当前位置:文档之家› 水力喷砂分段压裂

水力喷砂分段压裂

水力喷砂分段压裂
水力喷砂分段压裂

水力压裂安全技术要求

水力压裂安全技术要求 SY/T6566-2003 国家经济贸易委员会2003-03-18批准 2003-08-01实施 前言 本标准由石油工业安全专业标准化技术委员会提出并归口。 本标准起草单位:吉林石油集团有限责任公司质量安全环保部、井下作业工程公司。 本标准主要起草人:宋泽明、宫长利、朱占华、毛杰民、付新冬、崔伟。 引言 水力压裂施工是油田开发、评价和增产的重要技术措施,也是一项风险较大的作业。由于压裂施工应用高压技术,野外作业,流动性大,涉及其它相关作业,经常接触石油、天然气等易燃易爆和其它有毒有害物质,易发生人员伤亡、环境污染等事故。为加强井下压裂施工安全管理,规范操作,搞好全过程施工作业,最大限度地避免发生事故,促进油田开发,提高经济效益,特制定本标准。 1 范围 本标准规定了水力压裂安全施工方法和技术要求。 本标准适用于水力压裂及相关施工作业。 2 规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GB 150 钢制压力容器 SY 5727 井下作业井场用电安全要求 SY/T 5836 中深井压裂设计施工方法 SY 5858 石油企业工业动火安全规程 SY/T 6194 套管和油管 SY 6355 石油天然气生产专用安全标志 3 压裂选井和设计及施工队伍要求 3.1 压裂选井和设计应按SY/T 5836执行,并符合下列安全要求: a)套管升高短节组配与油层套管材质、壁厚相符; b)使用无毒或低毒物质; c)下井工具、连接方式应能保证正常压裂施工,并有利于压裂前后的其它作业; d)通往井场的道路能够保证施工车辆安全通行; e)场地满足施工布车要求。 3.2 压裂设计中应包括下列与安全有关的内容: a)存在可能影响压裂施工的问题; b)施工井场、施工车辆行驶路线说明及要求; c)地面流程连接、施工设备检查要求; d)试压、试挤要求; e)施工交接、检查要求;

水利喷砂水力喷射

水力喷射定点压裂改造技术研究与应用 水力喷砂压裂技术原理:射流在喷射通道中形成增压。环空中泵入流体增加环空压力,喷射流体增压和环空压力的叠加超过破裂压力压开地层。 水力喷砂射孔参数设计优化 1、喷嘴选择:要具有良好的耐磨性和较高的流量系数。 2、压力、流速根据水力学的动量定律,当喷嘴的截面一定时,射流速度与压力成正比。试验证明,当通过喷嘴的流速保持在120米/秒、工作压力12MPa以上时,可以取得较好的切割效能。 3、喷射时间在一定的工作压力下,当射流达到一定深度后,继续延长喷射时间是无意义的。喷射时间一般在15-20分钟。 4、含砂浓度:含砂量越高,切割效能越好。但是,过多的含砂量容易引起砂堵,并会在途中互相碰撞,降低速度,影响喷射效果。确定砂浓度120 kg/m3。 5、砂粒直径砂粒直径越大,质量越大,冲击力就越大。一般讲,砂粒直径取喷嘴直径的1/6为最佳,确定选用40-70目和20-40目的石英砂或陶粒均适用。 6、围压:射孔深度随着围压的增大成线性递减。 (三)水力喷砂压裂工艺步骤 1、洗井,下喷射工具到预定位置,进行水力喷砂射孔。 2、泵入前置液,环空迅速增压产生裂缝,排量增加到设计压裂排量,进入主压裂施工程序,施工结束。 3、关井、放喷、压井上提油管到上一个压裂的位置。 4、重复以上步骤,至整个井段压裂结束。 创新点: 创新点一:设计优化水力喷砂射孔所需的流速、最佳喷射时间、喷砂液浓度、砂粒直径等参数。 创新点二:利用水力喷砂射孔定点压裂工艺技术,不用机械封隔一趟管柱实现多段改造。压裂排量:考虑压裂液摩阻、喷嘴的节流压差、裂缝延伸压力、喷射工具强度、套管强度、压裂限压等。 创新点三:水力喷射压裂管柱结构设计,实现多段压裂,又能解决砂堵后的反洗问题。管柱结构:引鞋+筛管+单流阀+短节+喷枪+油管 关键技术:应用了高耐磨喷嘴 喷嘴需承受高压和高速工作液的冲蚀,容易导致喷嘴变形、破损。要求喷嘴具有高耐磨性,是保证工艺成功的关键。 主要技术特点:水力喷射压裂技术是一项能有效控制裂缝起裂的增产措施。只在指定的位置处进行压裂造缝。 结论: 1、水力喷射定点压裂是集水力喷砂射孔、压裂、封隔一体化的新型改造技术,是一种精准、高效、经济、安全的分段增产技术。 2、是解决裸眼井、割缝管完井、水平井、直井分段压裂的尖端技术。 3、目前国内水力喷射工具与国外存在差距,普遍存在磨损,尚需要进一步研究。

水力压裂技术

水力压裂水力压裂:: 一项一项经久不衰的技术经久不衰的技术经久不衰的技术 自从Stanolind 石油公司于1949年首次采用水力压裂技术以来,到今天全球范围内的压裂施工作业量将近有250万次。目前大约百分之六十新钻的井都要经过压裂改造。压裂增产改造不但增加油井产量,而且由于这项技术使得以前没有经济开采价值的储量被开采了出来(仅美国自1949年以来就约有90亿桶的石油和超过700万亿立方英尺的天然气因压裂改造而额外被开采出来)。另外,通过促进生产,油气储量的静现值也提高了。 压裂技术可以追溯到十八世纪六十年代,当时在美国的宾夕法尼亚州、纽约、肯塔基州和西弗吉尼亚州,人们使用液态的硝化甘油压浅层的、坚硬地层的油井。目的是使含油的地层破裂,增加初始产量和最终的采收率。虽然使用具有爆炸性的硝化甘油进行压裂是危险并且很多时候是违法的,但操作后效果显著。因此这种操作原理很快就被应用到了注水井和气井。 在十九世纪三十年代,人们开始尝试向地层注入非爆炸性的流体(酸)用以压裂改造。在酸化井的过程中,出现了一种“压力从逢中分离出来”现象。这是由于酸的蚀刻会在地层生成不能完全闭合的裂缝,进而形成一条从地层到井的流动通道,从而大大提高了产量。这种“压力从逢中分离出来”的现象不但在酸化的施工现场,在注水和注水泥固井的作业中也有发生。 但人们就酸化、注水和注水泥固井的作业中形成地层破裂这一问题一直没有很好的理解,直到Farris 石油公司(后来的Amoco 石油)针对观察井产量与改造压力关系进行了深入的研究。通过此次研究,Farris 石油萌生出了通过水力压裂地层从而实现油气井增产的设想。 第一次实验性的水力压裂改造作 业由Stanolind 石油于1947年在 堪萨斯州的Hugoton 气田完成(图 1)。首先注入注入1000加仑的粘 稠的环烷酸和凝稠的汽油,随后是 破胶剂,用以改造地下2400英尺 的石灰岩产气层。虽然当时那口作 业井的产量并没有因此得到较大 的改善,但这仅仅是个开始。在 1948年 Stanolind 石油公司的 J.B.Clark 发表了一篇文章向石油 工业界介绍了水力压裂的施工改造过程。1949年哈里伯顿固井公司(Howco)申请了水力压裂施工的专利权。 哈里伯顿固井公司最初的两次水力压裂施工作业于1949年3月17日,一次在奥克拉荷马州的史蒂芬郡,总花费900美元;另一次在位于得克萨斯州的射手郡,总花费1000美元,使用的是租来的原油或原油与汽油的混合油与100到150磅的砂子(图2)。在第一年中,332口井被压裂改造成功,平均增加了75%的产量。压裂施工被大量应用,也始料未及地加强了美国的石油供应。十九世纪五十年代中期,压裂施工达到了每月3000口井的作业量。第一个过五十万英镑的压裂施工作业是由美国的Pan 石油公司(后来的Amoco 石油,现在的BP 石油)于1968年10月在奥克拉荷马州的史蒂芬郡完成的。在2008年世界范围内单级花费在1万到6百万美元之间的压裂作业超过了5万级。目前,一般的单井压裂级数为8到40

水平井水力喷射分段压裂应用现状及适用性分析

水平井水力喷射分段压裂应用现状及适用性分析 随着时代的发展,社会经济对石油天然气这类化石能源的需求越来越多,油气田的开采在很大程度上影响着社会的发展和人们的生活,因此,油气田的稳产稳收对我国社会的稳定发展起着重要的作用。而近些年来,油气田开采时间比较久,开采力度也比较强,同时受地质情况影响,我国油气田出现了很多低渗透油田,严重影响着油气开采的稳定性。而在现阶段,水平井和水力压裂技术是对低渗透油田有效开采的重要手段,而在水平井无法取得理想效果的油田,则需要利用分段压裂来提高产能。本文将就水平井水力喷射分段压裂技术的原理和应用等方面做出分析,从而帮助油气田开采更加顺利进行。 标签:水平井;分段压裂;应用现状;适用性 1 引言 近些年,随着我国油气田开采年限的增长和开采力度的加大,加之我国地质条件的特殊性,新油田更加复杂多样,老油田开采难度也逐年增加。而这些年,我国新探测的油田则是以低渗透油田为主,占到了新探明油田储量的一半以上。如何提高低渗透油田的采收率,提高单井产量,使当前油气开发面临的最为严重的问题之一。 2 水利喷射分段压裂机理 水力喷射分段压裂技术使集射孔、压裂、隔离为一体的新型技术,可以有效的提高单井的产量。根据伯努利原理,高速的射流在裂缝起裂之前进入孔眼,然后静止下来,高速射流由高速转为静止而产生静压能,使孔眼内的滞止压力远高于环空压力。当孔眼内滞止压力高于地层破裂所需要的压力的时候,高速射流所处的位置就会产生人工裂缝。而在人工裂缝形成之后,环空流体则会在高速水流的引导下被吸入裂缝之中,从而将裂缝封隔起来。与此同时,需要拖动管柱,将高速射流喷嘴下放到下一个层段,并依次进行井段改造。 该技术是充分利用了动态分流原理,不需要机械封隔装置来辅助,就可以有效的对油气井进行定向压裂改造。同时,由于在水力喷射压裂技术中,压力和排量是非常重要的环节,因此必须根据油气井的实际情况来选择合理的油管尺寸,并确定好油管的直径,在实际操作中,也需要根据现场的实际情况来进行改进。 3 水力喷射分段压裂应用现状 近些年来,水平井水力喷射分段压裂技术在各国油气田开发中被广泛应用,作为一项新型的增产改造技术,在全世界范围内约有150多口井成功采用这项技术实现增产增收,尤其是在低渗透油田上,该技术大大改善了其难以开采的现状。二十世纪初期,我国开始将这项技术应用到低渗透油藏的开发之中,并且取得了非常好的效果,在我国的水力喷射分段压裂技术的运用中,绝大部分都是低渗透

水力压裂综述

文献综述 前言 水力压裂是油田增产一项重要技术措施。由地面以超过地层吸收能力的排量高压泵组将液体注入井中,此时,在井底附近便会蹩起压力,当蹩气的压力超过井壁附近地层的最小地应力和岩石抗张强度时,在地层中便会形成裂缝。随之带有支撑剂的液体泵入缝中,裂缝不断向前延伸,这样,在地层中形成了具有一定长度、宽度及高度的填砂裂缝。由于压裂形成的裂缝提高了产油层导流能力,使油气能够畅流入井内,从而起到了增产增注的作用。 为了完成水力压裂设计,在地层中造成增产效果的裂缝,需要了解与造缝有关的地应力、井筒压力、破裂压力等分布与大小。这些因素控制着裂缝的几何尺寸,同时对与地面与井下设备的选择有关。同时,用于水力压裂的压裂液的性能、数量,支撑剂的排布情况关系到裂缝的几何尺寸,压裂技术-端部脱砂技术,对提高压裂效果起到很大作用,这些因素关系到能否达到油田增产的目的,需要进行详细研究。在建立适当的裂缝扩展模型的基础上,实现现场实际生产情况的模拟研究,对进一步优化水力压裂参数,提高压裂经济实用性起到很大作用。 这项油田增产措施自发展以来,得到国内外广泛采用,并且经不断的开发试验,已取得很大成效。 水力压裂技术的发展过程 水力压裂技术自 1947 年美国堪萨斯州进行的的第一次试验成功以来,至今近已有60余年历史。它作为油井的主要增产措施,正日益受到世界各国石油单位的重视及采用 ,其发展过程大致可分以下几个阶段: 60 年代中期以前 ,各国石油公司的工作者们的研究工作已适应浅层的水平裂缝为主,此时的我国主要致力于油井解堵工作并开展了小型压裂试验。 60 年代中期以后 ,随着产层加深 ,从事此项事业的工作者以研究垂直裂缝为主。已达成解堵和增产的目的。这一时期 ,我国发展了滑套式分层压裂配套技术。 70 年代 ,工作进入到改造致密气层的大型水力压裂阶段。我国在分层压裂技术的基础上 ,发展了蜡球选择性压裂工艺 ,以及化学堵水与压裂配套的综合

水力压裂技术

第六章水力压裂技术 一、名词解释 1、水力压裂:常简称为压裂,指利用水力作用使油层形成裂缝的方法,是油气井增产、注水井增注的一项重要技术措施,不仅广泛用于低渗透油气藏,而且在中、高渗油气藏的增产改造中也取得了很好的效果。 2、地应力:指赋存于地壳岩石中的内应力。 3、地应力场:地应力在空间的分布。 4、破裂压力梯度:地层破裂压力与地层深度的比值。 5、闭合压力(应力):使裂缝闭合的压力,理论上等于最小主应力。 6、分层压裂:分压或单独压开预定的层位,多用于射孔完成的井。 7、裂缝的方位:裂缝的延伸(扩展)方向。 8、压裂液:压裂过程中,向井内注入的全部液体。 9、水基压裂液:以水为基础介质,与各种添加剂配制而成的压裂工作液。 10、交联剂:能将溶于水中的高分子链上的活性基团以化学链连接成三维网状型的结构,使聚合物水溶液形成水基交联冻胶压裂液。 11、闭合压力:使裂缝闭合的压力,理论上等于最小主应力。 二、叙述题 1、简述岩石的破坏及破坏准则。 答案要点:脆性与塑性岩石:在外力作用下破坏前总应变小于3%的岩石叫脆性岩石,总应变大于5%的岩石叫塑性岩石,总应变介于3~5%的岩石叫半脆性岩石。 岩石的破坏类型:拉伸破坏;剪切破坏;塑性流动。其中拉伸破坏与剪切破坏主要发生在脆性岩石。塑性流动主要发生在塑性岩石。 2、简述压裂液的作用。 答案要点:按泵注顺序和作用,压裂液可分前置液、携砂液和顶替液。其中,携砂液是 压裂液的主体液。○1前置液的作用:造缝、降温;○2携砂液的作用:携带支撑剂、延伸造缝、冷却地层;○3顶替液的作用:中间顶替液用来将携砂液送到预定位置,并有预防砂卡的作用;注完携砂液后要用顶替液将井筒中全部携砂液替入裂缝中,以提高携砂液效率和防止井筒沉砂。 3、简述压裂液的性能及要求。 答案要点:滤失少;悬砂能力强;摩阻低;稳定性;配伍性;低残渣;易返排;货源广、便于配制、价钱便宜。 4、压裂液有哪几种类型? 答案要点:水基压裂液、油基压裂液、泡沫压裂液、乳化压裂液、醇基压裂液、胶束压裂液。 5、简述常用破胶剂及其作用。 答案要点:主要作用:是使压裂液中的冻胶发生化学降解,由大分子变成小分子,有利于压后返排,减少对储集层的伤害。 常用的破胶剂:包括酶、氧化剂和酸。生物酶和催化氧化剂系列是适用于 21~54 ℃的低温破胶剂;一般氧化破胶体系适用于 54~93 ℃,而有机酸适用于 93 ℃以上的破胶作用。 6、影响支撑剂选择的因素有哪些? 答案要点:(1)支撑剂的强度:一般地,对浅地层(深度小于1500m )且闭合压力不大时使用石英砂;对于深层且闭合压力较大时多使用陶粒;对中等深度( 2000 m 左右)的地层一般用石英砂,尾随部分陶粒。 H p F F =α

滑套式水力喷射分段压裂技术

滑套式水力喷射分段压裂技术 【摘要】滑套式水力喷射分段压裂技术将投球打滑套工艺同水力喷射相结合。施工时从油管投入相应尺寸阀球,打开喷枪内置滑套,同时封堵下层。然后地面加压,在喷嘴形成高速射流,切开套管,水泥环,在地层中形成一定直径和深度的孔眼;同时油套环空小排量注入,使得环空压力略低于地层破裂压力,继续喷射,即可在喷射点形成裂缝。本层施工结束后,再从油管投入相应尺寸阀球,打掉上层喷枪滑套,封堵本层,即可进行上层施工。依此投入由小到大阀球可实现分层压裂。 【关键词】滑套式水力喷射 1 引言 滑套式水力喷射分段压裂工艺是基于定点水力喷射基础上研发的。滑套式水力喷射压裂工艺可以实现多层压裂,且无须拖动管柱,只需按顺序逐级投入由小到大阀球。操作简单、施工周期短、造缝位置准确、作业成本低,避免了机械封隔器分段压裂时可能带来的封隔器卡阻问题,适用于大部分水平井和直井分层段压裂,对于已射孔、井段大、无隔层压裂井改造非常有针对性。目前压裂公司已在辽河油区内外成功施工了6口井(4口直井、2口水平井),效果显著。 2 技术原理 滑套式水力喷射是将水力喷射和打滑套分层技术相结合的一门工艺技术。 水力喷射由油管及环空挤压共同完成。通过安装在施工管柱上的水力喷射工具,高压能量转换成动能,产生高速射流冲击(或切割)套管和岩石,在地层形成一个(或多个)喷射孔道,完成水力射孔。高速流体的冲击作用在近井地带产生微裂缝,裂缝产生后环空增加一定压力使产生的微裂缝得以延伸,实现水力喷射压裂。同时由于喷嘴出口周围流体速度最高,其压力最低,故流体会自动泵入裂缝而不会流到其它地方。环空的流体也会在压差作用下进入射流区被吸入地层(图1)。 滑套式水力喷射分段压裂工艺是基于水力喷射基础上研发的。在喷枪内安置滑套,由销钉固定。从油管投入钢球,销钉在一定压差下剪断,滑套打落,喷嘴露出,同时钢球落入球坐,封堵下层,然后进行水力喷射。 3 技术优势 (1)水平井或直井多段压裂不用封隔器或桥塞等隔离工具,可实现自动封隔,施工风险小且操作简便。 (2)利用滑套式喷射器实现不动管柱喷射压裂工艺,一次管柱可进行多段

水力喷射分段压裂工艺研究

龙源期刊网 https://www.doczj.com/doc/8910753379.html, 水力喷射分段压裂工艺研究 作者:刘建红 来源:《装饰装修天地》2017年第20期 摘要:本文从水力喷砂射孔原理入手,分析了其技术特点及影响水力喷砂射孔效果的因素,并对施工参数进行了优化。 关键词:水力喷射;压裂技术;分段压裂;吐哈油田 1 水力喷射压裂技术的必要性分析 吐哈油田是一个典型的低渗透油田,但随着油田高效开发的持续进行,底水发育、油(气)层储层厚度小、水平井、筛管完井、油(气)层与水层间距离小以及固井质量差等油(气)井日益增多。 水平井、筛管完井具有压裂井段长的特点,常规压裂技术存在施工风险高、压裂目的层针对性不强,裂缝长度无法保证、压裂效果有限等问题;底水发育、油(气)层储层厚度小、油(气)层与水层间距离小的井压裂改造时,缝高失控、沟通水层的风险较高,施工规模与排量均难以提高,储层改造效果不理想。 2 水力喷射压裂技术研究 2.1 水力喷射压裂技术原理 水力喷射压裂技术通过安装在施工管柱上的水力喷射工具,利用水击作用在地层形成一个(或多个)喷射孔道,从而在近井地带产生微裂缝,裂缝产生后环空增加一定压力使产生的微裂缝得以延伸,实现水力喷射压裂,见图1。 该技术基于伯努利方程,见式(2-1),方程式表明流体中的能量维持常量。由方程可知流体束的速度变化引起压力反向变化。喷嘴出口处速度最高压力就最低,随着流体不断深入孔道速度逐渐减小,压力不断升高,到孔道端处速度达到最低压力最高。水力喷射压裂通过喷射流体在孔道内动能与压能的转换,利用喷射滞止压力破岩从而在喷射点处产生微裂缝。由于能量集中在孔道端处,井筒不受破裂压力的影响,从而消除了压力曲线中地层破裂时的压力峰值,并且近井筒地带扭曲问题很少出现。水力喷射压裂利用动态分流技术成功解决了水平井裂缝的定位控制问题,通过流体的动态运动让其进入地层的特定位置而不使用任何机械密封装置。 p+ρgh+1/2ρv2=const (2-1) 2.2 水力喷射工具

水平井分段压裂技术总结

水平井分段压裂技术总结 百度最近发表了一篇名为《水平井分段压裂技术总结》的范文,这里给大家转摘到百度。 篇一:水平井分段压裂技术及其应用水平井分段压裂技术及其应用摘要:水平井分段压裂工艺技术为改善水平井水平段渗流条件、提高单井产量了技术支持。 本文从我国水平井分段压裂技术的发展现状入手,以应用最为广泛的裸眼水平井封隔器分级压裂技术为重点,以该技术在长庆油田苏里格气田苏区块的现场应用为例,对水平井压裂技术及其现场应用情况进行了分析与总结。 关键词:水平井分段压裂封隔器苏里格气田水平井因其具有泄油面积大、单井产量高、穿透度大、储量动用程度高等优势,在薄储层、低渗透、稠油油气藏及小储量的边际油气藏等的开发上表现出了突出的优势,成为提高油气井产量和提升油田勘探综合效益的重要手段之一,近年来在我国得到了快速的发展。 然而在低渗透油藏开采中因其渗透率较低、渗透阻力大、连通性较差,导致水平井单井产量也难以提升,难以满足经济开发的要求,水平井增产改造的问题便摆在了工程技术人员的面前。 而水平井分段压裂工艺技术的推广应用为改善水平井水平段渗流条件、提高单井产量了技术支持。 一、我国水平井分段压裂技术现状我国的水平井分段压裂技术及

配套工具的研究起步较晚,国内三大石油公司对于水平井分段压裂技术开展广泛的研究开始与十一五期间,近几年得到了大力的推广应用。 目前国内应用规模较大的水平井分段压裂技术主要包括以下三种:裸眼封隔器分段压裂技术。 年我国在四川广安--井第一次实施了裸眼封隔器分段压裂试验,范文当时是由的技术。 目前该技术在我国的现场应用仍然以国外技术为主,主要采用由、、等公司的装置系统,我国应用总规模约~口,占去了水平井分段压力工艺实施的/左右,分段数最多达到段。 我国在该技术方面上处于研发和现场试验阶段,现场试验分段数能达到段,所采用的压裂材质、加工工艺等方面和国外相比还有一定差距。 水平井水力喷射分段压裂技术。 年,首先由提出了水力喷射压裂工艺方法,并将其应用于水平井压裂。 我国于年在长庆油田引进配套技术,首次成功的完成了靖平井的分段压裂。 目前该技术在我国大部分油田都得到了广泛的现场试验和应用,总实施口数达到口以上,分段数在段以内。 套管完井封隔器分段压裂技术。 该技术在我国应用和研发的规模较大,最全面的范文写作网站且

水力喷射压裂理论与应用(B卷答案)

水力喷射压裂理论与应用(B卷答案) 一.名词解释 1、把混有研磨材料的高压水射流称为磨料射流 2、是粒子冲击材料表面造成的破坏。 3、就是在流体运动边界上控制方程应该满足的条件。 4、采用混有一定浓度天然石英砂的压裂液基用为射孔液的一种射孔。 5、钻井完井对地层的损害,使得近井筒地带渗透率下降,这一区域称为污染带或钻井伤 害带。 二、填空题 1、磨料在加速和冲击物料的过程中会发生(研磨)和(碰撞) 4、影响水力喷砂射孔的因素主要有(磨料冲击速度)、(料浓度)、(磨料性质)和(套管材料性质) 3、现场应用水力射的孔径一般为(15~20 mm),最大为(60mm) 10、水力射孔套管会在孔眼处造成(应力集中),使得局部应力过大而削弱了(套管)和(水泥环)的强度,可能会影响套管的(使用寿命)。 12、水力射孔对套管强度以的影响主要反映在两方面:(一是孔眼存在削弱了套管的有效抗拉压面积);(二是开口引起的孔边应力集中造成套管局部应力增大)。 3、影响水力喷射孔内压力和射孔增压的因素主要包括(环空围压)、(喷嘴压降)、(喷距)、(喷嘴直径)、(套管壁孔眼直径)、和(射孔眼深度) 7、污染带厚度一定时,(产能比)随射孔深度的(增大)而增大,射孔深度的增加对于(产能比)的影响比较明显。污染带厚度越大,相同孔深下的(产能比就越小)。 15、水力喷射压裂包括(水力射孔)和(喷射压力)两个阶段。(水力射孔)阶段为获得较为完善的孔眼,要求射流速度达到(180~200m/s),持续喷射(10~15min)喷射压力阶段11、处于复杂应力状态的结构,只要其(有效应力)不超过材料的(单轴应力)强度,我们认为结构的(强度足够)。 14、当孔径(小于30mm)时,孔径(增加)应力集中系数(略有增加),孔径(大于30mm)后,孔径增加应力集中系数增幅明显。 6、地层内的速度场基本上为(水平直线),在压力驱动下流体在油藏中的流动(比较均匀),(流速较慢),从油藏边界汇流到裸眼井筒内(流线方向)才发生改变。 三、简答题 1、答:在冲击初期,强大的冲击载荷产生的拉应力将首先在岩石表面引起环状的赫兹锥形裂纹。然后,随着接触力的增加,磨料冲击的正下方将产生塑性变形,切向应力分量引起一系列垂直于冲击表面的径向裂纹。水流在水楔压力作用下挤入裂纹,起到延伸和扩展裂纹的附加作用,从而增强冲蚀破碎能力。

水力喷砂射孔工艺及在现场的应用

水力喷砂射孔工艺及在现场的应用前言 随着低渗透油藏开发力度不断加大 ,越来越多的储量得到动用。但是由于储层地质特征或井身结构不适宜直接进行水力压裂或酸化改造 ,如对于固井质量不好、上下有水层、地层压力过高而不能进行压裂改造的极小薄层、薄互层等要求射孔位置精度较高的井 ,为了实现有效挖潜目的层 ,水力喷砂射孔是一种行之有效的技术手段。水力喷砂射孔是用地面压裂车将混有一定浓度石英砂的水浆加压,通过油管泵送至井下,水砂浆通过井下射孔工具的喷嘴喷射出高速射流,刺穿套管和近井地层,形成一定直径和深度的射孔孔眼,水力喷砂射孔可以产生比常规射孔更大更深的射孔孔眼,高度可由地面调节,尤其是水力喷砂射孔可以避免常规射孔产生的压实带,并且应力松弛带动井筒裂缝的张开和孔隙度渗透率得到提高,同时孔跟不会上下延伸沟通水层,所以水力喷射具有很强的技术特色,对底水或者气顶等特殊油藏改造尤为适宜。 1工作原理及特点 1.1 工作原理 由动量-冲量定律可知 ,高压泵将带有磨料(通常是石英砂)的液体 ,从油管经特制的喷嘴将压头转换为速度 ,即给液流中的砂粒以动量 ,该动量与套管、岩层或其他障碍物接触时,动量的速度突然降为0 ,此时含砂射流以冲量做功 ,于是便产生了水力喷砂射孔技术。 1.2 特点

喷砂射孔与普通射孔相比具有以下特点:穿透深 ,对污染半径小的储层可以起到射孔、解堵的双重目的;在孔眼周围形成清洁通道 ,不会形成压实带造成储层伤害;射孔孔径较大;可以根据不同的井身结构和层段有选择地进行射孔。 2喷砂射孔方案设计方法 2.1 喷射参数的设计 (1) 喷射排量。 喷砂射孔过程首先需要确定最小的施工排量 ,确保喷射过程砂浆的顺利排出。根据理论分析及现场经验 ,应用密度2.65g/cm3的石英砂进行喷射施工,10%砂比顺利返出 ,一般要求流速大于1.2 m/ s。在设计时首先需要根据井身结构确定最低施工排量 ,例如对于内径124.26 mm套管×外径73 mm油管 ,要保证砂浆的顺利返出 ,至少要求排量大于0.3m3/min ,现场一般采用0.5 m3/ min。 (2) 喷射层位及喷枪个数。 喷枪一般长度为35~40cm ,可以根据地质要求及油层厚度确定下入喷枪的位置及个数。一般来讲,排量1.0m3/min ,对于喷嘴直径3.8m左右的工具可以保证8孔孔眼压差20MPa。例如,对于3000 m以内的油井 ,在地面设备许可的条件下排量达到3.0 m3/min ,可以下入8只喷枪 ,共24孔。 根据试验及理论分析 ,水力喷砂射孔过程的喷射时间、喷射深度及压力之间存在如下关系: V0=240Q/nπd2 (1)

水平井分段压裂改造技术现状与展望

水平井分段压裂改造技术现状与展望 发表时间:2018-01-29T11:05:30.553Z 来源:《科技新时代》2017年12期作者:刘学伟 [导读] 摘要:水平井作为一种有效提高油气产量的重要方法,在油气田开发中扮演着越来越重要的角色,特别在“低压力低渗透率、低丰度”三低油气藏。本文主要对目前国内水平井压裂改造技术现状进行探讨。 摘要:水平井作为一种有效提高油气产量的重要方法,在油气田开发中扮演着越来越重要的角色,特别在“低压力低渗透率、低丰度”三低油气藏。本文主要对目前国内水平井压裂改造技术现状进行探讨。 关键词: 水平井分段压裂展望 近年来随着各大油气田不断开发,油气藏综合开发难度逐渐增大,低渗透、超低渗透、致密油气藏等非常规油气藏开发面临难题突显,而制约超低渗、致密油气田等经济有效开发的关键技术就是储层改造技术的突破,实现油气藏纵横剖面有效动用,提高单井产量。 1水平井压裂技术现状 1.1双封单卡上提管柱压裂技术 该技术首先将待压裂改造层段一次性分段射孔,压裂管柱由双封隔器中间夹一导压喷砂器构成,在压裂过程中利用导压喷砂器的节流压差进行压裂,通过压裂一层上提一次管柱完成多段压裂。双封单卡上提管柱压裂技术虽然压裂目的性强,操作简单,单层改造效果彻底,但是根据实际施工过程中,该技术出现砂卡概率较高,而且一旦出现砂卡不宜解卡,同时因多段压裂过程中封隔器反复坐封、解封,导致封隔器胶筒易破裂失效,从而经常起下钻具延长施工周期。该技术有待完善。 1.2可钻式复合桥塞分段压裂技术 利用可钻式复合桥塞进行分级改造,通过连续油管或电缆下入桥塞和射孔枪,爆炸射孔后取出电缆或连续油管,通过套管泵注。该技术适合于套管完井的分级改造,由于第一段没有泵送通道,多采用爬行器或连续油管带桥塞和射孔枪下入。改造完毕后钻磨桥塞,即可多层返排、合采。该技术施工周期较长,地层伤害较大。 1.3投球打滑套分段压裂技术 投球打滑套压裂技术首先将待压裂改造层段一次性分段射孔,起出射孔枪后,下入带有滑套分压工艺管柱工具串到达设计位置,压裂第一段完成后,投放与滑套尺寸相匹配的钢球,油管液体加压,打断销钉打开滑套,坐封封隔器,施工上层,逐级完成施工。该技术可实现连续压裂施工,缩短施工周期,施工效率较高,但是,因井下工具串较复杂,发生砂卡解卡较难。 1.4 TAPI阅完井分段压裂技术 该技术是一种新型无级差套管滑套分段压裂技术。在下入油层套管时在套管上连接多个特殊滑套,每一个滑套都正对目标产层。固井后,采用射孔或爆破阀打开最底部压裂滑套,完成第一段的压裂。第一段压裂结束后,从井口投入飞镖打开上面一段的压裂滑套,同时对已施工的第一段进行封闭,压裂第二段。重复此施工步骤直至所有施工段压裂结束。待所有压裂施工结束后,采用连续油管对TAP阀进行磨铣,恢复全井筒畅通。该技术具有压裂级数不受限制,可以恢复全尺寸井筒,施工流程简单,施工效率较高,在生产后期可以利用连续油管对滑套进行选择性关闭等特点。 2水平井压裂技术发展趋势 近年伴随着油气田资源开发规模逐渐加大,从目前面临“三低”的油气藏即将转战致密油气田、页岩气等油气田开发,油气藏综合开发难度逐渐增大,低渗透、超低渗透、致密油气藏等非常规油气藏开发面临难题突显,而制约超低渗、致密油气田等经济有效开发的关键技术就是储层改造技术的突破,实现油气藏纵横剖面有效动用,提高单井产量。 2.1水平井低伤害清洁压裂液体系 目前,随着地层开发难度逐渐增大,地层越来越敏感,与此同时水平井压裂技术日新月异,但是与之相配套的低伤害压裂液体系米能及时跟进。为实现这一目标,相关领域应加强对水平井低伤害清洁压裂液性能研究,配套完善的水平井压裂液体系。 2.2水平井段内多裂缝压裂技术 当前,油气田开发渗透率逐渐降低,增加改造体积充分动用储层储量,增大泄流面积,提高单井产量迫在眉睫。通过水平井段内开始多裂缝可实现储层整体的动用程度,实现水平井水平段体积化改造模式,从而提高水平井动用储量。 2.3连续油管水力喷射射孔环空压裂技术 该技术可以部分解决可钻式复合桥塞分段压裂技术出现的不足之处,作为其补充,与其配合使用。连续油管水力喷射射孔环空压裂技术已经在各大气田得到了广泛的应用,取得较好效果。 3结束语 1)水平井压裂改造技术的突破,才能有效动用控制储量,提高单井产量,最终实现油气田经济有效开发。 2)裸眼封隔器分段压裂技术和水力喷射分段压裂技术为现阶段各大油气水平井主体分段改造技术,已经推广应用,其他分段压裂技术作为其必要补充,也将发挥重要作用。 3)进一步开展水平井分段压裂改造工艺技术适应性研究,完善水平井分段压裂工艺。 参考文献: [1] 刘翔鹊,刘尚奇.国外水平井技术应用论文集[M}北京.石油工业出版社, 2001. 作者简介:刘学伟,男,出生年月:1984.03,工程师,毕业时间:2007.07,毕业院校:中国石油大学(华东),专业:化学工程与工艺,主要从事压裂技术研究工作。

水力压裂概述

水力压裂增加原油产量的机理概述 水力压裂是一项有广泛应用前景的油气井增产措施,水力压裂法是 目前开采天然气的主要形式,要求用大量掺入化学物质的水灌入页岩层 进行液压碎裂以释放天然气。这项技术在10年中在美国被大范围推广, 但美国人正在担忧这项技术将污染水源,从而威胁当地生态环境和居民 身体健康。并认为这种技术给环境带来了极大的伤害,包括使自来水自 燃,引发小幅地震等。但目前它仍是使用较为广泛的一种增产措施。 水力压裂是利用地面高压泵组,将高粘液体以大大超过地层吸收能 力的排量注入井中,在井底憋起高压,当此压力大于井壁附近的地应力 和地层岩石抗张强度时,在井底附近地层产生裂缝。继续注入带有支撑 剂的携砂液,裂缝向前延伸并填以支撑剂,关井后裂缝闭合在支撑剂 上,从而在井底附近地层内形成具有一定几何尺寸和导流能力的填砂裂 缝,使井达到增产增注目的工艺措施。该项技术不仅广泛用于低渗透油 气藏,而且在中、高渗油气藏的增产改造中也取得了很好的效果。水力 压裂增产增注的原理主要是降低了井底附近地层中流体的渗流阻力和改 变流体的渗流状态,使原来的径向流动改变为油层与裂缝近似性的单向 流动和裂缝与井筒间的单向流动,消除了径向节流损失,大大降低了能 量消耗,因而油气井产量或注水井注入量就会大幅度提高。如果水力裂 缝能连通油气层深处的产层(如透镜体)和天然裂缝,则增产的效果会更 明显。另外,水力压裂对井底附近受损害的油气层有解除堵塞作用。 一、水力压裂造缝机理 (一)应力分析 在水力压裂中,了解造缝的形成条件、裂缝的形态(垂直或水平)、方 位等,对有效地发挥压裂在增产、增注中的作用都是很重要的。在区块 整体压裂改造和单井压裂设计中,了解裂缝的方位对确定合理的井网方 向和裂缝几何参数尤为重要,这是因为有利的裂缝方位和几何参数不仅 可以提高开采速度,而且还可以提高最终采收率,相反,则可能会出现 生产井过早水窜,降低最终采收率。 一般情况下,地层中的岩石处于压应力状态,作用在地下岩石某单 元体上的应力为垂向主应力和水平主应力。 1.地应力 作用在单元体上的垂向应力来自上覆层的岩石重量,它的大小可以根据 密度测井资料计算。

水平井分段压裂完井技术调研报告

《现代完井工程》水平井分段压裂完井技术调研报告

目录 1 研究目的及意义.............................................................. 错误!未定义书签。 2 水平井分段压裂技术...................................................... 错误!未定义书签。 2.1 国外水平井分段压裂技术研究现状................... 错误!未定义书签。 2.1.1 斯伦贝谢公司——Stage FRACTM系统错误!未定义书签。 2.1.2 哈里伯顿公司——固井滑套分段压裂系统错误!未定义书签。 2.1.3 贝克·休斯公司——Frac Piont System分段压裂系统错误!未 定义书签。 2.2 国内水平井分段压裂技术研究现状................... 错误!未定义书签。 2.2.1 水力喷射分段压裂技术............................ 错误!未定义书签。 2.2.2 双卡上提压裂多段技术............................ 错误!未定义书签。 2.2.3 分段环空压裂技术.................................... 错误!未定义书签。 2.2.4 液体胶塞隔离分段压裂技术.................... 错误!未定义书签。 2.2.5 机械桥塞隔离分段压裂技术.................... 错误!未定义书签。 2.2.6 限流压裂技术............................................ 错误!未定义书签。 2.3 本章小结............................................................... 错误!未定义书签。 3 水平井分段压裂数值模拟方法...................................... 错误!未定义书签。 3.1 笛卡尔网格的加密法........................................... 错误!未定义书签。 3.2 PEBI网格加密法.................................................. 错误!未定义书签。 3.3 表皮因子法........................................................... 错误!未定义书签。 3.4 直角网格加密法................................................... 错误!未定义书签。 3.5 本章小结............................................................... 错误!未定义书签。 4 水平井完井技术.............................................................. 错误!未定义书签。 4.1 筛管分段完井技术............................................... 错误!未定义书签。 4.2 水平井砾石充填防砂技术................................... 错误!未定义书签。 4.3 鱼骨状水平分支井完井技术............................... 错误!未定义书签。 4.4 膨胀管完井技术................................................... 错误!未定义书签。 4.5 套管射孔分段压裂完井技术............................... 错误!未定义书签。 4.6 裸眼分段压裂完井技术....................................... 错误!未定义书签。 4.7 本章小结............................................................... 错误!未定义书签。参考文献.............................................................................. 错误!未定义书签。

相关主题
文本预览
相关文档 最新文档