当前位置:文档之家› 风电机组发电机故障分析诊断

风电机组发电机故障分析诊断

风电机组发电机故障分析诊断
风电机组发电机故障分析诊断

风电机组发电机故障分析诊断

发表时间:2019-11-08T10:43:51.677Z 来源:《电力设备》2019年第14期作者:李拴生[导读] 摘要:近年来,人们的发电方式不断变化,从最初的烧煤发电,演变至现在的清洁能源发电,其中风力发电被人们广泛接受。 (山西龙源风力发电有限公司山西太原 030006) 摘要:近年来,人们的发电方式不断变化,从最初的烧煤发电,演变至现在的清洁能源发电,其中风力发电被人们广泛接受。虽然风力发电减少着对大气的污染,但是由于其技术不够成熟,导致运行时频发故障。本文从风力发电机组的概述出发,首先分析了风力发电机组的常见故障,最后探讨了风电机组发电机故障分析诊断措施,供同行参考。

关键字:风电机组发电机;故障分析诊断 1 风力发电机组的概述

1.1 风力发电机组的构成

风力发电机组是指将其他形式的能源,转变为电能机械设备,由风轮、对风装置、机头座和回转体、调速装置、传动装置、制动器、发电机等设备组成。现阶段,风力发电机组在科技、农业生产、国防等方面都得以广泛应用。发电机形式多样,但其原理都基于电磁力定律、电磁感应定律,因此其构造原则为:用合适的导电材料、导磁材料构成相互感应的电路和磁路,从而产生电磁功率,达到能量转换的效果。

1.2 风力发电机组的工作方式

在风力发电机组发电时,需要保证输出的电频率恒定。这无论是对风光互补发电,还是风机并网发电而言,都是非常必要的。要想保证频率恒定,一方面要保证发电机转速稳定,也就是恒频恒速的运行,因为发电机组经由传动装置运行,所以其必须保持恒定的转速,以免影响风能的转换效率。另一方面,发电机的转动速度随着风速变化,借助其他手段保证电能频率恒定,也就是变速恒频运行。风力发电机组的风能使用系数,和叶尖速比有着直接的关系,存在某些明确的叶尖速比,使CP值最大。因此,在变速恒定运行的情况下,发电机和风力机的转动速度,虽然发生着某种变化,但是并不影响电能的输出频率。

1.3 风力发电的优势

由于风电属于新能源,无论是技术还是成本,都和传统的水电、火电存在巨大差异,因此其要想快速发展,需要政策给予足够的扶持。分析得知,风力发电具有如下优势:(1)风是由大气受到太阳辐射引起的空气对流,可以说是太阳能的另外形式。风能是自然界的产物,不需要进行任何加工,也不会污染大气环境,可以直接拿来使用。相较于火力发电,其具备可再生、无污染的优势。(2)现阶段,风力发电机组已能批量生产,特别是风力发电技术成熟的国家,2MW、5MW这种容量较高的机组,已正式投入运行。相较之下,我国的风力发电发展空间较大。(3)风力发电占地面积小,建设周期短,成本低,发电量大,可灵活用于不同环境下,不受地形限制。而且,随着科学技术的发展,可实现远程控制。

2风电机组发电机故障统计

在设备出现故障需要进行检定时,一定要按统一规定来确定故障原因。明确了各种故障发生的原因,就可以依据故障原因的不同进行统计,以便及时解决故障问题。

(1)机组故障数据统计。笔者对达里风电场在一年度所出现的风电机组故障情况进行了统计,并把故障参数分别列了出来,例如停机台次、停机时间、损失电量比例等。经分析得出,设备运行初期,传感器和液压系统故障相对较多,其次是机械系统、电气系统和控制系统故障。工作一段时间之后,机械系统故障率开始增加。

(2)机组液压故障统计。定桨距风电机组液压系统主要用于控制叶尖制动、机械刹车和系统动作。笔者对一年达里风电场各风电机组出现液压故障的次数进行了统计,并对多种故障原因进行分析,得出以下结论机械刹车系统出现故障的次数比叶尖系统出现故障的次数少很多。其中,叶尖压力最大时报警次数最多,但它对电量损失的影响相对较小。电路断路器故障和叶尖液压系统故障出现的次数较多,但它们造成的电量损失都较大,因此应高度重视。

(3)机组机械故障统计。风电机组功能主体是机械系统,它包括了大部分零部件,在工作中承受交变载荷,所以故障率相对较高,是风电机组检修和维护的主要对象。机械系统故障会影响到机械刹车、齿轮箱、偏航系统、发电机以及叶尖机械结构等,主要故障形式是齿轮箱油温过高,其出现次数最多,造成电量损失较大。这种故障一般是由润滑油选择不合理导致,它使齿轮箱工作过程中散发出大量的热量,这就要求要选择合适的润滑油也有可能是齿轮箱润滑系统散热装置设计不科学,致使热量不能及时排散引起的,这就要求重新设计和更换散热装置。从维护和运行角度考虑,一定要采取有效的措施,严密维护和监视齿轮箱润滑系统散热装置,减少齿轮箱油温超标故障次数,从而确保风电机组的发电量。

(4)机组重大问题统计。这里所说的重大问题,就是指风电机组出现了相当严重的故障,风电场现场检修人员和运行人员无法进行处理,一定要求助于综合素质较高的专业技术人员,甚至一定要把大型部件全部更换掉才能解决,这样会使机组长时间处于停机状态,从而导致电量损失较大。这类故障包括齿轮箱损坏、叶片裂纹、轮毅裂纹、主控模块损坏等,通常情况下风电场不会存储这些备件,所以一旦出现相关问题,就必须去专业公司或设备生产厂家维修或采购。整体来看,造成停机时间最长的是齿轮箱损坏,更换齿轮箱会造成相当大的电量损失。前几年,叶片裂纹故障出现次数较多,可是叶片修补相对简单,所以电量损失较小。除此之外,还存在其他重大故障,比如电控柜烧毁等,不过这只是个别案例,发生几率较小。笔者通过对这类重大故障的统计得知,早期投运的风电机组主要问题是齿轮箱故障,其严重影响了风电机组的可靠经济运行,这就要求相关人员一定要对风电机组设计、制造、运行和管理的每个环节高度重视,运用特定的方法提升齿轮箱的运行监测技术和设计制造水平,进而确保风电机组齿轮箱运行的安全性和可靠性。 3风电机组发电机故障诊断方法

3.1基于解析模型的故障诊断法

在故障诊断刚起步时就开始应用这种故障诊断方法。使用该方法时,必须有准确的数学模型。该方法是把实测信息和模型输出信息进行分析对比,计算出实际输出和和理论输出之间的差值,根据对这些差值的分析、运算来进行故障分析诊断。在运算过程中,参数与状态是难点,需要对系统比较了解的前提下计算出系统的精确数学模型。在实际工况下,需要进行建模的生产设备具有不确定性,生产设备的模型会随着时间、温度和人为因素进行变化。

风电机组状态监测与故障诊断相关技术研究

新能源与风力发电? EMCA2014,41(2 =============================================================================================== )风电机组状态监测与故障诊断相关技术研究 张文秀1, 武新芳2 (1.南京理工大学能源与动力工程学院,江苏南京 210094; 2.上海电力学院能源与机械工程学院,上海 200090) 摘 要:对风电机组进行状态监测和故障诊断,可有效降低机组的运行维护成本,保证机组的安全稳定运行三首先概述了状态监测与故障诊断研究的研究情况,然后介绍了风电机组的状态监测技术和状态监控系统的应用开发情况,接着针对机组中的主要故障组件及整个风电系统,介绍了国内外状态监测和故障诊断方法的研究现状与研究进展,最后探讨了风力发电系统状态监测的发展趋势以及未来的研究方向三关键词:风电机组;状态监测;故障诊断;研究现状;发展趋势 中图分类号:TM307+.1∶TM614 文献标志码:A 文章编号:1673?6540(2014)02?0050?07 Research on Condition Monitoring and Fault Diagnosis Technology of Wind Turbines ZHANG Wenxiu1, WU Xinfang2 (1.School of Energy and Power Engineering,Nanjing University of Science&Technology, Nanjing210094,China;2.School of Energy and Mechanical Engineering,ShangHai University of Electric Power,Shanghai200090,China) Abstract:The technologies of condition monitoring and fault diagnosis can effectively reduce the cost of operation and maintenance,as well as ensure the security and stability of wind turbine.The research of condition monitoring and fault diagnosis were overviewed,then the status of the wind tubine monitoring technology and application development conditions of monitoring system were introduced,and aiming at the main failure parts for wind turbine and the wind power system,the research status and progress of condition monitoring and fault diggnosis methods in domestic and abroad were introduced.Finally the development trend of wind power generation system status montoring and research direction in the future were discussed. Key words:wind turbines;condition monitoring;fault diagnosis;research status;development trend 0 引 言 近年来,风能作为一种绿色能源在世界能源结构中发挥着愈来愈重要的作用,风电装备也因此得到迅猛发展三根据世界风能协会(WWEA)的报告,截止2009年底,全球风力发电机组发电量占全球电力消耗量的2%,根据目前的增长趋势,预计到2020年底,全球装机容量至少为1.9×106MW,是2009年的10倍[1]三在 九五”期间,我国风力发电场的建设快速发展,过去十年中,我国的风力发电装机容量以年均55%的速度高速增长,2010年已达1000万kW三 随着大规模风电场的投入运行,出现了很多运行故障,因而需要高额的运行维护成本,大大影响了风电场的经济效益三风电场一般处于偏远地区,工作环境复杂恶劣,风力发电机组发生故障的几率比较大,如果机组的关键零部件发生故障,将会使设备损坏,甚至导致机组停机,造成巨大的经济损失[2]三对于工作寿命为20年的机组,运行维护成本一般占到整个风电场总投入的10%~ 15%,而对于海上风电场,整个比例高达20%~ 25%[3]三因此,为了降低风电机组运行的风险,维护机组安全经济运行,都应该发展风电机组状态监测和故障诊断技术三 状态监测和故障诊断可以有效监测出传动系统二发电机系统等的内部故障,优化维修策略二减 05

风力发电机状态监测与故障诊断技术分析

风力发电机状态监测与故障诊断技术分析 摘要:目前,全世界因煤炭、石油等传统燃料型能源不可再生且对环境污染危害性大,对其开采利用进行了严格管控,并将研究方向转至如风能、太阳能、地热能等清洁能源。风力发电作为风能利用的重要方式,在用风电场数量与增量逐年递增,设备故障诊断和维护保养工作已成为亟待解决的问题。此外,如何提高故障诊断和维护技术也成为各风力发电企业的重要研究工作。本文以风力发电机组故障诊断为例,从不可控的风力风速影响和风力发电机组故障类型、故障机理或产生部位、诊断处理等方面寻求快速诊断检修方法,力求缩短维修时间,降低检修成本,提高风力发电机组安全在线运行时长,确保风力发电质量和电能。 关键词:风力发电机组;状态监测;故障诊断技术 引言 近年来,随着工业的发展,环境污染日益严重,新能源风力发电在各行业领域应用日益广泛。一般风力发电场多建于偏远地区,地处环境恶劣,无法应用有效监测技术解决风力发电机组各种故障与信号不统一等问题。因此,基于风力发电机不同监测数据,全面分析风力发电机组运行时遇到的故障,深入研究风力发电机组监测与故障技术具有非常重要的意义。 1风力发电机采用状态监测和故障诊断技术的必要性 为了便于风能的获取,风场一般都设在比较偏远的山区或者近海区域,所以风力发电机会受到阵风、侵蚀等因素的影响。风力发电机组一般设在50-120m的高空,在机组运行时需要承受较大的受力载荷。由于设计不合理、焊接质量缺陷等原因会引发机组运行故障,当出现阵风时,会对叶片造成短暂而频繁的冲击载荷,而叶片受到的荷载又会对传动链上的部件产生不同程度的影响而引发故障,其中风轮、主轴、齿轮箱、发电机等受到的影响较大。计划维修和事后维修是风力发电机比较常用的维修方式,但是这两种维修方式都存在一定的缺陷,计划维修的检修范围不大,维修内容不详细,无法全面的反应出机电设备的运行状况。而事后维修的维修时间长,维修效率低,所以造成的经济损失较大。所以需要提高风力发电机维修水平,采用状态监测和故障诊断技术可大大提高风力发电机运行的稳定性和可靠性。 2风力发电机系统的状态监测现状分析 近年来以风力发电为代表的可再生能源产业得到了快速发展,不断完善的风力发电技术凭借自身独特的优势为风力发电规模的不断扩大提供了支撑,但风力发电系统在运行时的安全问题逐渐凸显,需对风力发电系统进行科学有效的监控,确保及时发现潜在隐患及故障,进而保证系统正常运行。风力发电过程中将风能转化为电能主要通过使用风机实现(电磁感应原理),再对转换后的电能进行调压等操作后向电网中的用户输送。目前我国的风力发电机组建设较为完善,基于恒速恒频的风力发电机组进一步完善了风力发电系统。目前变桨距技术在监测风力发电机系统的状态过程中较为常用,该技术能够根据实际情况动态调整风机叶轮转速,并以实际风速变化情况为依据对变流技术进行调整,以确保风力发电输出频率的恒定。风力发电质量在引入变速恒频技术(在风力发电并网系统中应用较多)后得以显著提高。 3风力发电机运行中存在的故障问题 3.1风机叶片故障

风力发电机用专业英语中文对照

风力机 wind turbine 风电场 wind power station wind farm 风力发电机组 wind turbine generator system WTGS 水平轴风力机 horizontal axis wind turbine 垂直轴风力机 vertical axis wind turbine 轮毂(风力机) hub (for wind turbine) 机舱 nacelle 支撑结构 support structure for wind turbine 关机 shutdown for wind turbine 正常关机 normal shutdown for wind turbine 紧急关机 emergency shutdown for wind turbine 空转 idling 绝对湿度 absolute humidity 加速试验 accelerated test 加速 accelerating 加速度幅值 acceleration amplitude 验收试验 acceptance test

精度(风力发电机组) accuracy(for WTGS) 确认 acknowledgement 声的基准风速 acoustic reference wind speed 临界功率 activation power(for wind turbines) 临界转速 activation rotational speed 有功电流 active current 有功功率 active power 主动偏航 active yawing 齿轮的变位 addendum modification on gears 地址 address 可调钳 adjustable pliers 调整板 adjusting plate 风轮空气动力特性 aerodynamic characteristics of rotor 气动弦线 aerodynamic chord of airfoil 老化试验 ageing tests 空气制动系 air braking system 空气湿度 air humidity 透气性 air permeability 翼型 airfoil 接闪器 air-termination system 告警 alarm 交流电流 alternating current 交流电机 alternating current machine 交流电压 alternating voltage 海拔 altitude 环境温度 ambient temperature 放大器 amplifier 幅值 amplitude

风力发电机组轴承常见故障诊断与振动检测 王健

风力发电机组轴承常见故障诊断与振动检测王健 摘要:随着环境污染问题的日益突出,同时为了克服能源危机,风能作为一种 绿色可再生能源越来越受到世界各国的重视,风力发电机组(简称风电机组)作 为将风能转化为电能的关键装备得到了迅猛的发展。风电机组通常坐落于偏僻的、交通不便的、环境恶劣的远郊地区以及沿海或近海区域,且机舱一般安装在离地 面几十米甚至上百米的高空,因此风电机组日常运行状态检测困难,维护成本昂贵。有统计资料表明,陆上和海上风电机组的维护费用占到各自风场收入的10%~15%和20%~35%左右,因此风电机组在恶劣环境下的运行可靠性问题特别 受到关注。 关键词:风力发电机组;轴承故障;诊断;振动检测 轴承故障与齿轮箱故障几乎占据了风力发电机组故障的大多数。发电机组的 各种检测传感器均安装在轴承座上,而各种轴承故障都是通过传感器才发现的, 所以我们通过传感器所采集的信息就可以准确的判断整个发电机组的工作状况。 然而在实际安装中,轴承故障诊断与振动识别也是作为优先部分处理,科研投入 也是占据了成本投入的一半以上。本文就风力发电机组轴承常见故障特征及原因 进行详细阐述,然后就轴承的振动检测进行深入研究。 1风力发电机组轴承常见故障特征及原因 1.1风力发电机组轴承结构 轴承一般分为外圈、保持架、滚动体(滚珠)和内圈4个部分。轴承内部充 满油脂类物质,用于减少轴承滚动的阻力,也能分离轴承与其他部件的接触,从 而减少摩擦阻力。油脂还可以起到散热与防止腐蚀的作用。所以为了防止外物对 油脂的影响,我们一般会在保持架的两端加装防尘装置,以免外物减弱油脂的各 种作用。 1.2风力发电机组轴承常见故障及诊断 支撑主轴轴承的外圈固定在轴承座上,机械传动轴从主轴轴承内圈经过。风 力带动叶轮转动,通过传动链将动力传输给主轴,当主轴达到一定的载荷转速时,由轴承和轴承座组成的振动系统就会产生激励,也就是风机发电机组振动的产生。这种激励振动一般是周期性振动,对受载体产生的撞击力或摩擦力也会周期性的 出现,长期疲劳极大可能产生轴承的局部损伤,因此需要加强对轴承振动频率的 监测。根据长期的实践经验及理论知识的积累,从故障程度上可将轴承的故障类 型分为初级损坏与中级损坏两类。通常我们所见到的电流损害、磨损以及表面损 坏等都是初级磨损;还有一些像破裂和散裂属于中级损坏。我们还可以从损坏的 位置来区分故障,可将其类型分成外圈故障、内圈故障、滚动体故障以及支撑部 件的故障。结合轴承结构示意图,可将风电机组轴承的常见故障特征及产生原因 归纳罗列如下:(1)疲劳故障:故障特征表现为滚动体或者滚道表面脱落或者 脱皮。故障产生原因为轴、保持架等支撑装置制造工艺较低使得其精度不能保证,轴向长期过高负荷条件工作,对其性能产生很大的影响。(2)磨损故障:我们 可以从外观来观察故障的产生原因,一般磨损故障会产生色泽的变化,形成磨痕。故障产生原因为在微小间隙间的滑动磨损和长期恶劣环境中的长期使用。(3) 缺口或凹痕故障:分为过载及安装或外来颗粒引起的缺口或凹痕。过载及安装引 起的特征表现为细小的缺口或凹痕分布在两圈的滚道周围和滚动元件里,是由于

风电机组故障诊断与处理方法及系统与相关技术

图片简介: 本技术介绍了一种风电机组故障诊断与处理方法及系统,系统包括数据解析模块,所述数据解析模块的输入端与风电机组相连,数据解析模块的输出端经过资料库与终端相连。方法包括:根据历史故障发生情况和处理经验,建立排查指导库;根据风电机组故障代码的触发条件和I/O点数据之间的关系,建立逻辑诊断库;建立专家信息模块并与处理指导方案相关联;在诊断分析报告和处理指导方案内设置评价信息,由现场人员评价并调整方案。上述技术方案直接面向现场故障处理业务的全过程,从故障发生,故障分析,故障解决全过程进行指导和支持,在故障发生时,即时的推送排查指导方案,有目的地进行排查精确的定位故障并提供处理指导方案,有效地解决故障。 技术要求 1.一种风电机组故障诊断与处理系统,其特征在于,包括数据解析模块(1),所述数据解析模块(1)的输入端与风电机组相连,数据解析模块(1)的输出端经过资料库(2)与终端(4)相连。 2.根据权利要求1所述的一种风电机组故障诊断与处理系统,其特征在于,所述资料库包括排查指导库(2.1)、逻辑诊断库(2.2)、处理指导库(2.3)、文档资料库(2.4)和专家信息模块(2.5),所述排查指导库(2.1)、逻辑诊断库(2.2)与处理模块(3)相连。 3.根据权利要求2所述的一种风电机组故障诊断与处理系统,其特征在于,所述处理模块(3)包括评价信息模块(3.1)和诊断报告模块(3.2),所述评价信息模块(3.1)与排查指导库(2.1)相连,所述诊断报告模块(3.2)与逻辑诊断库(2.2)相连。

4.一种风电机组故障诊断与处理系统的工作方法,其特征在于,包括以下步骤: ①根据历史故障发生情况和处理经验,建立排查指导库,当机组停机时,根据接收到的机组停机信息,匹配出与之对应的排查指导方案; ②根据风电机组故障代码的触发条件和I/O点数据之间的关系,建立逻辑诊断库,当机组发生故障时,分析故障日志并生成该次故障的诊断分析报告和处理指导方案; ③建立专家信息模块并与处理指导方案相关联; ④在诊断分析报告和处理指导方案内设置评价信息,由现场人员评价; ⑤采用权重比例调整的方法调整排查指导方案内排查内容的优先级和故障点的发生概率。 5.根据权利要求4所述的一种风电机组故障诊断与处理系统的工作方法,其特征在于,所述步骤1中的排查指导方案,包括故障代码名称、排查对象、排查对象出现故障的概率和排查方法。 6.根据权利要求4所述的一种风电机组故障诊断与处理系统的工作方法,其特征在于,所述步骤2中的故障日志包括主控停机时刻记录的I/O点数据和停机代码信息。 7.根据权利要求6所述的一种风电机组故障诊断与处理系统的工作方法,其特征在于,所述步骤2中通过分析故障日志提取关键数据点,所述关键数据点为故障发生时首先发生异变的信号或数值,用于确定故障点,所述故障点为与故障直接相关联的可更换的零部件或电气元件。 8.根据权利要求4所述的一种风电机组故障诊断与处理系统的工作方法,其特征在于,所述步骤2中的诊断分析报告,包括机组停机信息、关键数据点、故障点和故障原因;处理指导方案,包括复位建议,所需工具,处理方案,所需备件和专家通讯方式。 9.根据权利要求4所述的一种风电机组故障诊断与处理系统的工作方法,其特征在于,所述步骤4中的评价信息,包括故障点定位是否准确,实际故障点,排查指导方案是否有效。 10.根据权利要求4或9所述的一种风电机组故障诊断与处理系统的工作方法,其特征在于,所述步骤5中的权重比例排序的方法,指的是通过对评价信息进行权重分析,按照故障点定位是否准确,实际故障点、排查指导方案是否有效等进行加权排序,用于调整排查指导方案内排查内容的优先级和故障点的发生概率。 技术说明书 一种风电机组故障诊断与处理方法及系统 技术领域

风力发电机电气故障诊断及维修实例分析

风力发电机电气故障诊断及维修实例分析 朱刚1 周艳华2 (1.神华国华江苏风电有限公司;2.江苏省东台市供电公司江苏东台224200) Abstract: The wind turbine integrated computer, automatic control, optical fiber communication, the technical achievements of the power frequency converters, servo drives, precision, detection, and new mechanical structure, high flexibility, high precision and a high degree of automation features. In today's energy industry, almost all managers and technical staff have been recognized that wind turbine with conventional forms of electricity generation in alternative energy and environmental protection are unmatched advantage, universal access to wind power technology is the future of human survival and development the only way. Keywords: wind turbine fault diagnosis maintenance instance 风力发电机综合了电子计算机、自动控制、光纤通信、电力 变频变流、伺服驱动、精密检测与新型机械结构等方面的技术成 果,具有高柔性、高精度和高度自动化的特点。在当今能源行业, 几乎所有的管理者和技术人员都已经认识到风力发电机在能源 替代和环境保护等方面都有着常规发电形式所无法比拟的优势, 全面普及风力发电等新能源技术是未来人类生存和发展的必由 之路。既然作为一种机电一体化的复杂系统,出现各种各样的故 障亦是必然,如何在现场条件下正确、快速地分析故障原因,发 现故障部位进而快速处理故障,使故障风机恢复正常投入运行, 提高设备的可利用率,是现场维修人员需要深入探讨的问题。 1 风力发电机电气故障的分类 风力发电机的电气故障可按故障的性质、现象、原因或者后 果等进行分类。根据故障发生的部位不同,可以分为硬件故障和

风电机组轴承的状态监测和故障诊断与运行维护王利

风电机组轴承的状态监测和故障诊断与运行维护王利 发表时间:2019-12-11T15:06:41.297Z 来源:《中国电业》2019年第16期作者:王利 [导读] 风能作为一种清洁可再生能源,受到世界各国的关注。 摘要:风能作为一种清洁可再生能源,受到世界各国的关注。作为风能储量较多的国家,自然需要合理的利用风能,使得国家能够得到迅速的发展。随着我国可持续发展政策的落实以及风力发电技术的进步,使我国风力发电产业得到迅速发展。目前我国的风力发电在商业上已经可以与燃煤发电相竞争。在这一市场大环境下,风力发电产业应当加强核心技术的发展。在风力发电机组中轴承作为核心零部件,风电轴承的范围涉及从叶片、主轴和偏航所用的轴承,到发电机中所用的高速轴承。轴承既是风力机械中最为薄弱的部分,也是最为重要的部分。由此看来对于风电机组轴承的状态检测、故障诊断、运行维护等工作的深入研究就显得尤为重要,直接关系到我国电力事业的发展。 关键词:风电机组状态监测故障诊断运行维护风电轴承 二、风电机组传动系统的日常维护 (一)主轴轴承的日常维护及保养(以金风S48/750风力发电机组为例) 轴承在工作的时候,会受到外界的影响,当受到一定量频率的震荡或者载荷重量增高,即使低速运行,都会影响到风电机组的安全运行。温度过高、过低,润滑不均匀、缺少润滑脂或者其他物质入侵轴承,就会导致主轴轴承的失效而无法继续运行,一般情况下,主轴承轴被磨损锈蚀都会导致轴承运转的不流畅,使运转的阻力增大直至卡死甚至引起风机着火的严重后果。就目前的形式来看,滚动式的轴承仍旧是风力发电场最主要的选择,因为其具有很大的优势,节约成本而且效率很高,但与此同时因结构构造较为简单也容易受到损伤,轴承中出现故障的原因有很多,故进行维护人员要特别重视这项内容,大部分故障最后都导致主轴轴承卡死。如果出现主轴轴承卡死情况,首先考虑的就是轴承的质量问题,或者是安装的过程中出现了装配上的错误,大部分都是滚轴在润滑中受天气的影响导致了污染。所以在日常维护和保养中,要全方位、多角度分析和考虑。第一就是外观检查有无油脂溢出,清理主轴轴承处溢出油脂和集油盒中的油脂,如果发现润滑油脂变质,油脂碳化或者凝固等都要及时疏通或更换,妥当处理,不能造成风机附近环境污染。正常运行的主轴轴承在没有堵塞的情况下,润滑油脂可以作为介质正常的在轴承内起到润滑的作用。还要检查轴承内的卫生情况,不能有其他杂物,保持轴承之间的接触面的整洁,日常维护过程中要借助工具对轴承进行清理,一旦杂物在里面堆积,就不能使轴承正常运转工作。第二则是检查轴承是否存在松动的情况,或者轴承之间型号不相符,就会导致轴承之间的错位,发现松动后要利用工具将其恢复成原本使用的状态。第三就是给轴承进行注油操作时,必须将机组切至维护状态打开叶尖气动刹车扰流板,使发电机、主轴空转后,才可进行注油。定期维护时主轴每次加注油脂950g,发电机因厂家不同分别加注不同油量(株洲发电机前后轴承各加:70g,永济发电机前后轴承各加:100g)。第四则是检查主轴温度,不同工况下都可以影响主轴轴承的运行温度。例如:夏冬季节同输出功率条件下,主轴运行温度夏季平均高出冬季15-20℃左右。因此判断主轴损坏要综合考虑。根据现场运行维护情况在满足风机运行技术要求的前提下,在主轴上加装温度传感器设定停机报警温度后可有效防止主轴卡死等现象发生。将注油口处的主轴PT100温度经SM331模块传回中央监控系统,实现风机主轴温度的在线监测功能。第五则是定期对主轴轴温高的主轴油脂进行取样化验,根据理化指标滴点、锥入度、水分等指标信息和元素含量进行分析。指标如有超标现象则应重点关注加强风机的巡检次数,必要时更换主轴轴承。还可以利用小风天气盘车,监听主轴有无异音。 (二)齿轮箱的维护与保养 作为传动系统中非常重要的零件之一,齿轮箱相对来说也容易产生故障,齿轮箱的使用范围是长期不间断运行的,如果没有及时进行保养,极易影响风机正常的运行,因此要对齿轮箱进行定期的有效的维护和保养,这样能够降低齿轮箱故障的发生率,还能够增加齿轮箱使用的年限,节约生产成本。对齿轮箱的检查是较为方便的,主要根据齿轮箱的声音是否正常以及齿轮箱内的润滑油脂的状态来判断的。齿轮箱正常的声音的频率是稳定没有较大的起伏的,如果声音过快或者过缓,声音频率不稳定,噪音较大,就说明箱内的齿轮可能出现了齿轮断裂,齿轮表面点蚀或者齿轮松动等问题,要及时进行维修和更换,并且使齿轮重新安装后能够重新运转。其次就是润滑油对齿轮的影响,油箱是否存在漏油的问题,或者齿轮箱油的质量问题对其造成的影响。 金风S48/750风机齿轮箱传动形式为一级行星齿和两级平行轴圆柱齿啮合传动,各齿轮采取强制润滑方式,增速比为i=67.57。在日常维护要及时补充油箱内的润滑油,发现油箱泄露要进行更换修复等。润滑油的质量也决定了油箱内齿轮运转的状况,油脂可能因为天气的原因凝固或者碳化,都要进行清理和更换润滑油。在闭式传动中,当齿轮硬度不高,且润滑油稀薄时尤其容易发生齿轮点蚀。齿轮的点蚀是齿轮传动的失效形式之一,即齿轮在传递动力时,在两齿轮的工作面上将产生很大的压力,随着使用时间的增加,在齿面上便产生细小的疲劳裂纹。当裂纹中渗入润滑油,在另一轮齿的挤压下被封闭在裂纹中的油压力就随之增高,加速裂纹的扩展,直致轮齿表面有小块金属脱落,形成小坑。轮齿表面点蚀后,造成传动不平稳和噪声增大。在日常保养中,也要防止齿轮箱的异常高温,要检查润滑油供应是否充分,特别是在各主要润滑点处,必须要有足够的油液润滑和冷却;再次要检查各传动零部件有无卡滞现象,还要检查机组的振动情况,前后连接接头是否松动等。防止因长期使用而出现零件老化以及破损的问题,如果发现这类问题发生,要及时进行零件的更换与维修。及时发现问题并进行合理的解决,提高风机可利用率。 三、风电机组轴承的状态监测与故障诊断 基于SCADA的方法 SCADA系统能够将运行参数发送到中央数据库,对发电机组的运行状态信息实时的监测。但是需要的传感和采集通信的数据较多,增加了供电技术的成本和监测复杂性,也因此没有得到良好的普及。对于发电机的机械故障,可以通过感应电动机的终端发电机输出反应出来。通过对电流和功率的稳定功率谱进行分析,对发电机轴承的故障进行监测。在缺少振动传感器的情况下,将震动平均数据和参数相结合,从而判断风电机组的运行状态。 四、发电机组轴承的运行维护 对于主轴轴承齿轮箱、低速轴轴承、偏航和变桨轴承的运行维护来说。由于轴承是低速而且不完全旋转,限制了振动监测效果。齿轮箱低速轴轴承可以采用润滑油液进行维护,并实施在线监测的方法。但对于主轴轴承与偏航和变桨轴承由于采用润滑脂、润滑油液混合液

大型风力发电机组故障诊断综述

大型风力发电机组故障诊断综述 发表时间:2018-05-22T10:02:18.487Z 来源:《基层建设》2018年第5期作者:李育波[导读] 摘要:近年来随着经济的不断发展,大型风力发电机组故障诊断的要求越来越高。国投白银风电有限公司甘肃兰州 730070 摘要:近年来随着经济的不断发展,大型风力发电机组故障诊断的要求越来越高。本文通过分析大型风力发电机组故障诊断方法,探讨及分析了风电机组故障诊断未来的发展方向。关键词:大型风力发电机组故障诊断引言:近年来,作为绿色、可再生能源的风能已成为解决能源污染问题必不可少的重要力量,截至2015年底,全球风电总装机容量已达427.4GW,其中陆上风电装机市场,中国仍居榜首。风力发电迅速发展带来巨大市场机遇的同时,也带来了巨大挑战。一方面,风电机组的工作条件十分恶劣,长期暴露在风速突变、沙尘、降雨、积雪等环境下,造成了风电机组故障频发。 1风电机组定性故障诊断方法和内容基于定性经验的风电机组故障诊断是一种利用不完备先验知识描述系统功能结构,并建立定性模型实现故障诊断过程的方法。大型风力发电机组故障诊断主要包括了2个方面,一个是风电机组定性故障诊断方法,另一种是风电机组定量诊断方法,这两种方法相辅相成。基于定性经验的风电机组故障诊断是一种利用不完备先验知识描述系统功能结构,并建立定性模型实现故障诊断过程的方法。基于ES风电机组故障诊断方法的基本思想是:运用专家在风力发电领域内积累的有效经验和专门知识建立知识库,并通过计算机模拟专家思维过程,对信息知识进行推理和决策以得到诊断结果。 1.1故障树分析法 FTA 是以故障树逻辑图为基础的一种演绎分析方法,20世纪60年代由美国贝尔实验室提出,既可以用作定性分析又可以用于定量分析。该方法以图形化为表达方式,从故障状态出发,逐级对故障模式和故障部件进行分析推理以确定故障原因和故障发生概率。其中,风电机组故障诊断大多是将其作为定性诊断方法进行分析。为获得清晰、形象地故障原因和宝贵的专家经验,并提供专家级的解决方案,文献结合FTA技术与专家系统应用于风电机组齿轮箱故障诊断中,结果表明该方法对专家库的依赖程度过大。提出了基于FTA的风电机组传动链故障诊断方法,采用框架结构的混合知识表达方式,建立了基于故障树的智能诊断系统。 1.2符号有向图(SDG)方法符号有向图SDG是基于定性经验或基本定律的一种故障诊断技术。可实现正、反向推理,在缺乏知识的详细过程背景下,能够捕捉有效信息并结合相关搜寻策略准确、快速地检测和定位故障。风电机组故障部件的检修顺序对降低风场运营成本起着举足轻重的作用,根据风电机组各部件的相互作用机理,建立了SDG故障诊断模型,并采用关联算法安排检修顺序,但文中仅仅针对控制回路较少的情况展开研究。结合SDG和模糊逻辑方法应用于风电机组故障诊断中,并采用了层次分析法设计故障诊断系统,有效地抑制了分辨率低等问题。基于SDG的风电机组故障诊断不要求完备的定量描述,能充分利用系统结构和正常运行条件下的不完全信息,但系统复杂程度的增加将导致SDG支路数和节点数之间复杂关系的增加,造成故障诊断的实时性和精准度较差。因此,该方法较少应用在风电机组故障诊断中。 2风电机组定量故障诊断方法 2.1基于解析模型的方法基于解析模型的故障诊断适用于观测对象传感器数量充足且具备精确数学模型的系统,通过与已知模型进行分析对比从而达到故障识别的目的,主要包括参数估计法、状态估计法等。文献建立了三叶片水平轴风电机组基准模型,采用 5种不同的故障监测与隔离方案评估了7种不同的测试系列,取得了较为满意的结果,但是基准模型的简单化不能体现风电机组的复杂功能。文献在考虑未知执行器增益和延迟两种情况下,提出了基于离散时间卡尔曼滤波器和交互多模型估计器的风电机组转换器故障诊断方法。以三叶片水平轴风电机组为研究对象,利用改进未知输入观测器方法进行故障识别,实现了干扰解耦和噪声降低的效果,提高了诊断精度,但该方法的自适应能力不强。 2.2基于数据驱动的方法基于数据驱动的诊断方法包含2种方式1分析处理监测信号以提取故障特征;2直接利用大量相关数据进行推理分析并得到诊断结果,主要包括信号处理法、人工智能定量法与统计分析法,是目前风电机组故障诊断所采用的主流方法。 3风力发电故障诊断系统为提高风场经济效益,改善运维现状,越来越多的机构致力于研发风电机组在线故障诊断系统,已经取得了许多卓有成效的成就,主要针对风电机组的关键部件,包括机舱、基础、塔架、叶片、齿轮箱等。数据采集与监控系统是目前较为成熟的商业软件之一,除了通过分析收集到的数据预测轴承和其他机械等最基本的故障以外,该系统还具有控制发电应用数据的作用。为提高风电机组故障预测精度,产生了许多结合SCADA数据进行状态监测的系统。其中通用电气的风电状态监测系统采用傅里叶频域和加速度包络分析机组运行信息,并对主轴承、发电机、机舱、齿轮箱等关键部件进行故障诊断,达到了每年每台风电机组节省 3000 美元的效果。Mita-Teknik的状态监测系统使用傅里叶振幅谱、傅里叶包络谱、峭度值分析等方法分析振动信号以判定主轴承、发电机、齿轮箱等部件的故障,大大地提高了机组的运行效率。为配合管理人员、操作人员和维修工程师的工作任务,斯凯孚的 3.0状态监测系统采用傅里叶频域分析、时域分析和包络分析等方法确定风电机组的故障类型,但该系统对风电机组主传动链的监测不太全面。相对国外而言,国内风力发电监测技术比较落后且故障自诊断技术较为不成熟,导致目前该系统以状态监测为主,并辅以专家远程人工分析,实现机组的故障诊断及其定位。主要有东北大学、华中科技大学的“风力发电在线监测和故障诊断系统”,以及金风科技公司的“风电机组在线监测系统”和唐智科技的风电机组在线故障诊断系统”等。 4结束语:随着大功率风电机组的快速发展和并网运行,对其运行可靠性与系统稳定性提出了更高的要求,必将促进风电机组状态监测、故障诊断和智能维护技术的进一步发展。任何一种单独技术或绝对方法都无法解决风电机组所有故障诊断问题,因此,采取多种技术方法相结合,取长补短实现风电机组的故障诊断将逐步成为未来的研究热点。参考文献:

无叶片风力发电机--VORTEX

VORTEX——没有叶片的风力发电机就是这么酷 一.前言 风能作为一种清洁的可再生能源,越来越受到世界各国的重视。其蕴量巨大,全球的风能约为2.74×10^9MW,其中可利用的风能为2×10^7MW[1]。随着全球经济的发展,所面临的能源问题和环境问题越来越严峻,使得风能等可再生能源迅速发展起来。根据国家能源局数据,2014年中国全部发电设备容量为1360GW,其中并网风电的容量达到了95.8GW,也就是说说,风电装机量在中国发电装机总量当中占据大约7%的份额。 一般情况下,我们所看见的风力发电机都是水平轴扇叶风机,他们有着很大的风机叶片,以此来吸收风能并发电。然而,这样的风电机有一些弊端。一个风电场的众多风机之间的排列需要较大的安全距离,也就是说一块固定大小的地面上能够安装的风电机数量是有限的;另外,扇叶的旋转也对鸟类带来了危险。 想象一下,一个没有叶片的风机会是什么样纸?它需要更少的材料,成本更低,噪声更小,对环境友好度更好……关上你的脑洞,来一睹它的风采吧↓↓↓

这个酷炫的没有叶片的风机是由西班牙公司Vortex Bladeless开发。无叶片风机Vortex 的工作原理是利用结构的振荡捕获风的动能,从而利用感应发电机或压电发电机将风的动能转变成电能输出。该设计理念将减少常规涡轮机中很多零部件的设计与制造,如叶片,机舱,轮毂,变速器,制动装置,转向系统等,从而使无叶片风机Vortex具有无磨损、性价比高、便于安装和维护、环境友好型及土地利用率高等显著特点。 二.Vortex的发电原理——卡门涡街 无叶片风机Vortex的基本发电原理是卡门涡街,维基百科上这样描述它,“在流体中安置阻流体,在特定条件下会出现不稳定的边界层分离,阻流体下游的两侧,会产生两道非对称地排列的旋涡,其中一侧的旋涡循时针方向转动,另一旋涡则反方向旋转,这两排旋涡相互交错排列,各个旋涡和对面两个旋涡的中间点对齐,如街道两边的街灯般,这种现象,因匈牙利裔美国空气动力学家西奥多·冯·卡门最先从理论上阐明而得名卡门涡街”[2-3]。 卡门涡街可以解释许多现象。1940年11月7日美国华盛顿州塔科马海峡吊桥(Tacoma Narrow Bridge)崩塌事件。华盛顿州政府特为此而设立专案调查组,经过美国空气动力学家西奥多·冯·卡门在加州理工学院风洞进行模型测试,证明塔科马海峡吊桥倒塌事件的元凶,是卡门涡街引起吊桥共振。原设计为了求美观及省钱,使用过轻的物料,造成其发生共振的破坏频率,与卡门涡街接近,从而随强风而剧烈摆动,导致吊桥崩塌。

风电机组状态检修的研究

风电机组状态检修的研究 摘要:本文介绍风电机组的组成和典型故障,阐述风电机组状态检修方法的内容、构成等,重点分析其数据收集系统和运行状态评估方法。 关键词:风电机组;状态检修;状态评估 1引言 随着世界经济的快速发展,能源紧缺和环境污染问题日益突显,我国在改革 开发初期就提出了可持续发展战略,其中一项最重要的措施就是要大力开发和利 用可再生能源,风能是一种清洁型的可再生能源,其分布范围广,可利用数量多,是目前应用技术最成熟的新能源种类。我国也出台了一系列政策鼓励风力发电的 开发和建设,目前的装机总量已超过百兆千瓦,并仍处于一个快速增长的阶段。 与此同时,风力发电站的安全稳定运行以及风能的有效利用成为目前关注的焦点,也是风能利用的挑战。近年来,随着我国风电站的建设发展,风电机组的各种故 障也层出不穷,其造成的停机时间严重降低了风电机组的效率,增加维护成本, 如果不能够进行有效的检修和控制,可能会造成严重的安全事故,危及从业人员 的生命安全。状态检修技术是目前应用比较广泛的先进的检修技术,能够明显降 低风电机组的故障概率,减少停机时间,降低维护成本。 2风电机组简介 2.1风电机组的组成 风电机组是将风能转化为机械能,再将机械能转化为电能的系统,其主要结 构有叶轮、传动系统、发电机、控制系统、偏航系统、塔架等,其中传送系统的 主要部件有主轴、齿轮箱、轴承、联轴器等,主要用于传递机械能,是风电机组 的主要机械部件,也是容易发生机械故障的部位;控制系统主要由传感器和控制 柜组成,对风电机组起到监测保护和运行控制的作用。 2.2风电机组的典型故障 风电机组的故障主要分为机械故障、电气故障和液压故障三种,而机械故障 中齿轮箱故障是比较常见的故障,电气故障中发电机和变频器等的故障也是风电 机组比较多发的故障种类。齿轮箱故障主要是由油温变化和气流变化引起的齿轮 点蚀、齿轮胶合、齿轮疲劳磨损、轮齿折断等;发电机故障主要有发电机振动过大、噪声过大、温度过高、轴承过热等,主要由定子绕组短路、转子绕组故障和 偏心振动等原因引起的,而轴承故障为主要故障原因;变频器故障主要有短路、 过电流、过载、过电压、过温、接地等故障。 3风电机组的状态检修 3.1风电机组状态检修的内容 风电机组的状态检修首先需要通过控制系统收集风电机组各组成部分的数据 参数,如风电机组的当前运行功率和风速、传送系统中齿轮箱的油温和轴承的温度、以及风电机组目前的运行状态等,以此掌握风电机组的各种参数,为状态检 修的决策提供原始依据。 其次由远程实时监测系统对经常发生故障的部位进行在线监测,了解风电机 组的常见故障种类,并进行分类统计汇总,分析常见故障的机理然后采用科学的 诊断方法对故障进行诊断分析。此外,风电机组的故障预测是实时状态检修的关 键技术,根据实时监测获取的各项数据参数,建立对应的预测模型,通过专业的 软件对比分析数据与实测数据,实现对故障的预测。 最后通过对风电机组的各种参数进行监测、收集、整理、分析、诊断、预测

风电机组故障诊断综述

风电机组故障诊断综述 对风电机组故障诊断技术进行综述,按照基于定性诊断、定量诊断的分类方式,针对现有风电机组故障诊断方法并结合故障诊断系统进行分析。对每一类故障诊断方法归类,指出这些方法的基本思想、适用条件和应用范围以及优缺点,并探讨了风电机组故障诊断技术未来可能的主要发展方向。 关键字:风力发电;风电机组;传动系统;维护检测 一、风机传动系统主要结构及部件 风机传动系统就安装的结构而言,一般分为两种情况:一种是水平轴风机传动,叶片是安装在水平面的轴承上;另一种是垂直轴风机传动,风轮与叶片是垂直摆放的,风使叶片转动,再带动与之垂直的轴承,发动机被带动以后就可以发电了。但目前大多都是水平轴风机,叶轮与轮毂通过轴承相连接,虽然结构较复杂,但能获得较好的性能,而且叶轮承受的载荷较小、重量轻。传动链主要由主轴、主轴承、偏航轴承、齿轮箱、联轴器、发电机和机座等组成。这些构成了风机中最重要的一个部分,同时因为风机传动系统带动的风叶,所以压力、温度过高都容易导致故障。维护时要特别注意受力铰链和传动机构的润滑、磨损及腐蚀情况,及时进行处理,以免影响机组的正常运行。 二、风电机组传动系统的日常维护 (一)主轴轴承的日常维护及保养(以大唐华创风能CCWE—3000/122.HD 风力发电机组为例) 轴承在工作的时候,会受到外界的影响,当受到一定量频率的震荡或者载荷重量增高,即使低速运行,都会影响到风电机组的安全运行。温度过高、过低,润滑不均匀、缺少润滑脂或者其他物质入侵轴承,就会导致主轴轴承的失效而无法继续运行,一般情况下,主轴承轴被磨损锈蚀都会导致轴承运转的不流畅,使运转的阻力增大直至卡死造成严重的后果。就目前的形式来看,滚动式的轴承仍旧是风力发电场最主要的选择,因为其具有很大的优势,节约成本而且效率很高,但与此同时因结构构造较为简单也容易受到损伤,轴承中出现故障的原因有很多,故进行维护人员要特别重视这项内容,大部分故障最后都导致主轴轴承卡死。如果出现主轴轴承卡死情况,首先考虑的就是轴承的质量问题,或者是安装的过程中出现了装配上的错误,大部分都是滚轴在润滑的中受天气的影响导致了污染。所以在日常维护和保养中,要全方位、多角度分析和考虑。第一就是外观检查有无油脂溢出,清理主轴轴承处溢出油脂和集收盘中的油脂,如果发现润滑油脂变质,油脂碳化或者凝固等都要及时疏通或更换,妥当处理,不能造成风机附近环境污染。正常运行的主轴轴承在没有堵塞的情况下,润滑油脂可以作为介质正常的在轴承内起到润滑的作用。还要检查轴承内的卫生情况,不能有其他杂物,保持轴承之间的接触面的整洁,日常维护过程中要借助工具对轴承进行清理,一旦杂物在里面堆积,就不能使轴承正常运转工作。第二则是检查轴承是否存在松

风力发电机常见故障及其分析概要

茂名职业技术学院 毕业设计 题目:风力发电组轴承的常见失效形式及故障分析系别:机电信息系专业:机械制造与自动化班别:13机械一班姓名:何进生指导老师:张浩川日期:2015年7月1日至2016年5月1日

内容摘要 随着全球经济的发展和人口的增长,人类正面临着能源利用和环境保护两方面的压力,能源问题和环境污染日益突出。风能作为一种蕴藏量丰富的自然资源,因其使用便捷、可再生、成本低、无污染等特点,在世界范围内得到了较为广泛的使用和迅速发展。风力发电己成为世界各国更加重视和重点开发的能源之一。随着大型风力发电机组装机容量的增加,其系统结构也日趋复杂,当机组发生故障时,不仅会造成停电,而且会产生严重的安全事故,造成巨大的经济损失。 本论文先探讨了课题的实际意义以及风力发电机常见的故障模式,在这个基础上对齿轮箱故障这种常见故障做了详尽的阐述,包括引起故障的原因、如何识别和如何改进设计。通过对常见故障的分析,给风力发电厂技术维护提供故障诊断帮助,同时也给风电设备制造和安装部门提供理论研究依据。 关键词 风力发电机;故障模式;齿轮箱;故障诊断

Common Faults And Their Analysis Of The Wind Turbine Abstract With the global economic development and population growth, humanity is facing with the pressure from two sides of the energy use and environmental protection, the energy problem and environmental pollution has become an increasingly prominent issue. Wind power as a abundant reserves of natural resources, because of its convenient use, renewable, low cost, no pollution, has been more widely used and rapid development in the world. Wind power has been taken as one of the priority development energy sources in the world.The increase of wind power capacity and complicated system structure will not only cause power outage,but also raise serious accidents when the set is at fault. In the beginning, the dissertation introduces the practical significance of project and the common failure mode of wind turbines, then researches and describes the failure of gearbox in detail, including the cause of failure, how to identify and how to improve the design. Based on the analysis of common failures, not only provide assistance for fault diagnosis to the technical

相关主题
文本预览
相关文档 最新文档