当前位置:文档之家› 常数项级数判别方法

常数项级数判别方法

常数项级数判别方法
常数项级数判别方法

常数项级数的审敛法

定义 形如:级数

其中

即: 正、负项相间的级

数称为交错级数。 列如

莱布尼茨判别法 莱

定理:如果交错级数满足条件

则级数收敛,其其和

其余项

的绝对

注意:只有当级数是交错级数时,才能用此判别法,否则将导致错误 注意:莱布尼兹判别法只是充分条件,非必要条件.

使用本判别法时,关键是第一个条件的验证

是否收敛时, 要考察

与 大小

1

1

1()

n n n u ∞

-=-∑n u >0

111,2,3,);

n n u u n +≥=L ()(lim 0,

n x u →∞

=(2)1,

s u ≤n

r 1.

n n r u +≤0n u ≥()

n u 1n u +n n u u +≥>10.()1

11111111(1)

=1(1)234n n n n n

--=--+-++-+∑L L

().1

1

12(1)

1234(1)

n n n n n ∞--=-=-+-++-+∑L L

().

这是一个交错级数

又因为n n u u n n +=>=+1111,

显然收敛速度较慢.

收敛。

使用本判别法时,关键是第一个条件的验证

是否收敛时, 要考察

大小

比较 与

大小的方法有: 比值法

差值法

1

1

1

11111

(1)

=1(1)

234

n n n n n

--=--+-++-+∑1

n u n =1lim lim 0n n n u n →∞→∞==n r n ≤+1

||.10n u ≥()

n u 1n u +n n u u +≥>10.()n u 1n u +1

1n n

u u +<10

n n u u +->1

1n n u u +≥()lim 0

n x u →∞=(2)则交错级数

1

1

1() n n n u ∞

-=-∑

数项级数敛散性判别法。(总结)

华北水利水电学院 数项级数敛散性判别法。(总结) 课程名称:高等数学(下) 专业班级: 成员组成 联系方式: 2012年5月18日

摘要:在学习数项级数的时候,对于单一的方法所出的例题,大家都知道用何种方法去解决。但是等到所有的方法学完之后,再给出题目,大家似乎一头雾水,不知道用哪一种方法。有些同学甚至挨个拭每一种方法,虽然也可行。但是对于同一个级数,用不同的方法判断敛散性的难易程度不同,如果选用合适的方式,可以到到事半功倍的效果,但是如果悬选择了错误的方法,可能费了九牛二虎之力之后,得出的结果还是错误的。所以我们有必要总结一下判断敛散性的方法,了解它们的特性,才能更好地运用它们。 关键词:数项级数,敛散性,判断,方法。 英文题目 Abstract:Single out examples to learn a number of series,we all know which way to go.But wait until all of the methods after completing their studies are given topics,everyone seems confused and do not know what kind of way. Some students even one by one swab of each method, although it is also feasible.But for one series,using different methods to determine the convergence and divergence of the degree of difficulty, if the appropriate choice of the way to a multiplier effect,but if the hanging has chosen the wrong way,may have spent nine cattle tigers after the power, the result is wrong.So we need to sum up to determine the convergence and divergence,and to understand their characteristics,in order to make better use of them. Key words:A number of series,convergence and divergence of judgment. 引言:以下介绍书中所提到的判断数项级数敛散性的定理,并通过一些例题,讲解它们各自的适用范围。并总结出判断敛散性的一般思维过程。

正项级数敛散性地判别方法

正项级数敛散性的判别方法 摘要:正项级数是级数容中的一种重要级数,它的敛散性是其基本性质。正项级数敛散性的判别方法虽然较多,但是用起来仍有一定的技巧,归纳总结正项级数敛散性判别的一些典型方法,比较这些方法的不同特点,总结出一些典型判别法的特点及其适用的正项级数的特征。根据不同级数的特点分析、判断选择适宜的方法进行判别,才能事半功倍。 关键词:正项级数;收敛;方法;比较;应用 1引言 数项级数是伴随着无穷级数的和而产生的一个问题,最初的问题可以追溯到公元前五世纪,而到了公元前五世纪,而到了公元17、18世纪才有了真正的无穷级数的理论。英国教学家Gregory J (1638—1675)给出了级数收敛和发散两个术语从而引发了数项级数敛散性广泛而深入的研究,得到了一系列数项级数的判别法。因而,判断级数的敛散性问题常常被看作级数的首要问题。我们在书上已经学了很多种正项级数敛散性的判定定理,但书上没有做过多的分析。我们在实际做题目时,常会有这些感觉:有时不知该选用哪种方法比较好;有时用这种或那种方法时,根本做不出来,也就是说,定理它本身存在着一些局限性。因此,我们便会去想,我们常用的这些定理到底有哪些局限呢?定理与定理之间会有些什么联系和区别呢?做题目时如何才能更好得去运用这些定理呢?这就是本文所要讨论的。 2正项级数敛散性判别法 2.1判别敛散性的简单方法 由级数收敛的基本判别定理——柯西收敛准则:级数 1 n n u ∞ =∑收敛 ?0,,,,N N n N p N ε+?>?∈?>?∈有12n n n p u u u ε+++++ +<。取特殊的1p =,可 得推论:若级数 1 n n u ∞ =∑收敛,则lim 0n n u →∞ =。 2.2比较判别法 定理一(比较判别法的极限形式): 设 1 n n u ∞=∑和1 n n v ∞ =∑为两个正项级数,且有lim n n n u l v →∞=,于是 (1)若0l <<+∞,则 1 n n u ∞ =∑与 1 n n v ∞ =∑同时收敛或同时发散。 (2)若0l =,则当 1 n n v ∞ =∑收敛时,可得 1 n n u ∞ =∑收敛。

(整理)常数项级数的审敛法

§11-2 常数项级数的审敛法 一、正项级数及其审敛法 正项级数:∑∞ =1n n u 0≥n u (1) 显然,部分和数列{}n s 单调增加:.21ΛΛ≤≤≤≤n s s s {}↑n s 1.收敛准则 定理1 正项级数∑∞ =1n n u 收敛?部分数列{}n s 有界. 例1判别正项级数∑ ∞ =1 2 2sin n n n π 的收敛性 解 n n n s 22sin 2 2sin 2 12 2π π +++= Λn 2121212+++<Λ 12 1121121<-??? ??-=n 有上界 级数收敛 2.比较审敛法 定理2 设∑∞ =1 n n u 和∑∞ =1 n n v 都是正项级数,且.),2,1(Λ=≤n v u n n 若∑∞ =1 n n v 收敛, 则∑∞=1 n n u 收敛;反之,若∑∞=1 n n u 发散,则∑∞ =1 n n v 发散. 分析:σ=∑∞=1 n n v ,则∑∞ =1 n n u 的部分和 ,),2,1(2121ΛΛΛ=≤++≤+++=n v v v u u u s n n n σ 即{}n s 有界,由TH1知∑∞=1 n n u 收敛。反之,设∑∞=1 n n u 发散,则∑∞ =1 n n v 必发散.因为若 ∑∞ =1 n n v 收敛,由上面已证结论知∑∞ =1 n n u 也收敛,与假设矛盾.

推论 设∑∞ =1 n n u 和∑∞ =1 n n v 都是正项级数,如果级数∑∞ =1 n n v 收敛,且存在自然数N ,使 当N n ≥时有)0(≥≤k kv u n n 成立,则级数∑∞=1 n n u 收敛;如果级数∑∞ =1 n n v 发散,且当N n ≥时有)0(≥≥k kv u n n 成立, 则级数∑∞ =1 n n u 发散. 分析:因为级数的每一项同乘不为零的常数k ,以及去掉级数前面的有限项不会影响级数的收敛性. 例2 讨论p —级数 )2(1 1∑∞ =n p n 的收敛性,其中常数p >0. 解 设1≤p ,则 ,1 1n n p ≥但调和级数发散,故级数(2)发散. 设1>p ,当n x n ≤≤-1时,有,1 1p p x n ≤所以 ?? ? ???---=≤=----??11111)1(111111p p n n n n p p p n n p dx x dx n n ,Λ,3,2=n 考虑级数)3(,1)1(1111∑∞ =--?? ? ???--n p p n n 级数(3)的部分和 ??????+-++??????-+?????? -=-----11111)1(113121211p p p p p n n n s Λ=.)1(111-+-p n 因 .1=n s 故级数(3)收敛.由推论1知,级数(3)当p >1时收敛. 总之:p —级数(2)当≤p 1时发散,当p >1时收敛. 注:比较审敛法的:必须有参考级数。常用:几何级数,p —级数(调级数) 例3 判别下列级数的敛散性. 211(1).52 n n n n ∞ =+++∑ n n n n n u n 81 252 22=++> ∑∞ =11n n 发散, 原级数发散 1 11(2).sin 11n n n ∞ =++∑ 21n u n < ∑∞=121 n n 收敛, 原级数收敛 练习 ()∑∞ =-+13 1sin 212.n n n n ()n n n 3131sin 112≤≥-+

常数项级数的敛散性判别

常数项级数的敛散性判别的一些方法 摘要 常数项级数的敛散性的判别是数学分析中无穷级数的内容,基于审敛准则,其判别方 法多样,且具有技巧性.本文参考了已有的相关文献,归纳总结后结合实例,由不等式的利用、Taylor 展开式、等价量法、对数判别法、拆项法等方法来判别级数敛散性. 关键词 级数;收敛;发散. Abstract:This paper presents several methods and techniques,including inequalities, Taylor expansions, equivalent variables, and logarithmic criterion ,for testing the convergence of a constant-term series. Key words:series of constant-term series; convergence; divergence. 正文 常数项级数的敛散性判别也算得上是数学分析中的一个小难点,这是由于级数的敛散性是直接与数列的极限联系在一起.未学级数之前,我们先学习了数列,也学习了如何求数列的极限.我们可以体会到在求数列的极限时,会遇到一定的障碍,更不用说是级数.但同学们不必担心,如同求数列极限一样,判别级数收不收敛的方法多样.基于它的审敛准则,结合一些方法与技巧,对级数收敛的判别就不会有太大问题.在解决了常数项级数收敛与否的问题之后,我们才能更深入探究其它级数的其它性质. 首先,将正项级数的审敛准则的内容列出: 定理1.1 正项级数 ∑∞ =1 n n a 收敛的充要条件是它的部分和数列有上界. 定理1.2 (比较准则I )设 ∑∞ =1n n a 和 ∑∞ =1 n n b 是两个正项级数,并且.,n n b a N n ≤∈?+ (1)若 ∑∞ =1 n n b 收敛,则 ∑∞ =1n n a 收敛; (2)若 ∑∞ =1 n n a 发散,则 ∑∞ =1 n n b 发散. 定理1.3 (比较准则II) 设 ∑∞ =1 n n a 和 ∑∞ =1 n n a 是两个正项级数,并且,0,>∈?+n b N n ).(lim ∞+=∞→有限或λn n n b a (1)若0>λ,则两个数列同时收敛或同时发散; (2)若0=λ,且 ∑∞ =1 n n b 收敛,则 ∑∞ =1n n a 收敛; (3)若+∞=λ,且 ∑∞ =1 n n b 发散,则 ∑∞ =1 n n a 发散.

常数项级数敛散性判别法总结

常数项级数敛散性判别法总结 摘要:本文简要阐述了常数项级数敛散性判别法。由于常数项级数敛散性判别法较多,学生判定级数选择判别法时比较困难,作者结合级数判别法的使用条件及特点对判别法进行分析,使学生更好的掌握级数判别法。 关键词:常数项级数;级数敛散性判别法;判别法使用条件及特点 无穷级数是微积分学的一个重要组成部分,它是表示函数、研究函数性质以及进行数值计算的一种非常有用的数学工具。无穷级数的中心内容是收敛性理论,因而级数敛散性的判别在级数研究中极其重要。在学习常数项级数敛散性判别法时,学生按照指定的判别法很容易判定级数的敛散性,但是学习多种判别法后,选择判别法时比较困难。主要原因是学生对所学判别法的使用条件及特点不够熟悉,本文针对这种情况对常数项级数敛散性判别法加以归纳总结。 1 级数收敛的概念 给定一个数列{un},称 u1+u2+...+un+ (1) 为常数项无穷级数,简称常数项级数,记为.级数(1)的前n项之和记为Sn,即Sn=u1+u2+…+un,称它为级数(1)的部分和。若部分和数列{Sn}有极限S,即,则称级数(1)收敛。若部分和数列{Sn}没有极限,则称级数(1)发散。 注意:研究级数的收敛性就是研究其部分和数列是否存在极限,因此级数的收敛性问题是一种特殊形式的极限问题。极限是微积分学的基础概念,也是学生比较熟系的概念,因此在研究级数收敛性时,联系极限概念,学生易于理解。 借助级数的性质与几何级数,调和级数的敛散性可以判别级数的敛散性。例如,由性质(1)和当|q|0时,01,则发散。 当级数含有阶乘、n次幂或分子、分母含多个因子连乘除时,选用比值判别法。比值判别法不需要与已知的基本级数进行比较,在实用上更为方便。 例2:判别级数的敛散性。 解:因为 由比值判别法知级数收敛。 2.3 根植判别法

常数项级数

常数项级数 所谓无穷级数即表示无穷项相加,他是一种研究函数以及数值计算的工具。 一、 常数项级数的概念和性质 ① 引例y ǐn l ì :求圆的周长,可以内接正多边形,当正多边形边数无穷 增加时的极限值近似可以得到圆的周长: 123n A a a a a =++?????++???????? 一般地 ,如果给定一个数列: 123,,,,n u u u u ,?????????? 则由这个数列所构成的和的表达式: 123,n u u u u +++?????+????? 叫做(常数项)无穷级数,简称(常数)级数,记为: 1231,n n n u u u u u ∞==+++?????+?????∑ 其中第n 项称为级数的一般项。 n u 下面从有限项的和出发,观察它的变化趋势,来理解无穷多个数量相加的意义: 作(常数项)级数的前n 项的和,记作: 123n n S u u u u =+++?????+ n S 称为级数的部分和,当n 依次取得1,2,3,……时,他们构成了一个新的数列: 11S u =,21S u u 2=+,312S u u u 3=++ 123n n S u u u u =+++?????+

② 常数项级数的和函数定义:如果级数 1231 ,n n n u u u u u ∞ ==+++?????+?????∑的部分和数列 {}n S 有极限s ,即:lim n n S s →∞ = 称无穷级数收敛,这时极限s 叫做这个级数的和,并写成: 1n n u ∞=∑123n s u u u u =+++?????++????? 如果极限不存在,则称无穷级数 1n n u ∞=∑发散。

关于数项级数敛散性的判定

关于数项级数敛散性的判定 1、问题的提出 数项级数敛散性的判别问题,是数学分析的一个重要部分.数项级数,从形式上看,就是无穷多个项的代数和,它是有限项代数和的延伸,因而级数的敛散性直接与数列极限联系在一起,其判别方法多样,技巧性也强,有时也需要多种方法结合使用,同时,无穷级数已经渗透到科学技术的很多领域,成为数学理论和应用中不可缺少的工具,所以研究数项级数的判定问题是很重要的. 2、熟练掌握并准确应用级数的概念、性质和判定定理 2.1数项级数收敛的定义 数项级数 ∑∞ =1 n n u 收敛?数项级数 ∑∞ =1 n n u 的部分和数列{}n S 收敛于S . 这样数项级数的敛散性问题就可以转化为部分和数列{} n S 的极限是否存在的问题的讨论,但由于求数列前n 项和的问题比较困难,甚至可能不可求,因此,在实际问题中,应用定义判别的情况较少. 2.2数项级数的性质 (1)若级数 ∑∞ =1n n u 与 ∑∞ =1 n n v 都收敛,则对任意常数c,d, 级数 ∑∞ =+1 )(n n n dv cu 亦收敛,且 ∑∑∑∞ =∞ =∞ =+=+1 1 1)(n n n n n n n v d u c dv cu ;相反的,若级数∑∞ =+1 )(n n n dv cu 收敛,则不能够推出级数∑∞ =1 n n u 与 ∑∞ =1 n n v 都收敛. 注:特殊的,对于级数 ∑∞ =1n n u 与 ∑∞ =1 n n v ,当两个级数都收敛时, ∑∞ =±1 )(n n n v u 必收敛;当其中一个 收敛,另一个发散时, ∑∞ =±1 )(n n n v u 一定发散;当两个都发散时,∑∞ =±1 )(n n n v u 可能收敛也可能发散. 例1 判定级数∑∞ =+1)5131(n n n 与级数∑∞ =+1)21 1(n n n 的敛散性. 解:因为级数∑∞ =131n n 与级数∑∞=15 1n n 收敛,故级数∑∞ =+1)51 31(n n n 收敛.

级数敛散性判别方法的归纳

级数敛散性判别方法的归纳 (西北师大) 摘 要:无穷级数是《数学分析》中的一个重要组成部分,它是研究函数、进行数值运算及数据分析的一种工具,目前,无穷级数已经渗透到科学技术的很多领域,因而级数收敛的判别在级数的研究中亦显得尤为重要,然而判定级数敛散性的方法太多,学者们一时很难把握,本文对级数的敛散性的判别方法作了全面的归纳,以期对学者们有所帮助。 关键词:级数 ;收敛;判别 ;发散 一. 级数收敛的概念和基本性质 给定一个数列{n u },形如 n u u u +++21 ① 称为无穷级数(常简称级数),用∑∞ =1 n n u 表示。无穷级数①的前n 项之和,记为 ∑==n n n n u s 1 =n u u u +++ 21 ② 称它为无穷级数的第n 个部分和,也简称部分和。若无穷级数②的部分和数列{n s }收敛于s.则称无穷级数∑∞ =1n n u 收敛,若级数的部分和发散则称级数∑n v 发 散。 研究无穷级数的收敛问题,首先给出大家熟悉的收敛级数的一些基本定理: 定理1 若级数∑n u 和∑n v 都收敛,则对任意的常数c 和d ,级数)(n n dv cu ∑+亦收敛,且)(n n du cu ∑+=c ∑n u +d ∑n v 定理2 去掉、增加或改变级数的有限个项并不改变级数的敛散性 定理 3 在收敛级数的项中任意加括号,既不改变级数的收敛性,也不改变它的和。 定理4 级数①收敛的充要条件是:任给ε>0,总存在自然数N ,使得当m >N 和任意的自然数p ,都有p m m m u u u ++++++ 21<ε 以上是收敛级数的判别所需的一些最基本定理,但是,在处理实际问题中,仅靠这些是远远不够的,所以在级数的理论中必须建立一系列的判别法,这就是本文的主要任务。 由于级数的复杂性,以下只研究正项级数的收敛判别。

关于正项级数敛散性的判别法

关于正项级数敛散性的判别法 作者: 学号: 单位: 指导老师 摘要:级数是数学分析中的主要内容之一,我们学习过的数项级数敛散性判别法有许多种,柯西(Cauchy )判别法、达朗贝尔(D'Alembert )判别法、高斯(Gause )判别法、莱布尼兹(Leibniz )判别法、阿贝尔(Abel )判别法等,对数项级数敛散性判别法进行归纳,使之系统化. 关键词:正项级数;敛散性;判别法 1引言 设数项级数 121...++... n n n a a a a ∞ +==+∑的n 项部分和为: 121 ......n n n i i S a a a a ==++++= ∑.若n 项部分和数列为{n S }收敛,即存在一个实数 S ,使lim n x S S →∞ =.则称这个级数是收敛的,否则我们就说它是发散的.在收敛的情 况下,我们称S 为级数的和,可见无穷级数是否收敛,取决于lim n x S →∞ 是否存在, 从而由数列的柯西(Cauchy )收敛准则,可得到级数的柯西(Cauchy )收敛准则[1]: 数项级数 1 n n a ∞ =∑收敛? 0,, , N N n N p N ε+ + ?>?∈ ?>?∈对,有 +1+2+ +...+

设数项级数 1 n n a ∞ =∑为正项级数( ) 0n a ≥,则级数的n 项部分和数列{}n S 单调递 增,由数列的单调有界定理,有 定理2.1:正项级数n 1u n ∞ =∑收敛?它部分和数列{}n S 有上界. 证明:由于,...), 2,1(0u i =>i 所以{n S }是递增数列.而单调数列收敛的充要条 件是该数列有界(单调有界定理),从而本定理得证 . 由定理2.1可推得 定理2.2(比较判别法): 设两个正项级数n 1 u n ∞ =∑和n 1 n v ∞ =∑,且 , n ,N N N ≥?∈?+ 有n n cv u ≤,c 是正常数, 则 1)若级数n 1 n v ∞ =∑收敛,则级数n 1 u n ∞ =∑也收敛; 2)若级数n 1 u n ∞ =∑发散,则级数n 1 n v ∞ =∑也发散. 证明:由定理知,去掉,增添或改变级数n 1 u n ∞ =∑的有限项,,则不改变级数n 1 u n ∞ =∑的敛散性.因此,不妨设 , + ∈?N n 有 n n cv u ≤,c 是正常.设级数n 1 n v ∞=∑与n 1 u n ∞ =∑的n 项部分和分部是n B A 和n ,有上述不等式有, n n n n cB v v v c cv cv cv u A =+++=++≤+++=)...(......u u 212121n . 1)若级数n 1 n v ∞ =∑收敛,根据定理1,数列{n B }有上届,从而数列{n A }也有上届, 再根据定理1,级数n 1 u n ∞ =∑收敛; 2)若级数n 1 u n ∞ =∑发散,根据定理1,数列{n A }无上届,从而数列{n B }也无上届,

7.1 常数项级数的概念和性质

1.写出下列级数的一般项: ⑴ 1357 2468 ++++ ; 【解】分析级数各项的表达规律: 分子为奇数数列21n -,分母为偶数数列2n , 于是得级数的一般项为21 2n n u n -= ,1,2,3,....n =。 ⑵ 1111112349827 ++++++ ; 【解法一】分析级数各项的表达规律: 分子不变恒为1, 分母的变化中,奇数项为2的乘幂,幂指数为项数+1的一半,即12 2 n +,偶数项为3 的乘幂,幂指数为项数的一半,即2 3n , 于是有12 22, 21 3, 2n n n n k u n k +?=-?=??=? ,k J ∈,1,2,3,....n =。 也可为1 221(1)1(1)2322 n n n n n u +--+-=?+?,1,2,3,....n =。 【解法二】分析级数各项的表达规律: 分子不变恒为1,但分母的变化按奇数项和偶数项有不同的变化规律,可以视为两个 级数的和,也可以视为级数的一个项由两个分数的和构成, 若将级数的一个项看成由两个分数的和构成,则有 111 23 u = +, 21149u =+221123=+, 311827u =+ 3311 23 =+, ...... 于是得11 23 n n n u = +,1,2,3,....n =。 ⑶3456 22345 -+-+- 。 【解】分析数列各项的表达规律:

各项顺次正负相间,有符号函数,注意到第一项是正的,应为1 (1)n +-, 从第二项起,各项分式都是分子比分母大1,而分母恰为序数n 于是得1 1 (1) n n n u n ++=-,2,3,....n =, 检验当1n =时,11111(1)21 u ++=-=,说明第一项也符合上面一般项的规律, 从而得 11(1)n n n u n ++=-,1,2,3,....n =。 2.根据级数收敛与发散的定义判断下列级数的敛散性: ⑴ 1 1 (21)(21)n n n ∞ =-+∑; 【解】级数前n 项和为 11(21)(21)n n i S i i ==-+∑1111()221 21n n i i ==--+∑1111 ()22121n n i i ==--+∑ 11[(1)()(1152)]22113113n n =-+-+-+-+ 11 (1)221 n =-+, 由于lim n n S →∞11lim (1)221n n →∞=-+12 =,知级数收敛,收敛于1 2。 ⑵ 1 1 1n n n ∞ =++∑ ; 【解】级数前n 项和为 1 1 1n n i S i i ==++∑ 2211(1)()n i i i i i =+-=+-∑1 (1)n i i i ==+-∑ (1)()(123)2n n =-+-+++- 11n =+-, 由于lim n n S →∞ lim(11)n n →∞ =+-=∞,知级数发散。 ⑶ 1 1 ln n n n ∞ =+∑; 【解】级数前n 项和为 11ln n n i i S i =+=∑1 [ln(1)ln ]n i i i ==+-∑ ln 2ln 2ln3ln (ln1)()[ln(1)]n n =-+-+++- ln(1)ln1n =+-ln(1)n =+,

常数项级数判别方法

常数项级数的审敛法 定义 形如:级数 其中 即: 正、负项相间的级 数称为交错级数。 列如 莱布尼茨判别法 莱 布 尼 茨 定理:如果交错级数满足条件 则级数收敛,其其和 其余项 的绝对 值 注意:只有当级数是交错级数时,才能用此判别法,否则将导致错误 注意:莱布尼兹判别法只是充分条件,非必要条件. 使用本判别法时,关键是第一个条件的验证 是否收敛时, 要考察 与 大小 1 1 1() n n n u ∞ -=-∑n u >0 111,2,3,); n n u u n +≥=L ()(lim 0, n x u →∞ =(2)1, s u ≤n r 1. n n r u +≤0n u ≥() n u 1n u +n n u u +≥>10.()1 11111111(1) =1(1)234n n n n n ∞ --=--+-++-+∑L L ().1 1 12(1) 1234(1) n n n n n ∞--=-=-+-++-+∑L L ().

这是一个交错级数 又因为n n u u n n +=>=+1111, 且 显然收敛速度较慢. 收敛。 使用本判别法时,关键是第一个条件的验证 是否收敛时, 要考察 与 大小 比较 与 大小的方法有: 比值法 差值法 1 1 1 11111 (1) =1(1) 234 n n n n n ∞ --=--+-++-+∑1 n u n =1lim lim 0n n n u n →∞→∞==n r n ≤+1 ||.10n u ≥() n u 1n u +n n u u +≥>10.()n u 1n u +1 1n n u u +<10 n n u u +->1 1n n u u +≥()lim 0 n x u →∞=(2)则交错级数 1 1 1() n n n u ∞ -=-∑

正项级数敛散性判别

正项级数敛散性判别 Prepared on 22 November 2020

正项级数敛散性的判别 刘 兵 军 无穷级数是高等数学的重要内容,是表示函数、研究函数的性质以及进 行数值计算的一种工具。正项级数在无穷级数中占据了较大的比重,其题型丰富且灵活。本文给出了正项级数敛散性的各种判别方法,通过典型例题的讲解,使学员能以尽快掌握正项级数敛散性的判断问题。 一. 常数项级数的概念 所谓无穷级数就是把无穷多个数按照一定的顺序加起来,所得的和式。 对于数列 ,,,,21n u u u ,由此数列构成的表达式 +++++n u u u u 321 叫做无穷级数,简称级数,记为∑∞ =1 n n u ,即 +++++=∑∞ =n n n u u u u u 3211 , (1) 其中第n 项n u 叫做级数(1)的一般项。 级数(1)的前n 项的和构成的数列 n n u u u s +++= 21, ,3,2,1=n (2) 称为级数(1)的部分和数列。 根据部分和数列可得级数敛散性及和的定义。 定义 如果级数(1)的部分和数列n s 有极限,即存在常数s ,使得=∞ →n n s lim s ,则称 级 数(1)收敛,极限s 称为级数(1)的和;否则称级数(1)发散。

级数收敛的必要条件 如果级数(1)收敛,则其一般项n u 趋于零。 二. 正项级数敛散性的判别 由正数和零构成的级数称为正项级数。 比较审敛法是判别正项级数敛散性的一种常用且非常有效的方法。 比较审敛法 如果正项级数∑∞ =1n n v 收敛,且满足),3,2,1( =≤n v u n n ,则 ∑∞ =1 n n u 收敛; 如果正项级数∑∞=1 n n v 发散,且满足),3,2,1( =≥n v u n n ,则∑∞ =1 n n u 发散; 比较审敛法只适用于正项级数敛散性的判别,而寻求合适的级数∑∞ =1 n n v 是 解题的关键。 几何级数∑∞ =-11 n n aq 和p-级数∑∞ =11 n p n 常用来充当比较审敛法中的级数∑∞ =1 n n v 。 例1 证明级数∑∞ =+122 1 n n 是收敛的。 证 由于2 22n n >+,所以22121n n <+,而级数∑∞ =121n n 为p=2 的p-级数 且收敛, 故由比较审敛法,级数∑∞ =+1221 n n 是收敛的。 例2 判别下列级数∑∞ =+122 2n n n 的敛散性。 分析 这是一个典型的例题,通项2 22+n n 是关于n 的一个有理分式。应注意 分母和分子中n 的最高幂次之差,通项为关于n 的一个有理分式的级数和相应 的p-级数有相同的敛散性。本题中这一差数为1,故应和p=1的p-级数∑∞ =11 n n 做 比较。 解 n n n n n n n 1 322222222?=++≥+,而级数∑∞=?1)132(n n 与∑∞ =1 1n n 有相同的敛散性,即 同时发散,故由比较审敛法,级数∑∞ =+1 222n n n 是收敛的。 在例2中,由于级数的通项比较复杂,使得敛散性的判别过程较为复杂,为使比较审敛法的应用更为方便,给出其极限形式。

最新常数项级数的审敛法

常数项级数的审敛法

§11-2常数项级数的审敛法 一、正项级数及其审敛法 正项级数:?Skip Record If...??Skip Record If...? (1) 显然,部分和数列?Skip Record If...?单调增加:?Skip Record If...??Skip Record If...? 1.收敛准则 定理1正项级数?Skip Record If...?收敛?Skip Record If...?部分数列 ?Skip Record If...?有界. 例1判别正项级数?Skip Record If...?的收敛性 解?Skip Record If...??Skip Record If...? ?Skip Record If...?有上界级数收敛 2.比较审敛法 定理2设?Skip Record If...?和?Skip Record If...?都是正项级数,且 ?Skip Record If...?若?Skip Record If...?收敛, 则?Skip Record If...?收敛;反之,若?Skip Record If...?发散,则?Skip Record If...?发散. 分析:?Skip Record If...?,则?Skip Record If...?的部分和 ?Skip Record If...? 即?Skip Record If...?有界,由TH1知?Skip Record If...?收敛。反之,设 ?Skip Record If...?发散,则?Skip Record If...?必发散.因为若?Skip Record If...?收敛,由上面已证结论知?Skip Record If...?也收敛,与假设矛盾. 推论设?Skip Record If...?和?Skip Record If...?都是正项级数,如果级数?Skip Record If...?收敛,且存在自然数N,使当?Skip Record If...?时有?Skip

1常数项级数的概念和性质

§1 常数项级数的概念和性质 【目的要求】 1、能区分无穷项相加与有限项相加的区别; 2、了解无穷级数部分和与级数收敛及发散的关系、和的定义; 3、掌握用部分和的极限、收敛级数的必要条件来判别级数的敛散性. 【重点难点】 数项级数的概念与性质. 【教学内容】 一、常数项级数的概念 定义1.1 给定一个无穷实数列{}n u : 12,, ,, n u u u 则由这数列构成的表达式 12n u u u ++ ++ 叫做常数项无穷级数, 简称常数项级数, 记为∑∞ =1 n n u , 即 1231 n n n u u u u u ∞ ==+++++ ∑, 其中第n 项n u 叫做级数的一般项(或通项). 级数∑∞ =1n n u 的前n 项和 1231 n n i n i s u u u u u ===+++ +∑ 称为级数∑∞ =1 n n u 的前n 项部分和. 部分和构成的数列 12{}:,,, n n s s s s 称为部分和数列.

定义 1.2 如果级数∑∞ =1 n n u 的部分和数列}{n s 收敛, 即 s s n n =∞ →lim , (s 为一实数) 则称无穷级数∑∞ =1 n n u 收敛, 并称s 为级数∑∞ =1 n n u 的和, 并写成 1231 n n n s u u u u u ∞ ===+++ ++∑; 如果}{n s 发散, 则称无穷级数∑∞ =1 n n u 发散. 级数的收敛和发散统称为敛散性. 当级数∑∞ =1 n n u 收敛时, 其部分和n s 是级数∑∞ =1 n n u 的和s 的近似值, 它们之间的差 n n r s s =- 称为级数∑∞ =1 n n u 的余项. n s 和s 之间的误差可由||n r 去衡量, 由于s s n n =∞ →lim , 所以lim ||0n n r →∞ = 例1 讨论等比级数(几何级数) 20 n n n aq a aq aq aq ∞ ==+++++ ∑, (0a ≠) 的敛散性. 解 如果1q ≠, 则部分和 2 1 111n n n n a aq a aq s a aq aq aq q q q --=+++ +==----. 当||1q <时, 因为q a s n n -=∞→1lim , 所以此时级数n n aq ∑∞ =0 收敛, 其和为q a -1. 当||1q >时, 因为lim n n s →∞ 不存在, 所以此时级数n n aq ∑∞ =0 发散. 如果||1q =, 则当1q =时, 因为lim n n s →∞ 不存在, 因此此时级数n n aq ∑∞ =0 发散;

2016考研数学:无穷级数敛散性判断方法

2016考研数学:无穷级数的敛散性判断方法无穷级数是高等数学的重要章节,是考研数学一和数学三的必考内容,其主要考点包括两个方面,一个是关于无穷级数的收敛或发散的判断,另一个是无穷级数的求和。关于级数的敛散性(即收敛或发散)判断,由于其方法较多,很多同学在学习和复习中感到有些困惑,为了帮助大家掌握好这些方法,文都网校的蔡老师对其做些分析总结,供各位参考,下面首先对用无穷级数的部分和来判断级数的敛散性方法做些分析。 一、通过部分和来判断级数的敛散性 通过无穷级数的部分和来判断级数的敛散性,是判断敛散性的最基本方法之一,因为按照级数收敛性的定义,收敛就是指其部分和的极限存在;对于正项级数而言,由于其部分和是单调增加的数列,所以只要其部分和是有界的,则部分和数列就是收敛的,因此级数就是收敛的. 无穷级数中有一类常见的级数,就是正负项相间的级数,即交错级数,交错级数的敛散性判断有多种方法,包括:莱布尼茨判别法、绝对值判别法以及部分和判别法,下面我们对这些方面及其典型题型做些分析总结,供各位同学参考。 一、交错级数的敛散性判别法 对于交错级数的敛散性判别,使用得较多的是莱布尼茨判别法。 从上面的例题我们看到,并非所有的交错级数都是收敛的,即使级数的通项趋于零也不一定收敛,但如果通项趋于零且通项是单调的,则级数是收敛的;有些级数表面上看不是交错级数,但经过恒等变形后却是交错级数,这时就可以利用上面方法进行判断;

如果一个交错级数不满足莱布尼茨条件,但每项取绝对值后的级数是收敛的,即绝对收敛,则原交错级数是收敛的。 正项级数是无穷级数的一种基本类型,其敛散性的判断方法有多种,包括:比较判别法、比值判别法、根值判别法(数一要求)等,在不同的条件下,需要根据具体情况使用不同的判别法,下面我们来分析一下比较判别法及其典型题型,供广大考生参考。 一、正项级数的比较判别法 正项级数的比较判别法是一种基本的、常用的判别法,其基本用法如下: 从上面的典型题型分析看到,有些级数虽然不是正项级数,但却可以借助正项级数的敛散性判别法来分析或证明其是否收敛,如上面例2的情况;在具体正项级数中,p级数是一个十分有用的比较工具,我们常用它与需要判断敛散性的级数进行比较;对于需要判断是否绝对收敛的级数,也需要利用正项级数的判别法,如比较判别法。以上分析希望对大家有所帮助,最后预祝各位考研取得成功,金榜题名!

正项级数收敛的判别方法

数学与统计学院应用数学系 综合课程设计成绩评定书设计题目:正项级数收敛的判别方法

摘要: 各项都由正数组成的级数称为正项级数,它是数项级数的特例。本文主要考虑正项级数的收敛问题,通过介绍比较原则、比式判别法、根式判别法以及积分判别法等常用的判别方法,并结合相关实例,判断所给级数的敛散性。 关键字:正项级数 收敛 比较原则 比式判别法 根式判别法 积分判别法 1基本概念 1.1 数项级数及其敛散性 在介绍正项级数之前先引入数项级数的相关概念及收敛级数的基本性质,下面介绍数项级数以及级数敛散的定义。 定义1:给定一个数列{}n u ,对它的各项依次用“+”号连接起来的表达式 12n u u u ++++L L (1) 称为数项级数或无穷级数(简称级数),其中n u 称为数项级数的通项。 数项级数(1)的前n 项之和,记为1 n n k k S u == ∑,称为(1)的前n 项部分和。 定义2:若(1)的部分和数列{}n S 收敛于S (即lim n n S S →∞ =),则称数项级数(1)收 敛,并称S 为(1)的和,记为1 n n S u ∞ == ∑,若{}n S 为发散数列,则称数列(1)发散。 根据级数(1)的收敛性,可以得到收敛级数的一些性质: (i) 收敛级数的柯西收敛准则 级数(1)收敛的充要条件是:0ε?>,0N ?>,n N ?>,p Z + ?>,有 12||.n n n p u u u ε++++++

(完整版)级数的概念与性质

第十一章无穷级数 教学内容目录: §1—§8 本章主要内容: 常数项级数:无穷级数及其收敛与发散的定义,无穷级数的基本性质,级数收敛的必要条件,几何级数,调和级数,P级数,正项级数的比较审敛法和比值审敛法,交错级数,莱布尼兹定理,绝对收敛和条件收敛。 幂级数:幂级数概念,阿贝尔(Abel)定理,幂级数的收敛半径与收敛区间,幂级数的四则运算,和的连续性、逐项积分与逐项微分。泰勒级数,函数展开为幂级数的唯一性,函数(、 e x cos sin ln(1+x)、(1+x)m等)的幂级数展开式,幂级数在近 、x x 、 似计算中的应用举例,“欧拉(Euler)公式。 函数项级数:函数项级数的一般概念,收效域及和函数。 教学目的与要求: 1、理解无穷级数收敛、发散以及和的概念,了解无穷级数基本性质及收敛的必要条件。 2、掌握几何级数和P—级数的收敛性。 3、掌握正项级数的比较审敛法,掌握正项级数的比值审敛法。 4、理解交错级数的审敛法(莱布尼兹定理)。 5、了解无穷级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系。 6、了解函数项级数的收敛域及和函数的概念。 7、掌握比较简单的幂级数收敛区间的求法(区间端点的收敛性可不作要求)。 8、了解幂级数在其收敛区间内的一些基本性质。 9、了解函数展开为泰勒级数的充分必要条件。 10、掌握应用e x,sinx,cox,en(1+x)和(1+x)u的马克劳林(Maclaurin)展开式将一些简单的的函数间接展开成幂级数的方法。 11、了解函数展开为傅里叶(Fourier)级数的狄利克雷(Dirchet)条件,会将定义在(-π,π)上的函数展开为傅里叶级数,并会将定义在(-π,π)上的函数展开为正弦或余弦级数。

正项级数敛散性判别

正项级数敛散性的判别 刘 兵 军 无穷级数是高等数学的重要内容,是表示函数、研究函数的性质以及进行数值计算的一种工具。正项级数在无穷级数中占据了较大的比重,其题型丰富且灵活。本文给出了正项级数敛散性的各种判别方法,通过典型例题的讲解,使学员能以尽快掌握正项级数敛散性的判断问题。 一. 常数项级数的概念 所谓无穷级数就是把无穷多个数按照一定的顺序加起来,所得的和式。 对于数列 ,,,,21n u u u ,由此数列构成的表达式 +++++n u u u u 321 叫做无穷级数,简称级数,记为∑∞ =1 n n u ,即 +++++=∑∞ =n n n u u u u u 3211, (1) 其中第n 项n u 叫做级数(1)的一般项。 级数(1)的前n 项的和构成的数列 n n u u u s +++= 21, ,3,2,1=n (2) 称为级数(1)的部分和数列。 根据部分和数列可得级数敛散性及和的定义。 定义 如果级数(1)的部分和数列n s 有极限,即存在常数s ,使得=∞ →n n s lim s ,则称级 数(1)收敛,极限s 称为级数(1)的和;否则称级数(1)发散。 级数收敛的必要条件 如果级数(1)收敛,则其一般项n u 趋于零。 二. 正项级数敛散性的判别 由正数和零构成的级数称为正项级数。 比较审敛法是判别正项级数敛散性的一种常用且非常有效的方法。 比较审敛法 如果正项级数∑∞=1n n v 收敛,且满足),3,2,1( =≤n v u n n ,则∑∞ =1n n u 收敛; 如果正项级数∑∞=1n n v 发散,且满足),3,2,1( =≥n v u n n ,则∑∞ =1n n u 发散; 比较审敛法只适用于正项级数敛散性的判别,而寻求合适的级数∑∞=1n n v 是解题的关键。 几何级数∑∞=-11n n aq 和p-级数∑∞ =11n p n 常用来充当比较审敛法中的级数∑∞=1n n v 。

相关主题
文本预览
相关文档 最新文档