等参数进行直接或间接测量。目前集输公司原油储罐液位测量技术方法存在较多的问题和弊端,有的原油储罐虽安装了自动化测量系统,但测量精度普遍不高,误差较大。针对储油罐的液位测量技术归纳起来主要有以下几种。 1.1人工检尺 油罐测量始于人工检尺,这种方法目前仍广泛采用,并且作为其它液位计性能校验的工具之一。即用带有重锤的米制钢带卷尺或带有刻度的标尺计量,手工记录读数,人工查表换算,最后得到油量数据。这种测量方法不仅劳动强度大,同时存在不安全因素。人工检尺的方法可参阅国际标准API2545。人工液位测量一般有±2 mm的人为误差。人工检尺又分为检实尺和检空尺。 1.1.1检实尺

利用浸入式刻度钢皮尺通过原油储罐的量油孔,自量油孔上沿至铜锤至液面以下止,此方法为检实尺。计算罐内原油液位,根据所测得的液位,查《立式金属罐容量表》,得到罐内原油的体积数。体积数乘以原油密度,最后得到罐内原油的质量数。 1.1.2检空尺 由于冬天天气寒冷,气温下降,量油孔内的上层原油凝结,故不能采用检实尺的方法。自原油储罐内壁最上沿下尺,至铜锤接触原油储罐浮顶止,即为检空尺。经计算得到罐内原油的液位,根据所测得的液位,查《立式金属罐容量表》,得到罐内原油的体积数。体积数乘以原油密度,最后得到罐内原油的质量数。 1.2浮体式液位测量仪表 浮体式液位测量仪表分为浮筒式与浮子式。 浮筒式液位仪是在滑轮组上用钢丝绳一端挂浮球,另一端挂重锤,通过浮球与重锤的运动距离达到液位测量的目的。其缺点是钢丝绳与滑轮间存在滑动摩擦力,回位误差较大,特别是在钢丝绳和滑轮生锈时,回位误差更大,甚至无法测量。在浮子式液位仪中钢带浮子式液位仪在原理及使用方面更为典型,钢带浮子式液位仪是一种最简单的液位测量装置,由一根不锈钢管和一个空心球组成。不锈钢管内部装有若干个干簧继电器,空心球内装有一块永久磁铁,当空心球随着液位上下运动时,空心球的运动被干簧继电器转换为相应的液位。20世纪60年代到80年代初期,开始研制和使用各种钢带浮子式液位仪。由于滑轮机械装置的摩擦力和钢带重量,这类液位仪的测量误

常用液位计常见故障分析方法

常用液位计常见故障分析方法 一、现场液位计系统故障的基本分析步骤现场液位计液位测量参数一般分为温度、压力、流量、液位四大参数。 现根据液位测量参数的不同,来分析不同的现场液位计故障所在。 1.首先,在分析现场液位计故障前,要比较透彻地了解相关液位计系统的生产过程、生产工艺情况及条件,了解液位计系统的设计方案、设计意图,液位计系统的结构、特点、性能及参数要求等。 2.在分析检查现场液位计系统故障之前,要向现场操作工人了解生产的负荷及原料的参数变化情况,查看故障液位计的记录曲线,进行综合分析,以确定液位计故障原因所在。 3.如果液位计记录曲线为一条死线(一点变化也没有的线称死线),或记录曲线原来为波动,现在突然变成一条直线;故障很可能在液位计系统。因为目前记录液位计大多是DCS计算机系统,灵敏度非常高,参数的变化能非常灵敏的反应出来。此时可人为地改变一下工艺参数,看曲线变化情况。如不变化,基本断定是液位计系统出了问题;如有正常变化,基本断定液位计系统没有大的问题。 4.变化工艺参数时,发现记录曲线发生突变或跳到最大或最小,此时的故障也常在液位计系统。 5.故障出现以前液位计记录曲线一直表现正常,出现波动后记录曲线变得毫无规律或使系统难以控制,甚至连手动操作也不能控制,此

时故障可能是工艺操作系统造成的。 6.当发现DCS显示液位计不正常时,可以到现场检查同一直观液位计的指示值,如果它们差别很大,则很可能是液位计系统出现故障。总之,分析现场液位计故障原因时,要特别注意被测控制对象和控制阀的特性变化,这些都可能是造成现场液位计系统故障的原因。所以,我们要从现场液位计系统和工艺操作系统两个方面综合考虑、仔细分析,检查原因所在。 二、四大液位测量参数液位计控制系统故障分析步骤 1.温度控制液位计系统故障分析步骤 分析温度控制液位计系统故障时,首先要注意两点:该系统液位计多采用电动液位计液位测量、指示、控制;该系统液位计的液位测量往往滞后较大。 (1)温度液位计系统的指示值突然变到最大或最小,一般为液位计系统故障。因为温度液位计系统液位测量滞后较大,不会发生突然变化。此时的故障原因多是热电偶、热电阻、补偿导线断线或变送器放大器失灵造成。 (2)温度控制液位计系统指示出现快速振荡现象,多为控制参数PID 调整不当造成。 (3)温度控制液位计系统指示出现大幅缓慢的波动,很可能是由于工艺操作变化引起的,如当时工艺操作没有变化,则很可能是液位计控制系统本身的故障。

基于力控的液位测量控制系统的设计

武汉理工大学 毕业设计(论文) 基于力控的液位测量控制系统的设计 学院(系): 专业班级: 学生姓名: 指导教师:

摘要 油罐在石油化工工业生产及贮油方面具有不可忽视的作用,既然这样,油罐的液位测量就显得非常重要。本论文在对比国内外相关课题后,提出了一套完整的油罐液位系统测量方案。该系统采用可编程控制器(PLC)的电源模块,CPU模块及模拟、数字的输入、输出模块作为硬件,并将其相互连接达到液位和温度的测量及显示作用,同时利用Pro-32程序作为该系统的软件对其进行温度信号的采集和液位信号的测量。最后,再应用力控软件对该系统进行仿真。 该系统包括三套液位测量装置,在本次设计中应用小型以太网联接在一起,达到分散设备,集中控制的目的。 关键词:液位测量 PLC 以太网

Abstract Oilcan has the function that have to can't neglect in petroleum chemical engineering industry production and the oil of storing, since like this, the measures liquid of the oilcan and then seem to be very important.My thesis put forward a set of complete oilcans liquid system diagraph project after contrasting domestic and international and related lesson.The system supply power model,CPU model and analog,digital input,output model as its hardware,combining its mutually connection to attain the liquid a diagraph with manifestation function of temperature, combining exploitation procedure Pro-32 conduct and actions that system of the programmable controller( PLC) in adoption in the system proceed the temperature signal collects with the diagraph of the liquid a signal.Finally, then the applied dint really control the software to proceed to imitate to the system. The system includes three sets of equipment for measuring liquid device, in this design They are connected together by applied small scaled ether net, and get dispersion equipments, concentrating control. Key phrase: The liquid measures The PLC Ether net

20余种液位测量方法分析比较

20余种液位测量方法分析比较

20余种液位测量方法分析比较作者:发布时间:2009-5-5 11:34:14 阅读次数:985

物位包括液位和料位两类。液位又包括液位信号器和连续液位测量两种。液位信号器是对几个固定位置的液位进行测量,用于液位的上、下限报警等。连续液位测量是对液位连续地进行测量,它广泛地应用于石油、化工、食品加工等诸多领域,具有非常重要的意义。文中对20余种连续液位测量方法进行比较分析。 1、玻璃管法、玻璃板法、双色水位法、人工检尺法 玻璃管法:该方法利用连通器原理工作,如图1—1所示[1]。图中1-被测容器;2-玻璃管;3-指示标度尺;4、5-阀;6、7-连通管。液位直接从指示标度尺读出。 玻璃板法:玻璃板可通过连通器安装,也可在容器壁上开孔安装,并可串联几段玻璃板以增大量程。液位数值直接从玻璃板刻度尺读出。 双色水位计法:该方法利用光学原理,使水显示绿色,而使水蒸汽显示红色,

从而指示出水位[2]。 人工检尺法:该方法用于测量油罐液位。测量时,测量员把量油尺投入油品中,并在尺砣与罐底接触时提起量油尺。根据量油尺上的油品痕迹,读出油面高度;根据量油尺末端试水膏颜色的变化确定水垫层的高度,从而确定油高和水高[3]。 以上4种方法都是人工测量方法,具有测量简单、可靠性高、直观、成本低的优点。 2、吹气法、差压法、HTG法 吹气法:该方法的工作原理如图2—1所示[4]。图中,1-过滤器;2-减压阀;3-节流元件;4-转子流量计;5-变送器。因吹气管内压力近似等于液柱的静压力,故P=ρgH 式中,ρ-液体密度;H-液位。故由静压力P即可测量液位H。吹气法适用于测量腐蚀性强、有悬浊物的液体,主要应用在测量精度要求不高的场合。 差压法:该方法的工作原理如图2-2所示[4]。图中,1、2-阀门;3-差压变送器。对于开口容器或常压容器,阀门1及气相引压管道可以省掉。压力差与液位的关系为ΔP=P2-P1=ρgH

常用20种液位计工作原理

本文通过对常用20种液位计工作原理的解读,从各液位计安装使用及注意事项的分析,来判断液位计可能出现的故障现象以及如何来处理,系统的了解液位计,从而为遇到工况能够在选择液位计上,做出准确的判断提供依据。常见液位计种类1、磁翻板液位计2、浮球液位计3、钢带液位计4、雷达物位计5、磁致伸缩液位计6、射频导纳液位计7、音叉物位计8、玻璃板/玻璃管液位计9、静压式液位计10、压力液位变送器11、电容式液位计12、智能电浮筒液位计13、浮标液位计14、浮筒液位变送器15、电接点液位计16、磁敏双色电子液位计17、外测液位计18、静压式液位计19、超声波液位计20、差压式液位计(双法兰液位计)常用液位计的工作原理1、磁翻板液位计磁翻板液位计:又叫磁浮子液位计,磁翻柱液位计。原理:连通器原理,根据浮力原理和磁性耦合作用研发而成,当被测容器中的液位升降时,浮子内的永久磁钢通过磁耦合传递到磁翻柱指示面板,使红白翻柱翻转180°,当液位上升时翻柱由白色转为红色,当液位下降时翻柱由红色转为白色,面板上红白交界处为容器内液位的实际高度,从而实现液位显示。2、浮球液位计浮球液位计结构主要基于浮力和静磁场原理设计生产的。带有磁体的浮球(简称浮球)在被测介质中的位置受浮力作用影响:液位的变化导致磁性浮子位置的变化。浮球中的磁体和传感器(磁簧开关)作用,使串连入电路的元件(如定值电阻)的数量发生变化,进而使仪表电路系统的电学量发生改变。也就是使磁性浮子位置的变化引起电学量的变化。通过检测电学量的变化来反映容器内液位的情况。3、钢带液位计它是利用力学平衡原理设计制作的。当液位改变时,原有的力学平衡在浮子受浮力的扰动下,将通过钢带的移动达到新的平衡。液位检测装置(浮子)根据液位的情况带动钢带移动,位移传动系统通过钢带的移动策动传动销转动,进而作用于计数器来显示液位的情况。4、雷达液位计雷达液位计是基于时间行程原理的测量仪表,雷达波以光速运行,运行时间可以通过电子部件被转换成物位信号。探头发出高频脉冲并沿缆式探头传播,当脉冲遇到物料表面时反射回来被仪表内的接收器接收,并将距离信号转化为物位信号。5、磁致伸缩液位计磁致伸缩液位计的传感器工作时,传感器的电路部分将在波导丝上激励出脉冲电流,该电流沿波导丝传播时会在波导丝的周围产生脉冲电流磁场。在磁致伸缩液位计的传感器测杆外配有一浮子,此浮子可以沿测杆随液位的变化而上下移动。在浮子内部有一组永久磁环。当脉冲电流磁场与浮子产生的磁环磁场相遇时,浮子周围的磁场发生改变从而使得由磁致伸缩材料做成的波导丝在浮子所在的位置产生一个扭转波脉冲,这个脉冲以固定的速度沿波导丝传回并由检出机构检出。通过测量脉冲电流与扭转波的时间差可以精确地确定浮子所在的位置,即液面的位置。6、射频导纳液位计射频导纳料位仪由传感器和控制仪表组成,传感器可采用棒式、同轴或缆式探极安装于仓顶。传感器中的脉冲卡可以把物位变化转换为脉冲信号送给控制仪表,控制仪表经运算处理后转换为工程量显示出来,从而实现了物位的连续测量。7、音叉物位计音叉式物位控制器的工作原理是通过安装在音叉基座上的一对压电晶体使音叉在一定共振频率下振动。当音叉与被测介质相接触时,音叉的频率和振幅将改变,这些变化由智能电路来进行检测,处理并将之转换为一个开关信号。8、玻璃板液位计(玻璃管液位计)玻璃板式液位计是通过法兰与容器连接构成连通器,透过玻璃板可直接读得容器内液位的高度。9、压力液位变送器压力式液位计采用静压测量原理,当液位变送器投入到被测液体中某一深度时,传感器迎液面受到的压力的同时,通过导气不锈钢将液体的压力引入到传感器的正压腔,再将液面上的大气压Po与传感器的负压腔相连,以抵消传感器背面的Po,使传感器测得压力为:ρ.g.H,通过测取压力P,可以得到液位深度。10、电容式液位计电容式液位计是采用测量电容的变化来测量液面的高低的。它是一根金属棒插入盛液容器内,金属棒作为电容的一个极,容器壁作为电容的另一极。两电极间的介质即为液体及其上面的气体。由于液体的介电常数ε1和液面上的介电常数ε2不同,比如:ε1>ε2,则当液位升高时,电容式液位计两电极间总的介电常数值随之加大因而电容量增大。反之当液位下降,ε值减小,电容量也减小。所以,电容式液位计可通过两电极间的电容量的变化来测量液位的高低。11、智能电浮筒液位计智能电浮筒液位计是根据阿基米德定律和磁藕合原理设计而成的液位测量仪表,仪表可用来测量液位、界位和密度,负责上下限位报警信号输出。12、浮标液位计它是利用力学平衡原理设计制作的。当液位改变时,原有的力学平衡在浮子受浮力的扰动下,将通过钢带(绳)的移动达到新的平衡。液位检测装置(浮子)根据液位的情况带动钢带(绳)移动,位移

液位控制系统

基于智能仪表的串联双容水箱液位控制系统 (青海大学化工学院 2009年10月22日魏国强邮编:810016 关键字:智能仪表液位控制串联双容水箱) 中文摘要:本文提出了一种利用智能仪表AI808对串联双容水箱液位 进行串级控制,以MCGS组态软件实现上位机对现场进行实时组态、 监控的方法。 1.本题目设计的目的与意义 1.1本题目设计的目的 串联双容水箱在工业过程控制中应用非常广泛。在串联双容水 箱水位的控制中,进水首先进入第一个水箱,然后通过第二个水箱流出,与一个水箱相比,由于增加了一个水箱,使得被控量的响应在时 间上更落后一步,即存在容积延迟,从而导致该过程的难以控制。本 系统就是为解决这种缺陷而设计。 1.2本题目设计的意义 串级控制是改善调节过程动态性能的有效方法,由于其超前的控 制作用,可以大大克服系统的容积延迟。采用两步整定法,通过MCGS 组态软件对整定过程及曲线进行实时监控,直至达到主、副回路的最 佳整定参数。 2.液位控制系统在我国的发展现状和未来 2.1液位控制系统在我国的发展现状 随着生产水平和科学技术的不断发展,现代控制系统的规模日 趋大型化、复杂化,对设备和被控系统安全性、可靠性和有效性的要 求也越来越高。为了确保工业生产过程高效、安全的进行,保证并提

高产品的质量,对生产过程进行在线监测,及时准确地把握生产运行状况,已成为目前过程控制领域的一个研究热点。近几十年来,液位控制系统已被广泛使用,在其研究和发展上也已趋于完备。在轻工行业中,液位控制的应用非常普遍,从简单的浮球液位开关、非接触式的超声波液位检测一直到高精度的同位素液位检测系统到处都可以见到他们的身影。而控制的概念更是应用在许多生活周遭的事物上。而且液位控制系统已是一般工业界所不可缺少的元件。凡举蓄水池,污水处理场等都需要液位元的控制.如果能通过一定的系统来自动维持液位的高度那么操作人员便可轻易地在操作时获知真个设备的储水状况,如此不但工作人员工作的危险性,同时更提升了工作的效率及简便性.基于智能仪表的串联双容水箱液位控制系统正是具有这种功能。 2.2液位控制系统的未来 在构建液位控制系统的过程中,我们得知实际操作的变异性存在其中,因此如何分析、调整及改良便是我们日后所要着重的要点。而在完成传统的PID操作控制系统后,未来我们更将利用Genetic Algorithms 找出最好的参数并建构在液位控制系统。且比较加入智能型控制后的系统与传统 PID是否会有性能上的差异。近年来液位控制系统取得了很大进步,出现了许多新型的液位控制仪,如超声波液位仪、雷达液位仪、光电液位开关等,这些控制器利用无线电波的折射及反射原理。光线在两种介质的分接口将产生反射或折射现象。当被测液体处于高位时则被测液体与光电开关形成一种分界面,当被测液体处于低位时,则空气与光电开关形成另一种分界面。这两种分

常见几种液位计工作原理

常见几种液位计工作原理 关键字:液位计 一、磁翻板液位计 主要原理 磁翻板液位计也称为磁翻柱液位计,结构主要基于浮力和磁力原理设计生产的带有磁体的浮子(简称磁性浮子)被测介质中的位置受浮力作用影响。液位的变化导致磁性浮子位置的变化、磁性浮子和磁翻柱(也成为磁翻板)静磁力耦合作用导致磁翻柱翻转一定角度(磁翻柱外表涂敷不同的颜色)进而反映容器内液位的情况。 配合传感器(磁簧开关)和精密电子元器件等构成的电子模块和变送器模块,可以变送输出电阻值信号、电流值(420mA 信号、开关信号以及其他电学信号。从而实现现场观测和远程控制的完美结合。 适用范围及特点 磁翻板液位计采用优质磁体和进口电子元件,使产品具有:设计合理、结构简单、使用方便、性能稳定、使用寿命长、便于装置维护等优点。 磁翻板液位计输出信号多样,实现远距离的液位指示、检测、控制和记录。 磁翻板液位计几乎可以适用于各种工业自动化过程控制中的液位丈量与控制。可以广泛运用于石油加工、食品加工、化工、水处理、制药、电力、造纸、冶金、船舶和锅炉等领域中的液位测量、控制与监测。

二、磁浮球液位计(液位开关) 主要原理 磁浮球液位计(液位开关)结构主要基于浮力和静磁场原理设计生产的带有磁体的浮球(简称浮球)被测介质中的位置受浮力作用影响:液位的变化导致磁性浮子位置的变化。浮球中的磁体和传感器(磁簧开关)作用,使串联入电路的元件(如定值电阻)数量发生变化,进而使仪表电路系统的电学量发生改变。也就是使磁性浮子位置的变化引起电学量的变化。通过检测电学量的变化来反映容器内液位的情况。 该液位计可以直接输出电阻值信号,也可以配合使用变送模块,输出电流值(420mA 信号;同时配合其他转换器,输出电压信号或者开关信号(也可以依照客户需求转换器由公司配送)从而实现电学信号的远程传输、分析与控制。 适用范围及特点 本产品采用优质磁体和进口电子元件,使产品具有:结构简单、使用方便、性能稳定、使用寿命长、便于装置维护等优点。 本产品几乎可以适用与各种工业自动化过程控制中的液位丈量与控制,可以广泛运用于石油加工、食品加工、化工、水处理、制药、电力、造纸、冶金、船舶和锅炉等领域中的液位测量、控制与监测。

液位测量方法分析课件

20余种液位测量方法分析 物位包括液位和料位两类。液位又包括液位信号器和连续液位测量两种。液位信号器是对几个固定位置的液位进行测量,用于液位的上、下限报警等。连续液位测量是对液位连续地进行测量,它广泛地应用于石油、化工、食品加工等诸多领域,具有非常重要的意义。文中对20余种连续液位测量方法进行比较分析。 1玻璃管法、玻璃板法、双色水位法、人工检尺法 玻璃管法:该方法利用连通器原理工作,如图1—1所示。图中1-被测容器;2-玻璃管;3-指示标度尺;4、5-阀;6、7-连通管。液位直接从指示标度尺读出。 玻璃板法:玻璃板可通过连通器安装,也可在容器壁上开孔安装,并可串联几段玻璃板以增大量程。液位数值直接从玻璃板刻度尺读出。 双色水位计法:该方法利用光学原理,使水显示绿色,而使水蒸汽显示红色,从而指示出水位。 人工检尺法:该方法用于测量油罐液位。测量时,测量员把量油尺投入油品中,并在尺砣与罐底接触时提起量油尺。根据量油尺上的油品痕迹,读出油面高度;根据量油尺末端试水膏颜色的变化确定水垫层的高度,从而确定油高和水高。 以上4种方法都是人工测量方法,具有测量简单、可靠性高、直观、成本低的优点。 2吹气法、差压法、HTG法 吹气法:该方法的工作原理如图2—1所示。图中,1-过滤器;2-减压阀;3-节流元件;4-转子流量计;5-变送器。因吹气管内压力近似等于液柱的静压力,故P=ρgH 式中,ρ-液体密度;H-液位。故由静压力P即可测量液位H。吹气法适用于测量腐蚀性强、有悬浊物的液体,主要应用在测量精度要求不高的场合。

差压法:该方法的工作原理如图2-2所示。图中,1、2-阀门;3-差压变送器。对于开口容器或常压容器,阀门1及气相引压管道可以省掉。压力差与液位的关系为ΔP=P2-P1=ρgH 式中:ΔP-变送器正、负压室压力差;P2、P1-引压管压力;H-液位。差压变送器将压力差变换为4~20 mA的直流信号。如果压力处于测量范围下限时对应的输出信号大于或小于4 mA,则都需要采用调整迁移弹簧等零点迁移技术,使之等于4 mA。 HTG法:该方法应用于油罐差压液位测量中,如图2—3所示。图中:P1、P2、P3-高精度压力传感器;RTD-温度检测元件;HIU-接口单元。P1位于罐底附近的罐壳处,P2比P1高8英尺,P3位于罐顶附近的罐壳处。对于常压油罐,压力传感器P3可以省去。设压力传感器P1、P2、P3测得的压力分别为p1、p2、p3,则 式中:G-油品重量;Sav-油罐平均截面积;ρav-介于压力传感器P1、P2之间油品平均密度;g是重力加速度;H是压力传感器P1、P2之间的距离;h是油品高度;h0是压力传感器P1的高度。RTD用于测量油品温度,以对测量数值进行温度补偿。HTG测量系统价格较低,但液位测量精度较低,安装须在罐壁开孔。 以上3种方法都是利用液体的压力差来测量液位的。 3浮子法、浮筒法、浮球法、伺服法、沉筒法 浮子法:该方法采用浮子作为液位测量元件,并驱动编码盘或编码带等显示装置,或连接电子变送器以便远距离传输测量信号。

20种液位计工作原理及常见故障分析

20种液位计工作原理及常见故障分析 摘要:本文通过对常用20种液位计工作原理的解读,从各液位计安装使用及注意事项的分析,来判断液位计可能出现的故障现象以及如何来处理,让仪表人系统的了解液位计,从而为遇到工况能够在选择液位计上,做出准确的判断提供依据。 常见液位计种类 1、磁翻板液位计 2、浮球液位计 3、钢带液位计 4、雷达物位计 5、磁致伸缩液位计 6、射频导纳液位计 7、音叉物位计 8、玻璃板/玻璃管液位计 9、静压式液位计 10、压力液位变送器 11、电容式液位计 12、智能电浮筒液位计 13、浮标液位计 14、浮筒液位变送器 15、电接点液位计 16、磁敏双色电子液位计 17、外测液位计 18、静压式液位计 19、超声波液位计 20、差压式液位计(双法兰液位计) 常用液位计的工作原理

1、磁翻板液位计 磁翻板液位计:又叫磁浮子液位计,磁翻柱液位计。 原理:连通器原理,根据浮力原理和磁性耦合作用研发而成,当被测容器中的液位升降时,浮子内的永久磁钢通过磁耦合传递到磁翻柱指示面板,使红白翻柱翻转180°,当液位上升时翻柱由白色转为红色,当液位下降时翻柱由红色转为白色,面板上红白交界处为容器内液位的实际高度,从而实现液位显示。 2、浮球液位计 浮球液位计结构主要基于浮力和静磁场原理设计生产的。带有磁体的浮球(简称浮球)在被测介质中的位置受浮力作用影响:液位的变化导致磁性浮子位置的变化。浮球中的磁体和传感器(磁簧开关)作用,使串连入电路的元件(如定值电阻)的数量发生变化,进而使仪表电路系统的电学量发生改变。也就是使磁性浮子位置的变化引起电学量的变化。通过检测电学量的变化来反映容器内液位的情况。

液位自动控制系统分析

二.系统分析 2.1系统工作原理 浮球杠杆式液位自动控制系统原理示意图 工作原理:当电位器电刷位于中点位置时,电动机不动,控制阀门有一定的开度,使水箱中流入水量与流出水量相等,从而液面保持在希望高度上。一旦流入水量或流出水量发生变化,水箱液面高度便相应变化。例如,当液面升高时,浮子位置亦相应升高,通过杠杆作用使电位器电刷从中点位置下移,从而给电动机提供一定的控制电压,驱动电动机通过减速器减小阀门开度,使进入水箱的流量减少。此时,水箱液面下降,浮子位置相应下降,知道电位器电刷回到中点位置,系统重新处于平衡状态,液面恢复给定高度,反之,若水箱液面下降,则系统会自动增大阀门开度,加大流入的水量,使液面升到给定的高度。

2.2系统分解 水位自动控制系统由浮子,杠杆,直流电动机,阀门及水箱控制部分构成。根据不同的需要可以对各部分进行不同的设计。该系统结构简单,安装方便,操作简便直观,可以长期连续稳定在无人监控状态下运行。 液位控制系统原理方框图如下所示: 图2 2.3.数学模型 2.3.1浮子、杠杆、电位计(比例环节) 浮球杠杆测量液位高度的原理式 U o=U 总 b??al 式中Uo为电位计的输出电压,U 总 为电位计两端的总电势,b a为杠杆的长度比,??为高度的变化,l为电位计电阻丝的中点位置到电阻丝边缘的长度。 则:

G1s=K1 2.3.2微分调理电路(微分环节) 由于水面震荡,导致浮子不稳定,在电位计的输出电压与电动机的输入端之间接一个微分调理电路,对输入的电压进行调理传递函数为 G2s=K2s 2.3.3电动机(惯性环节) 查资料知电动机的传递函数: G3s= K3 Ts+1 2.3.4减速器(比例环节) 这是一个比例环节,增益为减速器的减速比。 故,传递函数为 G4s=K4 2.3.5控制阀(积分环节) 这是一个积分环节, 故,传递函数为 G5s=K5 s 2.3.6水箱(积分环节) 这是一个积分环节,实际液位Y是流入量Q in与流出量Q out的差值?Q对时间t的积分。

液位测量

20余种液位测量方法分析比较 物位包括液位和料位两类。液位又包括液位信号器和连续液位测量两种。液位信号器是对几个固定位置的液位进行测量,用于液位的上、下限报警等。连续液位测量是对液位连续地进行测量,它广泛地应用于石油、化工、食品加工等诸多领域,具有非常重要的意义。文中对20余种连续液位测量方法进行比较分析。 1、玻璃管法、玻璃板法、双色水位法、人工检尺法 玻璃管法:该方法利用连通器原理工作,如图1—1所示[1]。图中1-被测容器;2-玻璃管;3-指示标度尺;4、5-阀;6、7-连通管。液位直接从指示标度尺读出。 双色水位计法:该方法利用光学原理,使水显示绿色,而使水蒸汽显示红色,从而指示出水位[2]。 人工检尺法:该方法用于测量油罐液位。测量时,测量员把量油尺投入油品中,并在尺砣与罐底接触时提起量油尺。根据量油尺上的油品痕迹,读出油面高度;根据量油尺末端试水膏颜色的变化确定水垫层的高度,从而确定油高和水高[3]。 以上4种方法都是人工测量方法,具有测量简单、可靠性高、直观、成本低的优点。 2、吹气法、差压法、HTG法 吹气法:该方法的工作原理如图2—1所示[4]。图中,1-过滤器;2-减压阀;3-节流元件;4-转子流量计;5-变送器。因吹气管内压力近似等于液柱的静压力,故P=ρgH

差压法:该方法的工作原理如图2-2所示[4]。图中,1、2-阀门;3-差压变送器。对于开口容器或常压容器,阀门1及气相引压管道可以省掉。压力差与液位的关系为ΔP=P2-P1=ρgH 式中:ΔP-变送器正、负压室压力差;P2、P1-引压管压力;H-液位。差压变送器将压力差变换为4~20 mA的直流信号。如果压力处于测量范围下限时对应的输出信号大于或小于4 mA,则都需要采用调整迁移弹簧等零点迁移技术,使之等于4 mA。 HTG法:该方法应用于油罐差压液位测量中,如图2—3所示。图中:P1、P2、P3-高精度压力传感器;RTD -温度检测元件;HIU-接口单元。P1位于罐底附近的罐壳处,P2比P1高8英尺,P3位于罐顶附近的罐壳处。对于常压油罐,压力传感器P3可以省去。设压力传感器P1、P2、P3测得的压力分别为p1、p2、p3,则 式中:G-油品重量;Sav-油罐平均截面积;ρav-介于压力传感器P1、P2之间油品平均密度;g是重力加速度;H是压力传感器P1、P2之间的距离;h是油品高度;h0是压力传感器P1的高度。RTD用于测量油品温度,以对测量数值进行温度补偿。HTG测量系统价格较低,但液位测量精度较低,安装须在罐壁开孔。 以上3种方法都是利用液体的压力差来测量液位的。

液位计原理

西安祥天和电子科技有限公司详情咨询官网https://www.doczj.com/doc/895787689.html, 液位传感器水泵控制箱报警器液位自动控制仪表,液位控制器,无线传输收发器等 液位计原理 传统液位计种类很多,有玻璃管液位计、玻璃板液位计、磁翻板液位计等等。玻璃板/管液位计的原理很简单,就是在水箱外通过拷克阀门将水引到一个玻璃管内。因为玻璃管是透明的,所以可以通过玻璃管看见液位高低。再好一点的就是在外面加一衬托、标尺等,让人们能容易看到液位状态。但这种液位计只能现场显示,无法将液位信号转换为电信号,实现远距离监控。而磁翻板液位计是在钢管内装有磁性浮球,管外加装干簧管和标尺,可以将液位开关信号传到远方。所以磁翻板是目前在热水水位控制中采用的主要方式之一。但从实际使用效果来看,现在的所有热水液位控制,水温在80℃以下时,使用寿命还可以。一旦超过80℃甚至到90℃以上时,使用寿命就大打折扣了。因为磁性材料的磁性会随着温度的升高而衰减,到100℃时会下降到常温的70%。所以水位控制中有2个难点,一个就是污水,一个就是高温的热水。现在,污水中可以采用GKY液位传感器,而热水则可以采用传统玻璃管外加监控装置来实现,具体原理如下: 如果是普通的水,在玻璃管内放一个普通的浮子就可以了。玻璃管外放置一收一发2个光电管。当浮子经过时,遮住光路,转换器就将水位信号发送出去。 如果是热水,玻璃管最好采用石英管,它的硬度、透明度、耐酸性、耐高温性和耐磨性都要远高于玻璃管。液位计两端的阀门也可以采用针型阀,不只起截止阀的作用,其内部的钢球

具有逆止阀的功能,当液位计发生意外破损泄漏时,钢球可在介质压力作用下自动关闭液体通道,防止液体大量外流起到平安维护作用。在石英管内放一个耐高温的浮子,热水浮子采用新兴的有机高分子材料制作,可以耐受150℃以上的高温。浮子随水位上下浮动。玻璃管外放置一发光电管,另一端接一根光纤,将光信号引出来。因为光接收管易受温度影响,所以必须用光纤引出光信号。当浮子经过时,遮住光路,转换器就将水位信号发送出去。这种方式可以解决高温热水的液位控制问题。 热水的液位控制一直是一个难点。一方面是因为热水浮子里面要放置磁铁,中间是空的。一直在高温中煮泡,热胀冷缩很容易损坏。另一方面是因为浮子的磁性随着温度的升高而衰减,100℃时会衰减到常温的70%。所以磁性浮子用在温度较高的热水中使用寿命较短。而在传统液位计上加装光电监控装置,其使用的热水浮子采用新型耐高温材料制成,比重很轻,可以在水中浮起来。这种实芯浮子耐150℃的高温,可以在热水中长期使用。另外,这种方式的检测方法和磁性无关,所以使用寿命长而且精度高。因为浮子一挡住发射的光线,转换器可以立刻将信号传递出来。所以传统液位计加监控可以解决热水水位控制难的问题。 液位计加监控通过转换器可以接入GKY类液位控制仪表,设计时只需在原仪表型号后加标BL就可以了。如需要选用GKY2-4T仪表,则型号为GKY2-4T-BL就可以了。GKY液位控制仪表,具有各种功能,可以满足多种液位控制的需求。仪表一般可以装在控制箱的面板上,功能较多,液位显示比较直观。控制器通常是仪表的简化,只具备简单的控制和报警功能。下表列出了一些液位控制仪表和控制器的功能和型号,方便大家选择。 常用液位控制仪表和控制器简表 产品名称产品型号配备的传感器数量和型号功能简介 GKY 系列仪表GKY2个GKY液位传感器液位显示/供水排水选择/手动自动转 换/水泵故障报警 GKY-4T4个GKY液位传感器双保险/超高超低水位报警/液位显示 /供水排水选择/手动自动转换/水泵 故障报警 双台泵专用仪表GKY2-4T4个GKY液位传感器双台泵交替使用/紧急情况双台泵同 时启动/超高或超低水位报警/液位显 示/供水排水选择/水泵故障报警/报 警端口输出

液位自动控制系统方案

等级: 课程设计 课程名称电气控制与PLC课程设计 课题名称液位自动控制系统设计与调试 专业 班级 学号 姓名 指导老师

电气信息学院 课程设计任务书 课题名称液位自动控制系统设计与调试 姓名专业班级学号 指导老师 课程设计时间 教研室意见审核人: 一.课程设计的性质与目的 本课程设计是自动化专业教学计划中不可缺少的一个综合性教学环节,是实现理论与实践相结合的重要手段。它的主要目的是培养学生综合运用本课程所学知识和技能去分析和解决本课程围的一般工程技术问题,建立正确的设计思想,掌握工程设计的一般程序和方法。通过课程设计使学生得到工程知识和工程技能的综合训练,获得应用本课程的知识和技术去解决工程实际问题的能力。 二. 课程设计的容 1.根据控制对象的用途、基本结构、运动形式、工艺过程、工作环境和控制要求,确定控制方案。 2.绘制水箱液位系统的PLC I/O接线图和梯形图,写出指令程序清单。 3.选择电器元件,列出电器元件明细表。 4.上机调试程序。 5.编写设计说明书。 三. 课程设计的要求 1.所选控制方案应合理,所设计的控制系统应能够满足控制对象的工艺要求,并且技术先进,安全可靠,操作方便。 2.所绘制的设计图纸符合国家标准局颁布的GB4728-84《电气图用图形符号》、GB6988-87《电气制图》和GB7159-87《电气技术中的文字符号制定通则》的有关规定。 3.所编写的设计说明书应语句通顺,用词准确,层次清楚,条理分明,重点突出,篇幅不少于7000字。

四.进度安排 1.第一周星期一:布置课程设计任务,讲解设计思路和要求,查阅设计资料。 2.第一周星期二~星期四:详细了解搬运机械手的基本组成结构、工艺过程和控制要求。确定控制方案。配置电器元件,选择PLC型号。绘制传送带A、B的拖动电机的控制线路原理图和搬运机械手控制系统的PLC I/O接线图。设计PLC梯形图程序,列出指令程序清单。 3.第一周星期五:上机调试程序。 4.第二周星期一:指导编写设计说明书。 5.第二周星期二~星期四:编写设计说明书。 6.第二周星期五:答辩。 附录:课题简介及控制要求 (1)课题简介 某化工厂水箱的排水量根据工业生产的需要而不断地变化,为了保持水箱压力恒定,就要保持水位恒定,因此就必须自动调整进水量。 本系统要求有手动和自动两种工作方式。手动控制方式用于水泵的调试,即当按下按钮时水泵运转,松开按钮时水泵停止,目的是为了调试水泵是否能正常工作;当系统切换为自动控制方式并启动后,控制系统自动调整水泵的进水量达到给定水位恒定。水位设定高限和低限,当水位超过设定的限位时要进行超限报警。 (2)控制要求 控制系统技术参数表

液位测量方法

[摘要]该文对磁致伸缩法、核辐射法、光纤传感器法和雷达法等20余种液位测量方法进行了分类归纳,并对各自的原理、特点等进行了较系统的比较分析。 [关键词]液位;测量方法;分析 物位包括液位和料位两类。液位又包括液位信号器和连续液位测量两种。液位信号器是对几个固定位置的液位进行测量,用于液位的上、下限报警等。连续液位测量是对液位连续地进行测量,它广泛地应用于石油、化工、食品加工等诸多领域,具有非常重要的意义。文中对20余种连续液位测量方法进行比较分析。 1 玻璃管法、玻璃板法、双色水位法、人工检尺法 玻璃管法:该方法利用连通器原理工作,如图1—1所示[1]。图中1-被测容器;2-玻璃管;3-指示标度尺;4、5-阀;6、7-连通管。液位直接从指示标度尺读出。 玻璃板法:玻璃板可通过连通器安装,也可在容器壁上开孔安装,并可串联几段玻璃板以增大量程。液位数值直接从玻璃板刻度尺读出。 双色水位计法:该方法利用光学原理,使水显示绿色,而使水蒸汽显示红色,从而指示出水位[2]。 人工检尺法:该方法用于测量油罐液位。测量时,测量员把量油尺投入油品中,并在尺砣与罐底接触时提起量油尺。根据量油尺上的油品痕迹,读出油面高度;根据量油尺末端试水膏颜色的变化确定水垫层的高度,从而确定油高和水高[3]。 以上4种方法都是人工测量方法,具有测量简单、可靠性高、直观、成本低的优点。 2 吹气法、差压法、HTG法 吹气法:该方法的工作原理如图2—1所示[4]。图中,1-过滤器;2-减压阀;3-节流元件;4-转子流量计;5-变送器。因吹气管内压力近似等于液柱的静压力,故P=ρgH 式中,ρ-液体密度;H-液位。故由静压力P即可测量液位H。吹气法适用于测量腐蚀性强、有悬浊物的液体,主要应用在测量精度要求不高的场合。 差压法:该方法的工作原理如图2-2所示[4]。图中,1、2-阀门;3-差压变送器。对于开口容器或常压容器,阀门1及气相引压管道可以省掉。压力差与液位的关系为ΔP=P2-P1=ρgH 式中:ΔP-变送器正、负压室压力差;P2、P1-引压管压力;H-液位。差压变送器将压力差变换为4~20 mA的直流信号。如果压力处于测量范围下限时对应的输出信号大于或小于4 mA,则都需要采用调整迁移弹簧等零点迁移技术,使之等于4 mA。 HTG法:该方法应用于油罐差压液位测量中,如图2—3所示。图中:P1、P2、P3-高精度电子变送器以便远距离传输测量信号。 浮筒法:该方法采用中间带孔的磁浮筒作为液位敏感元件,如图3—1所示。不锈钢套管从浮筒中间孔穿过,固定在罐顶和罐底之间。液位变化带动空心磁浮筒(内藏永久磁铁)沿套管上下移动,并吸引套管内的磁铁沿套管内壁上下移动,二次仪器|仪表根据磁铁的移动量计算出液位。 浮球法:该方法利用杠杆原理工作,如图3—2所示[4]。图中:1-浮球;2-连杆;3-转轴;4-平衡重;5-杠杆。浮球跟随液位变化而绕转轴旋转,带动转轴上的指针转动,并与杠杆另一端的平衡重平衡,同时在刻度盘上指示出液位数值。浮球法有内浮球式和外浮球式两种,如图3—2所示。浮球法主要用于测量温度高、粘度大的液位,但量程较小。 伺服法:该方法采用波动积分电路,消除抖动、延长寿命、提高液位测量精度。现代伺服液位仪的测量精度较高,已达到40 m量程内小于1 mm的精度,且一般都具有测量密度分布和平均密度的功能。 沉筒法:沉筒的位置随着液位的变化而变化,但其变化量并不与液位变化量相等。在图3-3a中[4],液位与浮筒位置的关系如下: 上式中:ΔH-液位变化量;C-弹簧的弹性系数;A-沉筒截面积;ρ液体密度;ΔX-沉筒位置变化量。通常情况下,浮筒位置变化量ΔX远小于液位变化量ΔH。图3—3b是扭力管式沉筒法原理[4],图中:1-沉筒;2-杠杆;3-扭力管;4-芯轴;5-外壳。沉筒位置随液位变化而变化,在杠杆的作用下,扭力管芯轴的扭角发生变化,二次仪表根据扭角的变化量计算出液位。

相关主题
文本预览
相关文档 最新文档