当前位置:文档之家› 风力发电机状态监测与故障诊断技术综述

风力发电机状态监测与故障诊断技术综述

风力发电机状态监测与故障诊断技术综述
风力发电机状态监测与故障诊断技术综述

风力发电机状态监测与故障诊断技术综述

发表时间:2018-10-31T18:58:28.857Z 来源:《防护工程》2018年第19期作者:李博华[导读] 随着信息技术发展速度的不断加快,信息技术的应用范围也开始变得越来越广了,在新能源领域信息技术得到了非常好的应用

华电山东乳山新能源有限公司

摘要:随着信息技术发展速度的不断加快,信息技术的应用范围也开始变得越来越广了,在新能源领域信息技术得到了非常好的应用,风力发电技术作为新能源领域中的一个非常重要的组成部分,其的故障诊断技术和发电机状态监督在风力发电运行过程中发挥的作用是非常重要的。本文就风力发电机故障诊断技术和状态监督进行分析,希望能够在一定程度上促进我国风力发电行业的发展。

关键词:风力发电;发电机;状态监测;故障诊断;机械故障;电气故障;振动故障

目前我国风力发电技术在发展过程中仍旧存在着很多的问题,其中对风力发电影响最大的就是风力发电机故障诊断技术和状态监测这两个问题。要想让风力发电产业得到更加快速的发展,故障诊断监测系统必须要对发电机各个零件的运行状态进行实时监督,只有这样才能够及时的根据风力发电机的电压、温度、震动来对发电机的状况进行准确的诊断,才能够在发电机出现问题的第一时间就能够及时的找到解决办法,我国风力发电机的运行效率才能够得到提升。

1风力发电机常见运行故障监测及诊断

双馈风力发电机常见运行故障可分为机械故障和电气故障2类:机械故障包括发电机振动过大、轴承故障、轴系不对中故障、转子质量不平衡故障、机座松动、转子偏心故障等;电气故障包括线圈短路、绝缘损坏、气隙不均衡、三相不平衡等。

1.1机械故障信号监测与诊断

通常可通过监测发电机的振动、温度、转速等信号诊断发电机轴承故障、轴系不对中、转子质量不平衡、机座松动、转子偏心等机械故障。

一旦发电机在运行的过程中出现故障的化,我们可以通过发电机输出的电流、功率、电压等的不同频率来对发电机的故障进行分析。如果是发电机的轴承出现问题的话,那么番点击在进行运行的过程中就非常出现高频率的震动,一般情况下发动机出现故障的高频率震动,是发动机正常震动的一千多倍,如果发动机故障过于严重的话,那么发动机的震动可能就会变得更严重,这个时候故障诊断系统就可以通过振动传感器来获取外界的信号,才能够及时的发动机的故障机进行处理。

1.2电气故障信号监测与诊断

如果是发动机电气出现问题的话,那么故障检测系统在对发电机进行检测的过程中,就可以通过对发电机定子线圈的电压、温度等来对发电机的故障进行判断,能够引起发电机电气出现故障的原因主要有相间短路、匝间短路、和层间短路等,因此一旦发现是翻地啊你电气出现故障的化,就会重点对发电机进行短路检测。在进行故障诊断的过程中,我们可以通过发电机的电压和电流、转子扭矩来对发电机的运行状态进行测量。

如果通过检测我们发现时由于相间短路的原因导致发电机再出现故障问题的话,我们就可以发现发电机的温度和电磁场都会发生非常大的变化,故障的特征也会随着时间的增加而变得特别明显。要想快速的检测出发电机出现故障的原因,我们科技直接对发电机的振动、温度和电流进行采集,这样就能够在最短的时间之内诊断出发电机短路故障了。相间短路一般主要包括三相短路、单相短路、两相短路。发电机电气参量监测技术是通过测量发电机电流、电压和功率的高频分量实现对发电机机械故障的分析和判断。 2仿真计算及故障模拟实验研究现状

2.1风力发电机数学建模仿真

对双馈风力发电机故障诊断技术的研究主要包括故障仿真和实验模拟2种途径。常用的故障仿真建模方法主要从“场”和“路”的角度对双馈风力发电机建立物理模型和数学模型。从“路”的角度出发,根据多回路理论和发电机的数学方程,在MATLAB/Simulink中建立双馈发电机的数学模型,可模拟双馈发电机的正常情况和故障情况,李俊卿等通过该方法模拟了定子、转子绕组匝间短路故障,结果表明定子线电流相位差、负序电流、负序电流与正序电流之比均可以作为判断匝间短路的特征参量。王德艳和王栋采用多回路理论建立了双馈风力发电机绕组匝间短路故障数学模型,分析了不同故障程度下的定子支路电流、定子线电压、定子线电流的变化特征,结果表明:发电机故障相电流远大于正常状态时的相电流;三相电流之间的相位不再对称;绕组故障程度与相电流大小成正比。

2.2风力发电机仿真实验平台

对风力发电机进行故障监测及故障诊断技术的研究时,可以搭建风力发电机故障模拟平台并进行故障信号模拟,验证各故障诊断算法。D.Casadei等搭建了风力发电机实验台,通过在定子或转子某相串联1个与该相电阻值相等的电阻完成定子不平衡故障或转子不平衡故障模拟实验。Yang等人搭建的实验台可以模拟发电机定子绕组短路故障、发电机转子不平衡故障、传动系机械故障等,该平台也能通过连接外部电阻箱来模拟转子三相不平衡故障。Simon Jonathan Watsom等建立了基于振动信号分析的双馈风力发电机的监测与诊断系统的实验平台。Lucian Mihet Popa等搭建的风力发电机的实验模拟平台含有滑环的双馈式绕线感应发电机,实验平台模拟的故障主要包括定子绕组匝间短路故障、定子不平衡和转子不平衡故障。魏书荣等搭建了双馈风力发电机定子内部故障实验装置,发电机的定子出线端与可调节负载、录波仪连接,用于模拟双馈发电机定子内部故障。

3风力发电机状态监测系统

传统的风力发电机在线状态监测系统往往仅采集发电机的振动信号,通过分析振动信号判断机组各部件的运行状态,如瑞典SKF公司研制的IMX-W在线监测系统、新西兰况德实仪器公司研制的Turningpoint在线监测系统、丹麦B&K公司研制的PULSEE噪声振动分析系统、美国DE公司Bent-iy分部研制的Trendmadter在线状态监测系统、德国PRUFTECHNIK公同研制的VIBXPERT、VIBROWEB-XP系统。德国FAG|公司研制FAGX1系统等。国内有西北工业大学研制的CDMA-6100状态监测与故障诊断系统|、中自庆安的CS2000风力发电机组状态监测与分析系统.北京威锐达测控系统有限公司研制VibDAQ网络化离线监测系统,东方振动和噪声研究所研制的DASP监测系统,阿尔斯通创为实技术发展有限公司研制的S8100系统等。

风力发电机状态监测与故障诊断技术分析

风力发电机状态监测与故障诊断技术分析 摘要:目前,全世界因煤炭、石油等传统燃料型能源不可再生且对环境污染危害性大,对其开采利用进行了严格管控,并将研究方向转至如风能、太阳能、地热能等清洁能源。风力发电作为风能利用的重要方式,在用风电场数量与增量逐年递增,设备故障诊断和维护保养工作已成为亟待解决的问题。此外,如何提高故障诊断和维护技术也成为各风力发电企业的重要研究工作。本文以风力发电机组故障诊断为例,从不可控的风力风速影响和风力发电机组故障类型、故障机理或产生部位、诊断处理等方面寻求快速诊断检修方法,力求缩短维修时间,降低检修成本,提高风力发电机组安全在线运行时长,确保风力发电质量和电能。 关键词:风力发电机组;状态监测;故障诊断技术 引言 近年来,随着工业的发展,环境污染日益严重,新能源风力发电在各行业领域应用日益广泛。一般风力发电场多建于偏远地区,地处环境恶劣,无法应用有效监测技术解决风力发电机组各种故障与信号不统一等问题。因此,基于风力发电机不同监测数据,全面分析风力发电机组运行时遇到的故障,深入研究风力发电机组监测与故障技术具有非常重要的意义。 1风力发电机采用状态监测和故障诊断技术的必要性 为了便于风能的获取,风场一般都设在比较偏远的山区或者近海区域,所以风力发电机会受到阵风、侵蚀等因素的影响。风力发电机组一般设在50-120m的高空,在机组运行时需要承受较大的受力载荷。由于设计不合理、焊接质量缺陷等原因会引发机组运行故障,当出现阵风时,会对叶片造成短暂而频繁的冲击载荷,而叶片受到的荷载又会对传动链上的部件产生不同程度的影响而引发故障,其中风轮、主轴、齿轮箱、发电机等受到的影响较大。计划维修和事后维修是风力发电机比较常用的维修方式,但是这两种维修方式都存在一定的缺陷,计划维修的检修范围不大,维修内容不详细,无法全面的反应出机电设备的运行状况。而事后维修的维修时间长,维修效率低,所以造成的经济损失较大。所以需要提高风力发电机维修水平,采用状态监测和故障诊断技术可大大提高风力发电机运行的稳定性和可靠性。 2风力发电机系统的状态监测现状分析 近年来以风力发电为代表的可再生能源产业得到了快速发展,不断完善的风力发电技术凭借自身独特的优势为风力发电规模的不断扩大提供了支撑,但风力发电系统在运行时的安全问题逐渐凸显,需对风力发电系统进行科学有效的监控,确保及时发现潜在隐患及故障,进而保证系统正常运行。风力发电过程中将风能转化为电能主要通过使用风机实现(电磁感应原理),再对转换后的电能进行调压等操作后向电网中的用户输送。目前我国的风力发电机组建设较为完善,基于恒速恒频的风力发电机组进一步完善了风力发电系统。目前变桨距技术在监测风力发电机系统的状态过程中较为常用,该技术能够根据实际情况动态调整风机叶轮转速,并以实际风速变化情况为依据对变流技术进行调整,以确保风力发电输出频率的恒定。风力发电质量在引入变速恒频技术(在风力发电并网系统中应用较多)后得以显著提高。 3风力发电机运行中存在的故障问题 3.1风机叶片故障

风力发电机电气故障诊断及维修实例分析

风力发电机电气故障诊断及维修实例分析 朱刚1 周艳华2 (1.神华国华江苏风电有限公司;2.江苏省东台市供电公司江苏东台224200) Abstract: The wind turbine integrated computer, automatic control, optical fiber communication, the technical achievements of the power frequency converters, servo drives, precision, detection, and new mechanical structure, high flexibility, high precision and a high degree of automation features. In today's energy industry, almost all managers and technical staff have been recognized that wind turbine with conventional forms of electricity generation in alternative energy and environmental protection are unmatched advantage, universal access to wind power technology is the future of human survival and development the only way. Keywords: wind turbine fault diagnosis maintenance instance 风力发电机综合了电子计算机、自动控制、光纤通信、电力 变频变流、伺服驱动、精密检测与新型机械结构等方面的技术成 果,具有高柔性、高精度和高度自动化的特点。在当今能源行业, 几乎所有的管理者和技术人员都已经认识到风力发电机在能源 替代和环境保护等方面都有着常规发电形式所无法比拟的优势, 全面普及风力发电等新能源技术是未来人类生存和发展的必由 之路。既然作为一种机电一体化的复杂系统,出现各种各样的故 障亦是必然,如何在现场条件下正确、快速地分析故障原因,发 现故障部位进而快速处理故障,使故障风机恢复正常投入运行, 提高设备的可利用率,是现场维修人员需要深入探讨的问题。 1 风力发电机电气故障的分类 风力发电机的电气故障可按故障的性质、现象、原因或者后 果等进行分类。根据故障发生的部位不同,可以分为硬件故障和

风力发电机用专业英语中文对照

风力机 wind turbine 风电场 wind power station wind farm 风力发电机组 wind turbine generator system WTGS 水平轴风力机 horizontal axis wind turbine 垂直轴风力机 vertical axis wind turbine 轮毂(风力机) hub (for wind turbine) 机舱 nacelle 支撑结构 support structure for wind turbine 关机 shutdown for wind turbine 正常关机 normal shutdown for wind turbine 紧急关机 emergency shutdown for wind turbine 空转 idling 绝对湿度 absolute humidity 加速试验 accelerated test 加速 accelerating 加速度幅值 acceleration amplitude 验收试验 acceptance test

精度(风力发电机组) accuracy(for WTGS) 确认 acknowledgement 声的基准风速 acoustic reference wind speed 临界功率 activation power(for wind turbines) 临界转速 activation rotational speed 有功电流 active current 有功功率 active power 主动偏航 active yawing 齿轮的变位 addendum modification on gears 地址 address 可调钳 adjustable pliers 调整板 adjusting plate 风轮空气动力特性 aerodynamic characteristics of rotor 气动弦线 aerodynamic chord of airfoil 老化试验 ageing tests 空气制动系 air braking system 空气湿度 air humidity 透气性 air permeability 翼型 airfoil 接闪器 air-termination system 告警 alarm 交流电流 alternating current 交流电机 alternating current machine 交流电压 alternating voltage 海拔 altitude 环境温度 ambient temperature 放大器 amplifier 幅值 amplitude

风电机组状态监测与故障诊断相关技术研究

新能源与风力发电? EMCA2014,41(2 =============================================================================================== )风电机组状态监测与故障诊断相关技术研究 张文秀1, 武新芳2 (1.南京理工大学能源与动力工程学院,江苏南京 210094; 2.上海电力学院能源与机械工程学院,上海 200090) 摘 要:对风电机组进行状态监测和故障诊断,可有效降低机组的运行维护成本,保证机组的安全稳定运行三首先概述了状态监测与故障诊断研究的研究情况,然后介绍了风电机组的状态监测技术和状态监控系统的应用开发情况,接着针对机组中的主要故障组件及整个风电系统,介绍了国内外状态监测和故障诊断方法的研究现状与研究进展,最后探讨了风力发电系统状态监测的发展趋势以及未来的研究方向三关键词:风电机组;状态监测;故障诊断;研究现状;发展趋势 中图分类号:TM307+.1∶TM614 文献标志码:A 文章编号:1673?6540(2014)02?0050?07 Research on Condition Monitoring and Fault Diagnosis Technology of Wind Turbines ZHANG Wenxiu1, WU Xinfang2 (1.School of Energy and Power Engineering,Nanjing University of Science&Technology, Nanjing210094,China;2.School of Energy and Mechanical Engineering,ShangHai University of Electric Power,Shanghai200090,China) Abstract:The technologies of condition monitoring and fault diagnosis can effectively reduce the cost of operation and maintenance,as well as ensure the security and stability of wind turbine.The research of condition monitoring and fault diagnosis were overviewed,then the status of the wind tubine monitoring technology and application development conditions of monitoring system were introduced,and aiming at the main failure parts for wind turbine and the wind power system,the research status and progress of condition monitoring and fault diggnosis methods in domestic and abroad were introduced.Finally the development trend of wind power generation system status montoring and research direction in the future were discussed. Key words:wind turbines;condition monitoring;fault diagnosis;research status;development trend 0 引 言 近年来,风能作为一种绿色能源在世界能源结构中发挥着愈来愈重要的作用,风电装备也因此得到迅猛发展三根据世界风能协会(WWEA)的报告,截止2009年底,全球风力发电机组发电量占全球电力消耗量的2%,根据目前的增长趋势,预计到2020年底,全球装机容量至少为1.9×106MW,是2009年的10倍[1]三在 九五”期间,我国风力发电场的建设快速发展,过去十年中,我国的风力发电装机容量以年均55%的速度高速增长,2010年已达1000万kW三 随着大规模风电场的投入运行,出现了很多运行故障,因而需要高额的运行维护成本,大大影响了风电场的经济效益三风电场一般处于偏远地区,工作环境复杂恶劣,风力发电机组发生故障的几率比较大,如果机组的关键零部件发生故障,将会使设备损坏,甚至导致机组停机,造成巨大的经济损失[2]三对于工作寿命为20年的机组,运行维护成本一般占到整个风电场总投入的10%~ 15%,而对于海上风电场,整个比例高达20%~ 25%[3]三因此,为了降低风电机组运行的风险,维护机组安全经济运行,都应该发展风电机组状态监测和故障诊断技术三 状态监测和故障诊断可以有效监测出传动系统二发电机系统等的内部故障,优化维修策略二减 05

风力发电机常见故障及其分析概要

茂名职业技术学院 毕业设计 题目:风力发电组轴承的常见失效形式及故障分析系别:机电信息系专业:机械制造与自动化班别:13机械一班姓名:何进生指导老师:张浩川日期:2015年7月1日至2016年5月1日

内容摘要 随着全球经济的发展和人口的增长,人类正面临着能源利用和环境保护两方面的压力,能源问题和环境污染日益突出。风能作为一种蕴藏量丰富的自然资源,因其使用便捷、可再生、成本低、无污染等特点,在世界范围内得到了较为广泛的使用和迅速发展。风力发电己成为世界各国更加重视和重点开发的能源之一。随着大型风力发电机组装机容量的增加,其系统结构也日趋复杂,当机组发生故障时,不仅会造成停电,而且会产生严重的安全事故,造成巨大的经济损失。 本论文先探讨了课题的实际意义以及风力发电机常见的故障模式,在这个基础上对齿轮箱故障这种常见故障做了详尽的阐述,包括引起故障的原因、如何识别和如何改进设计。通过对常见故障的分析,给风力发电厂技术维护提供故障诊断帮助,同时也给风电设备制造和安装部门提供理论研究依据。 关键词 风力发电机;故障模式;齿轮箱;故障诊断

Common Faults And Their Analysis Of The Wind Turbine Abstract With the global economic development and population growth, humanity is facing with the pressure from two sides of the energy use and environmental protection, the energy problem and environmental pollution has become an increasingly prominent issue. Wind power as a abundant reserves of natural resources, because of its convenient use, renewable, low cost, no pollution, has been more widely used and rapid development in the world. Wind power has been taken as one of the priority development energy sources in the world.The increase of wind power capacity and complicated system structure will not only cause power outage,but also raise serious accidents when the set is at fault. In the beginning, the dissertation introduces the practical significance of project and the common failure mode of wind turbines, then researches and describes the failure of gearbox in detail, including the cause of failure, how to identify and how to improve the design. Based on the analysis of common failures, not only provide assistance for fault diagnosis to the technical

无叶片风力发电机--VORTEX

VORTEX——没有叶片的风力发电机就是这么酷 一.前言 风能作为一种清洁的可再生能源,越来越受到世界各国的重视。其蕴量巨大,全球的风能约为2.74×10^9MW,其中可利用的风能为2×10^7MW[1]。随着全球经济的发展,所面临的能源问题和环境问题越来越严峻,使得风能等可再生能源迅速发展起来。根据国家能源局数据,2014年中国全部发电设备容量为1360GW,其中并网风电的容量达到了95.8GW,也就是说说,风电装机量在中国发电装机总量当中占据大约7%的份额。 一般情况下,我们所看见的风力发电机都是水平轴扇叶风机,他们有着很大的风机叶片,以此来吸收风能并发电。然而,这样的风电机有一些弊端。一个风电场的众多风机之间的排列需要较大的安全距离,也就是说一块固定大小的地面上能够安装的风电机数量是有限的;另外,扇叶的旋转也对鸟类带来了危险。 想象一下,一个没有叶片的风机会是什么样纸?它需要更少的材料,成本更低,噪声更小,对环境友好度更好……关上你的脑洞,来一睹它的风采吧↓↓↓

这个酷炫的没有叶片的风机是由西班牙公司Vortex Bladeless开发。无叶片风机Vortex 的工作原理是利用结构的振荡捕获风的动能,从而利用感应发电机或压电发电机将风的动能转变成电能输出。该设计理念将减少常规涡轮机中很多零部件的设计与制造,如叶片,机舱,轮毂,变速器,制动装置,转向系统等,从而使无叶片风机Vortex具有无磨损、性价比高、便于安装和维护、环境友好型及土地利用率高等显著特点。 二.Vortex的发电原理——卡门涡街 无叶片风机Vortex的基本发电原理是卡门涡街,维基百科上这样描述它,“在流体中安置阻流体,在特定条件下会出现不稳定的边界层分离,阻流体下游的两侧,会产生两道非对称地排列的旋涡,其中一侧的旋涡循时针方向转动,另一旋涡则反方向旋转,这两排旋涡相互交错排列,各个旋涡和对面两个旋涡的中间点对齐,如街道两边的街灯般,这种现象,因匈牙利裔美国空气动力学家西奥多·冯·卡门最先从理论上阐明而得名卡门涡街”[2-3]。 卡门涡街可以解释许多现象。1940年11月7日美国华盛顿州塔科马海峡吊桥(Tacoma Narrow Bridge)崩塌事件。华盛顿州政府特为此而设立专案调查组,经过美国空气动力学家西奥多·冯·卡门在加州理工学院风洞进行模型测试,证明塔科马海峡吊桥倒塌事件的元凶,是卡门涡街引起吊桥共振。原设计为了求美观及省钱,使用过轻的物料,造成其发生共振的破坏频率,与卡门涡街接近,从而随强风而剧烈摆动,导致吊桥崩塌。

发电机频繁启停机危害分析

发电机频繁启停机危害分析 发电机作为电厂最重要的一次设备之一,其安全运行和检修维护一直备受关注,而威胁发电机安全运行的因素很多,文章主要阐述的是频繁启停机对发电机的危害及维护检修措施。 标签:同期并网;相位差;幅值差 目前,发电厂运行方式受电网调度和某些特殊运行方式下,存在长期调峰频繁启停机,此类发电机的运行工况是比较恶劣的。 首先,发电机会在短时间内(如一周内)多次开机并列。同期并列过程实际上对发电机存在影响,虽然自动准同期并网方式已经广泛应用,但由于目前技术还无法做到完全无扰并网,在并网瞬间存在着电压差、相角差和频率差,会对发电机定子和转子造成一定损伤(取决于压差、频差和相角差幅值),特别是会在发电机转子上产生以较大的扭矩,长时间密集同期并列会对发电机定、转子产生危害,造成诸如线圈绑扎松动,铁芯松动,端部发热等机械应力伤害和绝缘下降。具体分析如下: 1 电压幅值差对发电机造成的影响 假设带并侧U和系统侧Us 同相位,且带并侧f =系统侧fs ,而电压幅值不同,并列时会产生冲击电流。发电机阻抗是感性的,这时发电机电流Ij 属于无功性质,其有效值为Ij=Ud/jX″d。当U>Us时,Ij滞后Ud90°,该电流对发电机起去磁作用,使U降低,发电机并列后立即输出无功负荷。当U

浅析风力发电机故障检修与处理方法

浅析风力发电机故障检修与处理方法 发表时间:2018-06-25T16:50:56.237Z 来源:《电力设备》2018年第3期作者:董文鑫 [导读] 摘要:在风电场的运行中,设备的使用和维护成本占据较大比例,其对风电场的经济效益产生了直观的影响,因此做好设备检修工作,防范设备故障的发生,同时对故障范围进行有效的控制,防止经济损失的进一步扩大,一直以来都是风电场运营管理的重中之重。(国华(河北)新能源有限公司河北省张家口市 076750) 摘要:在风电场的运行中,设备的使用和维护成本占据较大比例,其对风电场的经济效益产生了直观的影响,因此做好设备检修工作,防范设备故障的发生,同时对故障范围进行有效的控制,防止经济损失的进一步扩大,一直以来都是风电场运营管理的重中之重。本文将对风力发电机故障原因加以探讨和分析,并论述几种常见故障类型的处理方法,以期全面提高故障检修效率,促使风力发电机尽快恢复到正常状态,从而保证电力生产的安全性和稳定性。 关键词:风力发电机;故障检修;处理方法 引言:现阶段,风力发电已经成为了一种重要的发电方式,既缓解了当前紧张的能源形势,又不会对生态环境产生污染和破坏,是可持续发展理念的有力举措,在我国的大部分地区都得到了推广应用。但是风力发电对环境和设备有着较强的依赖性,风力发电机长期暴露于露天环境下,发生故障的概率较高,如不能及时进行处理,将会严重影响到电力生产的持续性和稳定性。在此情况下,了解风力发电机的故障类型和诱发原因,采取行之有效的措施予以解决,也就变得尤为重要。 一、风力发电机概述 1、风能及风力发电的现状 目前,全球的风能资源总量约有2.7×109MW,其中能够被利用的风能大约有2×109MW,而中国的风能资源占据了全球第三的位置。一般情况下,风能资源的利用方式大多为风力发电,其在世界经济进步、科学技术发展的时代背景下已经跃然成为了增速最快的发电技术了,相应的风电整机容量也在不断得扩大。据近几年的相关数据统计,2010年时,世界的风力发电量占全球的电力消费的2.5%左右,2012年时,全球的新增装机容量已经达到了44711MW,总装机容量如预期般地超过了2.83×109MW,据专家预测,到了2020年时,风力发电大约能够提供增速为7.7%~8.3%的风力。 2、风力发电机的构造及工作原理 风力发电机是风能转化为电能的最基本可利用工具,主要由限速安全机构、叶轮、尾翼的调向器、储能装置、包括装置在内的发电机、塔架、传动装置(如齿轮箱、制动器、低速或高速轴等)、刹车系统、偏航系统、控制系统等部件构成;其工作的原理为叶轮在风力作用下,把风的动能转化为叶轮轴的机械能,再由叶轮轴带动发电机进行发电。这整个过程都较为简单,主要运用到了空气动力学的原理,即风在吹过叶轮时在叶片的正反两面形成了压力差而产生升力,从而让叶轮不停旋转的同时还能连续性地横切风流,从而得到了转化后的机械能。 3、故障原因分析 风力发电机是一种能量转换装置,能够将风能先转变为机械能,再通过发电装置转化为电能。而在地面受到建筑物的遮挡,会影响到风能的传递,这就要求风力发电机设置在距离地面数十米的高空中,确保风力发电机的叶片与风充分接触,才能提高风能的利用率。然而这种设计形式也具有一定的弊端,使得风力发电机的受力情况变得愈发复杂,不同气候环境、不同时刻的风速情况有所差异,造成了叶片受力的不断变化,同时叶片作为传导部件,还会将受到的冲击力传递给风力发电机的其他结构,首当其冲的就是主轴、齿轮箱和发电机,这些都是风力发电系统的重要环节,也是最容易出现故障的部件。 二、风力发电机的定期检修 当风力发电机投入使用一个阶段后,为保证风力发电机能够保持安全稳定的运行状态,应当定期开展检修工作。具体检修工作实施中,需要做好以下几方面的工作:首先,对螺栓力矩以及电气连接情况加以检测,保证各个连接点之间维持良好的连接状态,同时做好传送带等部分的润滑处理,随后,需要针对风力发电机运行重点功能部分展开测试。如果风力发电机运行时间过长,那么其螺栓很可能会出现松动情况,同时由于风力发电机是在长期震动的条件下运行的,为此,螺栓松动情况很可能会发生。如若发生了螺栓松动情况,那么其所承受的力就会不均匀,这种情况下很容易被剪切。所以,在开展日常检修工作中,要求认真检测螺栓力矩,查看螺栓有无松动情况,及时发现及时处理。在实际处理期间,若是风力发电机所处环境温度低于-5℃,则应当下调螺栓力矩,下降幅度为标准力矩的80%为宜,进而更加便于固定。另外,应当保证检测过程中周围温度在5℃以上。具体检修工作中,通常会在夏季阶段对螺栓松动状态进行检修,同时要在无风或是微风的条件下检修,防止高风力季节无法实现对风力资源的有效利用。在对传送带与有关部件采取润滑处理过程中,需要选择合适的润滑方法,要了解到不同部件所需采用的润滑方法存在较大差别。齿轮箱和偏航减速齿轮箱通常会利用稀油润滑的方式,而轴承盒偏航齿轮等部件则会利用干油润滑的方式。若是稀油润滑,则应当保证润滑油数量充足,润滑油不足时需要立即补充,但若是润滑油过期,那么应当及时更换。对于干油润滑的部件来说,通常它们都处于一种高温的工作环境下,很容易因为温度过高对零部件造成损害,降低了零部件的使用寿命。在对轴承和偏航齿轮等使用干油润滑的部件,不应补加过多的润滑油,一定要严格按照补加标准进行添加,避免由于润滑油过多而烧坏电机。 三、风力发电机常见故障及处理方法 (1)当故障表现为风轮转动时发出异常声响时,故障原因可能为叶片开裂、机舱罩松动或松动后碰到转动件;风轮轴承座松动或轴承损坏;增速器或齿轮箱轴承松动或损坏;制动器、发电机、联轴器松动或损坏。 处理方法:检查叶片是否有开裂;对机舱罩的螺栓进行紧固处理;重新调整风轮轴和增速器的同轴度,并紧固固定螺栓;当轴承已经损坏时,则应更换轴承,并对轴承底座进行重新安装;更换轴承及油封后,将增速器重新安装;重新固定制动器及调整刹车片间隙。调整发电机的同轴度并将紧固螺栓紧固牢靠。若联轴器损坏则需更换联轴器。 (2)风度达到额定风速以上,但风轮达不到额定转速,发电机不能输出额定电压时,故障原因可能为:风向标不对风;发电机转子和定子接触摩擦;增速器轴承或风轮轴承损坏;刹车片回位弹簧失效致使刹车片半制动状态;微机调速失灵;变桨距轴承损坏;变桨距同步器损坏。 处理方法:调整或更换风向标使之正对风向;检查驱动系统卡滞的位置,采取相应的措施消除卡滞现象;若由于液压驱动变桨距的油

本特利风力发电机状态监测解决方案

本特利风力发电机状态监测解决方案 1

本特利内华达ADAPT.Wind TM风力发电机状态监测解决方案-实现对风电机组产品生命周期的有效延伸 随着中国市场对清洁能源需求的日益增长,在风电行业出现持续增长的同时,如何对制造后的产品实现在运行层面有效监测,提升风机的实际使用寿命周期,从而实现风力发电生产的持续竞争力等一系列需求,也逐渐成为了风机制造商,风场业主与运行人员最为关心的话题之一。 本特利内华达ADAPT.wind TM状态监测系统解决方案提供了从传感器到监测器和软件以及故障诊断服务的一体化可扩展的解决方案,经过主动预防性地检测风电机组传动系统早期的故障和问题,不但帮助风机制造厂商及时对安装机组进行故障预警及诊断,提升售后质保期内的产品安全可靠性,为高效率服务提供更加可视的平台,同时也极大的帮助运营商控制运行维护成本,更加优化管理风电场的资产,提高设备的可利用率并降低维护的费用,提升风场经济效益。ADAPT.wind TM系统不但已作为GE风电机组配置的标准状态监测解决方案在全球使用,同时它还能够根据整机制造商的要求,灵活配置在其它任何整机制造商生产的风电机组上。 为什么要振动状态监测?

风电机组会长期承受诸多无法预知的运行条件,这些都可能会对机组运行造成非常严重的不良影响。如果能尽早地发现这些问题并加以处理,那么必然会提高风机的可利用率,同时也能够降低维护成本。因此先进的状态监测技术与专业经验对于可靠地进行资产设备管理而言至关重要。 齿轮箱是首要问题 行星齿轮箱的故障是风电机组制造商和运行人员主要担心的问题。据统计仅与齿轮箱本身的故障问题直接相关的维护费用就占到了风电场运行与维护费用的25%-30%。本特利内华达风机状态监测系统让运行人员能够远程获知齿轮箱的运行状况。经过该系统获取的齿轮箱早期故障状态数据,使运行人员在齿轮箱出现轻微故障时,能够合理地改变运行方式,延长机组的运行时间,从而保证发电收益,而且能够降低被动式故障检修的风险,避免非计划停机或灾难性事故的发生。 对风场的所有风机实施主动预防性的状态监测还能够帮助运行人员有效地规划和合理地安排机组的停机维护计划。将所有需要停机维护的风机集中安排在一次检修计划中进行检修,只需使用一台吊车,这样便能节省近百万的维护费用。 为什么要使用本特利内华达ADAPT.wind TM系统? 它能使您从使用的第一天就对机组运行状况了如指掌。经过

风力发电机组齿轮箱的故障及其分析

毕业设计(论文)2010 级风能与动力技术专业 题目:风力发电机组齿轮箱的故障及其分析 毕业时间: 学生姓名:X X X 指导教师:X X X 班级:10风电(1)班

目录 一、绪论 (1) (一)风力发电机组齿轮箱故障诊断的意义 (1) 二、风力发电机组齿轮箱的故障诊断 (2) (一)风力发电机组齿轮箱的常见故障模式及机理分析 (2) (二)齿轮箱典型故障振动特征与诊断策略 (6) (三)针对齿轮箱不同故障的改进措施 (9) 三、结论 (12) 参考文献: (12) 致谢 (13)

风力发电机组齿轮箱的故障及其分析 摘要:随着全球经济的发展和人口的增长,人类正面临着能源利用和环境保护两方面的压力,能源问题和环境污染日益突出。风能作为一种蕴藏量丰富的自然资源,因其使用便捷、可再生、成本低、无污染等特点,在世界范围内得到了较为广泛的使用和迅速发展。风力发电己成为世界各国更加重视和重点开发的能源之一。随着大型风力发电机组装机容量的增加,其系统结构也日趋复杂,当机组发生故障时,不仅会造成停电,而且会产生严重的安全事故,造成巨大的经济损失。 本论文先探讨了课题的实际意义以及风力发电机常见的故障模式,在这个基础上对齿轮箱故障这种常见故障做了详尽的阐述,包括引起故障的原因、如何识别和如何改进设计。通过对常见故障的分析,给风力发电厂技术维护提供故障诊断帮助,同时也给风电设备制造和安装部门提供理论研究依据。 关键词:风力发电机;故障模式;齿轮箱;故障诊断 一、绪论 (一)风力发电机组齿轮箱故障诊断的意义 风电对缓解能源供应,改善能源结构、保护环境和电力工业的持续发展意义重大。这些年来,风电机组在我国得到了广泛的安装使用。随着大型风力发电机组装机容量的增加,其系统结构也日趋复杂,风力发电机的故障也成为一个不容忽视的问题。 随着风电机组运行时间的加长,目前这些机组陆续出现了故障(包括风轮叶片、变流器、齿轮箱、变桨轴承,发电机、以及偏航系统等都有),导致机组停止运行。当机组发生故障时,不仅会造成停电,而且会产生严重的安全事故。风电机组的部分部件一旦损坏,在风电场无法修复,必须运到专业厂家进行修理。因其维修费用高、周期长、难度大,势必给风电场造成巨大的经济损失,严重影响了风电的经济效益。 风电机组的输出功率是波动的,可能影响电网的电能质量,如电压的偏差、电压的波动和闪变、谐波以及周期电压脉动等。当风电机组发生故障时,输往电网的

风力发电机设计与研究综述

风力发电机设计与研究综述 在资源越来越贫乏的现代社会,工业化的迅速发展,使得人们对于电力资源的需求大大增加,对于资源的开发上是一个不小的压力。由此,现代社会努力寻找各种替代能源来缓解压力,而风能的利用开发就是新能源的一种,本文就将针对风力发电机设计理念进行详细的分析介绍,对其中蕴含的原理和知识进行综合论述,同时对未来风力发电的技术方向和研发方向进行分析预测,提出切实的建议。 标签:风力发电机;设计理念;未来前景 风力发电技术的发展其实不是特别久远,主要也是从国外发展而来的,而且这个技术的发展跟现代能源的开发也有关系,是生产力和生产资源的需要促使国外的集团机构进行资源开发技术上的研究,在技术上也是经过了几代人的磨炼探索,终于在对于新能源的资源利用上取得了突破。中国也在这样的背景下研制出来了风力发电机,事实上这是对风能转换成电力资源的完美利用。利用率高,并且不存在污染现象。但是在实际的运用中还是要分析一下风力发电机的工作情况,思考风力发电机设计原理的合理性和现实性,进行查漏补缺,实时抱有不断前进不断成长的学习态度。 一、风力发电机的设计概述 (一)了解风力发电的设计原理 风力发电实际上是对风能的有效利用,是对于风能的开发转换,而风力发电机就是针对这一需要进行技术支持的设备。它主要是利用风的流动对叶片产生的压力,促使内部轮轴进行转动,在经过不同的作用环节的催发下,生成最后所需要的电能资源。纵观一系列的作用环节,实际上主要就是一个从风能到机械能再到动能再到电能的转化过程。并且它的设计也是在原有传统能源利用的优缺点基础上进行的,吸取了原有的优势启发,但是在转换率和副作用上有了很大的改善,避免了很多原有能源开发可能会带来的问题,例如对环境的污染,对开采能源造成的地质破坏,对能源材料的集中运输难度等一系列问题,所以风力发电机绝对是一个较为科学且实际的合理设计。 (二)针对不同类型的不同设计 风力发电机是对于风能的采集利用,其实也存在类型上的不同,这也是针对电能的不同需求做出的改变。风力发电机大体上可以按照主轴方向和输出、功率调节形式和机械形式、发电机组几种区分标准进行分类,大大小小也是可以分为近十余种风力发电机的类型,这些有的是以发电目的为导向来进行输出功率大小的量比,有的是以内在结构的运作方式不同进行发电机类型的区分,其实这些类型都是基于现有技术和使用者的使用需求进行的设计生产,都是可以在不同环境不同使用期待下进行合理的风能向电能的转化的。风力发电机设计的更多类型也

发电机失磁危害及处理方法

发电机失磁危害及处理方法 [摘要]分析了发电机失磁的原因及对电力系统和发电机本身的危害,提出了切实可行的处理方法及预防措施。 【关键词】发电机;失磁保护;判据 1、发电机失磁的原因 引起发电机失去励磁的原因很多,一般在同轴励磁系统中,常由于励磁回路断线(转子回路断线、励线机电枢回路断线励磁机励磁绕组断线等)、自动灭磁开关误碰或误掉闸、磁场变阻器接头接触不良等而使励磁回路开路,以及转子回路短路和励磁机与原动机在连接对轮处的机械脱开等原因造成失磁。大容量发电机半导体静止励磁系统中,常由于晶闸管整流元件损坏、晶体管励磁调节器故障等原因引起发电机失磁。 2、发电机失磁对发电机本身影响 (1)发电机失去励磁后,由送出无功功率变为吸收无功功率,且滑差越大,发电机的等效电抗越小,吸收的无功功率越大,致使失磁发电机的定子绕组过电流。(2)转子的转速和定子绕组合成的旋转磁场的转速出现转差后,转子表面(包括本体、槽楔、护环等)将感应出滑差频率电流,造成转子局部过热,这对发电机的危害最大。(3)异步运行时,其转矩发生周期性变化,使定、转子及其基础不断受到异常的机械力矩的冲击,机组振动加剧,威胁发电机的安全运行。(4)当失磁适度严重时,如果有关保护不及时动作,发电机及汽轮机转子将马上超速,后果不堪设想。 3、发电机失磁对电力系统影响 (1)当一台发电机发生失磁后,由于电压下降,电力系统中的其它发电机,在自动调整励磁装置的作用下,将增加其无功输出,从而使某些发电机、变压器或线路过电流,其后备保护可能因过流而误动,使事故波及范围扩大。 (2)低励和失磁的发电机,从系统中吸收无功功率,引起电力系统的电压降低,如果电力系统中无功功率储备不足,将使电力系统中邻近的某些点的电压低于允许值,破坏了负荷与各电源间的稳定运行,甚至使电力系统电压崩溃而瓦解。 (3)一台发电机失磁后,由于该发电机有功功率的摇摆,以及系统电压的下降,将可能导致相邻的正常运行发电机与系统之间,或电力系统各部分之间失步,使系统发生振荡。 (4)发电机的额定容量越大,在低励磁和失磁时,引起无功功率缺额越大,电力系统的容量越小,则补偿这一无功功率缺额的能力越小。因此,发电机的单机容量与电力系统总容量之比越大时,对电力系统的不利影响就越严重。 4、发电机失磁保护原理 (1)低电压判据 为了避免发电机失磁导致系统电压崩溃同时对厂用电的安全构成了威胁,因此设置了低电压判据。 一般电压取自主变高压母线三相电压,也可选择发电机机端三相电压。三相同时低电压判据:UppPzd 失磁导致发电机失步后,发电机输出功率在一定范围内波动,P取一个振荡周期内的平均值。

风电机组状态检修的研究

风电机组状态检修的研究 摘要:本文介绍风电机组的组成和典型故障,阐述风电机组状态检修方法的内容、构成等,重点分析其数据收集系统和运行状态评估方法。 关键词:风电机组;状态检修;状态评估 1引言 随着世界经济的快速发展,能源紧缺和环境污染问题日益突显,我国在改革 开发初期就提出了可持续发展战略,其中一项最重要的措施就是要大力开发和利 用可再生能源,风能是一种清洁型的可再生能源,其分布范围广,可利用数量多,是目前应用技术最成熟的新能源种类。我国也出台了一系列政策鼓励风力发电的 开发和建设,目前的装机总量已超过百兆千瓦,并仍处于一个快速增长的阶段。 与此同时,风力发电站的安全稳定运行以及风能的有效利用成为目前关注的焦点,也是风能利用的挑战。近年来,随着我国风电站的建设发展,风电机组的各种故 障也层出不穷,其造成的停机时间严重降低了风电机组的效率,增加维护成本, 如果不能够进行有效的检修和控制,可能会造成严重的安全事故,危及从业人员 的生命安全。状态检修技术是目前应用比较广泛的先进的检修技术,能够明显降 低风电机组的故障概率,减少停机时间,降低维护成本。 2风电机组简介 2.1风电机组的组成 风电机组是将风能转化为机械能,再将机械能转化为电能的系统,其主要结 构有叶轮、传动系统、发电机、控制系统、偏航系统、塔架等,其中传送系统的 主要部件有主轴、齿轮箱、轴承、联轴器等,主要用于传递机械能,是风电机组 的主要机械部件,也是容易发生机械故障的部位;控制系统主要由传感器和控制 柜组成,对风电机组起到监测保护和运行控制的作用。 2.2风电机组的典型故障 风电机组的故障主要分为机械故障、电气故障和液压故障三种,而机械故障 中齿轮箱故障是比较常见的故障,电气故障中发电机和变频器等的故障也是风电 机组比较多发的故障种类。齿轮箱故障主要是由油温变化和气流变化引起的齿轮 点蚀、齿轮胶合、齿轮疲劳磨损、轮齿折断等;发电机故障主要有发电机振动过大、噪声过大、温度过高、轴承过热等,主要由定子绕组短路、转子绕组故障和 偏心振动等原因引起的,而轴承故障为主要故障原因;变频器故障主要有短路、 过电流、过载、过电压、过温、接地等故障。 3风电机组的状态检修 3.1风电机组状态检修的内容 风电机组的状态检修首先需要通过控制系统收集风电机组各组成部分的数据 参数,如风电机组的当前运行功率和风速、传送系统中齿轮箱的油温和轴承的温度、以及风电机组目前的运行状态等,以此掌握风电机组的各种参数,为状态检 修的决策提供原始依据。 其次由远程实时监测系统对经常发生故障的部位进行在线监测,了解风电机 组的常见故障种类,并进行分类统计汇总,分析常见故障的机理然后采用科学的 诊断方法对故障进行诊断分析。此外,风电机组的故障预测是实时状态检修的关 键技术,根据实时监测获取的各项数据参数,建立对应的预测模型,通过专业的 软件对比分析数据与实测数据,实现对故障的预测。 最后通过对风电机组的各种参数进行监测、收集、整理、分析、诊断、预测

风力发电机状态监测与故障诊断技术综述

风力发电机状态监测与故障诊断技术综述 摘要:随着信息技术发展速度的不断加快,信息技术的应用范围也开始变得越 来越广了,在新能源领域信息技术得到了非常好的应用,风力发电技术作为新能 源领域中的一个非常重要的组成部分,其的故障诊断技术和发电机状态监督在风 力发电运行过程中发挥的作用是非常重要的。本文就风力发电机故障诊断技术和 状态监督进行分析,希望能够在一定程度上促进我国风力发电行业的发展。 关键词:风力发电;发电机;状态监测;故障诊断;机械故障;电气故障; 振动故障 目前我国风力发电技术在发展过程中仍旧存在着很多的问题,其中对风力发 电影响最大的就是风力发电机故障诊断技术和状态监测这两个问题。要想让风力 发电产业得到更加快速的发展,故障诊断监测系统必须要对发电机各个零件的运 行状态进行实时监督,只有这样才能够及时的根据风力发电机的电压、温度、震 动来对发电机的状况进行准确的诊断,才能够在发电机出现问题的第一时间就能 够及时的找到解决办法,我国风力发电机的运行效率才能够得到提升。 1风力发电机常见运行故障监测及诊断 双馈风力发电机常见运行故障可分为机械故障和电气故障2类:机械故障包 括发电机振动过大、轴承故障、轴系不对中故障、转子质量不平衡故障、机座松动、转子偏心故障等;电气故障包括线圈短路、绝缘损坏、气隙不均衡、三相不 平衡等。 1.1机械故障信号监测与诊断 通常可通过监测发电机的振动、温度、转速等信号诊断发电机轴承故障、轴 系不对中、转子质量不平衡、机座松动、转子偏心等机械故障。 一旦发电机在运行的过程中出现故障的化,我们可以通过发电机输出的电流、功率、电压等的不同频率来对发电机的故障进行分析。如果是发电机的轴承出现 问题的话,那么番点击在进行运行的过程中就非常出现高频率的震动,一般情况 下发动机出现故障的高频率震动,是发动机正常震动的一千多倍,如果发动机故 障过于严重的话,那么发动机的震动可能就会变得更严重,这个时候故障诊断系 统就可以通过振动传感器来获取外界的信号,才能够及时的发动机的故障机进行 处理。 1.2电气故障信号监测与诊断 如果是发动机电气出现问题的话,那么故障检测系统在对发电机进行检测的 过程中,就可以通过对发电机定子线圈的电压、温度等来对发电机的故障进行判断,能够引起发电机电气出现故障的原因主要有相间短路、匝间短路、和层间短 路等,因此一旦发现是翻地啊你电气出现故障的化,就会重点对发电机进行短路 检测。在进行故障诊断的过程中,我们可以通过发电机的电压和电流、转子扭矩 来对发电机的运行状态进行测量。 如果通过检测我们发现时由于相间短路的原因导致发电机再出现故障问题的话,我们就可以发现发电机的温度和电磁场都会发生非常大的变化,故障的特征 也会随着时间的增加而变得特别明显。要想快速的检测出发电机出现故障的原因,我们科技直接对发电机的振动、温度和电流进行采集,这样就能够在最短的时间 之内诊断出发电机短路故障了。相间短路一般主要包括三相短路、单相短路、两

相关主题
文本预览
相关文档 最新文档