当前位置:文档之家› 通用自动变速器行星齿轮机构的速比计算

通用自动变速器行星齿轮机构的速比计算

通用自动变速器行星齿轮机构的速比计算
通用自动变速器行星齿轮机构的速比计算

行星传动比及啮合频率计算

行星传动传动比及啮合频率计算 特征频率主要包含转频和啮合频率,根据传动比计算的结果,可以相应的算出每个齿轮相对应的转速n ,则转频60i i f n =,齿轮啮合频率等于该齿轮的转频乘以它的齿数。相互啮合的两个齿轮的啮合频率是相等的。即zi i i f f z =?。而齿轮的振动谱就是以该基频(zi f )波和高次谐波所组成的谱,因此在故障诊断中具有重大意义。又因为相互啮合的两个齿轮的啮合频率是相等的,所以一组行星轮系当中只要计算中心论转速即可。 1 a 1 b 1 c 2 a 2 b 2 c Input Shaft Output Shaft 2 d 1 d 3 d 4 d 齿轮模型 齿轮箱各级齿轮参数 参数 行星齿轮箱 平行轴齿轮箱 一级 二级 高速级 低速级 a 1 b 1 c 1 a 2 b 2 c 2 d 1 d 2 d 3 d 4 模数 1 1 1 1 1 1 1.5 1.5 1.5 1.5 齿数 20 40 100 28 36 100 29 100 90 36 个数 1 3 1 1 4 1 1 1 1 1

n –输入转速; Za1–第一级太阳轮齿数;Zb1 –第一级行星轮齿数;Zc1–第一级内齿圈齿数; Za2 –第二级太阳轮齿数;Zb2 –第二级行星轮齿数;Zc2 –第二级内齿圈齿数; (1) 一级行星轮系: 111111a H c c H a n n z n n z -=-- 其中,n n n a c ==11,0 ,则 )1//(11111+==a c a H b z z n n n =n 6 1 (2) 二级行星轮系: 222 222 a H c c H a n n z n n z -=--其中, 1 22,0H a c n n n ==,则 )1//(22222+==a c a H b z z n n n =232 7 a n 行星轮系级: 传动比i =192/7 (3)平行轴: 中间低速级: 传动比i1= 小 大 n n =100/29 高速级: 传动比i2= 小 大 n n =2.5 平行轴传动比:i=8.6 总传动比:i=232 齿轮箱振动特征频率 1. 啮合频率: 1)转速同步频率 n f = n/60 式中,n 为轴转速(转/分)。 2)定轴齿轮啮合频率 n f = nz/60 式中,n 为轴转速(转/分), r z 为齿轮齿数。 3)行星轮系,啮合频率用下式计算: m f = a b a c b z f f z f ?-=?)( 式中,b n 为行星轮架转速(转/分),c z 为内 齿圈齿数,a f 为太阳轮转频,a z 为太阳轮齿数。 m f =(15.95-1.975)*13=181.675 m f =1.975*92=181.7

行星齿轮传动比计算

行星齿轮传动比计算 在《机械设计》上,行星齿轮求解是通过列一系列方程式求解,其求解过程繁琐容易出错, 其实用不着如此,只要理解了传动比e ab i 的含义,就可以很快地直接写出行星齿轮的传动比, 其关键是掌握几个根据e ab i 的含义推导出来公式,随便多复杂的行星齿轮传动机构,根据这 几个公式都能从头写到尾直接把其传动比写出来,而不要象《机械原理》里面所讲的方法列出一大堆方程式来求解。 一式求解行星齿轮传动比有三个基本的公式 1=+c ba a bc i i ――――――――――――――――――――――――1 a cx a bx a bc i i i = ―――――――――――――――――――――――――2 a cb a bc i i 1= ――――――――――――――――――――――――――3 熟练掌握了这三个公式后,不管什么形式的行星齿轮传动机构用这些公式代进去后就能直接将传动比写出来了。关键是要善于选择中间的一些部件作为参照,使其最后形成都是定轴传动,所以这些参照基本都是一些行星架等 例如象论坛中“大模王”兄弟所举的例子:

在此例中,要求出e ab i =?,如果行星架固定不动的话,这道题目就简单多了,就是一定轴 传动。所以我们要想办法把e ab i 变成一定轴传动,所以可以根据公式a cx a bx a bc i i i =将x 加进去, 所以可以得出:e bx e ax e ab i i i =要想变成定轴传动,就要把x 放到上面去,所以这里就要运用第 一个公式1=+c ba a bc i i 了,所以)1()1(x be x ae e bx e ax e ab i i i i i --==所以现在e ab i 就变成了两个定轴传 动之间的关系式了。定轴传动的传动比就好办了,直接写出来就可以了。 即)1()1())1(1())1(1()1()1(01 c e b d a e c e b d c e a c x be x ae e bx e ax e ab Z Z Z Z Z Z Z Z Z Z Z Z Z Z i i i i i ?-+=?--?--=--== 再例如下面的传动机构: 已知其各轮的齿数为z 1=100,z 2=101,z 2’ =100 ,z 3=99。其输入件对输出件1的传动比i H1 )1(11133 1311H H H H i i i i -===这样就把行星传动的计算转换为定轴传动了,所以将齿数代 入公式得出1H i =10000 最后愿我的这篇小文章能够给大家带来一点点帮助,我就心满意足了,在此感谢我读大学时的机械原理老师沈守范教授。

行星齿轮传动比最简计算方法公式法

行星齿轮传动比计算 在《机械原理》上,行星齿轮求解是通过列一系列方程式求解,其求解过程繁琐容易出错,其实用不着如此,只要理解了传动比e ab i 的含义,就可以很快地直接写出行星齿轮的传动比,其关键是掌握几个根据e ab i 的含义推导出来公式,随便多复杂的行星齿轮传动机构,根据这几个公式都能从头写到尾直接把其传动比写出来,而不要象《机械原理》里面所讲的方法列出一大堆方程式来求解。 一式求解行星齿轮传动比有三个基本的公式 1=+c ba a bc i i ――――――――――――――――――――――――1 a cx a bx a bc i i i = ―――――――――――――――――――――――――2 a cb a bc i i 1= ――――――――――――――――――――――――――3 熟练掌握了这三个公式后,不管什么形式的行星齿轮传动机构用这些公式代进去后就能直接将传动比写出来了。关键是要善于选择中间的一些部件作为参照,使其最后形成都是定轴传动,所以这些参照基本都是一些行星架等 例如象论坛中“大模王”兄弟所举的例子:

在此例中,要求出e ab i =?,如果行星架固定不动的话,这道题目就简单多了,就是一定轴 传动。所以我们要想办法把e ab i 变成一定轴传动,所以可以根据公式a cx a bx a bc i i i =将x 加进去, 所以可以得出:e bx e ax e ab i i i =要想变成定轴传动,就要把x 放到上面去,所以这里就要运用第 一个公式1=+c ba a bc i i 了,所以)1()1(x be x ae e bx e ax e ab i i i i i --==所以现在e ab i 就变成了两个定轴传动之间的关系式了。定轴传动的传动比就好办了,直接写出来就可以了。 即)1()1())1(1())1(1()1()1(01 c e b d a e c e b d c e a c x be x ae e bx e ax e ab Z Z Z Z Z Z Z Z Z Z Z Z Z Z i i i i i ?-+=?--?--=--== 再例如下面的传动机构: 已知其各轮的齿数为z 1=100,z 2=101,z 2’ =100 ,z 3=99。其输入件对输出件1的传动比i H1 )1(11133 1311H H H H i i i i -===这样就把行星传动的计算转换为定轴传动了,所以将齿数代 入公式得出1H i =10000 最后愿我的这篇小文章能够给大家带来一点点帮助,我就心满意足了,在此感谢我读大学时的机械原理老师沈守范教授。 注: H ab i =±所有从动轮齿数的连乘积所有主动轮齿数的连乘积 ( 正负号不表示周转轮系中a 轮和b 轮的实际转向关系,而表示转化轮系中a 轮和b 轮的转向关系。转向相同取正,相反取负。 不能省略正负号,此处正负号关系着传动比的计算数值!)

最新行星齿轮传动比计算资料

行星轮系传动比的计算 【一】能力目标 1.能正确计算行星轮系和复合轮系的传动比。 2.熟悉轮系的应用。 【二】知识目标 1.掌握转化机构法求行星轮系的传动比。 2.掌握混合轮系传动比的计算。 3.熟悉轮系的应用。 【三】教学的重点与难点 重点:行星轮系、混合轮系传动比的计算。 难点:转化机构法求轮系的传动比。 【四】教学方法与手段 采用多媒体教学,联系实际讲授,提高学生的学习兴趣。 【五】教学任务及内容 一、行星轮系传动比的计算 (一)行星轮系的分类 若轮系中,至少有一个齿轮的几何轴线不固定,而绕其它齿轮的固定几何轴线回转,则称为行星轮系。 行星轮系的组成:行星轮、行星架(系杆)、太阳轮 (二)行星轮系传动比的计算 以差动轮系为例(反转法) 转化机构(定轴轮系) T的机构

1 2 3 4 差动轮系:2个运动 行星轮系:, 对于行量轮系: ∴ ∴ 例12.2:图示为一大传动比的减速器,Z 1=100,Z 2=101,Z 2'=100,Z 3=99。求:输入件H 对输出件1的传动比i H1 解:1,3中心轮;2,2'行星轮;H 行星架 给整个机构(-W H )绕OO 轴转动 H H W W W -=111W H H W W W -=222W H H W W W -=333 W 0=-=H H H H W W W H W 13 313 113 )1(Z Z W W W W W W i H H H H H ?'-=--==03=W 13 10Z Z W W W H H -=--11 31 1+== Z Z W W i H H ) (z f W W W W W W i H B H A H B H A H AB =--==0=B W AH H A H H A H AB i W W W W W i -=-=--= 110H AB AH i i -=1

行星齿轮传动比计算(完整资料).doc

【最新整理,下载后即可编辑】 行星轮系传动比的计算 【一】能力目标 1.能正确计算行星轮系和复合轮系的传动比。 2.熟悉轮系的应用。 【二】知识目标 1.掌握转化机构法求行星轮系的传动比。 2.掌握混合轮系传动比的计算。 3.熟悉轮系的应用。 【三】教学的重点与难点 重点:行星轮系、混合轮系传动比的计算。 难点:转化机构法求轮系的传动比。 【四】教学方法与手段 采用多媒体教学,联系实际讲授,提高学生的学习兴趣。【五】教学任务及内容 一、行星轮系传动比的计算 (一)行星轮系的分类

若轮系中,至少有一个齿轮的几何轴线不固定,而绕其它齿轮的固定几何轴线回转,则称为行星轮系。 行星轮系的组成:行星轮、行星架(系杆)、太阳轮 (二)行星轮系传动比的计算 以差动轮系为例(反转法) 转化机构(定轴轮系) T 的机构 1 2 3 4 差动轮系:2个运动 行星轮系:, H H W W W -=111W H H W W W -=222W H H W W W -=333 W 0=-=H H H H W W W H W 13 313 113 )1(Z Z W W W W W W i H H H H H ?'-=--==03=W 1 3 10Z Z W W W H H -=--11 31 1+== Z Z W W i H H ) (z f W W W W W W i H B H A H B H A H AB =--==

对于行量轮系: ∴ ∴ 例12.2:图示为一大传动比的减速器,Z 1 =100,Z 2 =101,Z 2' =100, Z 3 =99。求:输入件H对输出件1的传动比i H1 解:1,3中心轮;2,2'行星轮;H行星架 给整个机构(-W H )绕OO轴转动 = B W AH H A H H A H AB i W W W W W i- = - = - - =1 1 H AB AH i i- =1 2 1 3 2 2 3 1 13 )1 ( ' ? ? ? - = - - = Z Z Z Z W W W W i H H H

轮系及其传动比计算

第八章 轮系及其传动比计算 第四十八讲齿轮系及其分类 如图8—1所示,由一系列齿轮相互啮合而组成的传动系统简称轮系。根据轮系中各齿轮运动形式的不同,轮系分类如下: ? ? ? ? ? ?? ? ? ? ? ? ? ? = = ? ? ? 成 由几个周转轮系组合而 和周转轮系混合而成或 混合轮系:由定轴轮系 ) 行星轮系( ) 差动轮系( 周转轮系(轴有公转) 空间定轴轮系 平面定轴轮系 定轴轮系(轴线固定) 轮系 1 2 F F 图8—1 图8—2 图8—3 定轴轮系中所有齿轮的轴线全部固定,若所 有齿轮的轴线全部在同一平面或相互平行的平 面内,则称为平面定轴轮系,如图8—1所示, 若所有齿轮的轴线并不全部在同一平面或相互 平行的平面内,则称为空间定轴轮系;若轮系 中有一个或几个齿轮轴线的位置并不固定,而 是绕着其它齿轮的固定轴线回转,如图8—2,8 —3所示,则这种轮系称为周转轮系,其中绕着 固定轴线回转的这种齿轮称为中心轮(或太阳 轮),即绕自身轴线回转又绕着其它齿轮的固定 轴线回转的齿轮称为行星轮,支撑行星轮的构图8—4 件称为系杆(或转臂或行星架),在周转轮系中,一般都以中心轮或系杆作为运动的输入或输出构件,常称其为周转轮系的基本构件;周转轮系还可按其所具有的自由度数目作进一步的划分;若周转轮系的自由度为2,则称其为差动轮系如图8—2所示,为了确定这种轮系的运动,须给定两个构件以独立运动规律,若周转轮系的自由度为1,如图8—3所示,则称其为行星轮系,为了确定这种轮系的运动,只须给定轮系中一个构件以独立运动规律即可;在各种实际机械中所用的轮系,往往既包含定轴轮系部分,又包含周转轮系部分,或者由几部分周转轮系组成,这种复杂的轮系称为复合轮系如图8—4所示,该复合轮系可分为左边的周转轮系和右边的定轴轮系两部分。

行星齿轮传动比分析与计算

行星齿轮传动比分析与计算 一、行星轮系传动比的计算 (一)行星轮系的分类 若轮系中,至少有一个齿轮的几何轴线不固定,而绕其它齿轮的固定几何轴线回转,则称为行星轮系。 行星轮系的组成:行星轮、行星架(系杆)、太阳轮 (二)行星轮系传动比的计算 以差动轮系为例(反转法) 转化机构(定轴轮系) T 的机构 1 2 3 4 差动轮系:2个运动 行星轮系: , 对于行量轮系: H H W W W -=111W H H W W W -=222W H H W W W -=333 W 0=-=H H H H W W W H W 13 313 113 )1(Z Z W W W W W W i H H H H H ?'-=--==0 3=W 1 3 10Z Z W W W H H -=--11 31 1+== Z Z W W i H H ) (z f W W W W W W i H B H A H B H A H AB =--==0=B W

∴ ∴ 例12.2:图示为一大传动比的减速器,Z 1=100,Z 2=101,Z 2'=100,Z 3=99。求:输入件H 对输出件1的传动比i H1 解:1,3中心轮;2,2'行星轮;H 行星架 给整个机构(-W H )绕OO 轴转动 ∵W 3=0 ∴ ∴ 若Z 1=99 行星轮系传动比是计算出来的,而不是判断出来的。 AH H A H H A H A B i W W W W W i -=-=--= 110H AB AH i i -=1213 223113)1(' ???-=--= Z Z Z Z W W W W i H H H H H H i Z Z Z Z W W W 13 213210' =--H H i Z Z Z Z W W 13 21321 1'=+- H H i i 13 1100100991011??- =10000 1001009910111 111=??- = = H H i i 1001-=H i

行星齿轮机构传动比计算方法

行星齿轮机构传动比计算方法

Key words: epicyclic gear train; speed ratio; compute way. 随着行星齿轮减速器以及行星齿轮传动在变速箱中的广泛应用,对行星齿轮传动的了解和掌握已成为工程技术人员的必要技能。但是,对于刚接触行星齿轮传动的工程技术人员来说,行星齿轮传动的速比计算比较不容易理解和掌握。本文通过对各类参考资料及教科书中的行星齿轮传动速比计算方法进行总结归纳,并针对常用的最具代表性的2K-H型行星齿轮传动,分别用不同方法对其传动特性方程进行了推导论证。 行星齿轮传动或称周转轮系。根据《机械原理》[1]上的定义,我们可把周转轮系分为差动轮系和行星轮系。为理解方便,本论文所讨论限于2K-H型周转轮系。 关于行星齿轮传动(周转轮系)的速比计算方法,归纳起来有两大类四种方法,分别为由行星架固定法和力矩法组成的分析法;由速度图解法和矢量法组成的图解法[2]。矢量图解法一般适用于圆锥齿轮组成的行星齿轮传动,在此不作介绍;下面分别运用其它三种计算方法对2K-H型周转轮系的传动特性方程(1)进行推导。

1-太阳轮 2-行星轮 3-内齿圈 H -行星架 图1 行星齿轮传动 Fig 1 Epicyclic gear train 0)1(31=++-αωωαωH (1) 结合图1,式中1ω为太阳轮1的转速、H ω为行星架H 转速、3 ω为内齿圈3转速、α为内齿圈3与太阳轮1的齿数比即1 3 Z Z =α。 1 行星架固定法 机械专业教科书上一般介绍的都是此种方法,也可叫转化机构法。其理论是一位名叫Wlies 的科学家于1841年提出的,即“一个机构整体的绝对运动并不影响其内部各构件间的相对运动” [3],就像手表的时针、分针、秒针的相对运动不会因带表人的行动而变化。 如图2所示,其中太阳轮1、行星轮2、内齿圈3、行星架H 的转速分别为H ωωωω、、、321。我们假定整个行星轮系放在一个绕支点O 旋转的圆盘上,此圆盘的转速为 H ω-。那么,此时行星架的转速为()0=-+=H H H H ωωω,相当于行星

定轴轮系传动比的计算

定轴轮系传动比的计算

126 §5-6 定轴轮系传动比的计算 一、轮系的基本概念 ● 轮系:由一系列相互啮合的齿轮组成的传动系统; ● 轮系的分类: 定轴轮系: 所有齿轮轴线的位置固定不动; 周转轮系:至少有一个齿轮的轴线不固定; ● 定轴轮系的分类: 平面定轴轮系:轴线平行; 空间定轴轮系:不一定平行; ● 轮系的传动比: 轮系中首、末两轮的角速度(或转速)之比,包括两轮的角速比的大小和转向关系。 传动比的大小:当首轮用“1”、末轮用“k ” 表示时,其传动比的大小为: i 1k = ω1/ωk =n 1/n k 传动比的方向:首末两轮的转向关系。 相互啮合的两个齿轮的转向关系:

127 二、平面定轴轮系传动比的计算 特点: ●轮系由圆柱齿轮组成,轴线互相平行; ●传动比有正负之分: 首末两轮转向相同为“+”,相反为“-”。 1、传动比大小 设Ⅰ为输入轴,Ⅴ为输出轴; 各轮的齿数用Z 来表示; 角速度用ω表示; 首先计算各对齿轮的 传动比: 所以: 122112z z i ==ωω 32223332z i z ωωωω'''===33434443z i z ωωωω'''===455445z z i == ωω

128 结论: 定轴轮系的传动比等于各对齿轮传动比的连乘积,其值等于各对齿轮的从动轮齿数的乘积与主动轮齿数的乘积之比; 2、传动比方向 在计算传动比时,应计入传动比的符号: 首末两轮转向相同为“+”,相反为“-”。 (1)公式法 式中:m 为外啮合圆柱 齿轮的对数 举例: (2)箭头标注法 采用直接在图中标注箭头的方法来确定首末两轮的 转向,转向相同为“+”,相反为 “-”。 举例: 11211)1(--==k k m k k z z z z i K K ωω

齿轮系传动比计算

齿 轮 系 传 动 比 计 算 1 齿轮系的分类 在复杂的现代机械中,为了满足各种不同的需要,常常采用一系列齿轮组成的传动系统。这种由一系列相互啮合的齿轮(蜗杆、蜗轮)组成的传动系统即齿轮系。下面主要讨论齿轮系的常见类型、不同类型齿轮系传动比的计算方法。 齿轮系可以分为两种基本类型:定轴齿轮系和行星齿轮系。 一、定轴齿轮系 在传动时所有齿轮的回转轴线固定不变齿轮系,称为定轴齿轮系。定轴齿轮系是最基本的齿轮系,应用很广。如下图所示。 二、行星齿轮系 若有一个或一个以上的齿轮除绕自身轴线自转外,其轴线又绕另一个轴线转动的轮系称为行星齿轮系,如下图所示。 1. 行星轮——轴线活动的齿轮. 2. 系杆 (行星架、转臂) H . 3. 中心轮 —与系杆同轴线、 与行星轮相啮合、轴线固定的齿轮 4. 主轴线 —系杆和中心轮所在轴线. 5. 基本构件—主轴线上直接承受 载荷的构件. 行星齿轮系中,既绕自身轴线自转又绕另一固定轴线(轴线O1)公转的齿轮2形象的称为行星轮。支承行星轮作自转并带动行星轮作公转的构件H 称为行星架。轴线固定的齿轮1、3则称为中心轮或太阳轮。因此行星齿轮系是由中心轮、行星架和行星轮三种基本构件组成。显然,行星齿轮系中行星架与两中心轮的几何轴线(O1-O3-OH )必须重合。否则无法运动。 根据结构复杂程度不同,行星齿轮系可分为以下三类: (1)单级行星齿轮系: 它是由一级行星齿轮传动机构构成的轮系。一个行星架及和其上的行星轮及与之啮合的中心轮组成。 (2)多级行星齿轮系:它是由两级或两级以上同类单级行星齿轮传动机构构成的轮系。 (3)组合行星齿轮系:它是由一级或多级以上行星齿轮系与定轴齿轮系组成的轮系。 行星齿轮系 根据自由度的不同。可分为两类: 1450rpm 53.7rpm

行星齿轮传动比计算

创作编号:BG7531400019813488897SX 创作者:别如克* 行星轮系传动比的计算 【一】能力目标 1.能正确计算行星轮系和复合轮系的传动比。 2.熟悉轮系的应用。 【二】知识目标 1.掌握转化机构法求行星轮系的传动比。 2.掌握混合轮系传动比的计算。 3.熟悉轮系的应用。 【三】教学的重点与难点 重点:行星轮系、混合轮系传动比的计算。 难点:转化机构法求轮系的传动比。 【四】教学方法与手段 采用多媒体教学,联系实际讲授,提高学生的学习兴趣。 【五】教学任务及内容 一、行星轮系传动比的计算 (一)行星轮系的分类 若轮系中,至少有一个齿轮的几何轴线不固定,而绕其它齿轮的固定几何轴线回转,则称为行星轮系。

行星轮系的组成:行星轮、行星架(系杆)、太阳轮 (二)行星轮系传动比的计算 以差动轮系为例(反转法) 转化机构(定轴轮系) T 的机构 1 H H W W W -=111W 2 H H W W W -=222W 3 H H W W W -=333 W 4 0=-=H H H H W W W H W 13 313 113 )1(Z Z W W W W W W i H H H H H ?'-=--== 差动轮系:2个运动 行星轮系: 3=W , 1 3 10Z Z W W W H H -=-- 11 31 1+== Z Z W W i H H ) (z f W W W W W W i H B H A H B H A H AB =--== 对于行量轮系:0=B W ∴ AH H A H H A H A B i W W W W W i -=-=--= 110 ∴H AB AH i i -=1 例12.2:图示为一大传动比的减速器,Z 1=100,Z 2=101,Z 2'=100,Z 3=99。求:输入件H 对输出件1的传动比i H1

行星齿轮传动比计算

行星齿轮传动比计算 行星齿轮传动比计算在《机械设计》上,行星齿轮求解是通过列一系列方程式求解,其求解过程繁琐容易出错, ei其实用不着如此,只要理解了传动比的含义,就可以很快地直接写出行星齿轮的传动比,ab ei其关键是掌握几个根据的含义推导出来公式,随便多复杂的行星齿轮传动机构,根据这ab 几个公式都能从头写到尾直接把其传动比写出来,而不要象《机械原理》里面所讲的方法列出一大堆方程式来求解。 一式求解行星齿轮传动比有三个基本的公式 aci,i,1――――――――――――――――――――――――1bc ba aiabxi,bca ―――――――――――――――――――――――――2icx 1ai,bca ――――――――――――――――――――――――――3icb 熟练掌握了这三个公式后,不管什么形式的行星齿轮传动机构用这些公式代进去后就能直接将传动比写出来了。关键是要善于选择中间的一些部件作为参照,使其最后形成都是定轴传动,所以这些参照基本都是一些行星架等 例如象论坛中“大模王”兄弟所举的例子:

ei在此例中,要求出,,,如果行星架固定不动的话,这道题目就简单多了,就是一定轴ab aieabxi传动。所以我们要想办法把变成一定轴传动,所以可以根据公式将x 加进去,i,abbcaicx eieaxi,所以可以得出:要想变成定轴传动,就要把x放到上面去,所以这里就要运用第eabibx exi(1,i)eeacaxaeii,,一个公式了,所以所以现在就变成了两个定轴传i, i,1exababbcbai(1,i)bxbe 动之间的关系式了。定轴传动的传动比就好办了,直接写出来就可以了。 ZZZ1cee,,,,(1(1))(1)exZZZi,i(1)eacaaxaei,,,,即 exabi,i(1)ZZZZ0bxbedede(1(1))(1),,,,,ZZZZbcbc 再例如下面的传动机构: 已知其各轮的齿数为z=100,z=101,z=100 ,z=99。其输入件对输出件1的传动比i122’ 3H1 311i,i,,这样就把行星传动的计算转换为定轴传动了,所以将齿数代 3HH1H1i(1,i)1H13

RaTio行星减速比计算

一级行星减速: V r 为减速机齿圈速度,向量。V c 为减速机1级行星架速度,向量。 V 1为减速机一级太阳齿(驱动齿)速度,向量。表示为: V r=ωr?Rr ; V c=ωc?Rc ; V 1=ω1?R 1 ; Rc=R1+(Rr-R1)/2 =(Rr+R1)/22V c=V r+V 1因此, 2ωc ?Rc =ωr ?Rr +ω1 ?R 1 ; --------- -----①2Rr=M?Zr ;2R1=M?Z 1 ωc ?(Zr+Z1)=ωr ?Zr +ω1 ?Z 1 ; -----------② 二级行星减速: 2级行星架固定,因此有 V r=-V 2 V 2为减速机二级太阳齿(驱动齿)速度,向量。表示为: V r=ωr ?Rr ; V 2=ω2 ?R 2 ; 但因为一级行星齿轮与二级太阳齿角速度相同。 因此, ωr ?Rr =- ω2 ?R 2= - ωc ?R 2; ----------③由齿轮啮合,同理可得: ωr ?Zr = - ωc ?Z 2; -----------------------④由②④整理得: ωr ×Zr= - (ωr ×Zr+ω1 ×Z1) ×Z2/(Zr+Z1) 整理减速比 I =ω1/ ωr =[1+(Zr+Z1)/Z2]×Zr/Z1 行走马达2级行星减速比计算 V r V c V 1 Rr Rc R 1 1级行星减速 V r V 2 Rr R 2 2级行星减速

一级行星减速: V r1为减速机齿圈上半部的速度,向量。V c1为减速机1级行星架速度,向量。 V 1为减速机一级太阳齿(驱动齿)速度,向量。 表示为: V r1=ωr?Rr 1 ; V c1=ωc1?Rc 1 ; V 1=ω1?R 1 ; Rc1=R1+(Rr1-R1)/2 =(Rr1+R1)/2 2V c1=V r1+V 1因此, 2ωc1 ?Rc 1=ωr ?Rr 1+ω1 ?R 1 ; --------- -----①2Rr1=M1?Zr 1 ;2R1=M1?Z 1 ωc1 ?(Zr1+Z1)=ωr ?Zr 1+ω1 ?Z 1 ; -----------② 二级行星减速: V r2为减速机齿圈下半部的速度,向量。 V c2为减速机2级行星架速度,向量。V 2为减速机二级太阳齿速度,向量。表示为: V r2=ωr?Rr 2 ; V c2=ωc2?Rc 2 ; V 2=ωc1?R 2 ; Rc2=R2+(Rr2-R2)/2 =(Rr2+R2)/22V c2=V r2+V 2因此, 2ωc2 ?Rc 2=ωr ?Rr 2+ωc1 ?R 2 ; ---------------③2Rr2=M2?Zr ;2R2=M2?Z 2 ωc2 ?(Zr2+Z2)=ωr ?Zr 2+ωc1 ?Z 2 ; -----------④ 三级行星减速: 3级行星架固定,因此有 V r2=-V 3V 3为减速机三级太阳齿速度,向量。表示为: V r2=ωr ?Rr 2 ; V 3=ωc2 ?R 3 ;因此, ωr ?Rr 2=- ωc2 ?R 3;-----------------------⑤ 由齿轮啮合,同理可得: ωr ?Zr 2= - ωc2 ?Z 3; ----------------------⑥ 由②④⑥整理消去ωc1和ωc2得减速比: I =–ω1/ ωr = [(Zr2+Z2)/Z3+1](Zr1+Z1)Zr2/(Z1×Z2)+Zr1/Z1 行走马达3级行星减速比计算 V r 1 V c 1 V 1 Rr1 Rc1 R 1 1级行星减速 V r2 V 3 Rr2 R 3 3级行星减速 V r2 V c2 V Rr2 Rc2 R 2 2级行星减速

齿轮系地传动比计算

第7章齿轮系的传动比计算 本章主要介绍了轮系的概念及分类;各类轮系传动比的计算方法;轮系的功用;简要介绍了设计行星轮系时,其各轮齿数和行星轮数目的选择问题;以及几种其他的行星传动机构。 7.1 基本要求 1、能正确划分轮系,能正确计算定轴轮系、周转轮系、复合轮系的传动比; 2、对轮系的主要功用有清楚的了解; 3、了解设计行星轮系时,其各轮齿数和行星轮数目的选择应满足的四个条件; 4、对其他行星齿轮传动有一般了解。 7.2重点和难点提示 本章重点: 周转轮系及复合轮系传动比的计算。 本章难点: 根据相对运动原理,将周转轮系转化为假想的“定轴轮系”的方法;如何将复合轮系正确划分为若干个基本轮系。 1、轮系及其分类

由一系列齿轮组成的传动装置称为轮系。 根据轮系运动时其中各个齿轮轴线的位置是否固定,可以将轮系分为定轴轮系、周转轮系及复合轮系三类。 (1)定轴轮系 所有齿轮几何轴线的位置在运转过程中均固定不变的轮系,称为定轴轮系。 (2)周转轮系 在运转过程中至少有一个齿轮的几何轴线位置不固定,而是绕着其它齿轮的固定轴线回转的轮系,称为周转轮系。 在周转轮系中,通常以中心轮或系杆作为运动的输入或输出构件,故又称其为周转轮系的基本构件。基本构件都是绕着同一固定轴线回转的。 根据周转轮系所具有的自由度数目的不同,周转轮系可进一步分为行星轮系和差动轮系两类。行星轮系的自由度为1,差动轮系的自由度为2 。 此外,周转轮系还可根据其基本构件的不同加以分类。设轮系中的中心轮用K表示,系 杆用H表示。若在一个轮系中,基本构件为两个中心轮和系杆H,通常称其为2K-H 型周转轮系。若一个轮系中,基本构件是三个中心轮,而行星架H只起支持行星轮的作用,不

轮系及其传动比计算

第八章轮系及其传动比计算 第四十八讲齿轮系及其分类 如图8—1所示,由一系列齿轮相互啮合而组成的传动系统简称轮系。根据轮系中各齿轮运动形式的不同,轮系分类如下: 图8—1 图8—2 图8—3 定轴轮系中所有齿轮的轴线全部固定,若所 有齿轮的轴线全部在同一平面或相互平行的平 面内,则称为平面定轴轮系,如图8—1所示, 若所有齿轮的轴线并不全部在同一平面或相互 平行的平面内,则称为空间定轴轮系;若轮系 中有一个或几个齿轮轴线的位置并不固定,而 是绕着其它齿轮的固定轴线回转,如图8—2,8 —3所示,则这种轮系称为周转轮系,其中绕着 固定轴线回转的这种齿轮称为中心轮(或太阳 轮),即绕自身轴线回转又绕着其它齿轮的固定轴线回转的齿轮称为行星轮,支撑行星轮的构 图8—4 件称为系杆(或转臂或行星架),在周转轮系中,一般都以中心轮或系杆作为运动的输入或输出构件,常称其为周转轮系的基本构件;周转轮系还可按其所具有的自由度数目作进一步的划分;若周转轮系的自由度为2,则称其为差动轮系如图8—2所示,为了确定这种轮系的运动,须给定两个构件以独立运动规律,若周转轮系的自由度为1,如图8—3所示,则称其为行星轮系,为了确定这种轮系的运动,只须给定轮系中一个构件以独立运动规律即可;在各种实际机械中所用的轮系,往往既包含定轴轮系部分,又包含周转轮系部分,或者由几部分周转轮系组成,这种复杂的轮系称为复合轮系如图8—4所示,该复合轮系可分为左边的周转轮系和右边的定轴轮系两部分。

第四十九讲 定轴轮系的传动比 1、传动比大小的计算 由前面齿轮机构的知识可知,一对齿轮: i 12 =ω1 /ω2 =z 2 /z 1 对于齿轮系,设输入轴的角速度为ω1,输出轴的角速度为ωm ,按定义有: i 1m =ω1 /ωm 当i 1m >1时为减速, i 1m <1时为增速。 因为轮系是由一对对齿轮相互啮合组成的,如图8—1所示,当轮系由m 对啮合齿轮组成时,有: 2、首、末轮转向的确定 因为角速度是矢量,故传动比计算还有首末两轮 的转向问题。对直齿轮表示方法有两种。 1)用“+”、“-”表示 适用于平面定轴轮系,由于所有齿轮轴线平行, 故首末两轮转向不是相同就是相反,相同取“+”表 示,相反取“-”表示,如图8—5所示,一对齿轮外 啮合时两轮转向相反,用“-”表示;一对齿轮内啮 合时两轮转向相同,用“+”表示。可用此法逐一对 各对啮合齿轮进行分析,直至确定首末两轮的转向关 系。设轮系中有m 对外啮合齿轮,则末轮转向为(-1)m , 此时有: 积所有主动轮齿数的连乘积所有从动轮齿数的连乘m m i )1(1-= 图8—5 2)画箭头 如图8—6所示,箭头所指方向为齿轮上离我们最近一点的速度方向。 外啮合时:两箭头同时指向(或远离)啮合点。头头相对或尾尾相对。 内啮合时:两箭头同向。 对于空间定轴轮系,只能用画箭头的方法来确定从动轮的转向。 (1)锥齿轮,如图8—7所示,可见一对相互啮合的锥齿轮其转向用箭头表示时箭头方向要么同时指向节点,要么同时背离节点。 (2)蜗轮蜗杆,由齿轮机构中蜗轮蜗杆一讲的知识可知,一对相互啮合的蜗轮蜗杆其转向可用左右手定则来判断,如图8—8所示。 (3)交错轴斜齿轮,用画速度多边形确定,如图8—9所示。 图8—6 图8—7 图8—8 图8—9 例一:已知如图8—10所示轮系中各轮齿数, 求传动比i 15。 解:1.先确定各齿轮的转向,用画箭头的方 法可确定首末两轮转向相反。 2. 计算传动比

行星轮系传动比的计算

第二节行星轮系传动比的计算 行星轮系是一种先进的齿轮传动机构,具有结构紧凑、体积小、质量小、承载能力大、传递功率范围及传动范围大、运行噪声小、效率高及寿命长等优点。行星轮系在国防、冶金、起重运输、矿山、化工、轻纺、建筑工业等部门的机械设备中,得到越来越广泛的应用。 一、行星轮系的组成 主要由行星轮g、中心轮k及行星架H组成。其中行星轮的个数通常为2~6个。但在计算传动比时,只考虑1个行星轮的转速,其余的行星轮计算时不用考虑,称为虚约束。它们的作用是均匀地分布在中心轮的四周,既可使几个行星轮共同承担载荷,以减小齿轮尺寸;同时又可使各啮合处的径向分力和行星轮公转所产生的离心力得以平衡,以减小主轴承内的作用力,增加运转平稳性。 行星架是用于支承行星轮并使其得到公转的构件。 中心轮中,将外齿中心轮称为太阳轮,用符号a表示,将内齿中心轮称为内齿圈,用符号b表示。 二、行星轮系的分类

根据行星轮系基本构件的组成情况,可分为三种类型:2K-H型、3K 型、K-H-V型。2K-H型具有构件数量少,传动功率和传动比变化范围大,设计容易等优点,因此应用最广泛。3K型具有三个中心轮,其行星架不传递转矩,只起支承行星轮的作用。 行星轮系按啮合方式命名有NGW、NW、NN型等。N表示内啮合,W表示外啮合,G表示公用的行星轮g。典型行星齿轮传动机构的基本特性见表37-1。 三、行星轮系传动比的计算 行星轮系与定轴轮系的根本区别在于行星轮系中具有转动的行星架,从而使得行星轮系既有自转,又有公转。因此,行星轮系的传动比的计算不能用定轴轮系的计算方法来计算。 按照相对运动原理(反转法),假设行星架H不动,即绕行星架转动中心给系统加一个(-ωH)角速度,则可将行星轮系转化为假想的定轴轮系,这个假想的定轴轮系称为行星轮系的转化轮系。转化后的定轴轮系和原周转轮系中各齿轮的转速关系为:

行星齿轮机构传动比计算

行星齿轮机构传动比计算 图1 行星齿轮机构的结构简图 行星齿轮传动具有质量小、体积小、传动比大以及传动平稳和传动效率高等优点,因而广泛应用于各种机械的传动系统中。计算各种类型的行星齿轮传动机构的传动比主要有两种计算传动比的方法:一是“转化机构法”;二是“速度图解法”。在此采用转化机构法针对图1形式的行星机构传动比进行计算。 转化机构法计算行星机构传动比的方法的基本思想是:根据相对原理,如果给整个行星齿轮传动加上一个与行星架H 的角速度H ω大小相等方向相反的公共角速度H ω-,行星齿轮传动中各个构件之间的相对运动关系仍然不变。但是,原来以角速度H ω运动的行星架H 就变成 静止不动的构件,即其相对角速度0H H H H ωωω=-=。于是,该行星齿 轮传动就转化为定轴齿轮传动。这样便可以用定轴齿轮传动的传动比公式计算其传动比。

总传动比 1 a b i ωω= ,其中1a ω、b ω为主动件和被动件的角速度 根据该计算方法的基本思想,结合图1的具体结构,得到第一级传动比为: 1111111 a H b b H a z i z ωωωω-= =-- (1) 同理第二级和第三级传动比分别为: 2222222 a H b b H a z i z ωωωω-= =-- (2) 3333333 a H b b H a z i z ωωωω-= =-- (3) 根据图1中的实际结构,及三个内齿圈连接为一体,且第三级行星架H3固定, 所以有123b b b b ωωωω===,30H ω= , 12H a ωω= ,23H a ωω= (4) 由(3)式可得3333233 b b a b b H a a z z z z ωωωω=- ?=-?= (5) 把(5)式代入(2)式可得 3 22 2323222 3 b a b a H a b b b H a b b a z z z z z z ωωωωωωωω+ ?-==--+? 所以得23323321233233 ()[(1)]b b b b b b a b b b b H a a a a a a z z z z z z z z z z z z ωωωωωω=- ?+?-?=-??++= (6) 把(6)式代入(1)式可得: 2331112331 233111233 [ (1)] [(1)]b b b a b a H a a a b b b b b H a b b a a a z z z z z z z z z z z z z z ωωωωωωωω+??++-==--+??++ (7) 式(7)可化简为:123323323323312332331 233 233 [(1)][(1)]1[ (1)]1[ (1)]a b b b b b b b a a a a a a b b b b b b b a a a a a a a z z z z z z i z z z z z z z z z z z z z z z z z z z z ωω+?+++?++==-+?+++?++ (8)

行星齿轮减速器de设计讲解

https://www.doczj.com/doc/899904042.html,/view/5768e220bcd126fff7050bec.html 1 引言 行星齿轮传动在我国已有了许多年的发展史,很早就有了应用。然而,自20世纪60年代以来,我国才开始对行星齿轮传动进行了较深入、系统的研究和试制工作。无论是在设计理论方面,还是在试制和应用实践方面,均取得了较大的成就,并获得了许多的研究成果。近20多年来,尤其是我国改革开放以来,随着我国科学技术水平的进步和发展,我国已从世界上许多工业发达国家引进了大量先进的机械设备和技术,经过我国机械科技人员不断积极的吸收和消化,与时俱进,开拓创新地努力奋进,使我国的行星传动技术有了迅速的发展[1] 。 2 设计背景 试为某水泥机械装置设计所需配用的行星齿轮减速器,已知该行星齿轮减速器的要求输入功率为 1 740KW p =,输入转速11000rpm n = ,传动比为35.5p i =,允许传动 比偏差0.1P i ?=,每天要求工作16小时,要求寿命为2年;且要求该行星齿轮减速器传动结构紧凑,外廓尺寸较小和传动效率高。 3 设计计算 3.1选取行星齿轮减速器的传动类型和传动简图 根据上述设计要求可知,该行星齿轮减速器传递功率高、传动比较大、工作环境恶劣等特点。故采用双级行星齿轮传动。2X-A 型结构简单,制造方便,适用于任何工况下的大小功率的传动。选用由两个2X-A 型行星齿轮传动串联而成的双级行星齿轮减速器较为合理,名义传动比可分为17.1p i =,25p i =进行传动。传动简图如图1所示:

图1 3.2 配齿计算 根据2X-A 型行星齿轮传动比 p i 的值和按其配齿计算公式,可得第一级传动的内 齿轮1b ,行星齿轮1c 的齿数。现考虑到该行星齿轮传动的外廓尺寸,故选取第一级中心齿轮1a 数为17和行星齿轮数为3p n =。根据内齿轮()11 1 1 b a p i z z =- ()17.1117103.7103b z =-=≈ 对内齿轮齿数进行圆整后,此时实际的P 值与给定的P 值稍有变化,但是必须控制在其传动比误差范围内。实际传动比为 i =1+ 1 1 za zb =7.0588 其传动比误差i ?=ip i ip -=7.17.0588 7.1 -=5℅ 根据同心条件可求得行星齿轮c1的齿数为 ()1 11243c b a z z z =-= 所求得的1ZC 适用于非变位或高度变位的行星齿轮传动。再考虑到其安装条件为: 11 2 za zb += C =40 ()整数 第二级传动比 2p i 为 5,选择中心齿轮数为23和行星齿轮数目为3,根据内齿轮zb1

行星轮系传动比的计算

12.2 行星轮系传动比的计算 12.2.1 行星轮系的分类 若轮系中,至少有一个齿轮的几何轴线不固定,而绕其它齿轮的固定几何轴线回转,则称为行星轮系。如图所示的轮系中,齿轮2除绕自身轴线回转外,还随同构件H一起绕齿轮1的固定几何轴线回转,该轮系即为行星轮系。齿轮2称为行星轮,H称为行星架或系杆,齿轮1、3称为太阳轮。 运动演示拆装 通常将具有一个自由度的行星轮系称为简单行星轮系,如下图所示;将具有两个自由度的行星轮系称为差动轮系,如下图所示。

12.2.2 行星轮系的传动比计算 不能直接用定轴轮系传动比的公式计算行星轮系地传动比。可应用转化 大小相等而轮系法,即根据相对运动原理,假想对整个行星轮系加上一个与n H ,则行星架被固定,而原构件之间的相对运动关系保持方向相反的公共转速-n H 不变。这样,原来的行星轮系就变成了假想的定轴轮系。这个经过一定条件转化得到的假想定轴轮系,称为原行星轮系的转化机构。 转化轮系运动演示

利用定轴轮系传动比的计算方法,可列出转化轮系中任意两个齿轮的传动比。 1,3轮的传动比为: 一般地,n G 和n K 为行星轮系中任意两个齿轮G和K的转速, 在使用上式时应特别注意: (1)公式只适用于圆柱齿轮组成的行星轮系。对于由圆锥齿轮组成的行星轮系,当两太阳轮和行星架的轴线互相平行时,仍可用转化轮系法来建立转速关系式,但正、负号应按画箭头的方法来确定。并且,不能应用转化机构法列出包括行星轮在内的转速关系。 (2)将已知转速代入公式时,注意“+”、“-”号。一方向代正,另一方向代负号。求得的转速为正,说明与正方向一致,反而反之。 运动演示拆装

相关主题
文本预览
相关文档 最新文档