当前位置:文档之家› ZLG致远电子高压差分探头

ZLG致远电子高压差分探头

ZLG致远电子高压差分探头
ZLG致远电子高压差分探头

ZLG致远电子高压差分探头

很多工程师在使用高压差分探头测电源高压信号的时候,经常出现测不准,或者测出来的数据不同时刻变化很大,或者测量中发生危险的现象,这是为什么呢?很多时候我们只把测量当成测量,往往忽略了测量过程当中的很多细节,本期就教你使用高压差分探头测量时应该注意哪些细节。

一、测量高压电源的方法:

1、浮地测量法:这是一种既不安全又不准确的方法,因为浮地后示波器与大地的寄生电容

会使信号发生振铃现象,导致信号失真。

图1 浮地测量

2、AB伪差分法:使用两个普通无源探头分别测量两端的电压,之后两者相减得到两点的信

号差。这种方法安全但是不准确,因为这种方法的共模抑制比会很差,导致测量不准确。

图2 AB伪差分法

3、高压差分探头测量法:这是一种既安全又准确的方法。

当测量高压信号时,高压差分探头具有一定的隔离作用,可直接测量高压信号,如测量电网的输入,无需隔离被测电路或示波器,如下图3所示,若换成普通无源探头是十分危险的。

当测量差分信号时,建议使用高压差分探头,因为差分信号是不共地的,比如CAN信号,而若使用两个普通的探头会发生短路现象。

图3高压差分探头测量法

二、高压差分探头介绍

以ZP1050D高压差分探头为例,其主要的配件包括高压差分探头主体、电源适配器、红黑鳄鱼夹、红黑探钩。

图4 高压差分探头及其配件

三、高压差分探头使用注意事项

使用ZDS2024 Plus示波器与ZP1000D系列高压差分探头测量220V(峰峰值为620V左右)电源模块电压,以下为主要的注意事项:

1、测量前要了解所测的电源的电压峰值有多大,是否超过探头的最大量程范围,如图5所

示。

图5高压差分探头标识

注:ZP1050D/ZP1080D的带宽为50M/80M,单端对地输入阻抗为4MΩ,输入电容为7Pf。2、测量前检查探头档位是否选择正确,若电压峰值范围在130V以下可使用1/50档,若电

压峰值范围在130V以上建议使用1/500档,相应的示波器上也要改为对应的探头比率,50X/500X。

图6 示波器探头档位切换

3、在示波器中调节时,尽量设置合适的示波器垂直灵敏度,使波形尽量占据屏幕6格左右,

但是不要超出屏幕范围。因为波形垂直档位越小,ADC的测量精度越高,测量越准确,如图7所示。

图7 电源信号垂直档位调节

4、测量时尽量使用输入线双绞的方式进行测量,如下图8所示。使用双绞方式可以减少环

路面积,降低空间磁场的拾取,从而减少噪声的干扰,提高测量的准确性。特别是在电磁辐射比较强的环境下,使用双绞线可以有效的减少噪声的干扰。

图8 使用双绞与不使用双绞测量对比

5、尽量不要使用延长线。延长线使输入电容增大,产生信号反射,会降低探头带宽,使无

法测量高频信号。在测量频率超过10MHz时不建议使用延长线,如果必须额外加长输入线,要保证两根延长线要延长相同的长度且测量输入的信号频率不得超过10MHz。

图9 使用延长线与不使用延长线测量对比

从图中可以看出输入线延长对电压的幅值产生了一定的影响,使用延长线时,建议要对两输入线进行双绞,这样可以避免更多的干扰,测量更精确。

四、高压差分探头指标

1、带宽:所有的探头都有带宽,探头的带宽是指探头响应导致输出幅度下降到70.7%(-3dB)的频率,一般的带宽在50MHz左右。

2、共模抑制比):共模抑制比是指差分探头在差分测量中抑制两个测试点共模信号

的能力,共模信号通俗的说就是干扰信号,所以探头差分放大电路抑制共模信号的能力越强,放大器的性能越好,探头性能就越强,其公式为:

其中Ad为差分信号的电压增益,Ac为共模信号的电压增益。Ad的值越大证明差分信号增益越大,对信号越有利。

图10差分探头指标

致远电子ZP1000D系列高压差分探头集合工程师的精心设计,满足测试测量的需求,保证能让您爱不释手,您还在等什么呢,赶紧行动吧。

典型差分放大电路

典型差分放大电路 1、典型差分放大电路的静态分析 (1)电路组成 (2)静态工作点的计算 静态时:v s1=v s2=0, 电路完全对称,所以有 I B Rs1+U BE +2I E Re=V EE 又∵ I E =(1+β)I B ∴ I B1=I B2=I B = 通常Rs<<(1+β)Re ,U BE =0.7V (硅管): I B1=I B2=I B = 因: I C1=I C2=I C =βI B 故: U CE1=U CE2=V CC -I C Rc 静态工作电流取决于V EE 和Re 。同时,在输入信号为零时,输出信号电压也为零(u o= Vc1-VC2=0),即该差放电路有零输入——零输出。 2、差分放大电路的动态分析 ()e s BE EE R 12R U V β++-

(1)差模信号输入时的动态分析 如果两个输入端的信号大小相等、极性相反,即 v s1=- v s2= 或 v s1- v s2= u id u id 称为差模输入信号。 在输入为差模方式时,若一个三极管的集电极电流增大时,则另一个三极管的集电极电流一定减小。在电路理想对称的条件下,有:i c1=- i c2。 Re 上的电流为: i E =i E1+i E2=(I E1+ i e1)+(I E2+ i e2 ) 电路对称时,有I E1= I E2= I E 、i e1=- i e2,使流过Re 上的电流i E =2I E 不变,则发射极的电位也保持不变。差模信号的交流通路如图: 差模信号下不同工作方式的讨论: ① 双端输入—双端输出放大倍数: 当输入信号从两个三极管的基极间加入、输出电压从两个三极管的集电极之间输出时,称之为双端输入—双端输出,其差模电压 be s c s1o1s2s1o2o1id o ud r R R 22u u A +-==--== βv v v v v v

运放差分放大电路原理知识介绍

差分放大电路 (1)对共模信号的抑制作用 差分放大电路如图所示。 特点:左右电路完全对称。 原理:温度变化时,两集电极电流增量相等,即C2C1I I ?=?,使集电极电压变化量相等,CQ2CQ1V V ?=?,则输出电压变化量0C2C1O =?-?=?V V V ,电路有效地抑制了零点漂移。若电源电压升高时,仍有0C2C1O =?-?=?V V V ,因此,该电路能有效抑制零漂。 共模信号:大小相等,极性相同的输入信号称为共模信号。 共模输入:输入共模信号的输入方式称为共模输入。 (2)对差模信号的放大作用 基本差分放大电路如图。 差模信号:大小相等,极性相反的信号称为差模信号。 差模输入:输入差模信号的输入方式称为差模输入。 在图中, I 2I 1I 2 1 v v v = -=, 放大器双端输出电压 差分放大电路的电压放大倍数为 可见它的放大倍数与单级放大电路相同。 (3)共模抑制比 共模抑制比CMR K :差模放大倍数d v A 与共模放大倍数c v A 的比值称为共模抑制比。 缺点:第一,要做到电路完全对称是十分困难的。第二,若需要单端输出,输出端的零点漂移仍能存在,因而该电路抑制零漂的优点就荡然无存了。 改进电路如图(b )所示。在两管发射极接入稳流电阻e R 。使其即有高的差模放大 倍数,又保持了对共模信号或零漂强抑制能力的优点。 在实际电路中,一般都采用正负两个电源供电,如图所示(c )所示。 差分放大电路 一. 实验目的: 1. 掌握差分放大电路的基本概念; 2. 了解零漂差生的原理与抑制零漂的方法; 3. 掌握差分放大电路的基本测试方法。 二. 实验原理: 1. 由运放构成的高阻抗差分放大电路 图为高输入阻抗差分放大器,应用十分广泛.从仪器测量放大器,到特种测量放大器,几乎都能见到其踪迹。

示波器测交流220V(差分探头)

一、前言 我们都知道使用示波器,就必须使用探针 由于半导体组件的速度愈来愈快,受测电路的讯号自然愈来愈高速化。今天要正确地从受测电路检出讯号,并传送到示波器的输入端。而又不影响受测电路的正常运转,绝对不是一件容易的事情。使用正确的探棒是一个关键。若探针选用不当,即使购买再昂贵的示波器,也无济于事。现在市面上有许多种类的探棒可以帮助使用者在各种不同条件下完成电路检测的工作,差动探棒就是其中一类。 差动探针早期主要是用来量测电力系统,电力转换器及转换式电源供应器。所量测的讯号通常都是相当大的浮动讯号,从数十伏到数仟伏。近年来由于数字电路的高速化,数字设计及数字传输中大量使用差动讯号,因而出现新型的低压高速差动探针。它的量测范围很小。只有几伏甚至零点几伏,但频宽很宽,可高达数 GHz 。在现代的示波器量测中,不管是高压型差动探针,或是高速型差动探针,在他们各自的领域中,都是不可或缺的。 二、示波器探棒的选择 - 电力差动讯号在电力电子电路中,通常有许多相当大的浮动讯号,图二是一个典型的交换式电源供应器 (Switching Power) 的电力电路,我们可以将它以Vd( 差动讯号 ) , VCM( 共模讯号 ) 及 VLINE ( 电源讯号 ) 来表示。

当我们用示波器观测电力电子电路讯号时,如果使用单端探棒,将造成短路,损坏待测物及测试设备,甚至造成测量人员触电等 ( 图三 ) 。 电路与示波器的接地端形成短路回路,所以有些量测人员便将示波器的电源接地拆掉,浮接示波器,来避免短路回路的形成 ( 图四 ) ,但是,这样就可以解决我们在电力电子电路的量测问题了吗让我们就这样的方式来讨论:

DP6020 低压差分探头说明书(20180803)

低压差分探头说明书 DP6020 (20V/ 200MHz)

前 言 首先,感谢您购买该产品,这份产品使用说明书,是关于该产品的功能、使用方法、操作注意事项等方面的介绍。使用前,请仔细阅读说明书,正确使用。阅读完后请好好保存。 说明书中,注释将用以下的符号进行区分。 为安全使用本机器,必须严格遵守以下安全注意事项。如果不按照该说明书使用的话,有可能会损害机器的保护功能。此外,违反注意事项进行操作产生的人身安全问题,本公司概不负责。 ● 请小心注意触电危险,注意最高输入电压。 ● 请勿在潮湿的环境下或者易爆的风险下使用。 ● 被测电路接入探头之前,确保先关闭被测电路。 ● 测量结束后,先关闭电路,再取走探头。 ● 探头BNC 输出线连接示波器或者其它设备时,确保BNC 端子可靠接地。 ● 使用之前,请检查探头外皮是否有破损,若出现破损情况,请停止使用! ● 选择本产品标配的适配器供电。 DP6020简要说明 在错误操作的情况下,用户有受伤的威胁,为避免此类危险,记载了相关的注意事项。 错误操作时,用户有受轻伤和物质损害的可能,为避免此类情况,记载的注意事项。 该符号表示对人体和机器有危害,必须参照说明书操作。 记载着使用该机器时的重要说明。

目录 前言 (1) DP6020简要说明 (1) 概述 (3) 应用 (3) 产品及附件说明 (3) 探头主体说明 (3) 附件说明 (4) 电气规格 (5) 机械规格 (6) 环境特性 (6) 操作步骤 (6) 保养及维护 (7) 保修 (7) 装箱单 (7)

1. 概述 DP6020探头是具有浮地测量功能的低压差分探头。测量电压±20V(DC+Pk),其带宽最高达200MHz,提供 10:1 的衰减设置,具有 1 MΩ的输入阻抗,以及 3.5 pF 的低输入电容,可以最大程度地降低电路负载,具有过压报警功能,可以兼容任何具有 50 Ω BNC 输入的示波器,并可以通过示波器或计算机上的 USB 端口供电。在各种应用中得到广泛使用,可以为当今的高速功率测量、车载总线测量和数字系统设计提供出色的通用差分信号测量。 2. 应用 ◆浮地差分信号测量 ◆高速功率测量 ◆数字差分总线 ◆汽车串行总线(CAN、LIN、FlexRay) 3.产品及附件说明 ■探头主体说明 详细说明: ?①输入线:长度约15cm,连接探夹后测量电压信号。 ?②偏置调节:调节该可调电阻,实现输出偏置调节。 ?③连接线:探头前端和后端连接线,长度70cm ?④电源接口:标准的USB B型接口,通过标配的USB适配器供电;也可以通过示波器供 电,使用方便。 ?⑤过载报警指示灯(Overload):测量范围超过量程时,过载指示灯亮,且发出报警声。 ?⑥输出接口:标配标准的BNC输出接口,可接任何厂家示波器,要求示波器输入阻抗设 置为50Ω,或者接标配的贯通式50Ω负载,示波器输入阻抗设置成1MΩ。

加法器及差分放大器项目实验报告

加法器及差分放大器项目实验报告 一、项目内容和要求 (一)、加法器 1、任务目的: (1)掌握运算放大器线性电路的设计方法; (2)理解运算放大器的工作原理; (3)掌握应用仿真软件对运算放大器进行仿真分析的方法。 2、任务内容: 2.1 设计一个反相加法器电路,技术指标如下: (1)电路指标 运算关系:)25(21i i O U U U +-=。 输入阻抗Ω≥Ω≥K R K R i i 5,521。 (2)设计条件 电源电压Ec=±5V ; 负载阻抗Ω=K R L 1.5 (3)测试项目 A :输入信号V U V U i i 5.0,5.021±=±=,测试4种组合下的输出电压; B :输入信号V KHz U V U i i 1.0,1,5.021为正弦波±=信号,测试两种输入组合情况下的输出电 压波形。 C :输入信号V U i 01=,改变2i U 的幅度,测量该加法器的动态范围。 D :输入信号V U i 01=,V U i 1,2为正弦波,改变正弦波的频率,从1kHz 逐渐增加,步长为 2kHz ,测量该加法器的幅频特性。 2.2 设计一个同相加法器电路,技术指标如下: (1)电路指标 运算关系:21i i O U U U +=。 (2)设计条件 电源电压Ec=±5V ; 负载阻抗Ω=K R L 1.5 (3)测试项目 A :输入信号V U V U i i 1,121±=±=,测试4种组合下的输出电压; B :输入信号V KHz U V U i i 1,1,121为正弦波±=信号,测试两种输入组合情况下的输出电压 波形。 (二)、差分放大器 1、任务目的: (1)掌握运算放大器线性电路的设计方法; (2)理解运算放大器的工作原理; (3)掌握应用仿真软件对运算放大器进行仿真分析的方法。 2、任务内容 2.1 设计一个基本运放差分放大器电路,技术指标如下: (1)电路指标 运算关系:)(521i i O U U U --=。 输入阻抗Ω≥Ω≥K R K R i i 5,521。 (2)设计条件

常规放大电路和差分放大电路

常规放大电路和差分放大电路 0、小叙闲言 有一个两相四线的步进电机,需测量其A、B两相的电流大小,电机线圈的电阻为0.6Ω,电感为2.2mH。打算在A、B相各串接一个0.1Ω的采样电阻,然后通过放大电路,送到单片机采样(STM32,12位AD采样),放大的电压值是最大应为3v。电路如下。我在这里讨论其中的采样放大电路。很多东西平时在书本上学到烂熟,但真正在实战时,还是碰到了不少问题。纸上得来终觉浅,绝知此事要躬行。因此,在这里总结一下,供自己学习之用,或许也可给大家一点点帮助。

图1 步进电机系统结构图 1、常规放大电路 这里暂时不讨论放大电路的工作原理,直接使用放大器的虚短(短路)和虚断(断路)性质来分析这一类电路,之所以在前面加个虚字,是因为放大器的两端并不是真正的短路或断路。如下图所示,虚短:UP=UN,虚断:IP=0; IN=0。无论放大器接在何种电路中,这两个式子都是成立的。

图2 放大器性质 1.1、电压跟随器 电压跟随,听名字应该就能想到,它的作用就是输出电压Uo应该是随着输入电压Ui变化而变化的(Uo=Ui),如下图所示,由上面讲到的虚短性质, 很容易得到Ui=Up=Un=Uo。有人会疑问,直接把Ui接到Uo,岂不是更加方便,要这个做什么。这个就要看电路需求而定了。电压跟随器的作用一般

是起到隔离的作用,输入的电流太大的话,也不影响到输出的电流。 图3 电压跟随器电路图1.2、电压放大电路

说了这么多,也没有看到放大器起到放大的作用,那么它是如下做到放大的电压作用的呢,且看下面这个电路。

图4 电压放大电路 从图4可以看到电路将输入电压放大了-3倍,这个负号来源,在图4中的公式推导已经说得很明白了。充分利用虚短和虚断的性质,加上外接电路,可以实现放大电压的功能(当然也可以缩小电压)。这个电路有一个小小的问题,就是它放大电压后有一个负号,平时我们要的都是输出电压与输入电压同符号,那么如何做到输出电压与同向呢,其实也很容易,且看下面电路图5。它的放大倍数也很好计算,元器件没有比上面多。但是这里又引是入一个新的问题,从下图4的公式推导中,可以明显看到,Uo/Ui>1,那么在我们需要将电压值缩小的场合,这个电路将不再适用。

(完整word版)差分放大器设计的实验报告

设计课题 设计一个具有恒流偏置的单端输入-单端输出差分放大器。 学校:延安大学

一: 已知条件 正负电源电压V V V V EE cc 12,12-=-+=+;负载Ω=k R L 20;输入差 模信号mV V id 20=。 二:性能指标要求 差模输入电阻Ω>k R id 10;差模电压增益15≥vd A ;共模抑制 比dB K CMR 50>。 三:方案设计及论证 方案一:

方案二

方案论证: 在放大电路中,任何元件参数的变化,都将产生输出电压的漂移,由温度变化所引起的半导体参数的变化是产生零点漂移的主要原因。采用特性相同的管子使它们产生的温漂相互抵消,故构成差分放大电路。差分放大电路的基本性能是放大差模信号,抑制共模信号好,采用恒流源代替稳流电阻,从而尽可能的提高共模抑制比。 论证方案一:用电阻R6来抑制温漂 ?优点:R6 越大抑制温漂的能力越强; ?缺点:<1>在集成电路中难以制作大电阻; <2> R6的增大也会导致Vee的增大(实际中Vee不

可能随意变化) 论证方案二 优点:(1)引入恒流源来代替R6,理想的恒流源内阻趋于无穷,直流压降不会太高,符合实际情况; (2)电路中恒流源部分增加了两个电位器,其中47R的用来调整电路对称性,10K的用来控制Ic的大小,从而调节静态工作点。 通过分析最终选择方案二。 四:实验工作原理及元器件参数确定 ?静态分析:当输入信号为0时, ?I EQ≈(Vee-U BEQ)/2Re ?I BQ= I EQ /(1+β) ?U CEQ=U CQ-U EQ≈Vcc-I CQ Rc+U BEQ 动态分析 ?已知:R1=R4,R2=R3

选用单端探头还是差分探头

选用单端探头还是差分探头 作者:Mike McTigue 新的有源探头体系结构使GHz级以上的千兆信号的完整性测量变得更加容易、精度也更高,但这只对于了解探头的工作原理和探头的两种拓扑结构之间优劣的用户而言的。  宽带宽示波器和有源探头的用户历来可以在单端探头和差分探头之间作出选择。测量单端信号(对地参考电压),你使用的是单端探头,而测量差分信号(正电压对负电压),你使用的是差分探头。那么,为什么你不能只买差分探头来测量差分信号和单端信号呢?实际情况是,你可以这样做,但又存在实实在在的理由使你不能这么做。与单端探头相比,差分探头价格较贵,使用不大方便,带宽也较窄。  新的探头体系结构,如Agilent 113X 系列的体系结构可以探测差分信号,也可以探测单端信号,而且基本上使人们不反对使用差分探头。这些探头是通过可互换的端头来提供这种能力的,而各种可互换的头经过优化,可以点测、插入插座和焊入探头。这种结构给有源探头的用户提出了新问题:测量单端信号,到底该用差分探头还是该用单端探头?答案是应由性能和可用性两个方面的权衡结果来定夺。  只要使用Agilent 1134A型7 GHz 探头放大器的简化模型(图1) 和已测数据以及焊入的差分和单端探头端头(图2),你就可以比较它们的带宽、保真度、可用性、共模抑制特性、可重复性和尺寸大小等方面的差别。这些探头端头的物理连线几何形状相同,所以它们之间的主要性能差别是由差分拓扑结构和单端拓扑结构引起的。探头性能测量是采用Agilent E2655A 纠偏/性能验证夹具和Agilent 8720A 20 GHz 向量网络分析仪或者Agilent Infiniium DCA (数字通信分析仪)采样示波器进行的。 图1 差分探头和单端探头的简化模型的主要区别在于,差分探头的地线电感是与放大器输入端串联的,而不

差分放大电路解读

实验三差分放大电路 一、实验目的 1、加深对差动放大器性能及特点的理解 2、学习差动放大器主要性能指标的测试方法 二、实验原理 图3-1是差动放大器的基本结构。它由两个元件参数相同的基本共射放 大电路组成。当开关K拨向左边时,构成典型的差动放大器。调零电位器R P 用来调节T 1、T 2 管的静态工作点,使得输入信号U i =0时,双端输出电压U O =0。 R E 为两管共用的发射极电阻,它对差模信号无负反馈作用,因而不影响差模电压放大倍数,但对共模信号有较强的负反馈作用,故可以有效地抑制零漂,稳定静态工作点。 图3-1 差动放大器实验电路

当开关K 拨向右边时,构成具有恒流源的差动放大器。 它用晶体管恒流源代替发射极电阻R E ,可以进一步提高差动放大器抑制共模信号的能力。 1、静态工作点的估算 典型电路 E BE EE E R U U I -≈ (认为U B1=U B2≈0) E C2C1I 2 1 I I == 恒流源电路 E3 BE EE CC 2 1 2 E3C3R U )U (U R R R I I -++≈≈ C3C1C1I 2 1 I I == 2、差模电压放大倍数和共模电压放大倍数 当差动放大器的射极电阻R E 足够大,或采用恒流源电路时,差模电压放大倍数A d 由输出端方式决定,而与输入方式无关。 双端输出: R E =∞,R P 在中心位置时, P be B C i O d β)R (12 r R βR △U △U A +++- == 单端输出 d i C1d1A 21 △U △U A == d i C2d2A 2 1 △U △U A -==

泰克高压差分探头P52XXA

High-voltage Differential Probes P5200A?P5202A?P5205A?P5210A Data Sheet Features&Bene?ts Bandwidths up to100MHz Up to5,600V Differential(DC+pk AC) Up to2,300V Common(RMS) Overrange Indicator Safety Certi?ed Switchable Attenuation Switchable Bandwidth Limit Applications Floating Measurements Switching Power Supply Design Motor Drive Design Electronic Ballast Design CRT Display Design Power Converter Design and Service Power Device Evaluation The P5200A can be used with any oscilloscope and enables users to safely make measurements of?oating circuits with their oscilloscope grounded.The P5200A Active Differential Probe converts?oating signals to low-voltage ground-referenced signals that can be displayed safely and easily on any ground-referenced oscilloscope. WARNING:For safe operation,do not use the P5200A High-voltage Differential Probe with oscilloscopes that have?oating inputs(isolated inputs),such as the Tektronix TPS2000Series oscilloscopes.The P5200A High-voltage Differential Probe requires an oscilloscope or other measurement instrument with grounded inputs. The P5210A is a Differential Probe that is capable of measuring?oating voltages up to5,600V safely and has a bandwidth up to50MHz.It is supplied with two sizes of hook tips and has an overrange visual and audible indicator which warns the user when they are exceeding the linear range of the probe.It can be used with Tektronix TEKPROBE?interface oscilloscopes directly or with any oscilloscope with the use of the1103 TEKPROBE?Power Supply. The P5205A is a100MHz Active Differential Probe capable of measuring fast rise times of signals in?oating circuits.This1,300V differential probe can safely measure voltages in IGBT circuits such as motor drives or power converters.It is speci?cally designed to operate on Tektronix oscilloscopes with TEKPROBE?interface.The P5202A is similar to the P5205A,but this probe has approximately half the attenuation and half the dynamic range of the P5205A and better signal-to-noise ratio.

示波器探头基础系列之差分探头

示波器探头基础系列之差分探头 引言 作为一名专业的硬件设计及测试工程师,我们每天都在使用各种不同的数字示波器进行相关电气信号量的量测。与这些示波器相配的探头种类也非常多,包括无源探头(包括高压探头,传输线探头)、有源探头(包括有源单端探头、有源差分探头等),电流探头、光探头等。每种探头各有其优缺点,因而各有其适用的场合。其中,有源探头因具有带宽高,输入电容小,地环路小等优点从而被广泛使用在高速数字量测领域,但有源探头的价位高,动态范围小,静电敏感,校准麻烦,因此,每个工程师使用示波器的入门级探头通常是无源探头。最常见的500Mhz的无源电压探头适用于一般的电路测量和快速诊断,可以满足大多数的低速数字信号、TV、电源和其它的一些典型的示波器应用。 1、差分测量特点 探头从总体上可分为无源探头和有源探头两大类型,而宽带宽示波器和有源探头的用户还需要在单端探头和差分探头之间还要做出选择。承载差分信号的那一对走线就称为差分走线。本文主要讲的是分差探头。差分信号和普通的单端信号走线相比,最明显的优势体现在以下三个方面: 1.抗干扰能力强,因为两根差分走线之间的耦合很好,当外界存在噪声干扰时,几乎是同时被耦合到两条线上,而接收端关心的只是两信号的差值,所以外界的共模噪声可以被最大程度抵消。 2.能有效抑制EMI,同样的道理,由于两根信号的极性相反,他们对外辐射的电磁场可以相互抵消,耦合的越紧密,泄放到外界的电磁能量越少。 3.时序定位精确,由于差分信号的开关变化是位于两个信号的交点,而不像普通单端信号依靠高低两个阈值电压判断,因而受工艺,温度的影响小,能降低时序上的误差,同时也更适合于低幅度信号的电路。目前流行的LVDS就是指这种小振幅差分信号技术。

三运放差分放大电路

三运放仪表放大线路设计(2010-5-12更新) 最近看到许多朋友在做一些小信号的放大,例如感应器的信号采集 这里仅仅提供一个设计方法和思路,在实际应用当考虑电源的杂讯以及一些Bypass的电容例如在LM324电源接一些100uF ,0.01uF 的电容,这些电容尽量靠近LM324 当然如果不是局限LM324的应用,市面上有许多这样兜售的零件例如TI的INA122,INA154 ADI的AD620,AD628等等,而且频带宽和噪声系数都很好 这些运放在放大的时候单级尽量不要超过40dB(100倍),避免噪声过大 这里设计的是理论值而已 举例设计: 设计一个仪表放大器其增益可以在1V/V1V/V ,为了允许A能一直降到1V/V要求A2<1V/V. 任意选定A2=R2/R1=0.5V/V 并设置R1=100K R2=49.9K精度1%,根据上面公式A1必须从2V/V到2000V/V内可以变动。在这个极值上有 2=1+2R3/(R4+100K) 和2000=1+2R3/(R4+0). 以上求得R4=50欧姆,R3=50K ,精度1% 2,CMRR将接地的49.9K电阻,裁成R6.R7(可变)R6=47.5K,R7=5K

LM324 采用双电源,单信号输入,放大100倍 采用OP07之双电源,单信号输入,100倍

采用Lm324之单电源,单输入信号设计参考(输入信号切不可为零) #运算放大器

差分放大电路

方案三差分放大电路 【项目目标】 知识目标 掌握场效应管的类型、场效应的电压控制作用及共源极放大电路的分析与应用。 能力目标 具有识别场效应管的能力,具有共源极放大的分析能力。

将J8、J9与 J6、J7之间分别加一毫安表,J10、J11连接与J12 改变电位器RP6.将测量的结果记录如下: A1间的电流 A2间的电流 知识点导入 镜像电流源的基本特性。 知识点讲解 基本镜像电流源电路如图所示。 T 1、T 2参数完全相同(即β1=β2,I CEO1=I CEO2)。 原理:因为V BE1=V BE2,所以I C1=I C2 β C1 C1B C1REF 2 2I I I I I +=+= I REF ——基准电流:C2REF C1/21I I I =+=β 推出,当β>>2 时,I C2= I C1≈ I REF ()6060B1 Rp R U U Rp R V BE CC ++--=+-= ≈6 CC Rp R V + 优点: (1)I C2≈I REF ,即I C2不仅由I REF 确定,且总与I REF 相等。 (2)T 1对T 2具有温度补偿作用,I C2温度稳定性能好(设温度增大,使I C2增大,则I C1增大,而I REF 一定,因此I B 减少,所以I C2减少)。 缺点: (1)I REF (即I C2)受电源变化的影响大,故要求电源十分稳定。 (2)适用于较大工作电流(mA 数量级)的场合。若要I C2下降,则R 就必须增大,这在集成电路中因制作大阻值电阻需要占用较大的硅片面积。 (3)交流等效电阻R o 不够大,恒流特性不理想。 (4)I C2与I REF 的镜像精度决定于β。当β较小时,I C2与I REF 的差别不能忽略。 巩固训练:将电路图中的值按照电位的阻值代入进行计算?看测量结果与理论之间的误差? 电路测试2 将J8、J9与 J6、J7之间分别加一毫安表,改变电位器RP6.将测量的结果A1间的电流 图3.1.4 基本镜像电流源电路

差分放大电路仿真

苏州市职业大学实验报告姓名:学号:班级:

图2 差分放大器电路调零 R12kΩ R2 2kΩ R36.8kΩ R46.8kΩ R55.1kΩ R6510Ω R7510Ω R812kΩ Rp1 100ΩKey=A 50% V112 V V212 V Q1 2N3903Q2 2N390316 710 11 0U1 DC 1e-009W 1.089m A + - 125 U3 DC 1e-009W -0.015m A +- 140 4U2 DC 10M W 5.303 V + - 3 2 图3差分放大器电路静态工作点测量

R1 2kΩ R2 2kΩR3 6.8kΩ R4 6.8kΩ R5 5.1kΩ R6 510|?R7 510Ω R8 12kΩ Rp1 100Ω Key=A 50% V1 12 V V2 12 V Q1 2N3903 Q2 2N3903 16 7 10 11 0 2 XFG1 XSC1 A B Ext Trig + + _ _+_ 8 5 12 4 3 图4 测量差模电压放大倍数 图5 差模输入差分放大电路输入、输出波形图 3.测量共模放大倍数

将函数信号发生器XFG1的“+”端接放大电路的共同输入端,COM 接地,构成共模输入方式,如图6所示。在输出负载端用万用表测量输出电压值,打开仿真开关,测得8R 两端输出电压值为pV 038.1,几乎为0,所以共模双端输出放大倍数也就近似为0。 图6 共模输入、双端输出电压放大倍数测量 示波器观察到的差分放大电路输入、输出波形如图7所示。

图7共模输入差分放大电路输入、输出波形 R1 2k|? R2 2k|?R3 6.8k|? R4 6.8k|? R5 5.1k|? R6 510|?R7 510|? R8 12k|? Rp1 100|? Key=A 50% V1 12 V V2 12 V Q1 2N3903 Q2 2N3903 16 7 10 11 0 2 XSC1 A B Ext Trig + + _ _+_ 5 XFG1 34 8 9 图8 单端输出差分放大电路

差动放大电路_实验报告

实验五差动放大电路 (本实验数据与数据处理由果冻提供,仅供参考,请勿传阅.谢谢~) 一、实验目的 1、加深对差动放大器性能及特点的理解 2、学习差动放大器主要性能指标的测试方法 二、实验原理 R P用来调节T1、T2管的静态工作点, V i=0时, V O=0。R E为两管共用的发射极电阻,它对差模信号无负反馈作用,不影响差模电压放大倍数,但对共模信号有较强的负反馈作用,可以有效抑制零漂。 差分放大器实验电路图 三、实验设备与器件 1、±12V直流电源 2、函数信号发生器 3、双踪示波器 4、交流毫伏表 5、直流电压表 6、晶体三极管3DG6×3, T1、T2管特性参数一致,或9011×3,电阻器、电容器若干。 四、实验内容 1、典型差动放大器性能测试 开关K拨向左边构成典型差动放大器。 1) 测量静态工作点 ①调节放大器零点

信号源不接入。将放大器输入端A 、B 与地短接,接通±12V 直流电源,用直流电压表测量输出电压V O ,调节调零电位器R P ,使V O =0。 ②测量静态工作点 再记下下表。 2) 测量差模电压放大倍数(须调节直流电压源Ui1=0.1V ,Ui2=-0.1V) 3) 测量共模电压放大倍数 理论计算:(r be =3K .β=100. Rp=330Ω) 静态工作点: E3 BE EE CC 212 E3 C3R V )V (V R R R I I -++≈≈=1.153mA I c Q =I c 3/2=0.577mA, I b Q =I c /β=0.577/100=5.77uA U CEQ =V cc-I c R c+U BEQ =12-0.577*10+0.7=6.93V 双端输出:(注:一般放大倍数A 的下标d 表示差模,下标c 表示共模,注意分辨) P be B C i O d β)R (12 1 r R βR △V △V A +++- ===-33.71 A c 双 =0.

差分探头的详细介绍

示波器差分探头与差分探头的详细介绍与选择方法 新的有源探头体系结构使GHz级以上的千兆信号的完整性测量变得更加容易、精度也更高,但这只对于了解探头的工作原理和探头的两种拓扑结构之间优劣的用户而言的。 宽带宽示波器和有源探头的用户历来可以在单端探头和差分探头之间作出选择。测量单端信号(对地参考电压),你使用的是单端探头,而测量差分信号 (正电压对负电压),你使用的是差分探头。那么,为什么你不能只买差分探头来测量差分信号和单端信号呢?实际情况是,你可以这样做,但又存在实实在在的理由使你不能这么做。与单端探头相比,差分探头价格较贵,使用不大方便,带宽也较窄。 新的探头体系结构,如 Agilent 113X 系列的体系结构可以探测差分信号,也可以探测单端信号,而且基本上使人们不反对使用差分探头。这些探头是通过可互换的端头来提供这种能力的,而各种可互换的头经过优化,可以点测、插入插座和焊入探头。这种结构给有源探头的用户提出了新问题:测量单端信号,到底该用差分探头还是该用单端探头?答案是应由性能和可用性两个方面的权衡结果来定夺。 只要使用Agilent 1134A型 7 GHz 探头放大器的简化模型 (图1) 和已测数据以及焊入的差分和单端探头端头 (图 2),你就可以比较它们的带宽、保真度、可用性、共模抑制特性、可重复性和尺寸大小等方面的差别。这些探头端头的物理连线几何形状相同,所以它们之间的主要性能差别是由差分拓扑结构和单端拓扑结构引起的。探头性能测量是采用 Agilent E2655A 纠偏/性能验证夹具和 Agilent 8720A 20 GHz 向量网络分析仪或者 Agilent Infiniium DCA (数字通信分析仪)采样示波器进行的。

差动放大电路实验

差动放大电路实验报告 严宇杰141242069 匡亚明学院 1.实验目的 (1)进一步熟悉差动放大器的工作原理; (2)掌握测量差动放大器的方法。 2.实验仪器 双踪示波器、信号发生器、数字多用表、交流毫伏表。 3.预习内容 (1)差动放大器的工作原理性能。 (2)根据图3.1画出单端输入、双端输出的差动放大器电路图。 4.实验内容 实验电路如图3.1。它是具有恒流源的差动放大电路。在输入端,幅值大小相等,相位相反的信号称为差模信号;幅值大小相等,相位相同的干扰称为共模干扰。差动放大器由两个对称的基本共射放大电路组成,发射极负载是一晶体管恒流源。若电路完全对称,对于差模信号,若Q1的集电极电流增加,则Q2的集电极电流一定减少,增加与减少之和为零,Q3 和R e3等效于短路,Q1,Q2的发射极等效于无负载,差模信号被放大。对于共模信号,若 Q1的集电极电流增加,则Q2的集电极电流一定增加,两者增加的量相等,Q1、Q2的发射极等效于分别接了两倍的恒流源等效电阻,强发射极负反馈使共射放大器对共模干扰起强衰减作用,共模信号被衰减。从而使差动放大器有较强的抑制共模干扰的能力。调零电位器 R p用来调节T1,T2管的静态工作点,希望输入信号V i=0时使双端输出电压V o=0. 差动放大器常被用作前置放大器。前置放大器的信号源往往是高内阻电压源,这就要求前置放大器有高输入电阻,这样才能接受到信号。有的共模干扰也是高内阻电压源,例如在使用50Hz工频电源的地方,50Hz工频干扰源就是高内阻电压源。若放大器的输入电阻很高,放大器在接受信号的同时,也收到了共模干扰。于是人们希望只放大差模信号,不放大共模

实验三 差分放大电路

EDA(一)模拟部分电子线路仿真实验报告 实验名称:差分放大电路 姓名:陈晟 学号: 120401221 班级:电信2班 时间: 2014.11.27 南京理工大学紫金学院电光系

一.实验目的 1、熟悉差分放大电路的结构 2、了解差分放大电路抑制零点漂移的原理 3、掌握差分放大电路静态工作点的估算方法及仿真方法 4、掌握差发放大电路电压放大倍数、输入电阻、输出电阻的估算方法及仿真分析方法 5、了解差分放大电路的放大信号特性 6、理解差分放大电路提高共模抑制比的方法 二、实验原理 -V EE -12V 图5-1差分放大电路 图5-1是差分放大电路的基本结构。它由两个元件参数相同的基本共射放大电路组成。当开关K拨向左边时,构成典型的差分放大电路。调节调零电位器R p,使差分放大电路两

边对称的元件参数相等,当输入信号U I =0时,双端输出电压U 0=0。R E 为两管共用的发射极电阻,它对差模信号无反馈作用,因而不影响差模电压放大倍数,但对共模信号有较强的负反馈作用,故可以有效地抑制零漂,稳定静态工作点。当开关拨向右边时,构成具有恒流源的差分放大电路。它用晶体管恒流源代替发射极电阻R E ,可以进一步提高差分放大电路抑制共模信号的能力。 1.静态工作点的估算 典型电路 E BE EE E R U U I ] [-= (认为U B1=U B2≈0) 221E C C I I I = = 恒流源电路 3212331)()]([E BE EE CC E C R U R R U U R I I ? -++?= ≈ 2321C C C I I I = = 2.差摸电压放大倍数和共模电压放大倍数 当差分放大电路的射极电阻R E 足够大,或采用恒流源电路时,差模电压放大倍数A d 由输出端方式决定,而与输入方式无关。 双端输出: R E =∞,R P 在中心位置时, P be B C I O d R r R R U U A )1(ββ+++=??= 单端输出: 211d I C d A U U A =??= 222d I C d A U U A -=??= 当输入共模信号时,若为单端输出,则有, E C E P be B C I C C C R R R R r R R U U A A 2)22 )(1(121- ≈++++-= ??==ββ 若为双端输出,在理想情况下

ZLG致远电子高压差分探头

ZLG致远电子高压差分探头 很多工程师在使用高压差分探头测电源高压信号的时候,经常出现测不准,或者测出来的数据不同时刻变化很大,或者测量中发生危险的现象,这是为什么呢?很多时候我们只把测量当成测量,往往忽略了测量过程当中的很多细节,本期就教你使用高压差分探头测量时应该注意哪些细节。 一、测量高压电源的方法: 1、浮地测量法:这是一种既不安全又不准确的方法,因为浮地后示波器与大地的寄生电容 会使信号发生振铃现象,导致信号失真。 图1 浮地测量 2、AB伪差分法:使用两个普通无源探头分别测量两端的电压,之后两者相减得到两点的信 号差。这种方法安全但是不准确,因为这种方法的共模抑制比会很差,导致测量不准确。 图2 AB伪差分法 3、高压差分探头测量法:这是一种既安全又准确的方法。 当测量高压信号时,高压差分探头具有一定的隔离作用,可直接测量高压信号,如测量电网的输入,无需隔离被测电路或示波器,如下图3所示,若换成普通无源探头是十分危险的。 当测量差分信号时,建议使用高压差分探头,因为差分信号是不共地的,比如CAN信号,而若使用两个普通的探头会发生短路现象。

图3高压差分探头测量法 二、高压差分探头介绍 以ZP1050D高压差分探头为例,其主要的配件包括高压差分探头主体、电源适配器、红黑鳄鱼夹、红黑探钩。 图4 高压差分探头及其配件 三、高压差分探头使用注意事项 使用ZDS2024 Plus示波器与ZP1000D系列高压差分探头测量220V(峰峰值为620V左右)电源模块电压,以下为主要的注意事项: 1、测量前要了解所测的电源的电压峰值有多大,是否超过探头的最大量程范围,如图5所 示。

差分放大电路实验

差分放大电路实验 一、实验目的 1.加深对差分放大电路原理、性能及特点的理解。 2.学习差分放大电路主要性能指标的测试方法。 二、预习要求 1.阅读实验原理,根据实验电路参数,估算典型差分放大电路和具有恒流源的差分放大电路的静态工作点及差模电压放大倍数(取β1=β2=100)。 2.测量静态工作点时,差分放大器输入端A、B与地应如何连接? 3.实验中怎样获得双端和单端输入差模信号?怎样获得共模信号?画出A、B端与信号源之间的连接图。怎样调整静态零点? 4.用什麽仪表测量输出端电压U0? 5.怎样用交流毫伏表测双端输出电压U0? 三、实验原理与参考电路 -V EE -12V 图5-1差分放大电路 图5-1是差分放大电路的基本结构。它由两个元件参数相同的基本共射放大电路组成。当开关K拨向左边时,构成典型的差分放大电路。调节调零电位器R p,使差分放大电路两边对称的元件参数相等,当输入信号U I=0时,双端输出电压U0=0。R E为两管共用的发射极电阻,它对差模信号无反馈作用,因而不影响差模电压放大倍数,但对共模信号有较强的负反馈作用,故可以有效地抑制零漂,稳定静态工作点。当开关拨向右边时,构成具有恒流源的差分放大电路。它用晶体管恒流源代替发射极电阻R E,可以进一步提高差分放大电路抑制共模信号的能力。 1.静态工作点的估算 典型电路

E BE EE E R U U I ] [-= (认为U B1=U B2≈0) 221E C C I I I = = 恒流源电路 3212331)()]([E BE EE CC E C R U R R U U R I I ? -++?= ≈ 2321C C C I I I = = 2.差摸电压放大倍数和共模电压放大倍数 当差分放大电路的射极电阻R E 足够大,或采用恒流源电路时,差模电压放大倍数A d 由输出端方式决定,而与输入方式无关。 双端输出: R E =∞,R P 在中心位置时, P be B C I O d R r R R U U A )1(ββ+++= ??= 单端输出: 211d I C d A U U A = ??= 222d I C d A U U A -=??= 当输入共模信号时,若为单端输出,则有, E C E P be B C I C C C R R R R r R R U U A A 2)22 )( 1(1 21- ≈++++-= ??= =ββ 若为双端输出,在理想情况下 =??=I O C U U A 实际上由于元件不可能完全对称,因此共模放大倍数A c 也不会绝对等于零。 3.共模抑制比CMRR 为了表征差分放大电路对有用信号(差模信号)的放大作用和对共模信号的抑制能力,通常用一个综合指标来衡量,即共模抑制比 C d A A = CMRR 或者 C d A A log 20CMRR = (dB ) 差分放大电路的输入信号可采用直流信号也可采用交流信号。本实验由函数信号发生器提供频率f=1KHz 的正信号作为输入信号。 四、实验内容

相关主题
文本预览
相关文档 最新文档