当前位置:文档之家› 基质物理性质一条龙测定方法

基质物理性质一条龙测定方法

基质物理性质一条龙测定方法
基质物理性质一条龙测定方法

栽培基质常用理化性质“一条龙”测定法

荆延德,张志国

1 国外基质孔隙度的测定原理和步骤

1.1 测定的原理在美国的温室中有一种测定基质孔隙度的方法,即在达到饱和时,栽培基质所吸收的水分作为总孔隙体积。饱和后,栽培基质在静置时自由渗出的水分作为非毛管孔隙体积,总孔隙体积减去非毛管孔隙体积即为毛管孔隙的体积。上述三个体积分别除以栽培基质所占的体积即为三种不同的孔隙度。

1.2 测定的步骤

1.2.1 测量容器的容积密封容器的排水孔,使容器中装入水的体积与将要装入的栽培基质的体积相等,用带刻度的量筒量出装入水的体积即为容器的总体积(与实际的容器容积有差别)。

1.2.2 倾空并风干容器,装入栽培基质。用有刻度的量筒慢慢地加水,当一层水膜出现在栽培基质表面且无自由水时,即为栽培基质饱和了。记录加入的水的总体积,作为栽培基质总孔隙体积。这个过程大约需要花费2 h(小时)的时间。

1.2.3 把容器放在一个不透水的盘上,除去封口,使水自由的从栽培基质中排出,这个过程大约需要3 h(小时)左右。测量并记录栽培基质中排出的水,作为通气孔隙体积。通过以上三个步骤,就可计算出栽培基质的孔隙度。

总孔隙度等于总孔隙的体积除以容器的体积再乘以100%;

非毛管孔隙度等于通气孔隙的体积除以容器的体积再乘以100%;

毛管孔隙度等于总孔隙度减去非毛管孔隙度。

2 国外栽培基质pH值和电导率的测定方法

SME法最先在密西哥州大学发明并被大多数基质分析实验室所应用。它明显不同于1∶ 2浸

提法或1∶ 5浸提法,利用SME法时,栽培基质的潮湿程度和基质数量不影响测定结果。SME 法的测定方法是把一定量的栽培基质放到一个烧杯中,然后加入蒸馏水或去离子水至饱和—当液浆开始发亮,基质表面没有或有极少量自由水时即达到饱和状态。对非常干燥的基质,可用玻棒或小刀搅拌以促使其饱和。饱和后,静置样品。近来研究表明,在30 min(分)内浸提液或栽培基质的饱和液即可达到平衡。尽管盖上容器后,静置溶液需要较长的时间,但还是要盖好容器以防止蒸发。静置后,用广泛滤纸通过真空漏斗过滤饱和液。以待分析基质的电导率。

许多基质分析实验室在进行电导率分析之前直接用泥浆测定pH值。

石油化学与组分分析

第一章 1. 石油资源在国民经济中的地位 为经济发展供应能源,支撑材料工业发展,促进农业发展,为工业部门提供动力,是重要的支柱产业。 石油和天然气出发,生产出一系列石油产品及石油化工中间体。塑料、合成纤维、合成橡胶、合成洗涤剂、溶剂,涂药,农药,染料、医药等与国际民生密切相关的重要产品。 2. 了解石油化学组成有何实际意义? 因为原油虽在表观特征上与烃类相似,然而在利用原油和加工原油的角度看,各种原油在性质上的差异是很明显的。有的原油通过蒸馏就可以得到产率较高的合格汽油,有的却只能得到很低产率的低质汽油。有的原油常温下要凝固,有的在0℃仍能流动。有的原油很容易获得沥青,有的却非常困难。原油及其加工后产品的性质都是由它们的化学组成所决定的,包括烃类的组成和非烃类的组成。因此,在确定一种原油的加工方案前,首先要了解它的性质和组成。 3. 石油的定义 石油又称原油,是一种粘稠的、深褐色液体。地壳上层部分地区有石油储存。主要成分是各种烷烃、环烷烃、芳香烃的混合物。它是古代海洋或湖泊中的生物经过漫长的演化形成,属于化石燃料。石油主要被用来作为燃油和汽油,也是许多化学工业产品如溶液、化肥、杀虫剂和塑料等的原料。 4. 常规石油是指哪些石油资源? 常规石油就是指油气田可以用传统的技术(自喷、人工举升、注水气)采油等进行开发。主要是各种烷烃,环烷烃,芳香烃的混合物。 5. 非常规石油指哪些石油资源? 目前,对非常规油气资源尚无明确定义,人们采用约定俗成的叫法将其分为非常规石油资源及非常规天然气资源两大类。前者主要指重(稠)油、超重油、深层石油等,后者主要指低渗透气压气、煤层气、天然气水合物、深层天然气及无气成因油气。此外,油页岩通过相应的化学处理后产出的可燃气和石油,也属于非常规油气资源。 6. 世界石油资源的大致情况 原油的分布从总体上来看极端不平衡;从东西半球来看,约3/4的石油资源集中在东半 球,西半球占1/4;从南北半球看,石油资源主要集中于北半球,从纬度分布看,主要集中于北纬20°—40°和50°—70°两个纬度带内,波斯湾及墨西哥湾两大油区和北非油田均处于北纬20°—40°内,该带集中了51.3%的世界石油储量。50°—70°纬度带内有著名的北海油田,俄罗斯伏尔加及西伯利亚油田和阿拉斯加湾油区。 7.中国石油资源的大致情况 中国石油可采资源探明率为43%,尚有57%的剩余可采资源有待探明。总体属于石油勘探中级成熟阶段。但中国待探明石油资源70%以上主要分布在沙漠、黄土塬、山地等等,勘探开发难度加大,技术要求和成本费用越来越高。未来中国石油储量增长的主要领域在西部和海上。另外,南沙海域石油资源丰富。根据初步估算石油可采量约为100亿吨,其中70%在中国断续国界以内。 8. 世界石油资源消耗的大致情况消费量(亿吨油当量)

空气物理性质与压力

空气物理性质 空气的组成: 成分 氮氧氩二氧化碳其他 体积(%)78.09 20.95 0.93 0.03 0.078 重量(%)75.53 23.14 1.28 0.05 0.075 空气的密度: 空气具有一定的质量,质量常用密度来表示。密度是单位体积内空气的质量,用ρ表示。ρ=M/V 式中M、V分别为气体的质量与体积。 空气的粘度: 空气质点相对运动时产生阻力的性质。空气粘度的变化只受温度变化的影响,而压力变化 对其影响甚微,可忽略不记。 空气的运动粘度与温度的关系: t(oC) 0 5 10 20 30 40 60 80 100 v(m2s-1) 0.136 0.142 0.147 0.157 0.166 0.176 0.196 0.21 0.238 (10-4) 空气的压缩性与膨胀性: 当气体的压力变化时体积随之改变的性质称为气体的压缩性;气体因温度变化体积随之改变的性质称为气体的膨胀性。空气的压缩性和膨胀性都远大于液体的压缩性和膨胀性。气体的 体积随温度和压力的变化规律服从气体状态方程。 mym2005-09-29 09:54 气动控制系统设计计算 气动控制系统的设计步骤 气动控制系统是由电气信号处理部分和气压功率输出部分所组成的闭环控制系统。通常,气动控制系统的设计步骤为: 1)明确气动控制系统的设计要求; 2)确定控制方案,拟定控制系统原理图; 3)确定气压控制系统动力元件参数,选择反馈元件; 4)计算控制系统的动态参数,设计校正装置并选择元件。

mym2005-09-29 09:54 气动比例、伺服控制 气动比例伺服控制系统是由电气信号处理部分和气动功率输出部分所组成的闭环控制系统。 气动比例、伺服控制系统与液压比例、伺服控制系统比较有如下特点: 1)能源产生和能量储存简单。 2)体积小、重量轻。 3)温度变化对气动比例、伺服机构的工作性能影响很小。 4)气动系统比较安全,不易发生火灾,并且不会造成环境污染。 5)由于气体的可压缩性,气动系统的响应速度低,在工作压力和负载大小相同时,液压系统的响应速度约为气动系统的50倍。同时,液压系统的刚度约为相当的气动系统的400倍。6)由于气动系统没有泵控系统,只有阀控系统,阀控系统的效率较低。阀控液压系统和气动伺服系统的总效率分别为60%和30%左右。 7)由于气体的粘度很小,润滑性能不好。在同样加工精度情况下,气动部件的漏气和运动副之间的干摩擦相对较大,负载易出现爬行现象。 综合分析,气动控制系统适用于输出功率不大(气动控制系统的极限功率约为4kW),动态性能要求不高,工作环境比较恶劣的高温或低温,并对防火有较高要求的场合。

大气物理学作业题

大气物理学 一、单选题 1 行星大气就是包裹着行星体的()和电离气体的总称 A、A、惰性气体 B、B、中性气体 C、C、电解气体 D、D、悬浮物 答案:B 2、通常把除()以外的大气称为干洁大气。 A、A、水汽 B、B、惰性气体 C、C、行星大气 D、D、气溶胶颗粒 答案:A 3、由于地球自转以及不同高度大气对太阳辐射吸收程度的差异,使得大气在水平方向 _______,而在垂直方向上呈现明显的______。 A、A、带状分布,层状分布 B、B、比较均匀,带状分布 C、C、比较均匀,层状分布 D、D、带状分布,比较均匀 答案:C 4、大气中温度最高的气层是___。 A、A、对流层 B、B、平流层 C、C、中间层 D、D、热层 答案:D 5、反映黑体的积分辐出度和温度的关系的辐射定律是___。 A、A、基尔霍夫定律 B、B、普朗克定律 C、C、斯蒂芬—玻尔兹曼定律 D、D、维恩定律 答案:C 6、大雨滴对可见光的散射属于___。 A、A、瑞利散射 B、B、米散射 C、C、几何光学散射 D、D、大粒子散射 答案:C 7、当环境的减温率小于气块的减温率,则大气层结是___。 A、A、绝对不稳定 B、B、中性

C、C、绝对稳定 D、D、静止不稳定 答案:C 8、埃玛图中,层结曲线和状态曲线的相互配置,可分为三种类型,当状态曲线总在层结曲线的右边,可判断为___。 A、A、潜在不稳定型 B、B、绝对稳定型 C、C、绝对不稳定型 D、D、中性型 答案:C 9、()往往以阵风形式出现,从山上沿山坡向下吹。 A、A、海陆风 B、B、热成风 C、C、焚风 D、D、地转风 答案:C 10、指单位时间内相位的变率是___。 A、A、波数 B、B、角频率 C、C、相速度 D、D、群速度 答案:B 11、龙卷风属于___系统。 A、A、大尺度 B、B、中尺度 C、C、小尺度 D、D、微尺度 答案:D 12、大气长波属于___系统。 A、A、大尺度 B、B、中尺度 C、C、小尺度 D、D、微尺度 答案:A 13、湍流的基本特性不包括:( ) A、A、随机性 B、B、均一性 C、C、耗散性 D、D、非线性 答案:B 1、中心气压低于四周气压的气压系统被称为___。 A、A、高气压 B、B、低气压 C、C、低压槽

石油物性

石油物性第一次作业 1.雾霾产生的基本体制: 雾霾,从表面的层次上不能看出,可以细分为雾和霾两部分。雾霾其实就是一种特殊的气溶胶。气溶胶(aerosol)是指由固体或液体小质点分散并悬浮在气体介质中形成的胶体分散体系。雾霾就是空气中的灰尘、硫酸、硝酸或者是有机碳氢化合物颗粒物分散悬浮在液态水或冰晶组成的雾中,这样就组成了所谓的气溶胶系统。而且硫酸硝酸等这些粒子有一部分就是我们所相关的气煤柴油燃烧所生成的,所以治理好雾霾也与我们的产品油的品质有关。 SO2、NOx以及可吸入颗粒物这三项是雾霾主要组成,前两者为气态污染物,最后一项颗粒物才是造成我们看似灰蒙蒙的霾的主要原因所在。所以,治理点也应该放在治理有毒细颗粒物上,比如说减少工业排放的废气,北方冬天燃煤,汽车尾气等要加以控制,因为这些都会产生大量的有毒颗粒物。 2.消除雾霾的有效方法: 从雾霾的理化特性来看,消除雾霾最有效的方法就是破坏这层气溶胶。气溶胶的消除,主要靠大气的降水、小粒子间的碰并、凝聚、聚合和沉降过程。这是气溶胶消除的基本原理,应用到实际情况下,如果这种粗分散体质在一个巨大的引力场下,溶胶就会自己进行破坏。接下来一些是我的猜想,我觉得形成雾霾的时候比一些小的固体颗粒堆积在一起更容易治理一些,因为形成的雾霾是一种气溶胶,我们只要破坏了溶胶就可以治理雾霾,破除溶胶的方法我所了解有加热或者加入带想反电荷的溶胶体,显然,加热空气的方法不是非常的现实,但是溶胶既然是带电的,那或许可以在一个外加电厂的条件下给它分离,但是电厂消耗的能耗又不敢估算。还有,一些空气净化器产品据说可以消除雾霾,高效的活性炭滤网结合长距离的气流喷射,然后在滤网内锁住空气污染物。这种方法显然是可行的,但是回归到这么大空间的大气,去哪里找一个如此大的滤网和气流呢。所以,归根结底,还是要从源头出发来治理,治理雾霾最主要的方法是减少排放。 与我们专业息息相关的就是。各种化石能源的大规模使用是造成雾霾天气的最主要原因。现在的发电技术还是依靠燃烧煤来发电,而实际上被燃烧的煤只有

原油物性

重油是原油提取汽油、柴油后的剩余重质油,其特点是分子量大、粘度高。重油的比重一般在0.82~0.95,比热在10,000~11,000kcal/kg左右。其成分主要是炭水化点物素,另外含有部分的(约0.1~4%)的硫黄及微量的无机化合物。 因为原油是混合物,因各种物质含量不同那么他的燃烧值是有所不同的,也确定不了比热的。 原油的性质包含物理性质和化学性质两个方面。物理性质包括颜色、密度、粘度、凝固点、溶解性、发热量、荧光性、旋光性等;化学性质包括化学组成、组分组成和杂质含量等。 密度:原油相对密度一般在0.75~0.95之间,少数大于0.95或小于0.75,相对密度在0.9~1.0的称为重质原油,小于0.9的称为轻质原油。 粘度:原油粘度是指原油在流动时所引起的内部摩擦阻力,原油粘度大小取决于温度、压力、溶解气量及其化学组成。温度增高其粘度降低,压力增高其粘度增大,溶解气量增加其粘度降低,轻质油组分增加,粘度降低。原油粘度变化较大,一般在1~100mPa?s之间,粘度大的原油俗称稠油,稠油由于流动性差而开发难度增大。一般来说,粘度大的原油密度也较大。 凝固点:原油冷却到由液体变为固体时的温度称为凝固点。原油的凝固点大约在-50℃~35℃之间。凝固点的高低与石油中的组分含量有关,轻质组分含量高,凝固点低,重质组分含量高,尤其是石蜡含量高,凝固点就高。 含蜡量:含蜡量是指在常温常压条件下原油中所含石蜡和地蜡的百分比。石蜡是一种白色或淡黄色固体,由高级烷烃组成,熔点为37℃~76℃。石蜡在地下以胶体状溶于石油中,当压力和温度降低时,可从石油中析出。地层原油中的石蜡开始结晶析出的温度叫析蜡温度,含蜡量越高,析蜡温度越高。 析蜡温度高,油井容易结蜡,对油井管理不利。含硫量是指原油中所含硫(硫化物或单质硫分)的百分数。原油中含硫量较小,一般小于1%,但对原油性质的影响很大,对管线有腐蚀作用,对人体健康有害。根据硫含量不同,可以分为低硫或含硫石油。 含胶量:含胶量是指原油中所含胶质的百分数。原油的含胶量一般在5%~20%之间。胶质是指原油中分子量较大(300~1000)的含有氧、氮、硫等元素的多环芳香烃化合物,呈半固态分散状溶解于原油中。胶质易溶于石油醚、润滑油、汽油、氯仿等有机溶剂中。 其他:原油中沥青质的含量较少,一般小于1%。沥青质是一种高分子量(大于1000以上)具有多环结构的黑色固体物质,不溶于酒精和石油醚,易溶于苯、氯仿、二硫化碳。沥青质含量增高时,原油质量变坏。 原油中的烃类成分主要分为烷烃、环烷烃、芳香烃。根据烃类成分的不同,可分为的石蜡基石油、环烷基石油和中间基石油三类。石蜡基石油含烷烃较多;环烷基石油含环烷烃、芳香烃较多;中间基石油介于二者之间。 目前我国已开采的原油以低硫石蜡基居多。大庆等地原油均属此类。其中,最有代表性的大庆原油,硫含量低,蜡含量高,凝点高,能生产出优质煤油、柴油、溶剂油、润滑油和商品石蜡。胜利原油胶质含量高(29%),比重较大(0.91左右),含蜡量高(约15-21%),属含硫中间基。汽油馏分感铅性好,且富有环烷烃和芳香烃,故是重整的良好原料。

第四章 土壤物理性质

第四章土壤物理性质 主要教学目标:本章将要求学生掌握土壤物理性质如土壤质地、土壤结构以及土壤孔隙等内容。并在学习的基础上掌握改良不太适宜林业生产的某些土壤物理性质的一些方法。如客土、土壤耕作、施用化学肥料和土壤结构改良剂等。 第一节土壤质地 一、几个概念 1、单粒:相对稳定的土壤矿物的基本颗粒,不包括有机质单粒; 2、复粒(团聚体):由若干单粒团聚而成的次生颗粒为复粒或团聚体。 3、粒级:按一定的直径范围,将土划分为若干组。 土壤中单粒的直径是一个连续的变量,只是为了测定和划分的方便,进行了人为分组。土壤中颗粒的大小不同,成分和性质各异;根据土粒的特性并按其粒径大小划分为若干组,使同一组土粒的成分和性质基本一致,组间则的差异较明显。 4、土壤的机械组成:又叫土壤的颗粒组成,土壤中各种粒级所占的重量百分比。 5、土壤质地:将土壤的颗粒组成区分为几种不同的组合,并给每个组合一定的名称,这种分类命名称为土壤质地。如:砂土、砂壤土、轻壤土、中壤土、重壤土、粘土等 二、粒级划分标准: 我国土粒分级主要有2个 1、前苏联卡庆斯基制土粒分级(简明系统) 将0.01mm作为划分的界限,直径>0.01mm的颗粒,称为物理性砂粒;而<0.01mm的颗粒,称为物理性粘粒。 2、现在我国常用的分级标准是: 这个标准是1995年制定的。 共8级: 2~1mm极粗砂;1~0.5mm粗砂;0.5~0.25mm中砂;0.25~0.10mm细砂; 0.10~0.05mm极细砂;0.05~0.02mm粗粉粒;0.02~0.002mm细粉粒;小于0.002mm粘粒 三、各粒级组的性质 石砾:主要成分是各种岩屑 砂粒:主要成分为原生矿物如石英。比表面积小,养分少,保水保肥性差,通透性强。 粘粒:主要成分是粘土矿物。比表面积大,养分含量高,保肥保水能力强,但通透性差。粉粒:性质介于砂粒和粘粒之间。 四、土壤质地分类 1、国际三级制,根据砂粒(2—0.02mm)、粉砂粒(0.02mm—0.002mm)和粘粒(<0.002mm)的含量确定,用三角坐标图。 2、简明系统二级制,根据物理性粘粒的数量确定。考虑到土壤条件对物理性质的影响,对不同土类定下不同的质地分类标准。在我国较常用。 3、我国土壤质地分类系统: 结合我国土壤的特点,在农业生产中主要采用前苏联的卡庆斯基的质地分类。对石砾含量较高的土壤制定了石砾性土壤质地分类标准。将砾质土壤分为无砾质、少砾质和多砾质三级,可在土壤质地前冠以少砾质或多砾质的名称。 五、土壤质地与土壤肥力性状关系 从两个方面来论述 1、土壤质地与土壤营养条件的关系 肥力性状砂土壤土粘土 保持养分能力小中等大 供给养分能力小中等大

大气物理学复习资料

大气物理学复习资料 第一部分名词解释 第一章大气概述 1、干洁大气:通常把除水汽以外的纯净大气称为干结大气,也称干空气。 2、气溶胶:大气中悬浮着的各种固体和液体粒子。 3、气团:水平方向上物理属性比较均匀的巨大空气块。 4、气团变性:当气团移到新的下垫面时,它的性质会逐渐发生变化,在新的物理过程中获 得新的性质。 5、锋:冷暖性质不同的两种气团相对运动时,在其交界面处出现一个气象要素(温度、湿 度、风向、风速等)发生剧烈改变的过渡带称为锋。 6、冷锋:锋面在移动过程中,冷气团起主导作用,推动锋面向暖气团一侧移动。 7、暖锋:锋面在移动过程中,暖气团起主导作用,推动锋面向冷气团一侧移动。 8、准静止锋:冷暖气团势力相当,锋面很少移动,有时冷气团占主导地位,有时暖气团占 主导地位,使锋面处于来回摆动状态。 9、锢囚锋:当三种冷暖性质不同的气团(如暖气团、较冷气团、更冷气团)相遇时,可以 产生两个锋面,前面是暖锋,后面是冷锋,如果冷锋移动速度快,追上前方的暖锋,或两条冷锋迎面相遇,并逐渐合并起来,使地面完全被冷气团所占据,原来的暖气团被迫抬离地面,锢囚到高空,这种由两条锋相遇合并所形成的锋称为锢囚锋。 10、气温垂直递减率:在垂直方向上每变化100米,气温的变化值,并以温度随高度的升 高而降低为正值。 11、气温T:表示空气冷热程度的物理量。 12、混合比r:一定体积空气中,所含水汽质量和干空气质量之比。r=m v/m d 13、比湿q:一定体积空气中,所含水汽质量与湿空气质量之比。q=m v/(m v+m d) 14、水汽压e:大气中水汽的分压强称为水气压。 15、饱和水汽压e s:某一温度下,空气中的水汽达到饱和时所具有的水汽压。 16、水汽密度(即绝对湿度)ρv:单位体积湿空气中含有的水汽质量。 17、相对湿度U w:在一定的温度和压强下,水汽和饱和水汽的摩尔分数之比称为水面的相

石油的组分分析和物理性质测定(doc5)

V c 20 4 100 石油的组分分析和物理性质测定 一、实习目的 石油的性质包括物理性质和化学组成,二者之间有密切的联系,了解石油的性质对石油地质研究和评价石油的工业品质有着十分重要的意义。通过观察和简易的实验演示了解:(1)石油的主要族组分组成分析;(2)石油的基本物理性质。 二、实习内容和方法 (一)石油馏份试验 石油是由各种碳氢化合物为主的有机化合物所组成的,每一种化合物均有一定的沸点和凝点。按一定的温度间隔蒸馏切割出不同沸点范围的原油组分,为原油的一个馏分。 实验时称50g油样,倒入恩氏蒸馏烧瓶中(图实1-1 ),将烧瓶均匀加温,记下馏出第一滴时的温度(初馏点)及温度为150C、170C、210C、230C、250 C、270C、300C时馏出 的体积,根据下式可计算各馏分的数量: 式中:U:为每一馏分含量(体积百分数); Vc :为每一馏分馏出量(ml); Wo :为油样量(g); D 420:为20C时油样的比重。 (二)石油组分分析 石油的组分,包括饱和烃、芳烃、胶质和沥青质。根据石油中不同组分的化合物同吸附剂间的吸附性能不同,以及各种有机冲洗剂的极性不同,其脱附快慢也不同的原理,选择适当的吸附剂配比及冲洗剂的用量,可以把原油中各族组分分离。目前常采用柱色层法,以硅胶和氧化铝为吸附剂,用正己烷和无水乙醇、苯与上述组分相似性质的溶剂作为冲洗剂,冲洗色层柱,从而将原油各组分分离。试验时,首先将脱硫、脱水并经馏程切割(210C以上馏份)的原油溶于正己烷中,静置后用滤纸脱去沥青质,再将滤液通过漏斗倒入色层柱中,见图实 1-2 ;然后用正己烷淋洗脱附饱和烃,收集冲洗液,自然挥发干即可得出含量。再用苯淋洗脱附芳烃,收集冲洗液得其含量;残留在色层柱上的为胶质,是吸附能力极强的含氧、氮、硫的非烃化合物,可由减差法计算其含量。若要专门研究可用苯一甲醇将其全部冲洗下来。若定量分析时,一切仪器用品均应事先洗净, 严格称重。 (三)石油的物理性质 1. 石油颜色的观察 石油颜色的深浅取决于胶质和沥青质的含量。一般胶质和沥青质含量愈高, 颜色愈深。 观察原油的颜色有两种方法,一种是在透射光下观察,即将样品朝光源方向,观察试管中对着眼睛一侧的颜色。若原油色深,透明度差,可摇动原油样品,观察留在试管壁上原油薄膜的颜色。另一种是在反射光下的观察,即向着光源一侧试管壁的颜色,常有荧光颜色干扰,不常采用。

石油及其产品的物理性质

石油及其产品的物理性质 石油及其产品的物理性质是评定石油加工性能及油品使用质量的重要指标,同时也是设计炼油设备和装置的必要依据。 一、蒸汽压 蒸气压是在某一温度下一种物质的液相与其上方的气相呈平衡状态时的压力,也称饱和蒸气压。蒸气压表示该液体在一定温度下的蒸发和气化的能力,蒸气压愈高的液体愈易于气化。蒸气压是石油加工设备设计的重要基础物性数据,也是某些轻质油品的质量指标。 1、纯烃的蒸气压 对于同一族烃类,在同一温度下,相对分子质量较大的烃类的蒸气压较小。就某一种纯烃而言,其蒸气压是随温度的升高而增大的。 2、烃类混合物及石油馏分的蒸气压 与纯烃不同,烃类混合物的蒸气压不仅取决于温度,同时也取决于其组成。在一定的温度下,只有其气相、液相或整体组成一定,其蒸气压才是定值。 二、平均沸点 在求定石油馏分的各种物理参数时,为简化起见,常用平均沸点来表征其气化性能。石油馏分的平均沸点的定义有下列五种: ①体积平均沸点tV(℃); ②质量平均沸点tW(℃); ③实分子平均沸点tm(℃); ④立方平均沸点tcu(K); ⑤中平均沸点tMe(℃); 这五种平均沸点中,仅有体积平均沸点可由石油馏分的馏程测定数据直接算得,其他几种平均沸点可借助体积平均沸点与蒸馏曲线斜率查表算出。 三、密度 1、密度和相对密度

原油及油品的密度和相对密度在生产和储运中有着重要意义,在原料及产品的计量以及炼油装置的设计等方面都是必不可少的。 2、石油及油品的密度、相对密度 密度是物质的质量与其体积的比值,其单位为g/cm3或kg/m3。由于油品的体积随温度的升高而膨胀,而密度则随之变小,所以,密度还应标明温度。例如,油品在t℃的密度用ρt来表示。我国规定油品在20℃时的密度为其标准密度,表示为ρ20。 物质的相对密度是其密度与规定温度下水的密度之比。因为水在4℃时的密度等于1.0000 g/cm3,所以通常以4℃水为基准,将温度t℃的油品密度对4℃时的水的密度之比称为相对密度。常用来表示,它在数值上等于油品在t℃时的密度。我国常用的相对密度是 。 气体的密度一般用kg/m3表示,其相对密度是该气体的密度与空气在标准状态(0℃,0.1013Mpa)下的密度之比,空气在标准状态下的密度为1.2928kg/m3。在较低的压力下(小于0.3MPa),气体的密度和比容(密度的倒数)可用理想气体状态方程式计算。而当压力较高时,就需要用计算真实气体的状态方程式来求取。 3、液体油品相对密度与温度、压力的关系 当温度升高时,油品的体积就会膨胀,这就导致其密度和相对密度的减小。当温度变化不大时,油品的体积膨胀系数γ只随油品相对密度的不同而有所变化,其范围为(0.0006~0.00l0)/℃。当温度在0~50℃范围内,不同温度(t℃)下的相对密度可按下式换算: =-γ(t - 20) 其中的γ值可以查得。若温度与20℃差别较大.则须查专门的图表(GB1885-1983)。 液体受压后体积变化很小,通常压力对液体油品密度的影响可以忽略。只有在几十兆帕的极高压力下才考虑压力的影响。 4、混合油品的密度 当属性相近的两种或多种油品混合时,其混合物的密度可近似地按可加性计算。 一般情况下,油品混合时,体积基本是可加的,按上式计算不会引起很大误差。但当属性相差很大的两类组分(如烷烃和芳香烃)混合时,体积可能增大;而密度相差悬殊的两个组分(如重油和轻烃)混合时,体积可能收缩,这样便须加以校正。 5、相对密度与化学组成及相对分子质量的关系 当分子中碳原子数相同时,芳香烃的相对密度最大,环烷烃的次之,烷烃的最小,烯烃

石油及其主要产品化学组成和物理性能

石油及其主要产品化学组成和物理性能 1、石油的化学组成 1.1 颜色与密度 石油(俗称原油)通常是黑色、褐色或黄色的流动或半流动的粘稠液体,由于含有硫等其它物质,一般都有不同程度的臭味。 多数原油的密度集中在750~950kg/m3之间,也有个别原油的密度在1000kg/m3以上或在800 kg/m3以下。 1.2 元素组成 一般而言,原油由以下几种元素或化合物组成:碳——83~87%,氢——11~14%,硫——1~3%(硫化物、二硫化物和单质硫等),氮——低于1%(以带胺基的碱性化合物为主),氧——低于1%(存在于二氧化碳、苯酚、酮和羧酸等有机化合物中),金属和非金属物质——低于1%(镍、铁、钒、铜、砷等)。根据硫含量的不同,可分为低硫原油(硫含量小于0.5%)、含硫原油(硫含量0.5~2.0%)和高硫原油(硫含量大于2.0%)三类。 碳/氢原子比(有时也称氢/碳原子比)是反映原油属性的一个重要参数,与其原有的化学结构有关系。 1.3 烃类组成 原油中的烃类成分主要分为烷烃、环烷烃、芳香烃,这些烃类组成是以气态、液态、固态的化合物存在。根据烃类成分的不同,原油也可分为石蜡基原油、环烷基原油和中间基原油三类。石蜡基原油含烷烃较多;环烷基原油含环烷烃、芳香烃较多;中间基原油介于二者之间。 原油中的烃类含量因为产地种类不同差异很大,相对密度较小的轻质原油中

烃类含量可能大于90%,而相对密度较大的重质原油中的烃类含量甚至可能小于50%。 炼油厂加工的的原油通常为液态。原油中含的液体状态烃按其沸点不同,可以分为低沸点馏分、中间馏分以及高沸点馏分。低沸点馏分,如在汽油馏分中含有C5~C10的正构烷烃、异构烷烃、单环环烷烃、单环芳香烃(苯系)。中间馏分,如在煤油、柴油馏分中含有C10~C20的正异构烷烃、带侧链的单环环烷烃、双环及三环环烷烃、双环芳烃。高沸点馏分,如在润滑油馏分中含有C20~C36左右的正异构烷、环烷烃和芳香烃。 1.4非烃化合物 原油中非烃化合物主要包括含硫、含氮、含氧化合物和胶状沥青状物质等。原油中含硫化合物包括活性硫化物和非活性硫化物。原油中氮的分布随着馏分沸点升高,其氮含量迅速增加,约有80%的氮集中在400℃以上的重油中。在原油中,氧元素都是以有机含氧化合物的形式存在的,主要分为酸性含氧化合物和中性含氧化合物两大类。原油中含氧化合物化合物主要以酸性含氧化合物为主,其中主要是环氧酸,占原油酸性含氧化合物的90%。 2、石油及其主要石油产品的物理性能 2.1 标准密度和相对密度 我国规定20℃时的密度为石油产品(简称油品)的标准密度。原油的相对密度,在我国是指在一个标准大气压下,20℃原油与4℃纯水单位体积的质量比,又称比重。原油相对密度一般在0.75-0.95之间,少数大于0.95或小于0.75。通常相对密度在0.9-1.0的原油称为重质原油,小于0.9的原油称为轻质原油。

空气的物理性质

空气的物理性质 .温度 温度是描述空气冷热程度的物理量,主要有三种标定方法:摄氏温标、华氏温标和绝对温标(又称热力学温标或开氏温标)。 2.压力 空气的压力就是当地的大气压,用符号p表示。常用单位有国际单位帕(Pa);工程单位kfg/cm2;液柱高单位毫米汞柱高和毫米水柱高。 3.湿度 空气湿度是指空气中含水蒸气量的多少,有以下几种表示方法: (1)绝对湿度。即每平方米空气中含有水蒸气的质量,用符号γZ表示,单位为kg/m3。如果在某一温度下,空气中水蒸气的含量达到了最大值,此时的绝对湿度称为饱和空气的绝对湿度,用γB表示。 (2)相对湿度。为了能准确说明空气中的干湿程度,在空调中采用了相对湿度这个参数,它是空气的绝对湿度γZ与同温度下饱和空气的绝对湿度γB的比值,用符号φ表示。4.比焓 空气的焓值是指空气中含有的总热量,通常以干空气的单位质量为基准,称作比焓,工程上简称焓。因此,空气的比焓是指1kg干空气的焓和与它相对应的水蒸气的焓的总和,用符号h表示,单位是kj/kg。 5.密度和比容 空气的密度是指每立方米空气中干空气的质量与水蒸气的质量之和,用ρ表示,单位为kg/m3。 空气的比容是指单位质量的空气所占有的容积,用符号ν表示,单位为m3/kg。因此空气的密度与比容互为倒数关系。 湿空气是水蒸汽和干空气的混合物。完全不含水蒸汽的空气称为干空气,干空气本身是氮、氧及少量其它气体的混合物,其成分比较稳定。大气中的空气或多或少都含有水蒸汽,因此人们在日常生活及工程上遇到的都是湿空气。随地理位置、季节、气候等条件影响,大气成分有些变动。通常认为干空气各组分的标准容积分数如下表: 在某些过程如干燥、空气调节等问题中,空气中的水蒸汽起着特殊作用,所以我们必须研究气体和蒸汽的混合物的热力性质,特别是干空气和水蒸汽的混合物—湿空气的热力性质。

湿空气的物理性质及其焓湿图

第一章湿空气的物理性质及其焓湿图 教学目的: 1. 理解并掌握有关湿空气及描述其物理性质的概念:压力、温度、含湿量、相对湿度、密度(比容)。 2. 掌握湿空气焓湿图的组成,掌握其绘制方法。 3. 掌握湿球温度和露点温度的概念和物理意义。 4. 熟练掌握焓湿图的应用方法:确定空气状态,空气状态变化过程线,空气的各种处理过程在i—d图上的表示,两种状态空气混合过程。 5. 了解空气状态参数的计算法。 重点:湿空气物理性质的描述,焓-湿图的组成,应用其确定空气状态,空气状态变化过程线,空气的各种处理过程在i—d图上的表示,两种状态空气混合过程。 难点:应用焓-湿图确定空气状态,空气状态变化过程线,空气的各种处理过程在i—d图上的表示,两种状态空气混合过程。 第一节湿空气的物理性质 一、基本概念 1、大气的组成成分:水蒸气、氧气、二氧化碳等。 2、干空气:由各种气体成分组成,空调中视为稳定的混合物。 3、湿空气:由干空气和一定量的水蒸气组成,空调工程中称其为湿空气。二、理论基础 湿空气中水蒸气含量虽少,但它决定了空气环境的干燥和潮湿程度,且影响着湿空气的物理性质。因此研究湿空气中水蒸气含量的调节是空气调节中的主要任务

之一。 三、状态参数 在常温常压下,湿空气可视为理想气体。可以用理想气体状态方程描述其状态参数。 1、湿空气的压力B 湿空气的压力即大气压力,B=P g+P q (Pa) 2、湿空气的密度ρ ρ=ρg+ρq=P g/RT+P q /RT =0.003484B/T-0.00134P q /T 一般取ρ =1.2Kg/m3 3、湿空气的含湿量d 湿空气中的水蒸气密度与干空气密度之比称为湿空气的含湿量。 d=ρq/ρg=0.622P q /P g=0.622P q /(B-P q) (Kg/Kga) 4、相对湿度? 湿空气的水蒸气压力与同温度下的饱和湿空气压力之比称为相对湿度;它表征湿空气中水蒸气接近饱和含量的程度。 ?=P q /P q,b×100%≈d/d b×100% 5、湿空气的焓i 空调工程中,空气压力变化很小,可近似于定压过程,因此可直接用空气的焓变化来度量空气的热量变化。 i=1.01t+(2500+1.84t)d/1000 (KJ/Kga) 以上各式构成了湿空气特性的主要方程组,应牢固掌握。 第二节湿空气的焓湿图 在空气调节中,经常需要确定湿空气的状态及其变化过程。 确定方法有:按公式计算;查表;查焓湿图。 焓湿图的作用有:简化计算;直观描述湿空气状态变化过程。 湿空气的状态参数中,t,B,d为独立变量,其他为演变参数。 常用的湿空气性质图是以i与d为坐标的焓湿图,i为纵坐标,d为横坐标,坐标夹角大于135度。 在一定的大气压力下,在选定的坐标比例尺和坐标网格的基础上,绘制出等

石油的基本组成及其性质

石油的基本组成及其性质: (一)石油的元素组成: 石油是埋藏于地下的天然矿产物八圣过勘探、开采出的未经炼制的石油也叫做原油。在常温下,原油大都呈流体或半流体状态,颜色多为黑或深棕色,少教为暗绿、赤褐或黄色,并且有特殊气昧。原油经过炼制后的成品叫做石油产品。 不同产地的原油,其相对密度也不相同,但一般都小于l,多在0.8一0.98之间,个别低于0.70。凝点的差异也较大,有的高达30‘C以上,有的却低于一 50‘C。 原油之所以在外观和物理性质上存在差异,根本原因在于其化学组分不完全相同。原油既不是由单一元索组成的单质,也不是由两种以上元素组成的化合物,而是由各种元素组成的多种化合物的混合物。因此,其性质就不象单质和纯化合物那样确定,而是所含各种化合物性质的综合体现。 原油的主要组成成分是碳和氢,碳氢化合物也简称为烃,烃是原油加工和利用的主要对象。 原油中所含各种元索并不是以单质形式存在,而是以相互结合的各种碳氢及非碳氢化合物的形式而存在。 原油中含有的硫、氧、氮等元素与碳、氢形成的硫化物、氮化物、氧化物和胶质、沥青质等非烃化合物,其含量可达10%一20%,这些非烃化合物大都对原油的加工及产品质量带来不利影响,在石油的炼制过程中应尽可能将它们除去。此外,原油中所含微量的氯、碘、砷、磷、镍、钒、铁、钾等元素,也是以化合物的形式存在。其含量虽小,对石油产品的影响不大,但其中的砷会使得催化重整的催化剂中毒,铁、镍、钒会使催化裂化的催化剂中毒。故在进行原油的这类加工时,对原料要有所选择或进行预处理。 (二)石油的烃类组成: 石油中的烃类按其结构不同,大致可分为烷烃、环烷烃、芳香烃和不饱和烃等几类。不同烃类对各种石油产品性质的影响各不相同。 l.烷烃 烷烃是石油的重要组分,凡是分子结构中碳原子之间均以单键相互结合,其余碳价都为氢原子所饱和的烃叫做烷烃,它是一种饱和烃,其分子通式为 CnH2n+2。 烷烃是按分子中含烃原子的数目为序进行命名的,碳原子数为l-10的分别用甲、乙、丙、丁、戊、己、庚、辛、壬、癸表示;10以上者则直按用中文数字表示J目只含一个碳原子的称为甲烷;含有十六个碳原子的称为十六烷。这样,就组成了为数众多的烷烃同系物。 烷烃按其结构之不同又可分为正构烷烃与异构烷烃两类,凡烷烃分子主碳链上没有支碳链的称为手宁导,而有支链结构的称为异构烷。 在常温下,甲烷至丁烷的正构烷呈气态;戊烷至十五烷的正构烷呈液态;十六烷以上的正构烷呈蜡状固态(是石蜡的主要成分)。 由于烷烃是一种饱和烃,故在常温下,其化学安定性较好,但不如芳香烃。在一定的高温条件下,烷烃容易分解并生成醇、醛、酮、醚、羧酸等一系列氧化产物。税烃的密度最小,粘温性最好,是燃料与润滑油的良好组分。 正构烷与异构烷虽然分子式相同,但由于分子结构不同,性质也有所不同。异构烷烃较碳原子数相同的正构烷烃沸点要低,且异构化愈甚则沸点降低愈显著。另外,异构烷烃比正构烷烃粘度大,粘温性差。正构烷烃因其碳原子呈直链排

第二章 第三节 第2课时 热力环流形成的原理和大气的水平运动 课后活页训练

一、选择题 1.(2010年汕头检测)大气运动最简单的形式是() A.空气的水平运动B.空气的垂直运动 C.气旋与反气旋D.热力环流 答案:D 2.关于气压、高度、气温三者关系的叙述,正确的是() A.气压随高度的增加而增加 B.同一高度上气温高则气压高 C.同一高度上气温高则气压低 D.空气是由气压低的地方流向气压高的地方 答案:C 3.有关热力环流的叙述,正确的是() A.由于垂直方向上的气压差异,引起空气上升或下沉 B.受热使空气膨胀下沉 C.热力环流的能量来源于太阳辐射 D.地面受热多的地方,近地面形成高气压 答案:C 4.如右图所示,一架飞机在北半球自东向西飞行, 飞机左侧是高压,可判断() A.顺风飞行 B.逆风飞行 C.飞机在信风带中飞行 D.风从北侧吹来 答案:B 5.(2010年江苏南通高一检测)右图中,A、 B、C、D四点为北半球某地海平面上的点,不 考虑地形起伏和海陆差异,精密测定各点水的 沸点分别为:A、B两点为99.95℃,C、D两 点为99.8℃,则甲地风向() A.东风B.西风 C.东北风D.西南风

解析:选C。A、B两点水的沸点高,表明气压高,而C、D两点则气压低,气流在水平方向从高压区流向低压区,形成东北风。 6.下面四种局部环流形式图中,不.正确的是() 解析:选A。本题考查几种常见的热力环流形式。图A是局部热力环流,地面受“热”点,气流应膨胀上升,反之遇“冷”点,则气流收缩下沉,故A项不正确;B项反映白天吹谷风;C项表示海滨夜晚吹陆风,D项则表示城市与郊区之间近地面吹“郊”风。 (2010年浙江宁波摸底)如图中阴影部分表示林地,空白部分表示均质裸地。若此时反映的是北半球中纬度某地区的冬季情况,据此分析回答7~8题。 7.如图中甲、丙两处的风向分别是() A.西北风和东南风B.西风和东风 C.东南风和西北风D.西南风和东北风 8.下图中正确表示乙处等压面图的是() 解析:第7题,甲、乙两地地表物质不同,气温也不同。冬季甲地由于裸露地表散热快,气温比乙地低,近地面形成高气压,乙地近地面形成低气压,水平气压梯度力从甲指向乙,风向向右偏形成西北风。同样可知丙地吹东南风。第8题,乙处近地面形成低气压,高空形成高气压。 答案:7.A8.C 9.下图能正确反映北半球近地面和高空等压线与风向关系的图是()

石油的组分分析和物理性质测定(doc 5)

石油的组分分析和物理性质测定 一、实习目的 石油的性质包括物理性质和化学组成,二者之间有密切的联系,了解石油的性质对石油地质研究和评价石油的工业品质有着十分重要的意义。通过观察和简易的实验演示了解:(1)石油的主要族组分组成分析;(2)石油的基本物理性质。 二、实习内容和方法 (一)石油馏份试验 石油是由各种碳氢化合物为主的有机化合物所组成的,每一种化合物均有一定的沸点和凝点。按一定的温度间隔蒸馏切割出不同沸点范围的原油组分,为原油的一个馏分。 实验时称50g 油样,倒入恩氏蒸馏烧瓶中(图实1-1),将烧瓶均匀加温,记下馏出第一滴时的温度(初馏点)及温度为150℃、170℃、210℃、230℃、250℃、270℃、300℃时馏出的体积,根据下式可计算各馏分的数量: 式中:V n :为每一馏分含量(体积百分数); Vc :为每一馏分馏出量(ml ); Wo :为油样量(g ); D 420:为20℃时油样的比重。 (二)石油组分分析 石油的组分,包括饱和烃、芳烃、胶质和沥青质。根据石油中不同组分的化合物同吸附剂间的吸附性能不同,以及各种有机冲洗剂的极性不同,其脱附快慢也不同的原理,选择适当的吸附剂配比及冲洗剂的用量,可以把原油中各族组分分离。目前常采用柱色层法,以硅胶和氧化铝为吸附剂,用正己烷和无水乙醇、苯与上述组分相似性质的溶剂作为冲洗剂,冲洗色层柱,从而将原油各组分分离。 试验时,首先将脱硫、脱水并经馏程切割(210℃以上馏份)的原油溶于正己烷中,静置后用滤纸脱去沥青质,再将滤液通过漏斗倒入色层柱中,见图实1-2;然后用正己烷淋洗脱附饱和烃,收集冲洗液,自然挥发干即可得出含量。再用苯淋洗脱附芳烃,收集冲洗液得其含量;残留在色层柱上的为胶质,是吸附能力极强的含氧、氮、硫的非烃化合物,可由减差法计算其含量。若要专门研究可用苯—甲醇将其全部冲洗下来。若定量分析时,一切仪器用品均应事先洗净,严格称重。 (三)石油的物理性质 1. 石油颜色的观察 石油颜色的深浅取决于胶质和沥青质的含量。一般胶质和沥青质含量愈高,颜色愈深。 观察原油的颜色有两种方法,一种是在透射光下观察,即将样品朝光源方向,观察试管中对着眼睛一侧的颜色。若原油色深,透明度差,可摇动原油样品,观察留在试管壁上原油薄膜的颜色。另一种是在反射光下的观察,即向着光源一侧试管壁的颜色,常有荧光颜色干扰,不常采用。 %100/204 ?=D W V V o c n

第一节土壤物理性质定

第一节土壤的物理性质 土壤物理性质与植物的生态关系非常密切。土壤的物理性质是指土壤孔性、土壤结构性、土壤耕性、土壤热性质等。本节着重讨论土壤孔性、土壤结构性、土壤耕性、土壤热性质的变化情况,并由此引起的土壤水分、土壤空气和土壤热量等变化规律。了解土壤物理性质与植物的关系,可以为园林植物合理耕作、施肥、灌溉、排水等措施提供理论依据。 一、土壤孔性 土壤孔性是土壤的一项重要物理性质,对土壤肥力有多方面的影响。土壤孔性反映在土壤的孔度、大小孔隙的分配及其在各土层中的分布情况等方面。土壤的孔性如何,决定于土壤的质地、有机质含量、松紧度和结构性。调节土壤的孔性,极其有利于土壤肥力的发挥和作物的生长发育,是土壤耕作管理的重要任务之一。 (一)土壤密度、容重的概念 1.土壤密度单位体积的固体土粒(不包括粒间孔隙)的质量叫做土壤密度或土粒密度,单位g/cm3 土壤密度的数值大小,主要决定于土壤矿物质颗粒组成和腐殖质含量的多少。 一般土壤的密度在2.60~2.70g/c m3范围内,通常取其平均值2.65g/c m3,一般土壤有机质的密度为1.25~1.40g/cm3,故土壤中有机质含量愈高,土壤密度愈小。 2.土壤容重 (1)概念土壤容重即自然状态下单位体积干燥土壤(包括土壤孔隙在内)的 质量。单位g/cm3。其数值大小随孔隙而变化,不是常数,大体为1.00~1.80g /cm3。它与土壤内部性状如土壤结构、腐殖质含量及土壤松紧状况有关。 水田土壤水分饱和时的单位体积土壤(折成烘干土)质量称浸水容重。浸水容重的大小在一定程度上能反映出水稻土在泡水时的淀浆、板结和肥沃程度。 (2)特点 ①土壤容重的数值小于土粒密度。因为计算容重的体积包括土粒间的孔隙部分。

干空气的物理性质

干空气的物理性质 温度t/℃密度ρ/kg·m-3 比定压热容cp/kJ·kg-1·K-1 导热系数λ/10-2W·m-1·K-1 粘度μ/10-5Pa·s 普兰德数Pr -50 1.584 1.013 2.035 1.46 0.728 -40 1.515 1.013 2.117 1.52 0.728 -30 1.453 1.013 2.198 1.57 0.723 -20 1.395 1.009 2.279 1.62 0.716 -10 1.342 1.009 2.360 1.67 0.712 0 1.293 1.009 2.442 1.72 0.707 10 1.247 1.009 2.512 1.76 0.705 20 1.205 1.013 2.593 1.81 0.703 30 1.165 1.013 2.675 1.86 0.701 40 1.128 1.013 2.756 1.91 0.699 50 1.093 1.017 2.826 1.96 0.698 60 1.060 1.017 2.896 2.01 0.696 70 1.029 1.017 2.966 2.06 0.694 80 1.000 1.022 3.047 2.11 0.692 90 0.972 1.022 3.128 2.15 0.690 100 0.946 1.022 3.210 2.19 0.688 120 0.898 1.026 3.338 2.28 0.686 140 0.854 1.026 3.489 2.37 0.684 160 0.815 1.026 3.640 2.45 0.682

初中化学空气教案(第二课时)(人教版).docx

课题 1空气(第二课时) 一、教学目标 知识与技能 1、知道物理性质的概念,了解氧气,氮气、稀有气体的物理性质和用途 2、初步了解空气污染的危害,知道空气是一种宝贵的自然资源 过程与方法 阅读资料,观察图示,分析讨论,知道空气的重要性,养成环保意识 情感、态度与价值观 1、知道空气是一种宝贵的自然资源 2、养成关注环境,热爱自然的情感 二、教学重点、难点 1、物理性质的概念 2、了解空气污染的危害,养成关注环境,热爱自然的情感 三、教学准备 准备有关空气污染的资料 四、教学过程 教师活动学生活动设计意图[复习提问 ] 1、空气的成分口答复习巩固 2、课本 P25 讨论题讨论引入新课[归纳小结] 1、氮气不能支持燃烧 2、氮气不溶于水知道氮气的性质通过讨论引出物理性质的概念 3、氮气是无色、无味的气体 [讲解 ]一、物理性质知道物理性质一般指颜色、状 态、气味、熔点、沸点、硬度、培养学生分析归纳

[提问 ]氮气有哪些物理性质 [ 过渡 ] 空气中除了氮气还有其他成分,他们各有用途 二、空气是一种宝贵的自然资源 1、氧气 教师活动密度以及是否溶于水等能力 [口答 ]无色、无味的气体,不易 溶于水 阅读教材,观察图示,小结口答 提高学生阅读能力用途: 1、潜水、医疗 2、炼钢、气焊 3、化工生产 4、宇宙航行 学生活动设计意图 用途 2、氮气 3、稀有气体1、化工原料(硝酸、化肥) 2、保护气(焊接金属、充入灯 泡、食品防腐) 3、医疗、麻醉 4、超导材料 性质 无色、无味、性质不活泼 1、保护气(焊接金属、充灯泡) 2、各种用途的电光源 3、激光技术 4、制造低温环境(氦) 5、医疗麻醉(氙) 使学生了解空气的 用途,知道空气是 一种宝贵的自然资 源,培养学生关注 环境,热爱自然的 情感。

相关主题
文本预览
相关文档 最新文档