当前位置:文档之家› 高中数学:数系的扩充与复数的引入

高中数学:数系的扩充与复数的引入

高中数学:数系的扩充与复数的引入
高中数学:数系的扩充与复数的引入

高中数学:数系的扩充与复数的引入

3.1.1数系的扩充和复数的概念(教学设计)

§3.1.1数系的扩充和复数的概念(教学设计) 教学目标: 知识与技能目标: 了解引进复数的必要性;理解并掌握复数的有关概念(复数集、代数形式、虚数、纯虚数、实部、虚部、复数相等)。理解虚数单位i 以及i 与实数的四则运算规律。 过程与方法目标: 通过问题情境,了解扩充数系的必要性,感受数系的扩充过程,体会引入虚数单位i 和复数形式的合理性,使学生对数的概念有一个初步的、完整的认识。 情感、态度与价值观目标: 通过问题情境,体会实际需求与数学内部矛盾在数系扩充过程中的作用,感受人类理性思维的作用以及数与现实世界的联系。 教学重点: 复数的概念,虚数单位i ,复数的分类(实数、虚数、纯虚数)和复数相等等概念是本节课的教学重点.复数在现代科学技术中以及在数学学科中的地位和作用 教学难点: 虚数单位i 的引进及复数的概念是本节课的教学难点.复数的概念是在引入虚数单位i 并同时规定了它的两条性质之后,自然地得出的.在规定i 的第二条性质时,原有的加、乘运算律仍然成立 教学过程: 一、创设情境、新课引入: 数的概念是从实践中产生和发展起来的.早在人类社会初期,人们在狩猎、采集果实等劳动中,由于计数的需要,就产生了1,2,3,4等数以及表示“没有”的数0.自然数的全体构成自然数集N 随着生产和科学的发展,数的概念也得到发展 为了解决测量、分配中遇到的将某些量进行等分的问题,人们引进了分数;为了表示各种具有相反意义的量以及满足记数的需要,人们又引进了负数.这样就把数集扩充到有理数集Q .显然N Q .如果把自然数集(含正整数和0)与负整数集合并在一起,构成整数集Z ,则有Z Q 、N Z .如果把整数看作分母为1的分数,那么有理数集实际上就是分数集 有些量与量之间的比值,例如用正方形的边长去度量它的对角线所得的结果,无法用有理数表示,为了解决这个矛盾,人们又引进了无理数.所谓无理数,就是无限不循环小数.有理数集与无理数集合并在一起,构成实数集R .因为有理数都可看作循环小数(包括整数、有限小数),无理数都是无限不循环小数,所以实数集实际上就是小数集 因生产和科学发展的需要而逐步扩充,数集的每一次扩充,对数学学科本身来说,也解决了在原有数集中某种运算不是永远可以实施的矛盾,分数解决了在整数集中不能整除的矛盾,负数解决了在正有理数集中不够减的矛盾,无理数解决了开方开不尽的矛盾.但是,数集扩到实数集R 以后,像x 2=-1这样的方程还是无解的,因为没有一个实数的平方等于-1.由于解方程的需要,人们引入了一个新数i ,叫做虚数单位.并由此产生的了复数 二、师生互动、新课讲解 1.虚数单位i : (1)它的平方等于-1,即 2 1i =-; (2)实数可以与它进行四则运算,进行四则运算时,原有加、乘运算律仍然成立. 2. i 与-1的关系: i 就是-1的一个平方根,即方程x 2=-1的一个根,方程x 2=-1的另一个根是-i ! 3. i 的周期性:i 4n+1=i, i 4n+2=-1, i 4n+3=-i, i 4n =1 4.复数的定义:形如(,)a bi a b R +∈的数叫复数,a 叫复数的实部,b 叫复数的虚部全体复数所成的集合叫做复数集,用字母C 表示* 3. 复数的代数形式: 复数通常用字母z 表示,即(,)z a bi a b R =+∈,把复数表示成a +bi 的形式,叫

数系的扩充和复数的引入教学设计

《数系的扩充与复数的引入》第1课时教案设计学校:江西省抚州市临川二中姓名:黄志彬联系方式: 学情分析: “数系的扩充与复数的引入”是北师大版选修2-2第五章第一节内容,是在学生已经学习了 x+=没有实数解,但实际需要要求此方程的解,实数以及实数有关的运算,知道方程210 所以有必要引出复数的概念以及复数的有关运算,建立新的数系。 ●教学理念: 本着“以学生为主体,教师为主导”的理念,采用探究式教学方法,按照提出问题,思考、交流进而分析得出结论的方法进行启发式教学。 教学目标: 知识技能: 1.了解数系发展原因,数集的扩展过程; 2.理解复数的有关概念以及符号表示; 过程与方法:经历了数系的扩充过程,体验了复数引入的必要,探究了复数相等的概念,领悟了类比的思想方法. 情感态度与价值观:在问题情境中了解数系的扩充过程,体会实际需求;在数系扩充过程中的作用,感受人类理性思维的作用以及数与现实世界的联系. ●教学重难点: 重点:对引入复数的必要性的认识,理解复数的基本概念 难点:虚数单位的引入以及复数概念的生成. ●设计思路: 本节课主要采用“问题发现”与“讨论探究”等方式组织教学,凸显学生的主体地位,让教师成为活动的组织者、引导者、合作者,课堂展示学生的研究过程来激发学生的探索勇气。并灵活运用多媒体辅助教学,增强教学的直观性,激发学生的学习兴趣。 教学过程: 以问题为载体,以学生思考为主线 创设情境→建构知识→知识运用→归纳总结→作业布置→课后探究 1.提出问题,探究新知:以一分四十秒数学史录音视频开始,提出问题:自然数集,整数集,有理数集,实数集的关系,继续提出问题:数集扩充到实数集之后,是不是所有的方

数形结合思想在高中数学解题中的应用

第5讲 数形结合思想在解题中的应用 一、知识整合 1.数形结合是数学解题中常用的思想方法,使用数形结合的方法,很多问题能迎刃而解,且解法简捷。所谓数形结合,就是根据数与形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法。数形结合思想通过“以形助数,以数解形”,使复杂问题简单化,抽象问题具体化能够变抽象思维为形象思维,有助于把握数学问题的本质,它是数学的规律性与灵活性的有机结合。 2.实现数形结合,常与以下内容有关:①实数与数轴上的点的对应关系;②函数与图象的对应关系;③曲线与方程的对应关系;④以几何元素和几何条件为背景,建立起来的概念,如复数、三角函数等;⑤所给的等式或代数式的结构含有明显的几何意义。 如等式()()x y -+-=21422 3.纵观多年来的高考试题,巧妙运用数形结合的思想方法解决一些抽象的数学问题,可起到事半功倍的效果,数形结合的重点是研究“以形助数”。 4.数形结合的思想方法应用广泛,常见的如在解方程和解不等式问题中,在求函数的值域,最值问题中,在求复数和三角函数问题中,运用数形结合思想,不仅直观易发现解题途径,而且能避免复杂的计算与推理,大大简化了解题过程。这在解选择题、填空题中更显其优越,要注意培养这种思想意识,要争取胸中有图,见数想图,以开拓自己的思维视野。 二、例题分析 例1.的取值范围。之间,求和的两根都在的方程若关于k k kx x x 310322 -=++ 分析:0)(32)(2=++=x f x k kx x x f 程轴交点的横坐标就是方,其图象与令 ()13(1)0y f x f =-->的解,由的图象可知,要使二根都在,之间,只需,(3)0f >, ()()02b f f k a - =-<10(10) k k -<<∈-同时成立,解得,故, 例2. 解不等式x x +>2 解:法一、常规解法: 原不等式等价于或()()I x x x x II x x ≥+≥+>??? ? ?<+≥??? 020 20202

数形结合思想在高中数学教学中的应用

数形结合思想在高中数学教学中的应用 更新时间:2018-9-25 19:11:00 浏览量:1250 【摘要】数形结合思想是一种重要的数学思想,在高中数学教学中,必须要注重对这种思想的应用,培养学生的数形结合意识,从而提高学生的知识能力。针对这种情况,文章对数形结合思想在高中数学教学中的应用进行了相应的分析和探讨。 【关键词】数形结合思想;高中数学教学;应用 数形结合思想在高中数学教学中的应用,有利于提高学生的数学知识能力,培养学生的思维能力和解题能力,提升学生的学习效果。但是在当前高中数学教学过程中,对于数形结合思想的实际教学应用尚有不足,因此需要注重强化数形结合思想在教学中的应用,采取有效的应用措施,从而提升教学质量和效果。 一、高中数学数形结合教学的现状 (一)数形结合教学意识不足 当前在我国高中数学教学过程中,数形结合的教学思想还没有得到充分应用,对于相应思想的教学运用尚有不足。随着我国课程教学改革工作的不断推进,传统的应试教学观念已经逐渐被人们所摒弃,在高中数学教学中越来越注重对学生数学能力和思维能力的培养。但是在实际教学中,大部分教师还停留在传统的教学模式上,只重视对学生数学基础和应试能力的培养,忽视了数形结合教学思想在教学中的应用。在这种教学观念的影响下,

学生的综合素质发展受到了一定的限制,教学过程忽视了对学生的数学思维能力和数形结合意识的培养,使得教学效果受到了一定的影响。并且在教学过程中,由于教师过于注重学生的成绩,导致学生在学习中逐渐出现了高分低能的现象,不利于学生未来的发展。 (二)传统教学模式的制约 传统的教学模式是影响高中数学教学发展的一个重要因素,同时也限制了数形结合思想在高中教学中的应用。在高中数学教学中,传统的教学模式大都采用填鸭式、满堂灌的教学方式,由教师主导整个课堂教学活动,向学生进行知识的灌输。在这种教学模式下,学生只能被动地接受教师的知识灌输。数形结合教学思想分散在教学之中,没有形成一定的教学规模,导致学生的数形结合意识较弱。并且严重忽视了学生的学习主体性以及学生之间的个体差异,导致学生的学习积极性和学习兴趣逐渐下降,甚至会影响到学生的学习质量和效率。 二、数形结合思想在高中数学教学中的应用分析 在高中几何数学中,可以通过观察图形,建立“数”与“形”的对应关系,找到解决问题的方法。也可以通过几何图形将数量的关系形象地展示出来,在图形上分析数量之间的关系,进而解决问题。几何图形和数量關系是相辅相成的,数量可以在图形上展示出来,也可以用数量关系来表达图形联系。例如:在例1的教学中,直接将数量关系转化成式子不容易,但是教师

高中数学数形结合

数形结合 实现数形结合,常与以下内容有关:①实数与数轴上的点的对应关系;②函数与图象的对应关系;③曲线与方程的对应关系;④以几何元素和几何条件为背景,建立起来的概念,如复数、三角函数等;⑤所给的等式或代数式的结构含有明显的几何意义。如等式()()x y -+-=21422 一、联想图形的交点 例1. 已知,则方程的实根个数为01<<=a a x x a |||log |() A. 1个 B. 2个 C. 3个 D. 1个或2个或3个 分析:判断方程的根的个数就是判断图象与的交点个数,画y a y x x a ==|||log |出两个函数图 象,易知两图象只有两个交点,故方程有2个实根,选(B )。 例2. 解不等式x x +>2 令,,则不等式的解,就是使的图象 y x y x x x y x 121222= +=+>=+ 在的上方的那段对应的横坐标, y x 2=如下图,不等式的解集为{|} x x x x A B ≤<而可由,解得,,,x x x x x B B A +===-222故不等式的解集为。{|}x x -≤<22 练习:设定义域为R 函数?? ?=≠-=1 01 1lg )(x x x x f ,则关于x 的方程0)()(2=++c x bf x f 有7个不同 实数解的充要条件是( ) 0,0. 0,0. 0,0. 0,0.=≥=<<>>c ,设P :函数x c y =在R 上单调递减,Q :不等式12>++c x x 的解集为R ,如 果P 与Q 有且仅有一个正确,试求c 的范围。 因为不等式12>++c x x 的几何意义为:在数轴上求一点)(x P ,使P 到)2(),0(c B A 的距离之和的最小值大于1,而P 到AB 二点的最短距离为12>=c AB ,即2 1> c 而P :函数x c y =在R 上单调递减,即1

高中数学 选修1-2 7.数系的扩充和复数的概念

7.数系的扩充和复数的概念 教学目标 班级______姓名________ 1.了解虚数的定义及复数的概念. 2.掌握虚数与实数之间的关系. 教学过程 一、知识要点. 1.复数的概念: (1)复数定义:形如bi a +的数叫做复数,其中R b a ∈,,i 叫做虚数单位(12-=i ).a 叫做复数的实部,b 叫做复数的虚部. (2)复数表示方法:复数通常用字母z 表示,即bi a z +=. (3)复数集定义:全体复数所成的集合叫做复数集,常用大写字母C 表示. 2.复数的分类: (1)复数(bi a +,R b a ∈,) 实数(0=b ) 虚数(0≠b ) 纯虚数(0=a ) 非纯虚数(0≠a ) (2)数系的分类: 分数 有理数 实数 整数 复数 无理数 虚数 纯虚数 非纯虚数 3.复数相等的充要条件:设R d c b a ∈,,,,那么c a di c bi a =?+=+且d b =. 二、例题分析. 例1:请说出下列复数的实部和虚部,并判断它们是实数,虚数还是纯虚数. ①i 32+;②i 2 13+ -;③i +2;④π;⑤i 3-;⑥0.

例2:实数m 取什么值时,复数i m m z )1(1-++=是(1)实数;(2)虚数;(3)纯虚数. 练2:实数m 为何值时,复数i m m m m m z )32(1 )2(2-++-+= 是(1)实数;(2)虚数;(3)纯虚数. 例3:已知x 、y 均为实数,且满足i y y i x )3()12(---=+-,求x 与y . 练3:已知i x x x x x )32(1 622--=+--(R x ∈),求x 的值. 作业:已知i m m m z )1()1(2 -++=为纯虚数,求实数m 的值.

最新数系的扩充和复数的概念教案

§3.1.1数系的扩充和复数的概念 教案 李 志 文 【教学目标】 知识与技能:1.了解数系的扩充过程;2.理解复数的基本概念 过程与方法:1.通过回顾数系扩充的历史,让学生体会数系扩充的一般性方法. 2.类比前几次数系的扩充,让学生了解数系扩充后,实数运算律均可应用于 新数系中,在此基础上,理解复数的基本概念. 情感态度与价值观: 1、虚数单位的引入,产生复数集,让学生体会在这个过程中蕴含的创 新精神和实践能力,感受人类理性思维的作用以及数与现实世界的联系; 2、初步学会运用矛盾转化,分与合,实与虚等辩证唯物主义观点看待和 处理问题。 【重点难点】 重点: 理解虚数单位i 的引进的必要性及复数的有关概念. 难点:复数的有关概念及应用. 【学法指导】 1、回顾以前学习数的范围扩充过程,体会数系扩充的必要性及现实意义; 2、思考数系扩充后需考虑的因素,譬如运算法则、运算律、符号表示等问题,为本节学习奠定方法基础. 【知识链接】 前两个学段学习的数系的扩充: 但是,数集扩到实数集R 以后,像x 2=-1这样的方程还是无解的,因为在实数范围内,没有一个实数的平方等于负数.联系从自然数到实数系的扩充过程,你能设想一种方法,使这个方程有解吗? Q N Z R 人们在狩猎、采集果实等劳动中,由于计数的需要,就产生了1,2,3,4等数以及表示“没有”的数0.自然数 的全体构成自然数集N 为了表示各种具有相反意义的量以及满足记数的需要,人们又引进了负整,将数系扩充至整数集Z. 为了解决测量、分配中遇到的将某些量进行等分的问题, 人们引进了分数,将数系扩充至有理数集Q. 用方形的边长去度量它的对角线所得的结果,无法用有 理数表示,为了解决这个矛盾,人们又引进了无理数.有 理数集与无理数集合并在一起,构成实数集R . N x 2=-1,x =?

高中数学的数形结合思想方法-全(讲解+例题+巩固+测试)

数形结合的思想方法(1)---讲解篇 一、知识要点概述 数与形是数学中两个最古老、最基本的元素,是数学大厦深处的两块基石,所有的数学问题都是围绕数和形的提炼、演变、发展而展开的:每一个几何图形中都蕴藏着一定的数量关系,而数量关系又常常可以通过图形的直观性作出形象的描述。因此,在解决数学问题时,常常根据数学问题的条件和结论之间的内在联系,将数的问题利用形来观察,提示其几何意义;而形的问题也常借助数去思考,分析其代数含义,如此将数量关系和空间形式巧妙地结合起来,并充分利用这种“结合”,寻找解题思路,使问题得到解决的方法,简言之,就是把数学问题中的数量关系和空间形式相结合起来加以考察的处理数学问题的方法,称之为数形结合的思想方法。 数形结合是一个数学思想方法,包含“以形助数”和“以数辅形”两个方面,其应用大致可以分为两种情形:或者是借助形的生动和直观性来阐明数之间的联系,即以形作为手段,数为目的,比如应用函数的图像来直观地说明函数的性质;或者是借助于数的精确性和规范严密性来阐明形的某些属性,即以数作为手段,形作为目的,如应用曲线的方程来精确地阐明曲线的几何性质。 数形结合的思想,其实质是将抽象的数学语言与直观的图像结合起来,关键是代数问题与图形之间的相互转化,它可以使代数问题几何化,几何问题代数化。在运用数形结合思想分析和解决问题时,要注意三点:第一要彻底明白一些概念和运算的几何意义以及曲线的代数特征,对数学题目中的条件和结论既分析其几何意义又分析其代数意义;第二是恰当设参、合理用参,建立关系,由数思形,以形想数,做好数形转化;第三是正确确定参数的取值范围。 二、解题方法指导 1.转换数与形的三条途径: ①通过坐标系的建立,引入数量化静为动,以动求解。 ②转化,通过分析数与式的结构特点,把问题转化到另一个角度来考虑,如将转化为勾股定理或平面上两点间的距离等。 ③构造,比如构造一个几何图形,构造一个函数,构造一个图表等。 2.运用数形结合思想解题的三种类型及思维方法: ①“由形化数”:就是借助所给的图形,仔细观察研究,提示出图形中蕴含的数量关系,反映几何图形内在的属性。 ②“由数化形”:就是根据题设条件正确绘制相应的图形,使图形能充分反映出它们相应的数量关系,提示出数与式的本质特征。 ③“数形转换”:就是根据“数”与“形”既对立,又统一的特征,观察图形的形状,分析数与式 的结构,引起联想,适时将它们相互转换,化抽象为直观并提示隐含的数量关系。 三、数形结合的思想方法的应用 (一)解析几何中的数形结合 解析几何问题往往综合许多知识点,在知识网络的交汇处命题,备受出题者的青睐,求解中常常通过数形结合的思想从动态的角度把抽象的数学语言与直观的几何图形结合起来,达到研究、解决问题的目的. 1. 与斜率有关的问题 【例1】已知:有向线段PQ的起点P与终点Q坐标分别为P(-1,1),Q(2,2).若直线l∶x+my+m=0

高中数学数形结合思想经典例题(含解析)

高中数学数形结合思想经典例题 一、选择题 1.已知函数f (x )=???? ?3x ,x≤0,log 2 x ,x>0,下列结论正确的是( ) A .函数f (x )为奇函数 B .f (f (14))=1 9 C .函数f (x )的图象关于直线y =x 对称 D .函数f (x )在R 上是增函数 2.已知二次函数f (x )=ax 2-(a +2)x +1(a ∈Z ),且函数f (x )在(-2,-1)上恰有一个零点,则不等式f (x )>1的解集为( ) A .(-∞,-1)∪(0,+∞) B .(-∞,0)∪(1,+∞) C .(-1,0) D .(0,1) 3.函数f (x )=ln|x +cos x |的图象为( )

4.设奇函数f (x )在(0,+∞)上为增函数,且f (2)=0,则不等式f (x )-f (-x ) x <0的解集为( ) A .(-2,0)∩(2,+∞) B .(-∞,-2)∪(0,2) C .(-∞,-2)∪(2,+∞) D .(-2,0)∪(0,2) 5.实数x ,y 满足不等式组???? ?x -y +2≥0,2x -y -5≤0,x +y -4≥0,则z =|x +2y -4|的最大值为( ) A.215 5 B .21 C .20 D .25 6.已知函数f (x )=|x -2|+1,g (x )=kx .若方程f (x )=g (x )有两个不相等的实根, 则实数k 的取值范围是( ) A .(0,1 2) B .(1 2,1) C .(1,2) D .(2,+∞) 7.若实数x ,y 满足|x -3|≤y ≤1,则z =2x +y x +y 的最小值为( ) A.53 B .2 C.35 D.12 8.设方程10x =|lg(-x )|的两个根分别为x 1,x 2,则( ) A .x 1x 2<0 B .x 1x 2=1 C .x 1x 2>1 D .0

数系的扩充和复数的概念优秀教学设计

数系的扩充和复数的概念 【教学目标】 1.在问题情境中了解数系的扩充过程,体会实际需求在数系扩充过程中的作用理解复数的基本概念 2.理解复数的基本概念以及复数相等的充要条件 3.了解复数的代数表示方法 【教学重难点】 重点:引进虚数单位i的必要性、对i的规定、复数的有关概念 难点:实数系扩充到复数系的过程的理解,复数概念的理解 【教学过程】 一、创设情景、提出问题 1:我们知道,对于实系数一元二次方程,没有实数根。我们能否将实数集进行扩充,使得在新的数集中,该问题能得到圆满解决呢?  2:类比引进,就可以解决方程在有理数集中无解的问题,怎么解决在实数集中无解的问题呢? 3:把实数和新引进的数i 像实数那样进行运算,并希望运算时有关的运算律仍成立,你得到什么样的数? 二、学生活动 1.复数的概念: (1)虚数单位:数__叫做虚数单位,具有下面的性质: ①_________ ②_____________________________________ (2)复数:形如__________叫做复数,常用字母___表示,全体复数构成的集合叫做______,常用字母___表示。 (3)复数的代数形式:_________,其中____叫做复数的实部,___叫做复数的虚部,复数的实部和虚部都是___数。 (4)对于复数a + bi(a,b∈R), 当且仅当_____时,它是实数; 当且仅当_____时,它是实数0;

当_______时,叫做虚数; 当_______时,叫做纯虚数; 2.学生分组讨论 (1)复数集C和实数集R之间有什么关系? (2)如何对复数a + bi(a,b∈R)进行分类? (3)复数集、实数集、虚数集、纯虚数集之间的关系,可以用韦恩图表示出来吗? 三、练习: 1.下列数中,哪些是实数,哪些是虚数,哪些是纯虚数?并分别指出这些复数的实部与虚部各是什么? 2+2i,0.618,2i/7,0,5i+8,3-9i 2.判断下列命题是否正确: (1)若A.b为实数,则Z=a + bi为虚数 (2)若b为实数,则Z=bi必为纯虚数 (3)若a为实数,则Z= a一定不是虚数 四、归纳总结、提升拓展 【例1】实数m分别取什么值时,复数z=m+1+(m-1)i是(1)实数?(2)虚数?(3)纯虚数? 【练习】实数m分别取什么值时,复数z=M2+m-2+(M2-1)i是(1)实数?(2)虚数?(3)纯虚数? 两个复数相等,即两个复数相等的充要条件是它们的实部与虚部分别对应相等。也就是A + bi=c + di _______________________(A.B.C.d为实数) 由此容易出:a +bi=0 _______________________ 【例2】已知x +2y +(2x+6)i=3x-2 ,其中,x,y为实数,求x与y。 五、反馈训练、巩固落实 1.若x,y为实数,且 2x-2y+(x+y)i=x-2 i,求x与y。 2.若x为实数,且(2x2-3x-2)+(x2-5x+6)i=0,求x的值。

高中数学数形结合思想在解题中的应用

高中数学数形结合思想在解题中的应用 一、知识整合 1.数形结合是数学解题中常用的思想方法,使用数形结合的方法,很多问题能迎刃而解,且解法简捷。所谓数形结合,就是根据数与形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法。数形结合思想通过“以形助数,以数解形”,使复杂问题简单化,抽象问题具体化能够变抽象思维为形象思维,有助于把握数学问题的本质,它是数学的规律性与灵活性的有机结合。 2.实现数形结合,常与以下内容有关:①实数与数轴上的点的对应关系;②函数与图象的对应关系;③曲线与方程的对应关系;④以几何元素和几何条件为背景,建立起来的概念,如复数、三角函数等;⑤所给的等式或代数式的结构含有明显的几何意义。 如等式()()x y -+-=21422 3.纵观多年来的高考试题,巧妙运用数形结合的思想方法解决一些抽象的数学问题,可起到事半功倍的效果,数形结合的重点是研究“以形助数”。 4.数形结合的思想方法应用广泛,常见的如在解方程和解不等式问题中,在求函数的值域,最值问题中,在求复数和三角函数问题中,运用数形结合思想,不仅直观易发现解题途径,而且能避免复杂的计算与推理,大大简化了解题过程。这在解选择题、填空题中更显其优越,要注意培养这种思想意识,要争取胸中有图,见数想图,以开拓自己的思维视野。 二、例题分析 例1.的取值范围。之间,求和的两根都在的方程若关于k k kx x x 310322 -=++ 分析:0)(32)(2 =++=x f x k kx x x f 程轴交点的横坐标就是方,其图象与令 ()13(1)0y f x f =-->的解,由的图象可知,要使二根都在,之间,只需,(3)0f >, ()()02b f f k a - =-<10(10)k k -<<∈-同时成立,解得,故, 例2. 解不等式x x +>2 解:法一、常规解法: 原不等式等价于或()()I x x x x II x x ≥+≥+>??? ? ?<+≥??? 020 20202 解,得;解,得()()I x II x 0220≤<-≤<

数系的扩充与复数的引入知识点总结

数系的扩充与复数的引入知识点总结 一.数系的扩充和复数的概念 1.复数的概念 (1) 复数:形如(,)a bi a R b R +∈∈的数叫做复数,a 和b 分别叫它的实部和虚部. (2) 分类:复数(,)a bi a R b R +∈∈中,当0b =,就是实数; 0b ≠,叫做虚数;当0,0a b =≠时,叫做纯虚数. (3) 复数相等:如果两个复数实部相等且虚部相等就说这两个复数相等. 即:如果:,,,a b c d R ∈,那么:=+=+b=d a c a bi c di ????,特别地: . (4) 共轭复数:当两个复数实部相等,虚部互为相反数时,这两个复数互为共轭复数. 即:=+=-(,)z a bi z a bi a b R ∈的共轭复数是 2.复数的几何意义 (1)数()可用点表示,这个建立了直角坐标系来表示复数的 平面叫做复平面,也叫高斯平面, 轴叫做实轴,轴叫做虚轴. 实轴上的点都表示实数.除了原点外,虚轴上的点都表示纯虚数. 复数集C 和复平面内所有的点所成的集合是一一对应关系,即复数 复平面内的点每一个复数有复平面内唯一的一个点和它对应;反过来,复平面内的每一个点,有唯一的一个复数和它对应,这就是复数的一种几何意义,也就是复数的另一种表示方法,即几何表示方法. (2)复数的几何意义 坐标表示:在复平面内以点表示复数(); 向量表示:以原点 为起点,点为终点的向量表示复数. 向量的长度叫做复数的模,记作 .即. 3.复数的运算 (1)复数的加,减,乘,除按以下法则进行 设12,(,,,)z a bi z c di a b c d R =+=+∈则 12()()z z a c b d i ±=±+±

初高中数学衔接之数学思想方法

初高中数学衔接之数学思想方法

初高中数学衔接 ——数学思想方法目录 一、方程与函数思想 1.1方程思想 1.2函数思想 二、数形结合思想 2.1数形结合思想 三、分类讨论思想

1.1 方程思想 方程知识是初中数学的核心内容。理解、掌握方程思想并应用与解题当中十分重要。所谓方程思想就是从分析问题的数量关系入手,适当设定未知数,把已知量与未知量之间的数量关系转化为方程(组)模型,从而使问题得到解决的思维方法。对方程思想的考查主要有两个方面:一是列方程(组)解应用题;二是列方程(组)解决代数或几何问题。 (1)高中体现 函数与方程思想是最重要的一种数学思想,高考中所占比重较大,综合知识多、题型多、应用技巧多 函数思想简单,即将所研究的问题借助建立函数关系式亦或构造中间函数,结合初等函数的图象与性质,加以分析、转化、解决有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题;方程思想即将问题中的数量关系运用数学语言转化为方程模型加以解决 举例: 例1已知函数f (x )=log m 3 3+-x x (1)若f (x )的定义域为[α,β],(β>α>0),判断f (x )在定义域上的增减性,并加以说明; (2)当0<m <1时,使f (x )的值域为[log m [m (β–1)],log m [m (α–1)]]的定义域区间为[α,β](β>α>0)是否存在?请说明理由 解 (1)?>+-03 3x x x <–3或x >3 ∵f (x )定义域为[α,β],∴α>3 设β≥x 1>x 2≥α,有0) 3)(3()(6333321212211>++-=+--+-x x x x x x x x 当0<m <1时,f (x )为减函数,当m >1时,f (x )为增函数 (2)若f (x )在[α,β]上的值域为[log m m (β–1),log m m (α–1)] ∵0<m <1, f (x )为减函数 ∴??? ????-=+-=-=+-=)1(log 33log )()1(log 33log )(ααααββββm f m f m m m m

高中数学中的数形结合思想

第十四讲 数形结合思想 基础知识点: 1.数形结合是把数或数量关系与图形对应起来,借助图形来研究数量关系或者利用数量关系来研究图形的性质,是一种重要的数学思想方法。它可以使抽象的问题具体化,复杂的问题简单化。“数缺形时少直观,形少数时难入微”,利用数形结合的思想方法可以深刻揭示数学问题的本质。 2.数形结合的思想方法在高考中占有非常重要的地位,考纲指出“数学科的命题,在考查基础知识的基础上,注重对数学思想思想方法的考查,注重对数学能力的考查”,灵活运用数形结合的思想方法,可以有效提升思维品质和数学技能。 3.“对数学思想方法的考查是对数学知识在更高层次的抽象和概括的考查,考查时要与数学知识相结合”, 用好数形结合的思想方法,需要在平时学习时注意理解概念的几何意义和图形的数量表示,为用好数形结合思想打下坚实的知识基础。 4.函数的图像、方程的曲线、集合的文氏图或数轴表示等,是 “以形示数”,而解析几何的方程、斜率、距离公式,向量的坐标表示则是 “以数助形”,还有导数更是数形形结合的产物,这些都为我们提供了 “数形结合”的知识平台。 5.在数学学习和解题过程中,要善于运用数形结合的方法来寻求解题途径,制定解题方案,养成数形结合的习惯,解题先想图,以图助解题。用好数形结合的方法,能起到事半功倍的效果,“数形结合千般好,数形分离万事休”。 经典例题剖析 1.选择题 (1)(2007浙江)设21()1x x f x x x ??=?

数系的扩充与复数的引入知识点总结

数系的扩充与复数的引入知识点总结 一。数系的扩充和复数的概念 1.复数的概念 (1) 复数:形如(,)a bi a R b R +∈∈的数叫做复数,a 和b 分别叫它的实部和虚部. (2) 分类:复数(,)a bi a R b R +∈∈中,当0b =,就是实数; 0b ≠,叫做虚数;当0,0a b =≠时,叫做纯虚数. (3) 复数相等:如果两个复数实部相等且虚部相等就说这两个复数相等. 即:如果:,,,a b c d R ∈,那么:=+=+b=d a c a bi c di ????,特别地: 。 (4) 共轭复数:当两个复数实部相等,虚部互为相反数时,这两个复数互为共轭复数。 即:=+=-(,)z a bi z a bi a b R ∈的共轭复数是 2。复数的几何意义 (1)数()可用点表示,这个建立了直角坐标系来表示复数的平 面叫做复平面,也叫高斯平面, 轴叫做实轴,轴叫做虚轴. 实轴上的点都表示实数.除了原点外,虚轴上的点都表示纯虚数. 复数集C和复平面内所有的点所成的集合是一一对应关系,即复数 复平面内的点每一个复数有复平面内唯一的一个点和它对应;反过来,复平面内的每一个点,有唯一的一个复数和它对应,这就是复数的一种几何意义,也就是复数的另一种表示方法,即几何表示方法. (2)复数的几何意义 坐标表示:在复平面内以点表示复数(); 向量表示:以原点为起点,点为终点的向量表示复数. 向量的长度叫做复数的模,记作.即 . 3.复数的运算 (1)复数的加,减,乘,除按以下法则进行 设12,(,,,)z a bi z c di a b c d R =+=+∈则 12()()z z a c b d i ±=±+±

数形结合思想及其在高中数学教学中的应用实践

数形结合思想及其在高中数学教学中的应用实践-中学数学 论文 数形结合思想及其在高中数学教学中的应用实践 文/景占东 【摘要】在高中数学的教学过程当中,数形结合方法贯穿整个教学的始终。而数形结合方法实质上就是按照数据和图形之间的对应关系,将比较抽象的语言,通过图形表达出来,或者是将图形用数学语言表达出来。在高中数学的某些问题的解题过程当中,通过应用数形结合思想,会使问题变得更加的简单化、直观化,开拓了学生的解题思路,使学生能够对一些比较难的问题也有了解题思路。因此,在高中数学的教学过程当中,要积极培养学生在这方面的能力,将数形结合思想真正的应用到答题当中。 关键词数形结合思想;高中数学;应用 在历年的高考题当中,数形结合思想一直是众多思想方法当中考查的重点,与此同时,数形结合思想也是数学研究领域经常使用的方法。因此,在高中数学的教学过程当中,我们应该加大对学生数形结合思想应用的训练力度,使学生们真正地认识到数与形之间的关系,并且能够灵活的通过数形转换,进而解决数学中的一些难题,锻炼学生的思维能力。 一、数形结合思想遵循的原则 在数形结合思想的应用过程当中,要遵循下面的两个原则,才能真正的正确的使用数形结合思想。 1.等价原则。等价原则就是说在进行数与形的转换过程当中,要保证数的代数意义与形的几何意义是相同的,也就是说在同一个问题当中,数与形所反映的问题

的反差关系是一致的,要准确构建图形与数字的关系。 2.双向性原则。双向性原则就是说不仅要通过图形的直观分析,也要进行数学语言的研究,因为数学的语言表达和计算自身的严谨性等优势,能够避免一些图形的约束性,达到更好的解题效果。 二、数形结合在高中数学中的应用 在数学的解题过程当中,数形结合思想能够具有双面的效应,我们可以通过将数形合理的进行转换,达到一定的解题效果。 (一)数到形的转换 其一,在数学的方程和不等式问题当中,我们可以利用方程和不等式和函数图像,直线之间的位置关系和交点,或者是利用函数图像所具有的其他特征,来解答相关问题。与此同时,在日常的学习当中,学生们要将基础知识记牢,将函数图像所具有的一些性质掌握,并且能够在此基础上发散思维,保证答题的完整性。其二,在一些考题当中,要求学生求解代数式的相关几何性质,像这样的考题,我们可以根据平面向量的数量和模的相关性质,将代数式转换到图形当中,从而解决相关的问题。 其三,在一些考题当中,要求同学们根据代数式的结构,求解相关的几何图形或者是根据几何的图形的性质,求得相关问题,但是有的题目中并未给出明确的图像,或者是提供的图像不具有代表性,不能够全面的解答问题,这个时候我们就需要认真剖析代数式的结构和题中给出的相关条件,画出相应的图形,并根据图形的一些定理、公式以及性质等,来解答问题,比如说勾股定理、正弦定理、余弦定理等。 其四,在一些考题当中,要求解答代数式的图形背景和相关性质,此时,我们可

高中数学 数形结合思想

数形结合思想 由于新教材新大纲把常见的数学思想纳入基础知识的范畴,通过对数学知识 的考查反映考生对数学思想和方法的理解和掌握的程度。数形结合的思想重点考查以形释数,同时考查以数解形,题型会渗透到解答题,题量会加大.数形结合常用于解方程、解不等式、求函数值域、解复数和三角问题中,充分发挥形的形象性、直观性、数的深刻性、精确性,弥补形的表面性,数的抽象性,从而起到优化解题途径的作用。 例题1.关于x 的方程2x 2-3x -2k =0在(-1, 1)内有一个实根,则k 的取值范围是什么? 分析:原方程变形为2x 2-3x =2k 后可转化为函数 y =2x 2-3x 。和函数y =2k 的交点个数问题. 解:作出函数y =2x 2-3x 的图像后,用y =2k 去截抛物线,随着k 的变化,易知2k =-89 或-1≤2k <5时只 有一个公共点.∴ k =- 16 9或- 2 1≤k < 2 5. 点拨解疑:方程(组)解的个数问题一般都是通过相应的函数图象的交点问题去解决.这是用形(交点)解决数(实根)的问题. 例题2.求函数u =t t -++642的最值. 分析:观察得2t +4+2(6-t )=16,若设x =42+t ,y =t -6,则有x 2+2y 2=16, 再令u =x +y 则转化为直线与椭圆的关系问题来解决. 解:令42+t =x , t -6=y , 则x 2+2y 2=16, x ≥0, y ≥0, 再设u =x +y , 由于直线与椭圆的交点随着u 的变化而变化,易知,当直线与椭圆相切时截距u 取得最大值,过点(0,22)时,u 取得最小值22, 解方程组 ???=++-=16 22 2y x u x y ,得3x 2-4ux +2u 2-16=0, 令△=0, 解得u =±26 . ∴ u 的最大值为26,最小值为22. 点拨解疑:数学观察能力要求透过现象,发现本质,挖掘题中的隐含条件. 例题3.已知s = 1 322 +-t t ,则s 的最小值为 。 分析:等式右边形似点到直线距离公式. 解:|s |= 1 |32|2 +-t t , 则|s |可看成点(0, 0)到直线tx +y +2t -3=0的距离,又直线tx +y +2t -3=0变形为:(x +2)t +y -3=0后易知过定点P (-2,3),从而原点到直线 tx +y +2t -3=0的最短距离为|OP |=13, ∴ -13≤s ≤13.

高中数学人教A版选修2-2(课时训练):3.1 数系的扩充和复数的概念3.1.2

3.1.2 复数的几何意义 [学习目标] 1.理解可以用复平面内的点或以原点为起点的向量来表示复数及它们之间的一一对应关系. 2.掌握实轴、虚轴、模等概念. 3.掌握用向量的模来表示复数的模的方法. [知识链接] 1.下列命题中不正确的有________. (1)实数可以判定相等或不相等; (2)不相等的实数可以比较大小; (3)实数可以用数轴上的点表示; (4)实数可以进行四则运算; (5)负实数能进行开偶次方根运算; 答案 (5) 2.实数可以用数轴上的点来表示,实数的几何模型是数轴.由复数的定义可知任何一个复数z =a +b i(a ,b ∈R ),都和一个有序实数对(a ,b )一一对应,那么类比一下实数,能否找到用来表示复数的几何模型呢? 答案 由于复数集与平面直角坐标系中的点集可以建立一一对应,所以可以用直角坐标系作为复数的几何模型. [预习导引] 1.复数的几何意义 (1)复平面的定义 建立了直角坐标系来表示复数的平面叫做复平面,x 轴叫做实轴,y 轴叫做虚轴.实轴上的点都表示实数;除了原点外,虚轴上的点都表示纯虚数. (2)复数与点、向量间的对应 ①复数z =a +b i(a ,b ∈R )――→对应 复平面内的点Z (a ,b ); ②复数z =a +b i(a ,b ∈R )――→对应平面向量OZ →=(a ,b ). 2.复数的模 复数z =a +b i(a ,b ∈R )对应的向量为OZ →,则OZ →的模叫做复数z 的模,记作|z |,且|z |=a 2+b 2.

要点一 复数与复平面内的点 例1 在复平面内,若复数z =(m 2-2m -8)+(m 2+3m -10)i 对应的点(1)在虚轴上;(2)在第二象限;(3)在第二、四象限;(4)在直线y =x 上,分别求实数m 的取值范围. 解 复数z =(m 2-2m -8)+(m 2+3m -10)i 的实部为m 2-2m -8,虚部为m 2+3m -10. (1)由题意得m 2-2m -8=0. 解得m =-2或m =4. (2)由题意,? ??? ? m 2-2m -8<0m 2+3m -10>0,∴20,得m <-3,或m >5,所以当m <-3,或m >5时,复数z 对应的点在x 轴上方. (2)由(m 2+5m +6)+(m 2-2m -15)+4=0, 得m =1,或m =-52,所以当m =1,或m =-5 2时, 复数z 对应的点在直线x +y +4=0上. 要点二 复数的模及其应用 例2 已知复数z =3+a i ,且|z |<4,求实数a 的取值范围. 解 法一 ∵z =3+a i(a ∈R ),∴|z |=32+a 2, 由已知得32+a 2<42,∴a 2<7,∴a ∈(-7,7). 法二 利用复数的几何意义,由|z |<4知,z 在复平面内对应的点在以原点为圆心,以4为半径的圆内(不包括边界),

相关主题
文本预览
相关文档 最新文档