当前位置:文档之家› 相SVPWM逆变电路MATLAB仿真

相SVPWM逆变电路MATLAB仿真

相SVPWM逆变电路MATLAB仿真
相SVPWM逆变电路MATLAB仿真

基于电压空间矢量控制的三相逆变器的研究

1、SVPWM 逆变电路的基本原理及控制算法

图中所示的三相逆变器有6个开关,其中每个桥臂上的开关工作在互补状态, 三相桥臂的上下开关模式得到八个电压矢量,包括6个非零矢量(001)、(010)、(011)、(100)、(101)、(110)和两个零矢量 (000)、(111).

图 三相桥式电压型有源逆变器拓扑结构

在平面上绘出不同的开关状态对应的电压矢量,如图所示。由于逆变器能够产生的电压矢量只有8个,对与任意给定的参考电压矢量,都可以运用这8个已知的参考电压矢量来控制逆变器开关来合成。

3U (011)

1U (001)

5U (101)

4U (100)

6U (110)

2U (010)

ⅠⅡ

0U (000)

7U (111)

β

c

U θ

β

u α

u 1

sv U 2

sv U 3

sv U

图 空间电压矢量分区

图中,当参考电压矢量在1扇区时,用1扇区对应的三个空间矢量U sv 1、U sv 2、U sv 3来等效参考电压矢量。若 合成矢量ref U 所处扇区N 的判断

三相坐标变换到两相βα-坐标:

??

?????

???

??????????????=

???

?????)()()(23- 23 021- 21- 132)()(t t t t t u u u u u co bo ao βα () 根据u α、u β的正负及大小关系就很容易判断参考电压矢量所处的扇区位置。如表所示。

表 参考电压矢量扇区位置的判断条件

可以发现,扇区的位置是与u β、 u u βα-3及u u βα--3的正负有关。为判断方便,我们设空间电压矢量所在的扇区N

N=A+2B+3C ()

其中,如果u β >0,那么A=1,否则A=0

如果u u βα-3 >0,那么B=1,否则B=0 如果u u βα--3 >0,那么C=1,否则C=0

每个扇区中基本矢量作用时间的计算

在确定参考电压矢量的扇区位置后,根据伏秒特性等效原理,采用该扇区三个顶点所对应的三个电压空间矢量来逼近参考电压矢量。以参考电压矢量位于3扇区为例,如图所示,参考电压U ref 与U 4的夹角为γ。

β

1

4

图 电压空间矢量合成示意图

根据伏秒特性等效原理算出

()

????

?

?

??

?

????--==-=T T T T V T u T V T u u T s dc s ref dc

s

ref ref 2102133321β

βα ()

开关周期T s 与T T 21+未必相等,其间隙时间可用零矢量U 7或U 0来填补。引入通用变量X ,Y ,Z

()

()

???

??

?

??

???

+-

=+==

U

U V

T U

U V T U V T

dc

s

dc

s

dc

s

Z Y X β

αβ

αβ

3333322 ()

根据前面确定的扇区标号N ,可得到空间矢量所处的扇区与两个边界矢量

T 1、T 2作用时间的关系,如表所示

表 扇区编号与计算时间的关系

当T 1+T 2>T s 时,达到饱和状态就要对矢量作用时间应作出限制。

T 1、T 2做如下修正:

???

????+=+=T T T T T T T T T T s s 212

*2211*1 () 2.2.3 电压空间矢量切换点的计算

计算出相邻两个空间电压矢量的作用时间后,则应确定每个空间电压矢量开始作用的时刻,以第3扇区为例,其所产生的三相波调制波形在时间T s 时段中如图所示。采用七段式空间矢量合成方式,每个扇区的合成矢量均以零矢量(000)开始和结束,中间用零矢量(111), 其余时间有效矢量合理安排。如图所示。

图 基本电压矢量分配

将零矢量周期分成三段,其中矢量u ref 的起、终点上均匀分布矢量u 0,而在矢量u ref 中点处分布矢量u 7,且T T 07=。电压向量出现的先后顺序为 u 0、u 4、

u 6、u 7、u 6、u 4、u 0,各电压向量的三相波形则与开关表示符号相对应。矢

量的切换点为:

(

)

()(

)

????

???++=+=-+=+=--=4

/2/4/2/4

/21221121T T T T T T T T T T T T T T T T s b c s a b s a () 假设零矢量(000)和零矢量(111)在一个开关周期中作用时间相同,生成的是对称PWM 波形,再把每个基本空间电压矢量作用时间一分为二。其它各扇区的开关切换顺序同理,如表所示。

表 各扇区时间切换点

载波为等腰三角波,且宽为开关周期T s ,这样通过三角载波调制产生PWM 信号去控制逆变器的三相开关做出相应的动作,使之产生的输出电压跟随参考电压,达到了逆变的目的。

2 SVPWM 控制三相有源逆变的Matlab 仿真

SVPWM 控制算法的仿真实现

利用Simulink 环境下的丰富模型,可以很方便的实现上一节所述的SVPWM 控制算法。实现SVPWM 算法的各个子系统模型如下所示:

1)将三相静止坐标系(a,b,c)中的a U 、b U 、c U 转换成两相垂直静止坐标系(α,β)中的αU 、βU 。在Simulink 中,其实现框图如图所示:

Gain3

图 a U 、b U 、c U 转换成αU 、βU 模型框图

2)计算参考电压矢量ref

U 所处的扇区。根据

α

U 和

β

U 的关系判断参考电压

矢量

ref

U 所在的扇区Sn ,只需要经过简单的加减及逻辑运算即可确定其所在的扇

区。在Simulink 中,其实现框图如图所示:

图 参考电压矢量所处扇区判断模型框图

3)产生驱动波形。将三角载波周期s T 作为定时器周期,与切换点aon T ,bon T ,

con T 比较,从而调制出SVPWM 波形,其仿真模块如图所示:

图 驱动模型PWM 产生模型框图

以上给出了在Simulink 中实现SVPWM 控制算法的各个子系统的框图,而图为实时产生SVPWM 波形并控制开关管的开关来达到逆变效果的整个仿真框图。给定采样周期s T 和直流母线电压dc U ,参考电压矢量ref U 在A ,B ,C 轴系下的分量由三相对称正弦电压a U ,b U ,c U 提供,输出脉冲即为实时产生的SVPWM 波。

+

-A B C +++A B C

SVPWM 控制算法仿真结果及分析

逆变器输入的直流电等效为 Udc=800V ,接到使用IGBT 的三相桥式逆变电路上;利用脉冲信号生成模块发出的六路PWM 信号对逆变桥路六个功率开关管进行 PWM 控制;从逆变桥路输出三相电压经过三对L 和C 构成的低通滤波器及电抗器构成整个逆变回路。其中L=15mH ,C=45pF ,R=10?。仿真中,开关频率20K ,离散采样时间设为1e-006 秒,仿真时间定为秒,步长选为系统自动设定值,仿真求解器设为可变步长离散型求解器。仿真测量结果如下:

1)图为给定的三相正弦电压波形,ABC 三相互差120度,220V 。

Time/s

V o l t a g e /V

图 给定的三相正弦电压波形

2)图为参考电压矢量ref U 所处的扇区。从图中可以看出扇区的选择顺序为6,5,4,3,2,1

,。

Time/s

S n

图 扇区选择图

3)图为逆变器通过电压空间矢量控制后逆变得到的A 相电压波形。从图中可以看出逆变得到的相电压为正弦波形,电压峰值为257V 。

Time/s

V o l t a g e /V

图 逆变后A 相的电压波形

4)图为逆变器通过电压空间矢量控制后逆变得到的线电压波形。从图中可以看出逆变得到的线电压为正弦波形,电压峰值为445V 。

Time/s

V o l t a g e /v

图 逆变后线电压波形

6)图为逆变器通过电压空间矢量控制后逆变得到的三相电压波形。从图中可以看出逆变得到的三相电压为正弦波形,三相波形互差120度,电压峰值为257V 。

Time/s

V o l t a g e /s

图 逆变后三相电压波形

7)图为逆变器通过电压空间矢量控制后逆变得到的三相电流波形。从图中可以看出逆变得到的三相电流为正弦波形,三相波形互差120度,电流峰值为26A 。

Time/s

V o l t a g e /s

图 逆变后三相电流波形

3 总结

通过学习现代电力电子这门课,我学习了逆变电路的几种控制方法,本文主要介绍了电压空间矢量控制法。首先对三相桥式电压型有源逆变器进行了研究分

析,随后介绍了SVPWM调制技术的基本原理以及SVPWM的控制算法,主要包括三相电压变两相电压,合成矢量所处的扇区判断,每个扇区中基本空间矢量作用的时间和电压空间矢量切换点的计算。最后通过采用Matlab仿真软件,对SVPWM 控制算法的实现进行了建模仿真,其仿真结果与理论分析的一致性证明了推导出的SVPWM控制算法的正确性。本次仿真实现了采用SVPWM控制法将800V的直流电压逆变成了三相交流电,实现逆变的功能。

4 参考文献

[1]林渭勋.现代电力电子技术.北京:机械工业出版社.2005

[2]刘凤君.现代逆变技术及其应用.北京:电子工业出版社.2006

[3]林飞.电力电子应用技术的MATLAB 仿真. 中国电力出版社.2008.

[4]电压空间矢量脉宽调制技术的研究及其实现.肖春燕.2005.南昌大学

[5]空间矢量调制方法的优化策略及应用研究.邹知斌.2007.天津大学

[6]单、三相逆变器SVPWM的新方案研究.高摇光.2010.山东大学

[7]熊健,康勇,张凯.电压空间矢量调制与常规 SPWM 比较研究.电力电子技术,1999

三相PWM逆变器的设计_毕业设计

湖南文理学院 课程设计报告 三相PWM逆变器的设计 课程名称:专业综合课程设计 专业班级:自动化10102班

摘要 本次课程设计题目要求为三相PWM逆变器的设计。设计过程从原理分析、元器件的选取,到方案的确定以及Matlab仿真等,巩固了理论知识,基本达到设计要求。 本文将按照设计思路对过程进行剖析,并进行相应的原理讲解,包括逆变电路的理论基础以及Matlab仿真软件的简介、运用等,此外,还会清晰的介绍各个环节的设计,比如触发电路、控制电路、主电路等,其中部分电路的绘制采用Proteus软件,最后结合Matlab Simulink仿真,建立了三相全控桥式电压源型逆变电路的仿真模型,进而通过软件得到较为理想的实验结果。 关键词:三相PWM 逆变电路Matlab 仿真

Abstract The curriculum design subject requirements for the design of the three-phase PWM inverter. Design process from the principle of analysis, selection of components, to scheme and the Mat-lab simulation, etc., to consolidate the theoretical knowledge, basic meet the design requirements. This article will be carried out in accordance with the design of process analysis, and the corresponding principles, including the theoretical foundation of the inverter circuit and introduction, using Matlab simulation software, etc., in addition, will also clearly introduces the design of every link, such as trigger circuit, control circuit, main circuit, etc., some of the drawing of the circuit using Proteus software, finally combined with Matlab Simulink, established a three-phase fully-controlled bridge voltage source type inverter circuit simulation model, and then through the software to get the ideal results. Keywords: Matlab simulation, three-phase ,PWM, inverter circuit

单相桥式全控整流及有源逆变电路的MATLAB仿真

单相桥式全控整流及有源逆变电路的MATLAB 仿真 图1 单相桥式全控整流 知识点回顾: 整流(AC/DC)就是将交流变化为方向不变,大小为纹波的直流,相信大家都很清楚,这里就不详细介绍整流啦! 逆变(DC/AC),按负载性质的不同,逆变分为有源逆变和无源逆变。如果把逆变电路的交流侧接到交流电源上,将直流电能经过直—交变换,逆变成与交流电源同频率的交流电返回到电网上去,叫有源逆变,其相应的装置是有源逆变器。而将直流电能经过变换逆变成交流电能直接消耗在非电源性负载上者,叫无源逆变,其相应的装置是变频器。 逆变与整流是变流装置的两种不同工作状态,能在同一套变流装置上实现,只是其工作条件不一样而已。首要条件是变流装置内部,使直流电压d U 改变极性,从而使功率的流向有可能发生逆转。当控制角?<≤ 900α时, 变流装置工作在整流状态,直流电压d U 与直流电流d I 是同一方向,装置将交流电能转换成直流电能供给直流负载;当控制角?≤< ?18090α时,变流装置工作在逆变状态,由于晶闸管的单向导电性,电流d I 方向不变,而直流 电压d U 改变了极性,装置将直流电能转换成交流电能输向电网或非电源性负载。其次是外部调件,必须是提供直流能源,而且是d U E > 。 仿真环境: MATLAB (R2009b) 实验一:电感性负载整流 1.电路搭建

元件路径 晶闸管T SimPowerSystems/Power Electronics/Thyristor 交流电源AC100V SimPowerSystems/Electrical Sources/AC Voltage Source 脉冲发生器Pulse Generator Simulink/Sources/Pulse Generator 支路RLC SimPowerSystems/Elements/Series RLC Branch 电压测量Vd SimPowerSystems/Measurements/Voltage Measurement 电流测量SimPowerSystems/Measurements/Current Measurement 示波器Scope Simulink/Sinks/Scope 选择器Selector Simulink/Signal Routing/Selector 3.参数设置

(完整版)三相逆变器matlab仿真

三相无源逆变器的构建及其MATLAB仿真1逆变器 1.1逆变器的概念 逆变器也称逆变电源,是一种可将直流电变换为一定频率下交流电的装置。相对于整流器将交流电转换为固定电压下的直流电而言,逆变器可把直流电变换成频率、电压固定或可调的交流电,称为DC-AC变换。这是与整流相反的变换,因而称为逆变。 1.3逆变器的分类 现代逆变技术的种类很多,可以按照不同的形式进行分类。其主要的分类方式如下: 1)按逆变器输出的相数,可分为单相逆变、三相逆变和多相逆变。 2)按逆变器输出能量的去向,可分为有源逆变和无源逆变。 3)按逆变主电路的形式,可分为单端式、推挽式、半桥式和全桥式逆变。 4)……………. 2 三相逆变电路 三相逆变电路,是将直流电转换为频率相同、振幅相等、相位依次互差为120°交流电的一种逆变网络。 图 1 三相逆变电路

日常生活中使用的电源大都为单相交流电,而在工业生产中,由于诸多电力能量特殊要求的电气设备均需要使用三相交流电,例如三相电动机。随着科技的日新月异,很多设备业已小型化,许多原来工厂中使用的大型三相电气设备都被改进为体积小、耗能低且便于携带的小型设备。尽管这些设备外形发生了很大的变化,其使用的电源类型——三相交流电却始终无法被取代。在一些条件苛刻的环境下,电力的储能形式可能只有直流电,如若在这样的环境下使用三相交流电设备,就要求将直流电转变为特定要求的三相交流电以供使用。这就催生了三相逆变器的产生。 4MATLAB仿真 Matlab软件作为教学、科研和工程设计的重要方针工具,已成为首屈一指的计算机仿真平台。该软件的应用可以解决电机电器自动化领域的诸多问题。利用其中的Simulink模块可以完成对三相无源电压型SPWM逆变器的仿真,并通过仿真获取逆变器的一些特性图等数据。 图 2 系统Simulink 仿真 所示为一套利用三相逆变器进行供电的系统的Matlab仿真。系统由一个380v的直流电源供电,经过三相整流桥整流为三相交流电,并进行SPWM正弦脉宽调制。输出经过一个三相变压器隔离后通入一个三相的RLC负载模块(Three phase parallel RLC)。加入了两个电压测量单元voltage measurement和voltage measurement1,并将结果输出到示波器模块Scope1.

单相单极性SPWM逆变电路matlab仿真

计算机仿真实验报告 专业:电气工程及其自动化班级:11电牵4班 姓名:江流 在班编号:26 指导老师:叶满园 实验日期:2014年5月15日

一、实验名称: 单相单极性SPWM逆变电路MATLAB仿真 二、目的及要求 了解并掌握单相单极性SPWM逆变电路的工作原理; 2.进一步熟悉MA TLAB中对Simulink 的使用及构建模块; 3.进一步熟悉掌握用MA TLAB绘图的技巧。 三、实验原理 1.单相单极性SPWM逆变的电路原理图 2、单相单极性SPWM逆变电路工作方式 单极性PWM控制方式(单相桥逆变):在Ur和U c的交点时刻控制IGBT的通断,Ur正半周,V1保持通,V2保持断,当Ur>cu时使V4通,V3断,U0=Ud,当UrUc时使V3断,V4通,U0=0。

输出电压波形 四、实验步骤及电路图 1、建立MATLAB仿真模型。以下分别是主电路和控制电路(触发电路)模型:

2、参数设置 本实验设置三角载波的周期为t,通过改变t的值改变输出SPWM矩形波的稠密,从而调节负载获取电压的质量。设置正弦波周期为0.02s,幅值为1。直流电源幅值为97V,三角载波幅值为1.2V,三角载波必须正弦波正半周期输出正三角载波,而在正弦波负半周期输出负三角载波,这可以通过让三角载波与周期与正弦波相同、幅值为1和-1的矩形波相乘实现。 五、实验结果与分析 1、设置三角脉冲波形的周期t=0.02/9s时的仿真结果:

三相SVPWM逆变电路MATLAB仿真

基于电压空间矢量控制的三相逆变器的研究 1、SVPWM逆变电路的基本原理及控制算法 图1.1中所示的三相逆变器有6个开关,其中每个桥臂上的开关工作在互补状态,三相桥臂的上下开关模式得到八个电压矢量,包括6个非零矢量(001)、(010)、(011)、(100)、(101)、(110)和两个零矢量(000)、(111). 图1.-1 三相桥式电压型有源逆变器拓扑结构 在平面上绘出不同的开关状态对应的电压矢量,如图1.2所示。由于逆变器能够产生的电压矢量只有8个,对与任意给定的参考电压矢量,都可以运用这8个已知的参考电压矢量来控制逆变器开关来合成。 3 U(011) 1 U(001)5 U(101) 4 U(100) 6 U(110) 2 U(010) Ⅰ Ⅱ Ⅲ Ⅳ Ⅴ Ⅵ U(000) 7 U(111) β c U θ β u α u 1 sv U2 sv U 3 sv U 图1.2 空间电压矢量分区 图1.2中,当参考电压矢量在1扇区时,用1扇区对应的三个空间矢量U sv1、U sv2、U sv3 来等效参考电压矢量。若1.2 合成矢量 ref U所处扇区N的判断 三相坐标变换到两相β α-坐标: ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? = ? ? ? ? ? ? ? ? ) ( ) ( ) ( 2 3 - 2 3 2 1 - 2 1 - 1 3 2 ) ( ) ( t t t t t u u u u u co bo ao β α (1.1)

根据u α、u β的正负及大小关系就很容易判断参考电压矢量所处的扇区位置。如表1.1所示。 表1.1 参考电压矢量扇区位置的判断条件 可以发现,扇区的位置是与u β、 u u βα-3及u u βα--3的正负有关。为判断方便,我们设空间电压矢量所在的扇区N N=A+2B+3C (1.2) 其中,如果u β >0,那么A=1,否则A=0 如果u u βα-3 >0,那么B=1,否则B=0 如果u u βα--3 >0,那么C=1,否则C=0 1.3 每个扇区中基本矢量作用时间的计算 在确定参考电压矢量的扇区位置后,根据伏秒特性等效原理,采用该扇区三个顶点所对应的三个电压空间矢量来逼近参考电压矢量。以参考电压矢量位于3扇区为例,如图1.3所示,参考电压U ref 与U 4的夹角为γ。 β 1 4 图1.3 电压空间矢量合成示意图 根据伏秒特性等效原理算出 () ???? ? ? ? ?? ????--==-=T T T T V T u T V T u u T s dc s ref dc s ref ref 21021 33321 β β α (1.3)

单相单极性SPWM逆变电路matlab仿真

单相单极性SPWM逆变电路matlab仿真

————————————————————————————————作者:————————————————————————————————日期:

计算机仿真实验报告 专业:电气工程及其自动化班级:11电牵4班 姓名:江流 在班编号:26 指导老师:叶满园 实验日期:2014年5月15日

一、实验名称: 单相单极性SPWM逆变电路MATLAB仿真 二、目的及要求 了解并掌握单相单极性SPWM逆变电路的工作原理; 2.进一步熟悉MA TLAB中对Simulink 的使用及构建模块; 3.进一步熟悉掌握用MA TLAB绘图的技巧。 三、实验原理 1.单相单极性SPWM逆变的电路原理图 2、单相单极性SPWM逆变电路工作方式 单极性PWM控制方式(单相桥逆变):在Ur和U c的交点时刻控制IGBT的通断,Ur正半周,V1保持通,V2保持断,当Ur>cu时使V4通,V3断,U0=Ud,当UrUc时使V3断,V4通,U0=0。 输出电压波形

四、实验步骤及电路图 1、建立MATLAB仿真模型。以下分别是主电路和控制电路(触发电路)模型:

2、参数设置 本实验设置三角载波的周期为t,通过改变t的值改变输出SPWM矩形波的稠密,从而调节负载获取电压的质量。设置正弦波周期为0.02s,幅值为1。直流电源幅值为97V,三角载波幅值为1.2V,三角载波必须正弦波正半周期输出正三角载波,而在正弦波负半周期输出负三角载波,这可以通过让三角载波与周期与正弦波相同、幅值为1和-1的矩形波相乘实现。 五、实验结果与分析 1、设置三角脉冲波形的周期t=0.02/9s时的仿真结果:

PWM逆变器Matlab仿真设计

PWM逆变器MATLAB仿真 1设计方案的选择与论证 从题目的要求可知,输入电压为110V直流电,而输出是有效值为220V的交流电,所以这里涉及到一个升压的问题,基于此有两种设计思路第一种是进行DC-DC升压变换再进行逆变,另一种是先进行逆变再进行升压。除此之外,要得到正弦交流电压还要考虑滤波等问题,所以这两种方案的设计框图分别如下图所示: 图1-1方案一:先升压再逆变 图1-2方案二:先逆变,再升压 方案选择: 方案一:采用DC-DC升压斩波电路其可靠性高、响应速度、噪声性能好,效率高,但不适用于升压倍率较高的场合,另外升压斩波电路在初期会产生超调趋势(这一点将在后文予以讨论),在与后面的逆变电路相连时必须予以考虑,我们可以采用附加控制策略的办法来减小超调量同时达到较短的调节时间,但这将增加逆变器的复杂度和设计成本。 方案二:采用变压器对逆变电路输出的交流电进行升压,这种方法效率一般可达90%以上、可靠性较高、抗输出短路的能力较强,但响应速度较慢,体积大,波形畸变较重。 从以上的分析可以看出两种方案有各自的优缺点,但由于方案二设计较为简便,因此本论文选择方案二作为最终的设计方案,但对于方案一的相关容也会在后文予以讨论。 2逆变主电路设计 2.1逆变电路原理及相关概念

逆变与整流是相对应的,把直流电变为交流电的过程称为逆变。根据交流侧是否与交流电网相连可将逆变电路分为有源逆变和无源逆变,在不加说明时,逆变一般指无源逆变,本论文针对的就是无源逆变的情况;根据直流侧是恒流源还是恒压源又将逆变电路分为电压型逆变电路和电流型逆变电路,电压型逆变电路输出电压的波形为方波而电流型逆变电路输出电流波形为方波,由于题目要求对输出电压进行调节,所以本论文只讨论电压型逆变电路;根据输出电压电流的相数又将逆变电路分为单相逆变电路和三相逆变电路,由于题目要求输出单相交流电,所以本论文将只讨论单相逆变电路。 2.2逆变电路的方案论证及选择 从上面的讨论可以看出本论文主要讨论单相电压型无源逆变电路,电压型逆变电路的特点除了前文所提及的之外,还有一个特点即开关器件普遍选择全控型器件如IGBT,电力MOSFET等,有三种方案可供选择,下面分别予以讨论: 方案一:半桥逆变电路,如下图所示,其特点是有两个桥臂,每个桥臂有一个可控器件和一个反并联二极管组成。在直流侧接有两个相互串联的足够大的电容,两个电容的连接点为直流电源的中点。反并联二极管为反馈电感中储存的无功能量提供通路,直流侧电容正起着缓冲无功能量的作用。其优点为简单,使用器件少,缺点为输出交流电压的幅值仅为直流电源电压的一半,且直流侧需要两个电容器串联,工作时还要控制两个电容器电压的均衡,因此它只适用于几千瓦以下的小功率逆变电路。 VD2 图2-1 半桥逆变电路 方案二:全桥逆变电路,如下图所示:其特点是有四个桥臂,相当于两个半桥电路的组合,其中桥臂1和4作为一对,桥臂2和3作为一对,成对的两个桥臂同时导通,两对

单相全桥逆变器matlab仿真

用MATLAB 仿真一个单相全桥逆变器,采用单极性SPWM 调制、双极性SPWM 调制或者单极倍频SPWM 调制的任意一种即可,请注明仿真参数,并给出相应的调制波波形,载波波形,驱动信号波形、输出电压(滤波前)波形。 本文选用双极性SPWM 调制。 1双极性单相SPWM 原理 SPWM 采用的调制波的频率为s f 的正弦波t U U s sm S ωsin =,s s f πω2=;载波c u 是幅值为cm U ,频率为c f 的三角波。载波信号的频率与调制波信号的频率之比称为载波比,正弦调制信号与三角波调制信号的幅值之比称为深度m 。通常采用调制信号与载波信号相比较的方法生成SPWM 信号.当Us>Uc 时,输出电压Uo 等于Ud,当Us

PWM逆变器Matlab仿真解析

课程设计任务书 学生姓名:专业班级: 指导教师:工作单位: 题目: PWM逆变器Matlab仿真 初始条件: 输入110V直流电压; 要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求) 1、得到输出为220V、50Hz单相交流电; 2、采用PWM斩波控制技术; 3、建立Matlab仿真模型; 4、得到实验结果。 时间安排: 课程设计时间为两周,将其分为三个阶段。 第一阶段:复习有关知识,阅读课程设计指导书,搞懂原理,并准备收集设计资料,此阶段约占总时间的20%。 第二阶段:根据设计的技术指标要求选择方案,设计计算。 第三阶段:完成设计和文档整理,约占总时间的40%。 指导教师签名:年月日 系主任(或责任教师)签名:年月日

目录 摘要 (1) 1设计方案的选择与论证 (2) 2逆变主电路设计 (2) 2.1逆变电路原理及相关概念 (2) 2.2逆变电路的方案论证及选择 (3) 2.3建立单相桥式逆变电路的S IMULINK的仿真模型 (4) 2.3.1模型假设 (5) 2.3.2利用MATLAB/Simulink进行电路仿真 (5) 3正弦脉宽调制(SPWM)原理及控制方法的SIMULINK仿真 (6) 3.1正弦脉冲宽度调制(SPWM)原理 (6) 3.2SPWM波的控制方法 (7) 3.2.1双极性SPWM控制原理及Simulink仿真 (7) 3.2.2单极性SPWM控制原理及Simulink仿真 (9) 4升压电路的分析论证及仿真 (11) 4.1B OOST电路工作原理 (11) 4.2B OOST电路的S IMULINK仿真 (12) 5滤波器设计 (13) 6 PWM逆变器总体模型 (15) 7心得体会 (18) 参考文献 (19)

基于MATLAB的三相桥式PWM逆变电路资料

交流调速系统课程设计题目:三相桥式SPWM逆变器的仿真设计 班级:0 姓名: 学号: 指导老师:

目录 摘要 (2) 关键词 (2) 绪论 (2) 三相桥式SPWM逆变器的设计内容及要求 (3) SPWM逆变器的工作原理 (3) 1 工作原理 (5) 2 控制方式 (6) 3 正弦脉宽调制的算法 (9) MATlAB仿真设计 (12) 硬件实验 (19) 实验总结 (23) 附录 Matab简介 (24) 参考文献 (24)

三相桥式SPWM逆变电路设计 摘要: 随着电力电子技术的飞速发展,正弦波输出变压变频电源已被广泛应用在各个领域中,与此同时对变压变频电源的输出电压波形质量也提出了越来越高的要求。对逆变器输出波形质量的要求主要包括两个方面:一是稳态精度高;二是动态性能好。因此,研究开发既简单又具有优良动、静态性能的逆变器控制策略,已成为电力电子领域的研究热点之一。 在现有的正弦波输出变压变频电源产品中,为了得到SPWM波,一般都采用双极性调制技术。该调制方法的最大缺点是它的6个功率管都工作在较高频率(载波频率),从而产生了较大的开关损耗,开关频率越高,损耗越大。本实验针对正弦波输出变压变频电源SPWM调制方式及数字化控制策略进行了研究,以SG3525为主控芯片,以期得到一种较理想的调制方法,实现逆变电源变压、变频输出。 关键词:逆变器SPWM逆变器的工作原理正弦脉宽调制的调制算法单极性正弦脉宽调制双极性正弦脉宽调制自然采样法规则采样法双极性正弦波等面积法 一、绪论 正弦逆变电源作为一种可将直流电能有效地转换为交流电能的电能变换装置被广泛地应用于国民经济生产生活中,其中有:针对计算机等重要负载进行断电保护的交流不间断电源UPS (Uninterruptle Power Supply) ;针对交流异步电动机变频调速控制的变频调速器;针对智能楼宇消防与安防的应急电源EPS ( Emergence Power Supply) ;针对船舶工业用电的岸电电源SPS(Shore Power Supply) ;还有针对风力发电、太阳能发电等而开发的特种逆变电源等等.随着控制理论的发展与电力电子器件的不断革新,特别是以绝缘栅极双极型晶体管IGBT( Insulated Gate Bipolar Transistor)为代表的自关断可控型功率半导体器件出现,大大简化了正弦逆变电源的换相问题,为各种PWM 型逆变控制技术的实现提供了新的实现方法,从而进一步简化了正弦逆变系统的结构与控制. 电力电子器件的发展经历了晶闸管(SCR)、可关断晶闸管(GTO)、晶体管(BJT)、绝缘栅晶体管(IGBT)等阶段。目前正向着大容量、高频率、易驱动、低损耗、模块化、复合化方向发展,与其他电力电子器件相比,IGBT具有高可靠性、驱动简单、保护容易、不用缓冲电路和开关频率高等特点,为了达到这些高性能,采用了许多用于集成电路的工艺技术,如外延技术、离子注入、精细光刻等。 IGBT最大的优点是无论在导通状态还是短路状态都可以承受电流冲击。它

最新三相逆变器Matlab仿真精编版

2020年三相逆变器M a t l a b仿真精编版

三相无源电压型SPWM逆变器的构建及其MATLAB仿真 09 电气工程及其自动化邱迪 摘要:本文简要介绍了三相无源电压型SPWM输出的逆变器的构建和工作方式及其MATLAB仿真。 关键词:三相逆变器正弦脉宽调制(SPWM)技术 MATLAB仿真 Abstract: This paper introduces briefly the construction of 3-phase inverter which output SPWM wave and the MATLAB-based simulation. Key word: Three-phase inverter Sinusoidal Pulse Width Modulation Power electronic technology 1逆变器 1.1逆变器的概念 逆变器也称逆变电源,是一种可将直流电变换为一定频率下交流电的装置。相对于整流器将交流电转换为固定电压下的直流电而言,逆变器可把直流电变换成频率、电压固定或可调的交流电,称为DC-AC变换。这是与整流相反的变换,因而称为逆变。 [1] 1.2逆变器涉及的技术 逆变器的构建应用了电力电子学科中的很多关键技术。电路中电流的可控流通断开的过程中应用了多种可控硅类型的电力电子器件;开关的控制过程应用了基于微处理

器的现代控制技术;对于正弦波形的仿制过程应用了正弦波脉宽调制(SPWM)技术等等。 1.3逆变器的分类 现代逆变技术的种类很多,可以按照不同的形式进行分类。其主要的分类方式如下: 1)按逆变器输出的相数,可分为单相逆变、三相逆变和多相逆变。 2)按逆变器输出能量的去向,可分为有源逆变和无源逆变。 3)按逆变主电路的形式,可分为单端式、推挽式、半桥式和全桥式逆变。 4)按逆变主开关器件的类型,可分为晶闸管逆变、晶体管逆变、场效应管 逆变等等。 5)按输出稳定的参量,可分为电压型逆变和电流型逆变。 6)按输出电压或电流的波形,可分为正弦波输出逆变和非正弦波输出逆 变。 7)按控制方式,可分为调频式(PFM)逆变和调脉宽式(PWM)逆变。[2] 2 三相逆变电路 三相逆变电路,是将直流电转换为频率相同、振幅相等、相位依次互差为120°交流电的一种逆变网络。

(整理)三相逆变器Matlab仿真.

三相无源电压型SPWM逆变器的构建及其MATLAB仿真 09 电气工程及其自动化邱迪 摘要:本文简要介绍了三相无源电压型SPWM输出的逆变器的构建和工作方式及其MATLAB 仿真。 关键词:三相逆变器正弦脉宽调制(SPWM)技术MATLAB仿真 Abstract: This paper introduces briefly the construction of 3-phase inverter which output SPWM wave and the MATLAB-based simulation. Key word:Three-phase inverter Sinusoidal Pulse Width Modulation Power electronic technology 1逆变器 1.1逆变器的概念 逆变器也称逆变电源,是一种可将直流电变换为一定频率下交流电的装置。相对于整流器将交流电转换为固定电压下的直流电而言,逆变器可把直流电变换成频率、电压固定或可调的交流电,称为DC-AC变换。这是与整流相反的变换,因而称为逆变。[1] 1.2逆变器涉及的技术 逆变器的构建应用了电力电子学科中的很多关键技术。电路中电流的可控流通断开的过程中应用了多种可控硅类型的电力电子器件;开关的控制过程应用了基于微处理器的现代控制技术;对于正弦波形的仿制过程应用了正弦波脉宽调制(SPWM)技术等等。 1.3逆变器的分类 现代逆变技术的种类很多,可以按照不同的形式进行分类。其主要的分类方式如下: 1)按逆变器输出的相数,可分为单相逆变、三相逆变和多相逆变。

2)按逆变器输出能量的去向,可分为有源逆变和无源逆变。 3)按逆变主电路的形式,可分为单端式、推挽式、半桥式和全桥式逆变。 4)按逆变主开关器件的类型,可分为晶闸管逆变、晶体管逆变、场效应管逆变等等。 5)按输出稳定的参量,可分为电压型逆变和电流型逆变。 6)按输出电压或电流的波形,可分为正弦波输出逆变和非正弦波输出逆变。 7)按控制方式,可分为调频式(PFM)逆变和调脉宽式(PWM)逆变。[2] 2 三相逆变电路 三相逆变电路,是将直流电转换为频率相同、振幅相等、相位依次互差为120°交流电的一种逆变网络。 图 1 三相逆变电路 日常生活中使用的电源大都为单相交流电,而在工业生产中,由于诸多电力能量特殊要求的电气设备均需要使用三相交流电,例如三相电动机。随着科技的日新月异,很多设备业已小型化,许多原来工厂中使用的大型三相电气设备都被改进为体积小、耗能低且便于携带的小型设备。尽管这些设备外形发生了很大的变化,其使用的电源类型——三相交流电却始终无法被取代。在一些条件苛刻的环境下,电力的储能形式可能只有直流电,如若在这样的环境下使用三相交流电设备,就要求将直流电转变为特定要求的三相交流电以供使用。这就催生了三相逆变器的产生。

三相逆变

武汉理工大学《电力电子技术》课程设计说明书 目录 1 概述......................................................... ........................................................... .. (1) 2 方案论证......................................................... .. (3) 2.1 升压电路模块方案选择......................................................... .. (3) 2.2 逆变电路方案选择......................................................... . (3) 2.3 闭环反馈电路方案设计......................................................... .. (3) 2.4 总体电路方案设计......................................................... . (3)

3 仿真建模......................................................... .. (5) 3.1 升压斩波电路仿真建模......................................................... . (5) 3.2 三相桥式PWM 逆变电路仿真建模......................................................... .. (6) 3.3 闭环反馈电路仿真建模......................................................... .. (8) 3.4 三相逆变电源总体电路仿真建模......................................................... .. (9) 4 仿真结果......................................................... (10) 4.1 直流升压斩波电路仿真结果......................................................... .. (10)

单相全桥逆变matlab仿真

计算机仿真实验报告 班级:11 电牵4 班姓名:江流在班编号:26 指导老师:叶满园 实验日期:2014 年4 月21 日

、实验名称: 单相全桥电压型逆变电路MATLAB仿真 二、目的及要求 了解并掌握单相全桥电压型逆变电路的工作原理; 2.进一步熟悉MATLAB 中对Simulink 的使用及构建模块; 3.进一步熟悉掌握用MATLAB绘图的技巧。 三、实验原理 1.电压型逆变器的原理图 1 T 1 (b) 图1直流电伐流电逆变原理示意图 当开关S1、S3闭合,S2、S4断开时,负载电压uO为正;当开关S1、S3断开,S2、S4闭合时,uO为负,如此交替进行下去,就在负载上得到了由直流电变换的交流电,uO的波形如图1 (b)所示。输出交流电的频率与两组开关的切换频率成正比,这样就实现了直流电到交流电的逆变。 2.电压型单相全桥逆变电路

图2电压型单相全桥逆变电路 它有4个桥臂可以看成由两个半桥电路组合而成。两对桥臂交替导通 流波形与半桥电路形状相同, 幅值高出一倍。改变输出交流电压的有效值只能通过改变直流 电压Ud 来实现。 可采用移相方式调节逆变电路的输出电压, 成为移相调压。各栅极信号为180°正偏,180° 反偏,且T1和T2互补,T3和T4互补关系不变。T3的基极信号只比T1落后q( 0

本实验依次对两对桥臂交替导通 验研究。首先,两对桥臂交替导通 12亨利,设置直流电压 100V ,设置控制1、4号IGBT 触发 脉冲的的脉冲发生器周期 脉冲幅值1.2V ,脉冲宽度 脉冲幅值1.2V ,脉冲宽度 压方式下时,改设置控制 不变。 五、实验结果与分析 1两对桥臂交替导通 180度 2、输出电压有效值可调的移相工作方式 180度的工作方式以及输出电压可调的移相方式做实 180度工作方式下,设置负载电阻为 1欧姆、负载电感 0.02s , 50%,设置控制2、3号IGBT 触发脉冲的脉冲发生器周期 0.02, 50%,延迟0.01s ;做第二个实验即逆变桥工作在移相调节输出电 2、3号IGBT 触发脉冲的脉冲发生器的延迟为 0.007s ,其他参数 -100 O.OB -100 0 oe oos Uib. Series RLC Branch 100 0.02 0 04 0 06 Usrc: DC Voltage Source 100 0 02 0 04

基于MATLAB下的SPWM三相桥式逆变电路

基于MATLAB 下的SPWM 三相桥式逆变电路 理论补充: 逆变器工作原理:整个实验在三相桥式逆变电路下进行,如下图1,电感电阻性负载,A 、B 、C 相的上下桥臂轮流导通。当1VT 导通,4VT 截止时,a 点电位 位Ud/2;当4VT 导通,1VT 截止时,a 点电位位-Ud/2。同理可得b 、c 点的电位。 通过控制六个管子的导通时间,达到逆变效果。 图1 实验主电路 PWM 是六个VT 管子的触发信号,此信号是通过调制信号(即正弦波)和载波(三角波)的比较得到的,分析1VT 管的通断情况:当正弦波r u 比三角载波c u 大的时候比较器输出1,1VT 导通,否则,比较器输出0,1VT 关断。同理4VT 导通情况只要与1VT 反相即可。 图2 PWM 波生成原理简图

仿真: 1.主电路模块搭建: 如图3,输入直流电压源大小V U d 250 =,输入部分为三相对称电感、电阻性负载,作星形连接,电阻取值大小为Ω=2R ,电感取值mH L 01.0=。 图3 SPWM 三相桥式逆变仿真电路 Universal Bridge 元器件说明 图4 Universal Bridge 模块和通用桥展开图 Universal Bridge 模块的中文名是通用桥模块,它有1个桥臂、2个桥臂和3个桥臂的选择。它的三个桥臂的展开图如下图4所示,当六列PWM 信号输入通用桥的g 端口时,通用桥会自动分配每一列的信号给每一个管子,控制该管子的开闭。其输入的顺序是,第一列信号输入到1VT ,第二列信号输入到4VT ,第三列信号输入到3VT ,第四列信号输入到6VT ,第五列信号输入到5VT ,第六列信号输 入到2VT 。 2.SPWM 生成模块 由图2可知,当调制信号的正弦波r u 大于三角载波c u 时,逆变器输出高电平,否则,输出低电平,可设计如图5触发电路,以A 相电路上下桥臂为例。

(完整版)三相SPWM逆变器仿真.docx

三相 SPWM 逆变器仿真 一、原理分析 1、基本原理 按照输出交流电压半周期内的脉冲数,脉宽调制( PWM)可分为单脉冲调制和多脉冲调制;按照输出电压脉冲宽度变化规律,PWM 可分为等脉宽调制和正弦脉 宽调制( SPWM)。 等脉宽调制产生的电压波形中谐波含量仍然很高,为了使输出电压波形中基波含量增大,应选用正弦波作为调制信号u R。这是因为等腰三角形的载波u T上、下 宽度线性变化,任何一条光滑曲线与三角波相交时,都会得到一组脉冲宽度正比于 该函数值的矩形脉冲。而且在三角载波u T不变条件下,改变正弦调制波u R的周期 就可以改变输出脉冲宽度变化的周期;改变正弦调制波u R的幅值,就可改变输出脉 冲的宽度,进而改变u D中基波 u D1的大小。这就是正弦脉宽调制(sine pulse width modulated,SPWM )。 2、正弦脉宽调制方法(此处仅介绍了采样法) SPWM 是以获得正弦电压输出为目标的一种脉宽调制方式。这里就以应用最普遍的三相电压源型逆变电路来讨论SPWM 具体实现方法。 下图就是三相电压源型PWM 逆变器主电路结构图: 图— 1 上图为一三相电压源型PWM 逆变器, VT1~VT6为高频自关断器件,VD1~VD6为与之反并联的快速恢复二极管,为负载感性无功电流提供通路。两个直流滤波电容 C 串联接地,中点 O’可以认为与三相Y 接负载中点 O 等电位。逆变器输出A、 B、 C 三相 PWM 电压波形取决于开关器件VT1~VT6上的驱动信号波行,即 PWM 的调制方式。 假设逆变电路采用双极性SPWM 控制,三相公用一个三角形载波u T,三相正弦调制信号 u RA、 u RB、u RC互差120o,可用 A 相来说明功率开关器件的控制规律,正如 下图中所示。当u RA>u T时,在两电压的交点处,给 A 相上桥臂元件VT1导通信号、下桥臂元件 VT 关断信号,则A相与电源中点 O’间的电压’。当 u RA

三相逆变器matlab仿真

三相无源逆变器的构建及其MATLAB仿真 1逆变器 1.1逆变器的概念 逆变器也称逆变电源,是一种可将直流电变换为一定频率下交流电的装置。相对于整流器将交流电转换为固定电压下的直流电而言,逆变器可把直流电变换成频率、电压固定或可调的交流电,称为DC-AC变换。这是与整流相反的变换,因而称为逆变。 1.3逆变器的分类 现代逆变技术的种类很多,可以按照不同的形式进行分类。其主要的分类方式如下: 1)按逆变器输出的相数,可分为单相逆变、三相逆变和多相逆变。 2)按逆变器输出能量的去向,可分为有源逆变和无源逆变。 3)按逆变主电路的形式,可分为单端式、推挽式、半桥式和全桥式逆变。 4)……………. 2 三相逆变电路 三相逆变电路,是将直流电转换为频率相同、振幅相等、相位依次互差为120°交流电的一种逆变网络。 图 1 三相逆变电路

日常生活中使用的电源大都为单相交流电,而在工业生产中,由于诸多电力能量特殊要求的电气设备均需要使用三相交流电,例如三相电动机。随着科技的日新月异,很多设备业已小型化,许多原来工厂中使用的大型三相电气设备都被改进为体积小、耗能低且便于携带的小型设备。尽管这些设备外形发生了很大的变化,其使用的电源类型——三相交流电却始终无法被取代。在一些条件苛刻的环境下,电力的储能形式可能只有直流电,如若在这样的环境下使用三相交流电设备,就要求将直流电转变为特定要求的三相交流电以供使用。这就催生了三相逆变器的产生。 4MATLAB仿真 Matlab软件作为教学、科研和工程设计的重要方针工具,已成为首屈一指的计算机仿真平台。该软件的应用可以解决电机电器自动化领域的诸多问题。利用其中的Simulink模块可以完成对三相无源电压型SPWM逆变器的仿真,并通过仿真获取逆变器的一些特性图等数据。 图 2 系统Simulink 仿真 所示为一套利用三相逆变器进行供电的系统的Matlab仿真。系统由一个380v的直流电源供电,经过三相整流桥整流为三相交流电,并进行SPWM正弦脉宽调制。输出经过一个三相变压器隔离后通入一个三相的RLC负载模块(Three phase parallel RLC)。加入了两个电压测量单元voltage measurement和voltage measurement1,并将结果输出到示波器模块Scope1.

基于simulink的三相spwm逆变器的建模与仿真

基于Matlab/Simulink 的三相SPWM 逆变器的建模与仿真 姓 名:** (班级:**) 【摘要】随着电力电子技术,计算机技术,自动控制技术的迅速发展,PWM 技术得到了迅速发展,SPWM 正弦脉宽调制法这项技术的特点是原理简单,通用性强,具有开关频率固定,控制和调节性能好,能消除谐波使输出电压只含有固定频率的高次谐波分量,设计简单等一系列有点,是一种比较好的波形改善法。它的出现为中小型逆变器的发展起了重要的推动作用。SPWM 技术成为目前应用最为广泛的逆变用PWM 技术。因此,研究SPWM 逆变器的基本工作原理和作用特性意义十分重大。 本文主要通过对三相SPWM 逆变器的Matlab/Simulink 建模与仿真,研究逆变电路的输入输出及其特性,以及一些参数的选择设置方法。Simulink 是MATLAB 中的一种可视化仿真工具,是一种基于MATLAB 的框图设计环境,是实现动态系统建模、仿真和分析的一个软件包,被广泛应用于线性系统、非线性系统、数字控制及数字信号处理的建模和仿真中。 关键词:SPWM 三相逆变器 Mmatlab/Simulink 建模与仿真 1.三相电压型桥式逆变电路 该电路采用双极性控制方式,U 、V 和W 三相的PWM 控制通常公用一个三角载波c u ,三相的调制信号rU u 、rV u 和rW u 一次相差120°。U 、V 和W 各相功率开关器件的控制规律相同,现以U 相为例来说明。当rU u >c u 时,给上桥臂1V 以导通信号,给下桥臂4V 以关断信号,则U 相相对于直流电源假想中点'N 的输出电压2/'d UN U u =。当rU u

相关主题
文本预览
相关文档 最新文档