当前位置:文档之家› 浅谈光谱混合的基本原理及相关模型

浅谈光谱混合的基本原理及相关模型

浅谈光谱混合的基本原理及相关模型
浅谈光谱混合的基本原理及相关模型

浅谈光谱混合的基本原理及相关模型

摘要:本文主要是研究基于可变端元的线性模型。而线性混合模型一般可以分为三种情形:无约束的线性混合模型,部分约束的线性混合模型和全约束混合模型,线性解混就是在已知所有端元的情况下求出它们图像的各个象元中所占的比例,从而得到反应每个端元在图像中分布情况的比例系数图。

关键词:局部;高光谱;可变端元;丰度;混合象元

Abstract: this paper is mainly based on the research of the linear model variable $. And general mixed-linear model can be divided into three categories: unconstrained linear mixed model, part of the constraint mixed-linear model and the constraint mixture model, linear solution is known in the mix all the yuan for them out of each image as the proportion of yuan, and get a response in the image yuan each end of the proportion of the distribution coefficient graph.

Key words: local; Hyperspectral; Variable end yuan; Abundance; Mixed like yuan

1 混合象元的形成

遥感器所获取的地面反射或发射光谱信号是以象元为单元为单位记录的。它是象元所对应的地表物质光谱信号的综合。图像中每个象元所对应的地表,往往包含不同的覆盖类型,他们有着不同的光谱响应特征。而每个象元则仅用一个信号来记录这些“异质”成分。若该象元仅包含一种类型,则成为纯象元(pure pixel),它所记录的正是该类型的光谱响应特征或光谱信号:若该象元包含不止一种土地覆盖类型,则形成混合象元(mixed pixel)。

混合象元的存在,是传统的象元级遥感分类和面积量测精度难以达到使用要求的主要原因。为了提高遥感应用的精度,就必须解决混合象元的分解问题,即将混合象元分解为不同的“基本组分单元”(或称“端元”,Endmember),并求得这些基本组分所占的比例。这就是所谓的“混合象元分解”过程。

高光谱图像因为包含了几十个甚至上百个波段的数据,这为更多,更精细的端元提取提供了可能,也使得高光谱遥感在混合光谱分解方面优势得天独厚。高光谱遥感具有很强的亚象元级目标探测能力,这为利用遥感进行小目标探测提供了广阔的前景。

2 混合光谱模型

高光谱图像的光谱解混模型与算法研究

高光谱图像的光谱解混模型与算法研究 高光谱成像是将成像技术与光谱技术相结合的技术,是遥感应用中一个快速发展的领域。高光谱图像在军事目标辨别、远程控制、生物医学、食品安全以及环境监测等领域都有重要应用。 但由于高光谱成像光谱仪空间分辨率较低,使得每个高光谱像元可能由多种不同物质的光谱混合构成,因此混合像元广泛存在于高光谱图像中。混合像元导致科研实践中一些应用分类不准确,因此对混合像元进行分解是高光谱遥感应用亟待解决的核心问题。 本文中首先介绍了两种光谱混合模型:线性和非线性光谱混合模型。线性模型假设观察到的像元信号是所有的纯光谱信号的线性组合。 与之相反,非线性模型则考虑到多种物质反射光之间的物理相互影响。其次,本文对高光谱图像解混的几种经典模型进行介绍。 在这些模型中详细介绍了本文的对比模型全变分模型(SUnSAL-TV),该模型利用高光谱图像空间关系构建了对端元丰度的正则项,这使高光谱图像解混问题在数值结果和视觉效果上都有较大提升。但全变分模型的缺点是解混后丰度图中原平滑区域中伴有阶梯效应现象,视觉效果欠佳。 本文采用重叠组稀疏全变分作为端元丰度正则项,并采用交替方向乘子法对模型进行求解,将原问题转化为一系列较易求解的子问题,进而得到原问题的全局解。在应用交替方向乘子法进行求解过程中,关于梯度域重叠组稀疏的子问题采用采用优化最小化方法进行求解。 通过合成数据和真实数据的实验证明,采用本文提出的新方法处理后图像视觉效果和数值效果相比SUnSAL-TV方法有明显提升,并且可以有效减弱

SUnSAL-TV模型的阶梯效应,使处理后丰度图更加平滑,视觉效果更佳。

各种仪器分析的基本原理及谱图表示方法!!!紫外吸收光谱UV分析

各种仪器分析的基本原理及谱图表示方法!!! 紫外吸收光谱UV 分析原理:吸收紫外光能量,引起分子中电子能级的跃迁谱图的表示方法:相对吸收光能量随吸收光波长的变化提供的信息:吸收峰的位置、强度和形状,提供分子中不同电子结构的信息荧光光谱法FS 分析原理:被电磁辐射激发后,从最低单线激发态回到单线基态,发射荧光谱图的表示方法:发射的荧光能量随光波长的变化提供的信息:荧光效率和寿命,提供分子中不同电子结构的信息红外吸收光谱法IR 分析原理:吸收红外光能量,引起具有偶极矩变化的分子的振动、转动能级跃迁谱图的表示方法:相对透射光能量随透射光频率变化提供的信息:峰的位置、强度和形状,提供功能团或化学键的特征振动频率拉曼光谱法Ram 分析原理:吸收光能后,引起具有极化率变化的分子振动,产生拉曼散射谱图的表示方法:散射光能量随拉曼位移的变化提供的信息:峰的位置、强度和形状,提供功能团或化学键的特征振动频率核磁共振波谱法NMR 分析原理:在外磁场中,具有核磁矩的原子核,吸收射频能量,产生核自旋能级的跃迁谱图的表示方法:吸收光能量随化学位移的变化提供的信息:峰的化学位移、强度、裂分数和偶合常数,提供核的数目、所处化学环境和几何构型的信息电子顺磁共振波谱法ESR 分析原理:在外磁场中,分子中未成对电子吸收射频能量,产生电子自旋能级跃迁谱图的表示方法:吸收光能量或微分能量随磁场强度变化提供的信息:谱线位置、强度、裂分数目和超精细分裂常数,提供未成对电子密度、分子键特性及几何构型信息 质谱分析法MS 分析原理:分子在真空中被电子轰击,形成离子,通过电磁场按不同m/e 分离 谱图的表示方法:以棒图形式表示离子的相对峰度随m/e 的变化提供的信息:分子离子及碎片离子的质量数及其相对峰度,提供分子量,元素组成及结构的信息气相色谱法GC 分析原理:样品中各组分在流动相和固定相之间,由于分配系数不同而分离谱图的表示方法:柱后流出物浓度随保留值的变化提供的信息:峰的保留值与组分热力学参数有关,是定性依据;峰面积与组分含量有关反气相色谱法IGC 分析原理:探针分子保留值的变化取决于它和作为固定相的聚合物样品之间的相互作用力谱图的表示方法:探针分子比保留体积的对数值随柱温倒数的变化曲线提供的信息:探针分子保留值与温度的关系提供聚合物的热力学参数裂解气相色谱法PGC 分析原理:高分子材料在一定条件下瞬间裂解,可获得具有一定特征的碎片谱图的表示方法:柱后流出物浓度随保留值的变化提供的信息:谱图的指纹性或特征碎片峰,表征聚合物的化学结构和几何构型凝胶色谱法GPC 分析原理:样品通过凝胶柱时,按分子的流体力学体积不同进行分离,大分子先流出谱图的表示方法:柱后流出物浓度随保留值的变化提供的信息:高聚物的平均分子量及其分布热重法TG 分析原理:在控温环境中,样品重量随温度或时间变化谱图的表示方法:样品的重量分数随温度或时间的变化曲线提供的信息:曲线陡降处为样品失重区,平台区为样品的热稳定区热差分析DTA 分析原理:样品与参比物处于同一控温环境中,由于二者导热系数不同产生温差,记录温度随环境温度或时间的变化 谱图的表示方法:温差随环境温度或时间的变化曲线提供的信息:提供聚合物热转变温度及各种热效应的信息示差扫描量热分析DSC 分析原理:样品与参比物处于同一控温环境中,记录维持温差为零时,所需能量随环境温度或时间的变化 谱图的表示方法:热量或其变化率随环境温度或时间的变化曲线提供的信息:提供聚合物热转变温度及各种热效应的信息静态热―力分析TMA 分析原理:样品在恒力作用下产生的形变随温度或时间变化谱图的表示方法:样品形变值随温度或时间变化曲线提供的信息:热转变温度和力学状态

光谱解混

光谱解混定义: Spectral unmixing is the procedure by which the measured spectrum of a mixed pixel is decomposed into a collection of constituent spectra,or endmembers,and a set of corresponding fractions,or abundances,that indicate the proportion of each endmember present in the pixel.【spectral unmixing,2002】 光谱混叠产生原因: First, if the spatial resolution of a sensor is low enough that disparate materials can jointly occupy a single pixel, the resulting spectral measurement will be some composite of the individual spectra. This is the case for remote sensing platforms flying at a high altitude or performing wide-area surveillance, where low spatial resolution is common. Second, mixed pixels can result when distinct materials are combined into a homogeneous mixture. This circumstance can occur independent of the spatial resolution of the sensor. 光谱混合模型: 混合像元分解模型可以分为两类,即线性光谱混合模型( LSMM,Linear Spectral Mixture Model) 和非线性光谱混合模型( NLSMM,Nonlinear Spectral Mixture Model) LSMM假定像元光谱是各组分光谱的线性组合,而NLSMM则认为像元光谱是各组分光谱按照非线性关系综合而成的。Nirmal Keshava对线性混合光谱和非线性混合光谱的产生机理和适用范围进行了深入研究和探讨(1)线性混合 【spectral unmixing,2002】

浅谈光谱混合的基本原理及相关模型

浅谈光谱混合的基本原理及相关模型 摘要:本文主要是研究基于可变端元的线性模型。而线性混合模型一般可以分为三种情形:无约束的线性混合模型,部分约束的线性混合模型和全约束混合模型,线性解混就是在已知所有端元的情况下求出它们图像的各个象元中所占的比例,从而得到反应每个端元在图像中分布情况的比例系数图。 关键词:局部;高光谱;可变端元;丰度;混合象元 Abstract: this paper is mainly based on the research of the linear model variable $. And general mixed-linear model can be divided into three categories: unconstrained linear mixed model, part of the constraint mixed-linear model and the constraint mixture model, linear solution is known in the mix all the yuan for them out of each image as the proportion of yuan, and get a response in the image yuan each end of the proportion of the distribution coefficient graph. Key words: local; Hyperspectral; Variable end yuan; Abundance; Mixed like yuan 1 混合象元的形成 遥感器所获取的地面反射或发射光谱信号是以象元为单元为单位记录的。它是象元所对应的地表物质光谱信号的综合。图像中每个象元所对应的地表,往往包含不同的覆盖类型,他们有着不同的光谱响应特征。而每个象元则仅用一个信号来记录这些“异质”成分。若该象元仅包含一种类型,则成为纯象元(pure pixel),它所记录的正是该类型的光谱响应特征或光谱信号:若该象元包含不止一种土地覆盖类型,则形成混合象元(mixed pixel)。 混合象元的存在,是传统的象元级遥感分类和面积量测精度难以达到使用要求的主要原因。为了提高遥感应用的精度,就必须解决混合象元的分解问题,即将混合象元分解为不同的“基本组分单元”(或称“端元”,Endmember),并求得这些基本组分所占的比例。这就是所谓的“混合象元分解”过程。 高光谱图像因为包含了几十个甚至上百个波段的数据,这为更多,更精细的端元提取提供了可能,也使得高光谱遥感在混合光谱分解方面优势得天独厚。高光谱遥感具有很强的亚象元级目标探测能力,这为利用遥感进行小目标探测提供了广阔的前景。 2 混合光谱模型

红外光谱法基本原理

红外光谱法基本原理 红外光谱是反映分子的振动情况。当用一定频率的红外光照射某物质分子时,若该物质的分子中某基团的振动频率与它相同,则此物质就能吸收这种红外光,使分子由振动基态跃迁到激发态。因此,若用不同频率的红外光依次通过测定分子时,就会出现不同强弱的吸收现象。用T%-λ作图就得到其红外光吸收光谱。红外光谱具有很高的特征性,每种化合物都具有特征的红外光谱。用它可进行物质的结构分析和定量测定。 气相色谱法基本原理 气相色谱法是以气体(此气体称为载气)为流动相的柱色谱分离技术。在填充柱气相色谱法中,柱内的固定相有两类:一类是涂布在惰性载体上的有机化合物,它们和沸点较高,在柱温下可呈液态,或本身就是液体,采用这类固定相的方法称为气液色谱法;另一类是活性吸附剂,如硅胶、分子筛等,采用这类固定相的方法称为气固色谱法。它的应用远没有气液色普法广泛。气固色谱法只适用于气体及低沸点烃类的分析。在毛细管气相色谱法中,色谱柱内径小于lmm,分为填充型和开管型两大类。填充型毛细管与一般填充柱相同,只是径细、柱长,使用的固定相颗粒在几十到几百微米之间。开管型固定相则通过化学键组合或物理的方法直接固定在管壁上,因此这种色谱柱又称开管理柱,它的应用日益普遍。原则上,在填充柱中能够使用的固定液,在毛细管柱中也能使用,但毛细管柱比普通填充柱柱效更高,分离能力更强。气相色谱法的应用面十分广泛,原则上讲,不具腐蚀性气体或只要在仪器所能承受的气化温度下能够气化,且自身又不分解的化合物都可用气相色谱法分析。 当样品加到固定相上之后,流动相就要携带样品在柱内移动。流动相在固定相上的溶解或吸附能力要比样品中的组分弱得多。组分进柱后,就要在固定相和流动相之间进行分配。组分性质不同,在固定相上的溶解或吸附能力不同,即它们的分配系数大小不同。分配系数大

红外光谱与拉曼光谱的异同点

红外光谱与拉曼光谱的异同点 红外光谱又叫做红外吸收光谱,它是红外光子与分子振动、转动的量子化能级共振产生吸收而产生的特征吸收光谱曲线。要产生这一种效应,需要分子内部有一定的极性,也就是说存在分子内的电偶极矩。在光子与分子相互作用时,通过电偶极矩跃迁发生了相互作用。因此,那些没有极性的分子或者对称性的分子,因为不存在电偶极矩,基本上是没有红外吸收光谱效应的。 拉曼光谱一般也是发生在红外区,它不是吸收光谱,而是在入射光子与分子振动、转动量子化能级共振后以另外一个频率出射光子。入射和出射光子的能量差等于参与相互作用的分子振动、转动跃迁能级。与红外吸收光谱不同,拉曼光谱是一种阶数更高的光子——分子相互作用,要比红外吸收光谱的强度弱很多。但是由于它产生的机理是电四极矩或者磁偶极矩跃迁,并不需要分子本身带有极性,因此特别适合那些没有极性的对称分子的检测。 一、相同点在于: 对于一个给定的化学键,其红外吸收频率与拉曼位移相等,均代表振动能级的能量。因此,对某一给定的化合物,某些峰的红外吸收波数和拉曼位移完全相同,红外吸收波数与拉曼位移均在红外光区,两者都反映分子的结构信息。拉曼光谱和红外光谱一样,也是用来检测物质分子的振动和转动能级。 二、不同点在于: 两者产生的机理不同;红外光谱的入射光及检测光均为红外光,而拉曼光谱的入射光大多数是可见光,散射光也是可见光;红外光谱测定的是光的吸收,而拉曼测定的是光的散射;红外光谱对于水溶液、单晶和聚合物的检测比较困难,但拉曼光谱几乎可以不必特别制样处理就可以进行分析,比较方便;红外光谱不可以用水做溶剂,但是拉曼可以,水似拉曼光谱的一种优良溶剂;拉曼光谱的是利用可见光获得的,所以拉曼光谱可用普通的玻璃毛细管做样品池,拉曼散射光能全部透过玻璃,而红外光谱的样品池需要特殊材料做成的。 本质区别:红外是吸收光谱,拉曼是散射光谱;拉曼光谱光谱与红外光谱两种技术包含的信息通常是互补的。 主要区别:

光谱分析知识点

原子发射光谱分析 1、原子发射光谱分析的基本原理(依据) 2、ICP光源形成的原理及特点(习题2) :ICP是利用高频加热原理。 当在感应线圈上施加高频电场时,由于某种原因(如电火花等)在等离子体工作气体中部分电离产生的带电粒子在高频交变电磁场的作用下做高速运动,碰撞气体原子,使之迅速、大量电离,形成雪崩式放电,电离的气体在垂直于磁场方向的截面上形成闭合环形的涡流,在感应线圈内形成相当于变压器的次级线圈并同相当于初级线圈的感应线圈耦合,这种高频感应电流产生的高温又将气体加热、电离,并在管口形成一个火炬状的稳定的等离子体焰矩。 其特点如下: 工作温度高、同时工作气体为惰性气体,因此原子化条件良好,有利于难熔化合物的分解及元素的激发,对大多数元素有很高的灵敏度。 (2)由于趋肤效应的存在,稳定性高,自吸现象小,测定的线性范围宽。(3)由于电子密度高,所以碱金属的电离引起的干扰较小。 (4)ICP属无极放电,不存在电极污染现象。 (5)ICP的载气流速较低,有利于试样在中央通道中充分激发,而且耗样量也较少。 (6)采用惰性气体作工作气体,因而光谱背景干扰少。 3、掌握特征谱线、共振线、灵敏线、最后线、分析线的含义及其它们之间的内 在联系。(习题3) 4、:由激发态向基态跃迁所发射的谱线称为共振线(resonance line)。共振线 具有最小的激发电位,因此最容易被激发,为该元素最强的谱线。 5、灵敏线(sensitive line) 是元素激发电位低、强度较大的谱线,多是共振 线(resonance line)。 最后线(last line) 是指当样品中某元素的含量逐渐减少时,最后仍能观察到的几条谱线。它也是该元素的最灵敏线。 进行分析时所使用的谱线称为分析线(analytical line)。 由于共振线是最强的谱线,所以在没有其它谱线干扰的情况下,通常选择共振线作为分析线。 发射光谱定性分析的基本原理和常用方法。(习题5 由于各种元素的原子结构不同,在光源的激发下,可以产生各自的特征谱线,其波长是由每种元素的原子性质决定的,具有特征性和唯一性,因此可以通过检查谱片上有无特征谱线的出现来确定该元素是否存在,这就是光谱定性分析的基础。 进行光谱定性分析有以下三种方法: (1)比较法。将要检出元素的纯物质或纯化合物与试样并列摄谱于同一感光板上,在映谱仪上检查试样光谱与纯物质光谱。若两者谱线出现在同一波长位置上,即可说明某一元素的某条谱线存在。本方法简单易行,但只适用于试样中指定组分的定性。

高光谱线性解混的理论与方法及应用研究

高光谱线性解混的理论与方法及应用研究高光谱遥感是遥感领域的重要前沿技术之一。成像光谱仪能够测量散射在数百或数千个光谱通道的瞬时视场内所有物质的电磁能量,它比多光谱相机具有更高的光谱分辨率,覆盖了可见光、近红外光、短波红外线波段(波长范围在 0.3~2.5?m之间)。 高光谱遥感已经广泛应用于资源、灾害、全球变化、极地、环境监测、生态、农业、水文和生物医学等领域。高光谱解混是高光谱遥感图像分析的重要内容之一,是高光谱遥感领域十分关键而具有挑战性的任务。 高光谱成像光谱仪的空间分辨率不高,这一限制条件常导致高光谱图像混合像元的出现,即通常一个像元在瞬时视场内包含了多于一种地物类型的地面信息,形成了混合像元;同时,由于高光谱解混受模型不准确、观测噪声、环境条件、端元不确定以及数据规模等条件限制,使得高光谱解混是一个具有挑战性的不适定性反问题。因此,能否发展具有鲁棒性、稳定性、可行性和准确性的高光谱解混算法,解决高光谱混合像元分解问题,是高光谱图像分析的核心内容。 本文研究高光谱线性解混的理论与方法,以及其在地物识别中的应用。首先综述了高光谱线性解混的国内外研究背景和现状,论文内容、创新点,以及全文的结构安排;然后研究了高光谱线性混合模型与子空间辨识,包括:线性混合模型、高光谱解混的处理流程、高光谱解混的思路与问题、高光谱解混反问题的刻画,以及信号子空间辨识;针对最小误差的高光谱信号辨识(HySime)方法的可靠性,我们进一步研究了特征值子集、特征子空间与相关矩阵之间的关系问题,即约束特征值反问题及相关的最佳逼近问题,给出了由特征值和特征向量恢复相关矩阵的一个充分必要条件,以及最佳逼近问题的解的表达式和求解算法;第三部分总

拉曼光谱、红外光谱、XPS的原理及应用..

拉曼光谱的原理及应用 拉曼光谱由于近几年来以下几项技术的集中发展而有了更广泛的应用。这些技术是:CCD 检测系统在近红外区域的高灵敏性,体积小而功率大的二极管激光器,与激发激光及信号过滤整合的光纤探头。这些产品连同高口径短焦距的分光光度计,提供了低荧光本底而高质量的拉曼光谱以及体积小、容易使用的拉曼光谱仪。 (一)含义 光照射到物质上发生弹性散射和非弹性散射. 弹性散射的散射光是与激发光波长相同的成分.非弹性散射的散射光有比激发光波长长的和短的成分, 统称为拉曼效应当用波长比试样粒径小得多的单色光照射气体、液体或透明试样时,大部分的光会按原来的方向透射,而一小部分则按不同的角度散射开来,产生散射光。在垂直方向观察时,除了与原入射光有相同频率的瑞利散射外,还有一系列对称分布着若干条很弱的与入射光频率发生位移的拉曼谱线,这种现象称为拉曼效应。由于拉曼谱线的数目,位移的大小,谱线的长度直接与试样分子振动或转动能级有关。因此,与红外吸收光谱类似,对拉曼光谱的研究,也可以得到有关分子振动或转动的信息。目前拉曼光谱分析技术已广泛应用于物质的鉴定,分子结构的研究谱线特征 (二)拉曼散射光谱具有以下明显的特征: a.拉曼散射谱线的波数虽然随入射光的波数而不同,但对同一样品,同一拉曼谱线的位移与入射光的波长无关,只和样品的振动转动能级有关; b. 在以波数为变量的拉曼光谱图上,斯托克斯线和反斯托克斯线对称地分布在瑞利散射线两侧, 这是由于在上述两种情况下分别相应于得到或失去了一个振动量子的能量。 c. 一般情况下,斯托克斯线比反斯托克斯线的强度大。这是由于Boltzmann分布,处于振动基态上的粒子数远大于处于振动激发态上的粒子数。 (三)拉曼光谱技术的优越性 提供快速、简单、可重复、且更重要的是无损伤的定性定量分析,它无需样品准备,样品可直接通过光纤探头或者通过玻璃、石英、和光纤测量。此外 1 由于水的拉曼散射很微弱,拉曼光谱是研究水溶液中的生物样品和化学化合物的理想工具。 2 拉曼一次可以同时覆盖50-4000波数的区间,可对有机物及无机物进行分析。相反,若让红外光谱覆盖相同的区间则必须改变光栅、光束分离器、滤波器和检测器 3 拉曼光谱谱峰清晰尖锐,更适合定量研究、数据库搜索、以及运用差异分析进行定性研究。在化学结构分析中,独立的拉曼区间的强度可以和功能集团的数量相关。 4 因为激光束的直径在它的聚焦部位通常只有0.2-2毫米,常规拉曼光谱只需要少量的样品就可以得到。这是拉曼光谱相对常规红外光谱一个很大的优势。而且,拉曼显微镜物镜可将激光束进一步聚焦至20微米甚至更小,可分析更小面积的样品。 5 共振拉曼效应可以用来有选择性地增强大生物分子特个发色基团的振动,这些发色基团的拉曼光强能被选择性地增强1000到10000倍。 (四)几种重要的拉曼光谱分析技术 1、单道检测的拉曼光谱分析技术 2、以CCD为代表的多通道探测器用于拉曼光谱的检测仪的分析技术 3、采用傅立叶变换技术的FT-Raman光谱分析技术 4、共振拉曼光谱分析技术 5、表面增强拉曼效应分析技术 (五) 拉曼频移,拉曼光谱与分子极化率的关系 1、拉曼频移:散射光频与激发光频之差,取决于分子振动能级的改变,所以它是特征的,

光谱分析原理

拉曼光谱、红外光谱、XPS的原理及应用 作者: 3040821025(站内联系TA)发布: 2007-10-26 拉曼光谱的原理及应用 拉曼光谱由于近几年来以下几项技术的集中发展而有了更广泛的应用。这些技术是:CCD 检测系统在近红外区域的高灵敏性,体积小而功率大的二极管激光器,与激发激光及信号过滤整合的光纤探头。这些产品连同高口径短焦距的分光光度计,提供了低荧光本底而高质量的拉曼光谱以及体积小、容易使用的拉曼光谱仪。 (一)含义 光照射到物质上发生弹性散射和非弹性散射. 弹性散射的散射光是与激发光波长相同的成分.非弹性散射的散射光有比激发光波长长的和短的成分, 统称为拉曼效应当用波长比试样粒径小得多的单色光照射气体、液体或透明试样时,大部分的光会按原来的方向透射,而一小部分则按不同的角度散射开来,产生散射光。在垂直方向观察时,除了与原入射光有相同频率的瑞利散射外,还有一系列对称分布着若干条很弱的与入射光频率发生位移的拉曼谱线,这种现象称为拉曼效应。由于拉曼谱线的数目,位移的大小,谱线的长度直接与试样分子振动或转动能级有关。因此,与红外吸收光谱类似,对拉曼光谱的研究,也可以得到有关分子振动或转动的信息。目前拉曼光谱分析技术已广泛应用于物质的鉴定,分子结构的研究谱线特征 (二)拉曼散射光谱具有以下明显的特征: a.拉曼散射谱线的波数虽然随入射光的波数而不同,但对同一样品,同一拉曼谱线的位移与入射光的波长无关,只和样品的振动转动能级有关; b. 在以波数为变量的拉曼光谱图上,斯托克斯线和反斯托克斯线对称地分布在瑞利散射线两侧, 这是由于在上述两种情况下分别相应于得到或失去了一个振动量子的能量。 c. 一般情况下,斯托克斯线比反斯托克斯线的强度大。这是由于Boltzmann分布,处于振动基态上的粒子数远大于处于振动激发态上的粒子数。 (三)拉曼光谱技术的优越性 提供快速、简单、可重复、且更重要的是无损伤的定性定量分析,它无需样品准备,样品可直接通过光纤探头或者通过玻璃、石英、和光纤测量。此外 1 由于水的拉曼散射很微弱,拉曼光谱是研究水溶液中的生物样品和化学化合物的理想工具。 2 拉曼一次可以同时覆盖50-4000波数的区间,可对有机物及无机物进行分析。相反,若

红外光谱与拉曼光谱的区别

红外光谱与拉曼光谱的区别 1) 拉曼谱峰比较尖锐,识别混合物,特别是识别无机混合物要比红外光谱容易。 2) 在鉴定有机化合物方面,红外光谱具有较大的优势,主要原因是红外光谱的标准数据库比拉曼光谱的丰富。 3)在鉴定无机化合物方面,拉曼光谱仪获得400cm-1以下的谱图信息要比红外光谱仪容易得多。所以一般说来,无机化合物的拉曼光谱信息量比红外光谱的大。4)拉曼光谱与红外光谱可以互相补充、互相佐证。 红外光谱与拉曼光谱的比较 1、相同点 对于一个给定的化学键,其红外吸收频率与拉曼位移相等,均代表第一振动能级的能量。因此,对某一给定的化合物,某些峰的红外吸收波数与拉曼位移完全相同,红外吸收波数与拉曼位移均在红外光区,两者都反映分子的结构信息。 2、不同点 (1)红外光谱的入射光及检测光均是红外光,而拉曼光谱的入射光大多数是可见光,散射光也是可见光; (2)红外谱测定的是光的吸收,横坐标用波数或波长表示,而拉曼光谱测定的是光的散射,横坐标是拉曼位移; (3)两者的产生机理不同。红外吸收是由于振动引起分子偶极矩或电荷分布变化产生的。拉曼散射是由于键上电子云分布产生瞬间变形引起暂时极化,是极化率的改变,产生诱导偶极,当返回基态时发生的散射。散射的同时电子云也恢复原态; (4)红外光谱用能斯特灯、碳化硅棒或白炽线圈作光源而拉曼光谱仪用激光作光源;(5)用拉曼光谱分析时,样品不需前处理。而用红外光谱分析样品时,样品要经过前处理,液体样品常用液膜法和液体样品常用液膜法,固体样品可用调糊法,高分子化合物常用薄膜法,体样品的测定可使用窗板间隔为2.5-10 cm的大容量气体池; (6)红外光谱主要反映分子的官能团,而拉曼光谱主要反映分子的骨架主要用于分析生物大分子;(7)拉曼光谱和红外光谱可以互相补充,对于具有对称中心的分子来说,具有一互斥规则:与对称中心有对称关系的振动,红外不可见,拉曼可见;与对称中心无对称关系的振动,红外可见,拉曼不可见。 拉曼光谱和红外光谱的区别 红外光谱和拉曼光谱都属于分子振动光谱,都是研究分子结构的有力手段。红外光谱测定的是样品的透射光谱。当红外光穿过样品时,样品分子中的基团吸收红外光产生振动,使偶极矩发生变化,得到红外吸收光谱。拉曼光谱测定的是样品的发射光谱。当单色激光照射在样品上时,分子的极化率发生变化,产生拉曼散射,检测器检测到的是拉曼散射光。 单色激光照射样品后,产生瑞利散射和拉曼散射。瑞利散射是激光的弹性散射,不负载样品的任何信息。拉曼散射又分为斯托克斯散射和反斯托克斯散射,拉曼散射负载有样品的信息。

红外光谱的原理及应用

红外光谱的原理及应用 (一)红外吸收光谱的定义及产生 分子的振动能量比转动能量大,当发生振动能级跃迁时,不可避免地伴随有转动能级的跃迁,所以无法测量纯粹的振动光谱,而只能得到分子的振动-转动光谱,这种光谱称为红外吸收光谱 红外吸收光谱也是一种分子吸收光谱。当样品受到频率连续变化的红外光照射时,分子吸收了某些频率的辐射,并由其振动或转动运动引起偶极矩的净变化,产生分子振动和转动能级从基态到激发态的跃迁,使相应于这些吸收区域的透射光强度减弱。记录红外光的百分透射比与波数或波长关系曲线,就得到红外光谱 (二)基本原理 1产生红外吸收的条件 (1)分子振动时,必须伴随有瞬时偶极矩的变化。对称分子:没有偶极矩,辐射不能引起共振,无红外活性。如:N2、O2、Cl2 等。非对称分子:有偶极矩,红外活性。 (2)只有当照射分子的红外辐射的频率与分子某种振动方式的频率相同时,分子吸收能量后,从基态振动能级跃迁到较高能量的振动能级,从而在图谱上出现相应的吸收带。 2分子的振动类型 伸缩振动:键长变动,包括对称与非对称伸缩振动 弯曲振动:键角变动,包括剪式振动、平面摇摆、非平面摇摆、扭曲振动 3几个术语 基频峰:由基态跃迁到第一激发态,产生一个强的吸收峰,基频峰; 倍频峰:由基态直接跃迁到第二激发态,产生一个弱的吸收峰,倍频峰; 组频:如果分子吸收一个红外光子,同时激发了基频分别为v1和v2的两种跃迁,此时所产生的吸收频率应该等于上述两种跃迁的吸收频率之和,故称组频。 特征峰:凡是能用于鉴定官能团存在的吸收峰,相应频率成为特征频率。 相关峰:相互可以依存而又相互可以佐证的吸收峰称为相关峰 4影响基团吸收频率的因素 (1 外部条件对吸收峰位置的影响:物态效应、溶剂效应 (2分子结构对基团吸收谱带的影响: 诱导效应:通常吸电子基团使邻近基团吸收波数升高,给电子基团使波数降低。 共轭效应:基团与吸电子基团共轭,使基团键力常数增加,因此基团吸收频率升高,基团与给电子基团共轭,使基团键力常数减小,因此基团吸收频率降低。 当同时存在诱导效应和共轭效应,若两者作用一致,则两个作用互相加强,不一致,取决于作用强的作用。 (3)偶极场效应:互相靠近的基团之间通过空间起作用。 (4)张力效应:环外双键的伸缩振动波数随环减小其波数越高。 (5)氢键效应:氢键的形成使伸缩振动波数移向低波数,吸收强度增强 (6)位阻效应:共轭因位阻效应受限,基团吸收接近正常值。 (7)振动耦合,(8)互变异构的影响 (三)红外吸收光谱法的解析 红外光谱一般解析步骤 1. 检查光谱图是否符合要求; 2. 了解样品来源、样品的理化性质、其他分析的数据、样品重结晶溶剂及纯度; 3. 排除可能的―假谱带‖; 4. 若可以根据其他分析数据写出分子式,则应先算出分子的不饱和度U

红外光谱原理

第二节 红外吸收光谱的基本原理 一、分子的振动与红外吸收 任何物质的分子都是由原子通过化学键联结起来而组成的。分子中的原子与化学键都处于不断的运动中。它们的运动,除了原子外层价电子跃迁以外,还有分子中原子的振动和分子本身的转动。这些运动形式都可能吸收外界能量而引起能级的跃迁,每一个振动能级常包含有很多转动分能级,因此在分子发生振动能级跃迁时,不可避免的发生转动能级的跃迁,因此无法测得纯振动光谱,故通常所测得的光谱实际上是振动-转动光谱,简称振转光谱。 1、双原子分子的振动 分子的振动运动可近似地看成一些用弹簧连接着的小球的运动。以双原子分子为例,若把两原子间的化学键看成质量可以忽略不计的弹簧,长度为r (键长),两个原子分子量为m 1、m 2。如果把两个原子看成两个小球,则它们之间的伸缩振动可以近似的看成沿轴线方向的简谐振动,如图3—2。因此可以把双原子分子称为谐振子。这个体系的振动频率υ(以波数表示),由经典力学(虎克定律)可导出: C ——光速(3×108 m/s ) υ= K ——化学键的力常数(N/m ) μ——折合质量(kg ) μ= 如果力常数以N/m 为单位,折合质量μ以原子质量为单位,则上式可简化为 υ=130.2 双原子分子的振动频率取决于化学键的力常数和原子的质量,化学键越强,相对原子质量越小,振动频率越高。 H-Cl 2892.4 cm -1 C=C 1683 cm -1 C-H 2911.4 cm -1 C-C 1190 cm -1 同类原子组成的化学键(折合质量相同),力常数大的,基本振动频率就大。由于氢的原子质量最小,故含氢原子单键的基本振动频率都出现在中红外的高频率区。 2、多原子分子的振动 1|D|ì2c K m 1m 2m 1m2+ K μ

傅立叶变换红外光谱仪的基本原理

傅立叶变换红外光谱仪的 基本原理及其应用 红外光谱仪是鉴别物质和分析物质结构的有效手段,其中傅立叶变换红外光谱仪(FT-IR)是七十年代发展起来的第三代红外光谱仪的典型代表。它是根据光的相干性原理设计的,是一种干涉型光谱仪,具有优良的特性,完善的功能,并且应用围极其广泛,同样也有着广泛的发展前景。本文就傅立叶变换红外光谱仪的基本原理作扼要的介绍,总结了傅立叶变换红外光谱法的主要特点,综述了其在各个方面的应用,并对傅立叶变换红外光谱仪的发展方向提出了一些基本观点。 关键词:傅立叶变换红外光谱仪;基本原理;应用;发展

目录 摘要................................................................................... I ABSTRACT......................................................................... II 1 傅里叶红外光谱仪的发展历史 (1) 2 基本原理 (4) 2.1光学系统及工作原理 (4) 2.2傅立叶变换红外光谱测定 (6) 2.3傅立叶变换红外光谱仪的主要特点 (7) 3 样品处理 (8) 3.1气体样品 (8) 3.2液体和溶液样品 (8) 3.3固体样品 (8) 4 傅立叶变换红外光谱仪的应用 (9) 4.1在临床医学和药学方面的应用⑷ (9) 4.2在化学、化工方面的应用 (10) 4.3在环境分析中的应用 (11) 4.4在半导体和超导材料等方面的应用⑼ (11) 5 全文总结 (12) 参考文献 (13)

第十讲 高光谱遥感图象混合象元分析

第十讲 高光谱遥感图象混合象元分析 一. 混合象元的概念: 遥感器所获取的地面反射或发射光谱信号是以象元为单位记录的。它是象元所对应的地表物质光谱信号的综合。图象中每个象元所对应的地表,往往包含不同的覆盖类型,他们有着不同的光谱响应特征。而每个象元则仅用一个信号记录这些“异质”成分。若该象元仅包含一种类型,则为纯象元(pure pixel),也称为端元(endmember ),它所记录的正是该类型的光谱响应特征或光谱信号;若该象元包含不止一种土地覆盖类型,则成为混合象元(mixed pixel),它记录的是所对应的不同土地覆盖类型光谱响应特征的综合。由于传感器的空间分辨力限制以及自然界地物的复杂多样性,混合像元普遍存在于遥感图象中。 二. 混合象元模型 光谱混合形式上可以分为致密式(intrinsic )、聚合式(aggregate )和整合式(areal )三种情形(如图),本质上分可以分为线性混合和非线性混合两种模式。线性混合模型假定到达传感器的光子只与一种物质发生作用[rast,1991];当混合元素尺寸小,入射光子与多于一种以上的物质发生作用时,导致非线性混合[smiths,1985; Mustard,1987]。 图 1 1. 线性混合模型 通常情况下,高光谱图象中每个象元都可以近似认为是图象中各个端元的线性混合象元: n Ec n e p +=+=∑=N i i i c 1 (1)

11 =∑=N i i c (2) 10≤≤i c (3) 其中N 为端元数,p 为图象中任意一L 维光谱向量(L 为图象波段数), ][21N e e e E =为N L ?矩阵,其中的每列均为端元向量。t N c c c )(21 =c 为系数向量,i c 表示象元p 中端元i e 所占的比例,n 为误差项。 在误差项n 很小的情况下,满足(1)、(2)和(3)的所有点的集合正好构成一个高维空间的凸集,这些端元则坐落于这个凸面单形体的顶点。以两个波段三个端元为例来说明它们之间的几何关系(图2).从图2可以看出,端元a,b,c 分别位于三角形体的顶点,三角形内部的点则对应着图象中的混合象元.这样,提取高光谱图象的端元问题就转化为求单形体的顶点的问题. 图2 两个波段三个端元的散点图在空间上具有明显的三角形结构 2. 非线性混合模型 三. 端元提取 1. PPI 当把特征空间中的所有散点往一个单位向量u 上投影时,端元就会投影到u 的两侧,而混合象元则会投影到中部。基于这个思想,可以让图象在n 个随机的单位向量上投影,并且记下每个象元被投影到端点的次数,即为纯象元指数(PPI). 波段 i

紫外吸收光谱的基本原理

紫外吸收光谱的基本原理,应用与其特点 紫外吸收光谱的基本原理 吸收光谱的产生 许多无色透明的有机化合物,虽不吸收可见光,但往往能吸收紫外光。如果用一束具有连续波长的紫外光照射有机化合物,这时紫外光中某些波长的光辐射就可以被该化合物的分子所吸收,若将不同波长的吸收光度记录下来,就可获的该化合物的紫外吸收光谱. 紫外光谱的表示方法 通常以波长λ为横轴、吸光度A(百分透光率T%)为纵轴作图,就可获的该化合物的紫外吸收光谱图。 吸光度A,表示单色光通过某一样品时被吸收的程度A=log(I0/I1), I0入射光强度,I1透过光强度; 透光率也称透射率T,为透过光强度I1与入射光强度I0之比值,T= I1/I0透光率T与吸光度A的关系为A=log(1/T) 根据朗伯-比尔定律,吸光度A与溶液浓度c成正比A=εbc ε为摩尔吸光系数,它是浓度为1mol/L的溶液在1cm的吸收池中,在一定波长下测得的吸光度,它表示物质对光能的吸收强度,是各种物质在一定波长下的特征常数,因而是检定化合物的重要数据;c为物质的浓度,单位为mol/L;b为液层厚度,单位为cm。 在紫外吸收光谱中常以吸收带最大吸收处波长λmax和该波长下的摩尔吸收系数εmax来表征化合物吸收特征。吸收光谱反映了物质分子对不同波长紫外光的吸收能力。吸收带的许多无色透明的有机化合物,虽不吸收可见光,但往往能吸收紫外光。如果用一束具有连续波长的紫外光照射有机化合物,这时紫外光中某些波长的光辐射就可以被该化合物的分子所吸收,若将不同波长的吸收光度记录下来,就可获的该化合物的紫外吸收光谱. 通常以波长λ为横轴、吸光度A(百分透光率T%)为纵轴作图,就可获的该化合物的紫外吸收光谱图。 吸光度A,表示单色光通过某一样品时被吸收的程度A=log(I0/I1), I0入射光强度,I1透过光强度; 透光率也称透射率T,为透过光强度I1与入射光强度I0之比值,T= I1/I0透光率T与吸光度A的关系为A=log(1/T) 根据朗伯-比尔定律,吸光度A与溶液浓度c成正比A=εbc ε为摩尔吸光系数,它是浓度为1mol/L的溶液在1cm的吸收池中,在一定波长下测得的吸光度,它表示物质对光能的吸收强度,是各种物质在一定波长下的特征常数,因而是检定化合物的重要数据;c为物质的浓度,单位为mol/L;b为液层厚度,单位为cm。 在紫外吸收光谱中常以吸收带最大吸收处波长λmax和该波长下的摩尔吸收系数εmax来表征化合物吸收特征。吸收光谱反映了物质分子对不同波长紫外光的吸收能力。吸收带的形状、λmax和εmax与吸光分子的结构有密切的关系。各种有机化合形状、λmax 和εmax与吸光分子的结构有密切的关系。各种有机化合物的λmax和εmax都有定值,同类化合物的εmax比较接近,处于一个范围。 紫外吸收光谱是由分子中价电子能级跃迁所产生的。由于电子能级跃迁往往要引起分子中核的运动状态的变化,因此在电子跃迁的同时,总是伴随着分子的振动能级和转动能级的跃迁。考虑跃迁前的基态分子并不是全是处于最低振动和转动能级,而是分布在若干不同的

红外拉曼光谱练习题

红外、拉曼光谱习题 一. 选择题 1.红外光谱是( AE ) A :分子光谱 B :原子光谱 C :吸光光谱 D :电子光谱 E :振动光谱 2.当用红外光激发分子振动能级跃迁时,化学键越强,则( ACE ) A :吸收光子的能量越大 B :吸收光子的波长越长 C :吸收光子的频率越大 D :吸收光子的数目越多 E :吸收光子的波数越大 3.在下面各种振动模式中,不产生红外吸收的是(AC ) A :乙炔分子中对称伸缩振动 B :乙醚分子中不对称伸缩振动 C :CO 2分子中对称伸缩振动 D :H 2O 分子中对称伸缩振动 E :HCl 分子中H -Cl 键伸缩振动 4.下面五种气体,不吸收红外光的是( D ) A:O H 2 B:2CO C:HCl D:2N 5 分子不具有红外活性的,必须是( D ) A:分子的偶极矩为零 B:分子没有振动 C:非极性分子 D:分子振动时没有偶极矩变化 E:双原子分子 6.预测以下各个键的振动频率所落的区域,正确的是( ACD ) A:O-H伸缩振动数在4000~25001 -cm B:C-O 伸缩振动波数在2500~15001 -cm C:N-H 弯曲振动波数在4000~25001 -cm D:C-N 伸缩振动波数在1500~10001 -cm E:C ≡N 伸缩振动在1500~10001 -cm 7.下面给出五个化学键的力常数,如按简单双原子分子计算,则在红外光谱中波数最大者是( B ) A:乙烷中C-H 键,=k 5.1510?达因1 -?cm B: 乙炔中C-H 键, =k 5.9510?达因1 -?cm

C: 乙烷中C-C 键, =k 4.5510?达因1 -?cm D: CH 3C ≡N 中C ≡N 键, =k 17.5510?达因1 -?cm E:蚁醛中C=O 键, =k 12.3510?达因1 -?cm 8.基化合物中,当C=O 的一端接上电负性基团则( ACE ) A:羰基的双键性增强 B:羰基的双键性减小 C:羰基的共价键成分增加 D:羰基的极性键成分减小 E:使羰基的振动频率增大 9.以下五个化合物,羰基伸缩振动的红外吸收波数最大者是( E ) A: B: C: D: E: 10.共轭效应使双键性质按下面哪一种形式改变( ABCD ) A:使双键电子密度下降 B:双键略有伸长 C:使双键的力常数变小 D.使振动频率减小 E:使吸收光电子的波数增加 11.下五个化合物羰基伸缩振动的红外吸收波数最小的是( E ) A: B: C: D: E: 12.下面四个化合物中的C=C 伸缩振动频率最小的是( D ) A: B: C: D: 13.两 个化合物(1) ,(2) 如用红外光谱鉴别,主要依 据的谱带是( C )

红外光谱与拉曼光谱比较

拉曼光谱红外光谱 相同点给定基团的红外吸收波数与拉曼位移完全相同,两者均在红外光区,都反映分子的结构信息 产生机理电子云分布瞬间极化产生诱导偶极振动引起偶极矩或电荷分布变化 入射光可见光红外光 检测光可见光的散射红外光的吸收 谱带范围40-4000cm-1 400-4000cm-1 水可做溶剂不能作为溶剂 样品测试装置玻璃毛细管做样品池不能用玻璃仪器 制样固体样品可以直接测需要研磨制成溴化钾片 拉曼光谱红外光谱 拉曼位移相当于红外吸收频率。红外中能得到的信息在拉曼中也会出现。互补 拉曼光谱也同样有三要素,此外,还有退偏振比。解析三要素(峰位、峰强、峰形) 非极性基团谱带强(S-S、C-C、N-N)极性基团的谱带强烈(C=O、C-Cl) 容易表征碳链振动较容易测定链上的取代基红外光谱又叫做红外吸收光谱,它是红外光子与分子振动、转动的量子化能级共振产生吸收而产生的特征吸收光谱曲线。要产生这一种效应,需要分子内部有一定的极性,也就是说存在分子内的电偶极矩。在光子与分子相互作用时,通过电偶极矩跃迁发生了相互作用。因此,那些没有极性的分子或者对称性的分子,因为不存在电偶极矩,基本上是没有红外吸收光谱效应的。 拉曼光谱一般也是发生在红外区,它不是吸收光谱,而是在入射光子与分子振动、转动量子化能级共振后以另外一个频率出射光子。入射和出射光子的能量差等于参与相互作用的分子振动、转动跃迁能级。与红外吸收光谱不同,拉曼光谱是一种阶数更高的光子——分子相互作用,要比红外吸收光谱的强度弱很多。但是由于它产生的机理是电四极矩或者磁偶极矩跃迁,并不需要分子本身带有极性,因此特别适合那些没有极性的对称分子的检测。 相同点在于:对于一个给定的化学键,其红外吸收频率与拉曼位移相等,均代表第一振动能级的能量。因此,对某一给定的化合物,某些峰的红外吸收波数和拉曼位移完全相同,红外吸收波数与拉曼位移均在红外光区,两者都反映分子的结构信息。拉曼光谱和红外光谱一样,也是用来检测物质分子的振动和转动能级 不同点在于:两者产生的机理不同;红外光谱的入射光及检测光均为红外光,而拉曼光谱的入射光大多数是可见光,散射光也是可见光;红外光谱测定的是光的吸收,而拉曼测定的是光的散射;红外光谱对于水溶液、单晶和聚合物的检测比较困难,但拉曼光谱几乎可以不必特别制样处理就可以进行分析,比较方便;红外光谱不可以用水做溶剂,但是拉曼可以,水似拉曼光谱的一种优良溶剂;拉曼光谱的是利用可见光获得的,所以拉曼光谱可用普通的玻璃毛细管做样品池,拉曼散射光能全部透过玻璃,而红外光谱的样品池需要特殊材料做成的。 本质区别:红外是吸收光谱,拉曼是散射光谱;拉曼光谱光谱与红外光谱两种技术包含的信息通常是互补的。 主要区别:(1)光谱的选择性法则是不一样的,红外光谱是要求分子的偶极矩发生变化才能测到,而拉曼是分子的极化性发生变化才能测到; (2)红外很容易测量,而且信号很好,而拉曼的信号很弱; (3)使用的波长范围不一样,红外光谱使用的是红外光,尤其是中红外,而拉曼可选择的波长很多,从可见光到NIR,都可以使用;(4)拉曼和红外大多数时候都是互相补充的,就是说,红外强,拉曼弱,反之也是如此; (5)在鉴定有机化合物方面,红外光谱具有较大的优势,无机化合物的拉曼光谱信息量比红外光谱的大。 (6)理论基础和检测方法存在明显的不同。我们说物质分子总在不停地振动,这种振动是由各种简正振动叠加而成的。当简正振动能产生偶极矩的变化时,它能吸收相应的红外光,即这种简正振动具有红外活性;具有拉曼活性的简正振动,在振动时能产生极化度的变化,它能与入射光子产生能量交换,使散射光子的能量与入射光子的能量产生差别,这种能量的差别称为拉曼位移,它与分子振动的能级有关,拉曼位移的能量水平也处于红外光谱区。 红外光谱法的检测直接用红外光检测处于红外区的分子的振动和转动能量;而拉曼光谱法的检测是用可见激光来检测处于红外区的分子的振动和转动能量,它是一种间接的检测方法。

相关主题
文本预览
相关文档 最新文档