当前位置:文档之家› 基因工程知识点全

基因工程知识点全

基因工程知识点全
基因工程知识点全

第一章基因工程概述

1?什么是基因工程,基因工程的基本流程?

基因工程(Genetic engineering )原称遗传工程。从狭义上讲,基因工程是指将一种或多

种生物体(供体)的基因与载体在体外进行拼接重组,然后转入另一种生物体(受体)内,使之按照人们的意愿遗传并表达出新的性状。因此,供体、受体和载体称为基因工程的三大

要素。

1. 分离目的基因

2?限制酶切目的基因与载体

3. 目的基因和载体DNA在体外连接

4?将重组DNA分子转入合适的宿主细胞,进行扩增培养

5. 选择、筛选含目的基因的克隆

6. 培养、观察目的基因的表达

第二章基因工程的载体和工具酶

1. 基因工程载体必须满足哪些基本条件?

具有对受体细胞的可转移性或亲和性。

具有与特定受体细胞相适应的复制位点或整合位点。

具有多种单一的核酸内切酶识别切割位点。

具有合适的筛选标记。

分子量小,拷贝数多。具有安全性。

2. 质粒载体有什么特征,有哪些主要类型?

1、自主复制性

2、可扩增性

3、可转移性

4、不相容性

主要类型有1.克隆质粒2.测序质粒3.整合质粒4.穿梭质粒5.探针质粒6.表达质粒

3. 质粒的构建

(1)删除不必要的DNA区域,尽量缩小质粒的分子量,以提高外源DNA片段的装载量。一般来说,大于20Kb的质粒很难导入受体细胞,而且极不稳定。

(2)灭活某些质粒的编码基因,如促进质粒在细菌种间转移的mob基因,杜绝重组质粒扩

散污染环境,保证DNA重组实验的安全,同时灭活那些对质粒复制产生负调控效应的基因,提高质粒的拷贝数

(3 )加入易于识别的选择标记基因,最好是双重或多重标记,便于检测含有重组质粒的受体细胞。(4)在选择性标记基因内引入具有多种限制性内切酶识别及切割位点的DNA序列,即多

克隆接头(Polylinker ),便于多种外源基因的重组,同时删除重复的酶切位点,使其单一化,以便环状质粒分子经酶处理后,只在一处断裂,保证外源基因的准确插入。

(5 )根据外源基因克隆的不同要求,分别加装特殊的基因表达调控元件。

4. 什么是人工染色体载体?

将细菌接合因子、酵母或人类染色体上的复制区、分配区、稳定区与质粒组装在一起,即可构成染色体载体

5. 什么是穿梭载体?

人工构建的、具有两种不同复制起点和选择标记、可以在两种不同的寄主细胞中存活和

复制的载体。

6. 入-噬菌体载体及构建

hDNA为线状双链DNA分子,长度为48.5kb,在分子两端各有12个碱基的单链互补粘性末端。

1缩短长度提高外源DNA片段的有效装载量删除重复的酶切位点

引入单一的多酶切位点接头序列,增加外源DNA片段克隆的可操作性

灭活某些与裂解周期有关基因。

使入-DNA载体只能在特殊的实验条件下感染裂解宿主细菌,以避免可能出现的污染现

象的发生。加装选择标记,便于重组体的检测

7. M13单链噬菌体DNA载体

过定点诱变技术封闭重复的重要限制性酶切口。

引入合适的选择性标记基因,如含有启动子、操作子和半乳糖苷酶氨基端编码序列(lacZ ')的乳糖操纵子片段(lac )、组氨酸操纵子片段(his )以及抗生素抗性基因等。

将人工合成的多克隆位点接头片段插在lacZ '标记基因内部,使得含有重组子的噬菌斑呈白色,而只含有载体DNA 的混浊噬菌斑呈蓝色。

(4)在多克隆位点接头片段的两侧区域改为统一的DNA 测序引物序列,使得重组

DNA 分子的单链形式经分离纯化后,可直接进行测序反应。

8. II 类限制性内切核酸酶的特点

限制性核酸内切酶(Restriction endonucleases )是一类能在特异位点上催化双链DNA分子的断裂,产生相应的限制性片段的核酸水解酶。

识别位点的特异性:每种酶都有其特定的DNA识别位点,通常是由4、5或6核苷酸组成

的特定序列(靶序列)。

识别序列的对称性:靶序列通常具有双重旋转对称的结构,即双链的核苷酸顺序呈回文结

构。

切割位点的规范性:双链DNA被酶切后,分布在两条链上的切割位点旋转对称(可

形成粘性末端或平末端的DNA分子)。

同位酶:一部分酶识别相同的序列,但切点不同,这些酶称为同位酶。同裂酶:识别位点与切割位点均相同的不同来源的酶称为同裂酶同尾酶(Isocandamers ):识别位点不同,但切出的DNA 片段具有相同的末端序列,这些酶称为同尾酶。

9. 甲基化酶

H类限制性内切酶有相应甲基化酶伙伴,甲基化酶的识别位点与限制性内切酶相同,并在识

别序列内使某位碱基甲基化,从而封闭该酶切口。甲基化酶在封闭一个限制性内切酶切口的同时,却产生出另一种酶的切口

甲基化酶可修饰限制性核酸内切酶识别序列,从而使DNA免受相应的限制性核酸内

切酶的切割。

甲基化酶的用途就是在必要时可以封闭某一限制性核酸内切酶的酶切位点。

10. DNA连接酶连接作用的特点:

①DNA连接酶需要一条DNA链的3'末端有一个游离的羟基(-0H),另一条DNA链的5'末

端有一个磷酸基(-P )的情况下,只有在这种情况下,才能发挥连接DNA分子的作用。

②只有当3' - 0H和5' -P彼此相邻,并且各自位于与互补链上的互补碱基配对的两个脱

氧核苷酸末端时,DNA连接酶才能将它们连接成磷酸二酯键。

③DNA连接酶不能连接两条单链的DNA分子或环化的单链DNA分子,被连接的DNA链必须是

双螺旋DNA分子的一部分。

④DNA连接酶只能封闭双螺旋DNA上失去一个磷酸二酯键所出现的单链缺口(nick ),而不

能封闭双链DNA的某一条链上失去一个或数个核苷酸所形成的单链裂口(gap)。

⑤由于在羟基和磷酸基团之间形成磷酸二酯键是一种吸能反应,因此,DNA连接酶在进行连

接反应时,还需要提供一种能源分子(NADF或ATP

11. 大肠杆菌DNA聚合酶和Klenow大片段各有什么作用?

DNA聚合酶作用的特点:

要有底物4种dNTP为前体催化合成DNA 接受模板指导。

需要有引物(3'羟基)的存在。

不能起始合成新的DNA链。

催化dNTP加到生长中的DNA链3' -OH末端。

催化DNA的合成方向是5'T 3'。

Klenow酶的基本性质:

大肠杆菌DNA聚合酶I经胰蛋白酶或枯草杆菌蛋白酶部分水解生成的C末端604个

氨基酸残基片段,即Klenow酶。分子量为76kDa。

Klenow酶仍拥有5' 3'的DNA聚合酶活性和5' 3 '的核酸外切酶活性,但失

去了5'宀3'的核酸外切酶活性。

Klenow酶的基本用途:

修复由限制性核酸内切酶造成的 3 '凹端,使

之成为平头末端。

以含有同位素的脱氧核苷酸为底物,对DNA

片段进行标记。

用于催化cDNA第二链的合成。

用于双脱氧末端终止法测定DNA的序列。

12. T4-DNA聚合酶

T4-DNA聚合酶酶的基本特性:

有3'宀5'的核酸外切酶活性和5'宀3'的DNA聚合酶活性。

在无dNTP时,可以从任何3' -OH端外切。

在只有一种dNTP时,外切至互补核苷酸。

在四种dNTP均存在时,聚合活性占主导地位。

T4-DNA聚合酶的基本用途:切平由核酸内切酶产生的 3 '粘性末端

13. 影响连接效率的因素有:

温度(最主要的因素)离子浓度

ATP的浓度(10?M - 1 )

连接酶浓度(平末端较粘性末端要求高)

反应时间(通常连接过夜)

插入片段和载体片段的摩尔比

DNA末端性质

DNA片段的大小

14. 如何将不同DNA分子末端进行连接?

1. 相同粘性末端的连接

如果外源DNA与载体DNA均用相同的限制性内切酶切割,则不管是单酶酶解还是双酶

联合酶解,两种DNA分子均含有相同的粘性末端,因此混合后能顺利的连接成一个重组DNA 分子

2. 平头末端的连接

T4-DNA连接酶在ATP和高浓度酶的条件下,能连接具有完全碱基配对的平末端DNA分子,但平末端连接效率不高,基因操作不经常采用。

3. 不用粘性末端的连接

3 '端的粘性末端用T4-DNA聚合酶切平

5 '端的粘性末端用klenow酶补平,或者用S1核酸酶切平

最后用T4-DNA连接酶进行平末端连接

15. 碱性磷酸酶有什么作用?

1. 该酶用于载体DNA的5'末端除磷操作,以提高重组效率;

2. 用于外源DNA片段的5'端除磷,则可有效防止外源DNA片段之间的连接。

16. 末端脱氧核苷酸转移酶有哪些作用?

给载体或目的DNA加上互补的同聚物尾。

DNA片段3'末端的同位素标记。

17. 2、细菌转化的步骤:

感受态的形成。感受态时细胞表面出现各种蛋白质和酶类,负责转化因子的结合、

切割及加工。感受态细胞能分泌一种小分子量的激活蛋白或感受因子,其功能是与

细胞表面受体结合,诱导某些与感受态有关的特征性蛋白质(如细菌溶素)的合成,

使细菌胞壁部分溶解,局部暴露出细胞膜上的DNA结合蛋白和核酸酶等。

转化因子的结合。受体菌细胞膜上的DNA结合蛋白可与转化因子的双链DNA吉构特

异性结合,单链DNA或RNA双链RNA以及DNA/RNA杂合双链都不能结合在膜上。转化因子的吸收。双链DNA 分子与结合蛋白作用后,激活邻近的核酸酶,一条链被降解,而另一条链则被吸收到受体菌中。

整合复合物前体的形成。进入受体细胞的单链DNA 与另一种游离的蛋白因子结合,形成整合复合物前体结构,它能有效地保护单链DNA免受各种胞内核酸酶的降解,

并将其引导至受体菌染色体DNA处。

转化因子单链DNA的整合。供体单链DNA片段通过同源重组,置换受体染色体DNA

的同源区域,形成异源杂合双链DNA结构。

18. Ca2+诱导转化原理:

①在0C的Cacl2低渗溶液中,细菌细胞发生膨胀,同时Cacl2使细胞膜磷脂层形成液

晶结构促使细胞外膜与内膜间隙中的部分核酸酶解离开来,诱导大肠杆菌形成感受态。

②Ca2+能与加入的DNA分子结合,形成抗DNA酶(DNase)的羟基-磷酸钙复合物,并黏附在细

菌细胞膜的外表面上。当42 C热刺激短暂处理细菌细胞时,细胞膜的液晶结构发生剧烈扰动,并随之出现许多间隙,为DNA分子提供了进入细胞的通道。

③Mg2+对DNA分子有很大的稳定性作用,因此利用Mgcl2与Cacl2共同处理大肠杆菌细

胞,可以提高DNA的转化效率。

但该法要求条件高,对外界污染物极为敏感,通常很少采用。

19. PEG介导细菌的原生质体转化

PEG是乙二醇的多聚物,存在不同分子量的多聚体,它可改变各类细胞的膜结构,使两细胞

相互接触部位的膜脂双层中脂类分子发生疏散和重组,此时相互接触的两

细胞的胞质沟通成为可能,从而造成细胞之间发生融合。

20. 电穿孔法

是指在细胞上施加短暂、高压的电流脉冲,在质膜上形成纳米大小的微孔,DNA直接通过这些微孔或者作为微孔闭合时所伴随发生的膜组分重新分布通过质膜进入细胞质中,这种方法称为电穿孔法。

P52 接合转化,入噬菌体感染未归纳

21. 转化率的影响因素. 载体及重组DNA方面载体本身的性质:不同的载体转化同一株受体细胞,其转化率不同。载体的空间构象:与受体细胞亲和性较强的质粒载体转化率要高于亲和性较弱的质粒载体。插入片段大小:对质粒载体而言,插入片段越大,转化效率越低。

重组DNA分子的浓度和纯度受体细胞方面:受体细胞必须与载体相匹配转化操作的影响

22. 转化细胞的扩增

转化细胞的扩增操作:指转化完成之后细胞的短时间培养。在实验时,扩增操作往往与转化操作偶联在一起,如:

Ca2+诱导转化后的37 C培养一个小时原生质体转化后的再生过程入噬菌体转染后的30C培养等,均属扩增操作扩增操作的目的增殖转化细胞,使得有足够数量的转化细胞用于筛选程

序。扩增和表达载体分子上的标记基因,便于筛选。

表达外源基因,便于筛选和鉴定。

23. 抗药性筛选法

这是利用载体DNA分子上的抗药性选择标记进行的筛选方法。抗药性筛选法的基本原理:抗药性筛选法可区分转化子与非转化子、重组子与非重组子将外源DNA片段插在EcoRI位点:非重组子呈Apr 、Tcr

重组子呈Apr 、Tcr

将外源DNA片段插在BamHI位点:

非重组子呈Apr 、Ter

重组子呈Apr 、Tes

抗药性筛选法的基本操作:

先将转化液涂布含有Ap的平板

再将Ap平板上的转化子影印至含有Te的平板上

在Ap平板上生长,但在Te平板上不长的转化子即为重组子P56

抗药性标记插入失活选择法

经过上述抗药性筛选获得的大量转化子中既包括需要的重组子,也含有不需要的非重组子。

为了进一步筛选出重组子,可利用质粒载体的双抗药性进行再次筛选。如果外源基因插入在

载体的抗药性基因中间使得该抗药性基因失活,这种抗药性标记就会消失,从而筛选出阳性

重组子。

24. 什么是蓝白斑筛选法?

这种方法是根据组织化学的原理来筛选重组体。主要是在?载体的非必要区插入一个带

有大肠杆菌半乳糖苷酶的基因片段,携带有lae基因片段的九载体转入lae的宿主菌后,在含有5 —溴一4 —氯一3—引哚一1 —D—半乳糖苷(X-gal)平板上形成浅蓝色的噬菌斑。外源基因插人lae (或lae基因部分被取代)后,重组的噬菌体将丧失分解X-gal的能力,转入

lae-宿主菌后,在含有5—溴一4—氯一3—引哚一i —D—半乳糖苷(X-gal)平板上形成白色的噬菌斑,非重组的噬菌体则为蓝色噬菌斑。

25. PCR筛选法

禾U用合适的引物,以从初选出来的阳性克隆中提出的质粒为模板进行PCR通过对PCR

产物的电泳分析,确定目的基因是否插入到载体中。

由于在载体DNA分子中,外源DNAS入位点的两侧序列多数是已知的,可以设计合成相应的PCR引物,以待鉴定的转化子或重组子的DNA为模板进行PCR反应,反应产物经琼脂糖凝胶

电泳,若出现特异性扩增DNA带,并且其分子量同预期的一致,则可确定含此重组DNA分子的重组子是期待的重组子。

第三章基因工程的常规技术

1. 探针有哪些类型?探针标记有哪些方法?类型:同源或部分同源探针

eDNA探针

人工合成的寡核苷酸探针

标记方法:①5'端标记法②反转录标记法③缺刻前移标记法④ABC标记法

4. 什么是ABC荧光(显色酶)标记法?ABC标记法。

A为Avidi n (生物素抗性蛋白),每个Avid in分子可结合3 - 4个生物素分子;

B为Biot in (生物素),每个Biot in 分子可结合2个Avidin 分子;

C为Complex,首先将Biot in 共价结合在探针分子上,荧光胺标记在Avidi n上,两

者形成复合物,即可将荧光胺标记在探针上,发出的荧光也能使普通胶片感光。如果将某一

生色酶接在Avidin上,并辅以合适底物,则杂交反应还可直接以颜色反应检测,这一技术称为酶标技术

5. 亚克隆法

亚克隆:是将克隆片段进一步片段化后再次进行的克隆。

一般是将重组DNA分别用几种限制性核酸内切酶切割后,将所得各片段分别重组到载体上再转化宿主细胞,然后通过转化细胞的表型鉴定或鉴定,获得含有目的基因的重组子。此时,

该重组分子中的无关DNA区域以被大量删除。

6. 菌落(嗜菌斑)原位杂交的基本原理、流程

该项技术是直接把菌落印迹转移到硝酸纤维素滤膜上,经溶菌和变性处理后使DNA 暴露出来并与滤膜原位结合再与特异性DNA探针杂交,筛选出含有插入序列菌落。

操作步骤:

①菌落生长

②转移到NC膜上

③DNA释放和变性

(变成单链DNA):

10 %SDS 0.5M NaOH

④中和0.5M Tris-HCl pH 8.0

⑤固定80 C 120 '

⑥杂交(包括预杂交,加探针DNA杂交)

⑦放射自显影

⑧对照比较,选出重组克隆

7. 鸟枪法

鸟枪法:将某种生物体的全基因组或单一染色体切成大小适宜的DNA 片段,分别连接到载体DNA上,转化受体细胞,形成一套重组克隆,从中筛选出含有目的基因的期望重组子。

鸟枪法制备目的基因的主要步骤

①目的基因组DNA片段的制备超声波处理:片段长度均一,大小可控,平头末端。

(原核生物的基因长度大都在2Kb以内,真核生物的基因长度变化很大,最大的基因可达

100Kb 以上)。

全酶切:片段长度不均一,粘性末端便于连接,但有可能使目的基因断开,大小不可控。部分酶切:片段长度可控,含有粘性末端,目的基因完整。

②DNA片段与载体连接如果转化子采用菌落原位杂交法或限制性酶切图谱法筛选,则选择多

拷贝克隆载体;如果转化子采用基因产物功能检测法筛选,则选择表达型载体。

③重组DNA分子导入受体细胞

如果转化子采用菌落原位杂交法或限制性酶切图谱法筛选,则选择大肠杆菌作为受体细胞;如果转化子采用基因产物功能检测法筛选,则选择能使目的基因表达的受体细胞。

④筛选含有目的基因的目的重组子菌落原位杂交法、基因产物功能检测法(筛选模型的建

立)。

⑤目的基因的定位

利用鸟枪法获得的期望重组子只是含有目的基因的DNA 片段,必须通过次级克隆或插

入灭活,在已克隆的DNA 片段上准确定位目的基因,然后对目的基因进行序列分析,搜寻其编码序列以及可能存在的表达调控序列。

8. CDNA 法

酶促逆转录主要用于合成分子质量较大,转录产物mRNA易分离的目的基因。这种方法以目

的基因的mRNA为模板,在逆转录酶的作用下合成互补的DNA即cDNA然后在DNA聚合酶

的催化下合成双链cDNA片段,与适当的载体重组后转入受体菌扩增,获得目的基因的cDNA 克隆。

9. mRNA的分离纯化

绝大多数的真核生物mRNA在其3'端都存在一个多聚腺苷酸的尾巴,利用它可以迅速的将mRNA从细胞总的混合物中分离出来,将寡聚脱氧胸腺嘧啶共价交联在纤维素分子上,制成亲和层析柱,然后将细胞总的RNA混合物上层析柱分离,mRNA会挂在层析住上,后洗脱

即可分离

10. 简述PCR技术的基本原理,PCR反应体系的主要成分与主要程序是怎样的?

PCR技术的基本原理:类似于DNA的天然复制过程,其特异性依赖于与靶序列两端互补的寡核苷酸引物。

过程:

PCR由变性--退火--延伸三个基本反应步骤构成:

①模板DNA的变性:模板DNA经加热至93 C左右一定时间后,使模板DNA双链或经PCR 扩增形成的双链DNA解离,使之成为单链,以便它与引物结合,为下轮反应作准备;

②模板DNA与引物的退火(复性):模板DNA经加热变性成单链后,温度降至55C左右,引物与模板DNA单链的互补序列配对结合;

③引物的延伸:DNA模板--引物结合物在TaqDNA聚合酶的作用下,以dNTP为反应原料,

靶序列为模板,按碱基配对与半保留复制原理,合成一条新的与模板DNA 链互补的半保留

复制链。

重复循环变性-- 退火-- 延伸三过程,就可获得更多的“半保留复制链” ,而且这种新链又可成为下次循环的模板。每完成一个循环需2?4分钟,2?3小时就能将待扩目的基因

扩增放大几百万倍。

11. 什么是基因组文库?其构建方法是怎样的?

是指将某种生物的全部基因组的遗传信息贮存在可以长期保存的稳定的重组体中,以备需要

时能够随时应用它分离所需要的目的基因,这种保存基因遗传信息的材料,就称为基因文库又称DNA文库。

基因组文库构建的一般步骤

①载体的选择和制备。

②高纯度、大分子量基因组DNA 的提取。

③基因组DNA 的部分酶切与分级分离。

④载体与DNA片段的连接。

⑤转化或侵染宿主细胞。

⑥筛选鉴定基因组及保存。

12. 基因组DNA文库的质量标准除了尽可能高的完备性外,一个理想的基因组DNA 文库应具备下列条件:

重组克隆的总数不宜过大,以减轻筛选工作的压力载体的装载量最好大于基因的长度,避免基因被分隔克隆。

克隆与克隆之间必须存在足够长度的重叠区域,以利于克隆排序。

克隆片段易于从载体分子上完整卸下。重组克隆能稳定保存、扩增、筛选。

基因文库的构建通常采用鸟枪法和cDNA法

13. 外源DNA片段的切割原则

1. DNA 片段之间要有一定的重叠序列

2. DNA 片段大小要均一

14. CDNA文库构建的步骤

细胞总RNA的提取和mRNA勺分离

第一链cDNA合成

第二链cDNA合成

双链cDNA的分级分离

双链cDNA克隆进质粒或噬菌体载体并导入宿主中繁殖

重组体的筛选与鉴定

第四章基因在大肠杆菌、酵母的高效表达

1. 启动子

启动子:是DNA链上一段能与RNA聚合酶结合并能起始转录的序列,其大小在20?300 个碱基,是控制基因转录的重要调控元件。在一定条件下

mRNA 的合成速率与启动子的强弱密切相关,而转录又在很大程度上影响基因的表达。

启动子的特征:①序列特异性②方向性③位置特性④种属特异性

2. 启动子类型组成型启动子:是指在该类启动子控制下,结构基因的表达大体恒定在一定水平上,

在不同组织、部位表达水平没有明显差异。组织特异启动子:又称器官特异性启动子。在这

类启动子调控下,基因往往只在某些特定的器官或组织部位表达,并表现出发育调节的特

性。诱导型启动子:是指在某些特定的物理或化学信号的刺激下,该种类型的启动子可以大幅度地提高基因的转录水平。目前已经分离了光诱导表达基因启动子、热诱导表达基因启动

子、创伤诱导表达基因启动子、真菌诱导表达基因启动子和共生细菌诱导表达基因启动子

等。

3. 终止子

终止子:是位于结构基因下游的一段DNA序列,基因转录时,该序列被转录为mRNA勺一部分,并形成特殊的二级结构,由此终止基因的转录。

4.SD 序列

SD序列:mRNA中起始密码子上游8-13个核苷酸处有一段富含嘌呤核苷酸的顺序,它可以与30S亚基中的16S rRNA 3 '端富含嘧啶的尾部互补,形成氢键结合,有助于mRNA勺翻译从起始密码子处开始

5. 密码子不同生物对密码子的偏爱性

1. 生物体基因组中的碱基含量

2. 密码子与反密码子的相互作用的自由能

3. 细胞内tRNA的含量

6. 密码子偏爱性对外源基因表达的影响

由于原核生物和真核生物基因组中密码子的使用频率具有较大程大的差异性,因此外源基因

基因工程知识点梳理

生物选修3知识点 专题1 基因工程 基因工程的概念 基因工程是指按照人们的愿望,进行严格的设计,通过,赋予生物以,创造出。基因工程是在 上进行设计和施工的,又叫做。 (一)基因工程的基本工具 1.“分子手术刀”—— (1)来源:主要是从中分离纯化出来的。 (2)功能:能够识别的核苷酸序列,并且使每一条链中的两个核苷酸之间的断开,因此具有。(3)结果:经限制酶切割产生的DNA片段末端通常有两种形式: 和。 2.“分子缝合针”—— (1)两种DNA连接酶()的比较: ①相同点:都缝合键。 ②区别:来源于大肠杆菌,来源于T4噬菌体, 只能将双链DNA片段互补的黏性末端之间的磷酸二酯键连接起来; 而能缝合两种末端,但连接的之间的效率较低。 (2)与DNA聚合酶作用的异同: DNA聚合酶只能将加到已有的核苷酸片段的末端,形成磷酸二酯键。 DNA连接酶是连接两个DNA片段的末端,形成磷酸二酯键。 必须需要模板 3.“分子运输车”—— (1)载体具备的条件:①。 ②,供外源DNA片段插入。 ③,供重组DNA的鉴定和选择。 (2)最常用的载体是 ,它是一 种 。

(3)其它载体: (二)基因工程的基本操作程序 第一步: 1.目的基因是指:基因。 2.原核基因采取获得,真核基因是。人工合成目的基因的 常用方_ 和_。 3. 从基因文库中获取 基因文库(1)概念:将含有某种生物不同基因的许多DNA片段,导入受体菌的群体中储存,各个受体菌分别含有这种生物的不同的基因,称为基因文库。 (2)类型:基因组文库和部分基因文库(如cDNA文库) (1)原理: (2)过程:第一步:加热至90~95℃; 第二步:冷却到55~60℃,; 第三步:加热至70~75℃,。 第二步:(核心步骤)

基因工程知识点总结归纳(更新版)

基因工程 绪论 1、克隆(clone):作名词:含有目的基因的重组DNA分子或含有重组分子的无性繁殖。作动词:基因的分离和重组的过程。 2、基因工程(gene engineering):体外将目的基因插入病毒、质粒、或其他载体分子中,构成遗传物质的新组合,并使之掺入到原先没有这些基因的宿主细胞内,且能稳定的遗传。供体、受体和载体是基因工程的三大要素。 3、基因工程诞生的基础 三大理论基础:40年代发现了生物的遗传物质是DNA;50年代弄清楚DNA 的双螺旋结构和半保留复制机理;60年代确定遗传信息的遗传方式。以密码方式每三个核苷酸组成一个密码子代表一个氨基酸。 三大技术基础:限制性内切酶的发现;DNA连接酶的发现;载体的发现 3、基因工程的技术路线:切:DNA片段的获得;接:DNA片段与载体的连接;转:外源DNA片段进出受体细胞;选:选择基因;表达:目的基因的表达;基因工程的工具酶 1、限制性内切酶(restriction enzymes):主要是从原核生物中分离纯化出来的,是一类能识别双链DNA分子中某种特定核苷酸序列,并由此切割DNA双链的核酸内切酶。 2、限制酶的命名:属名(斜体)+种名+株系+序数 3、II型限制性内切酶识别特定序列并在特定位点切割 4、同裂酶:来源不同,其识别位点与切割位点均相同的限制酶。 5、同尾酶:来源不同,识别的靶序列不同,但产生相同的黏性末端的酶形成的新位点不能被原来的酶识别。 6、限制性内切酶的活性:在适当反应条件下,1小时内完全酶解1ug特定的DNA 底物,所需要的限制性内切酶的量为1个酶活力单位。 7、星号活性:改变反应条件,导致限制酶的专一性和酶活力的改变。 8、DNA连接酶的特点:具有双链特异性,不能连接两条单链DNA分子或闭合单链DNA,连接反应是吸能反应,最适反应温度是4至15度,最常用的是T4连接酶。 9、S1核酸酶:特异性降解单链DNA或RNA。

高中生物选修三基因工程知识点

高中生物选修三基因工程知识点 基因工程:是指按照人们的愿望,进行严格的设计,通过体外DNA重组和转基因技术,赋予生物以新的遗传特性,创造出更符合人们需要的新的生物类型和生物产品。基因工程是在DNA分子水平上进行设计和施工的,又叫做DNA重组技术。 (一)基因工程的基本工具 1.“分子手术刀”——限制性核酸内切酶(限制酶) (1)来源:主要是从原核生物中分离纯化出来的。 (2)功能:能够识别双链DNA分子的某种特定的核苷酸序列,并且使每一条链中特定部位的两个核苷酸之间的磷酸二酯键断开,因此具有专一性。 (3)结果: 经限制酶切割产生的DNA片段末端通常有两种形式:黏性末端和平末端。 2.“分子缝合针”——DNA连接酶 (1)两种DNA连接酶(E·coliDNA连接酶和T4-DNA连接酶)的比较: ①相同点:都缝合磷酸二酯键。 ②区别:E·coliDNA连接酶来源于大肠杆菌,只能将双链DNA片段互补的黏性末端之间的磷酸二酯键连接起来;而T4DNA连接酶能缝合两种末端,但连接平末端的之间的效率较低。 (2)与DNA聚合酶作用的异同:

(2)目的:获取大量的目的基因 (3)原理:DNA双链复制 (4)过程: 第一步:加热至90~95℃DNA解链为单链; 第二步:冷却到55~60℃,引物与两条单链DNA结合; 第三步:加热至70~75℃,热稳定DNA聚合酶从引物起始进行互补链的合成。 (5)特点:指数(2^n)形式扩增 第二步:基因表达载体的构建(核心) 1.目的:使目的基因在受体细胞中稳定存在,并且可以遗传至下一代,使目的基因能够表达和发挥作用。 2.组成:目的基因+启动子+终止子+标记基因 (1)启动子:是一段有特殊结构的DNA片段,位于基因的首端,是RNA 聚合酶识别和结合的部位,能驱动基因转录出mRNA,最终获得所需的蛋白质。 (2)终止子:也是一段有特殊结构的DNA片段,位于基因的尾端。(3)标记基因的作用:是为了鉴定受体细胞中是否含有目的基因,从而将含有目的基因的细胞筛选出来。常用的标记基因是抗生素基因。 第三步:将目的基因导入受体细胞 1.转化的概念:是目的基因进入受体细胞内,并且在受体细胞内维持稳定和表达的过程。 2.常用的转化方法:

基因工程知识点

基因工程各章知识点 第一章绪论 1.基因工程的首例操作实验 三大理论基础:DNA是遗传物质、DNA的双螺旋结构和半保留复制、遗传密码的破译和遗传物质传递方式的确定 三大技术基础:限制性核酸内切酶的发现与DNA的切割、DNA连接酶的发现与DNA片段的连接、基因工程载体的研究与应用 基因工程的诞生: 72年,P.Berg首次实现体外DNA重组:体外用EcoRI分别切割SV40和λDNA,并用T4 DNA连接酶连接成为重组的杂种DNA分子 73年,S.Cohen 体外重组DNA并转化:具Kanr的E.Coli质粒R6-5和具Tetr的E.Coli质粒pSC101切割并连接转化的大肠杆菌具有双重抗性 S.Cohen 和H.Boyer首次实现真核基因在原核中表达:将非洲爪蟾的DNA与E.Coli质粒(pSC101)体外切割并连接,转化大肠杆菌 2.基因工程的基本概念 基因工程是指将一种生物体(供体)的基因与载体在体外进行拼接重组,然后转入另一种新物体(受体)内,使之稳定遗传并表达出新产物或具有新性状的DNA体外操作技术,也称为分子克隆或重组DNA 技术。 供体、载体、受体是基因工程的三大基本元件。 3.基因工程的基本操作过程 a分离目的DNA片段:酶切、PCR扩增、化学合成等。 b重组:体外连接的DNA和载体DNA,形成重组DNA分子。 c转化:将重组DNA分子导入受体细胞并与之一起增殖。 d筛选:鉴定出获得了重组DNA分子的受体细胞。 e对获得外源基因的细胞或生物体通过培养,获得所需的遗传性状或表达出所需要的产物。 第二章载体 1.理解用PBR322和PUC18作载体的克隆外源基因的原理。答案不确定 PBR322作载体的克隆外源基因的原理:PBR322质粒具有12 种限制性内切酶的单一识别位点:Tet r 基因内有7个酶切位点:Bam HⅠ,SalⅠ:Amp r基因内有3 个酶切位点:PstⅠ。Eco RⅠ和HindⅢ不在抗生素基因内,不导致插入失活。 如果在pBR322质粒的Tet r基因内位点插入外源DNA片断,将切断了tet r基因编码序列的连续性,使tet r 失去活性,产生出Amp r Tet s表型的重组pBR322质粒,转化入Amp s Tet s的大肠杆菌细胞。先涂布在含氨苄青霉素的选择培养基上,筛选出具Amp r菌落,再将它们影印于含四环素的选择性培养基上。插入外源片断的重组质粒不能在这种培养基上生长,这样就找出了含重组质粒的大肠杆菌。如果在pBR322质粒的Amp r基因内位点插入外源DNA片断,则反之。 PUC18作载体的克隆外源基因的原理:

专题一、基因工程知识点归纳

专题一基因工程 一【高考目标定位】 1、专题重点:DNA重组技术所需的三种基本工具;基因工程的基本操作 程序四个步骤;基因工程在农业和医疗等面的应用;蛋白质工程的原理。 2、专题难点:基因工程载体需要具备的条件;从基因文库中获取目的基 因;利用PCR技术扩增目的基因;基因治疗;蛋白质工程的原理。 二【课时安排】2课时 三【考纲知识梳理】 第1节DNA重组技术的基本工具 教材梳理: 知识点一基因工程的概念:基因工程是指按照人们的愿望,进行格的设计,并通过体外DNA重组和转基因等技术,赋予生物以新的遗传特性,从而创造出更符合人们需要的新的生物类型和生物产品。由于基因工程是在DNA分子水平上进行设计和施工的,因此又叫做DNA重组技术。 注意:对本概念应从以下几个面理解: 知识点二基因工程的基本工具 1.限制性核酸切酶——“分子手术刀” (1)限制性切酶的来源:主要是从原核生物中分离纯化来的。 (2)限制性切酶的作用:能够识别双链DNA分子的某种特定的核苷酸序列,并能将每一条链上特定部位的两个核苷酸之间的磷酸二酯键切开。(3)限制性切酶的切割式及结果:①在中心轴线两侧将DNA切开,切口是黏性末端。②沿着中心轴线切开DNA,切口是平末端。 2.DNA连接酶——“分子缝合针” (1)来源:大肠杆菌、T4噬菌体 (2)DNA连接酶的种类:E.coliDNA连接酶和T4DNA连接酶。 (3)作用及作用部位:E.coliDNA连接酶作用于黏性末端被切开的磷酸

二酯键,T4DNA连接酶作用于黏性末端和平末端被切开的磷酸二酯键。注意:比较有关的DNA酶 (1)DNA水解酶:能够将DNA水解成四种脱氧核苷酸,彻底水解成膦酸、脱氧核糖和含氮碱基 (2)DNA解旋酶:能够将DNA或DNA的某一段解成两条长链,作用的部位是碱基和碱基之间的氢键。注意:使DNA解成两条长链的法除用解旋酶以外,在适当的高温(如94℃)、重金属盐的作用下,也可使DNA 解旋。 (3)DNA聚合酶:能将单个的核苷酸通过磷酸二酯键连接成DNA长链。(4)DNA连接酶:是通过磷酸二酯键连接双链DNA的缺口。注意比较DNA聚合酶和DNA连接酶的异同点。 3.基因进入受体细胞的载体——“分子运输车” (1)分子运载车的种类:①质粒:常存在于原核细胞和酵母菌中,是一种分子质量较小的环状的裸露的DNA分子,独立于拟核之外。②病毒:常用的病毒有噬菌体、动植物病毒等。 (2)运载体作用:①是用它做运载工具,将目的基因转运到宿主细胞中去。②是利用它在受体细胞对目的基因进行大量复制。 (3)作为运载体必须具备的条件:①在宿主细胞中保存下来并大量复制②有多个限制性切酶切点③有一定的标记基因,便于筛选。 思维探究:知识点3、4、5主要是介绍DNA重组技术的三种基本工具及其作用。限制酶──“分子手术刀”,主要是介绍限制酶的作用,切割后产生的结果。在这部分容学习时,应关心的问题之一是:限制酶从哪里寻找?我们可以联想从前学过的容──噬菌体侵染细菌的实验,进而认识细菌等单细胞生物容易受到自然界外源DNA的入侵。那么这类原核生物之所以长期进化而不绝灭,有保护机制?进而联想到可能是有什么酶来切割外源DNA,而使之失效,达到保护自身的目的”。这样就对“限制酶主要是从原核生物中分离纯化出来”的认识提高了一个层次。 基因进入受体细胞的载体──“分子运 输车”的学习容,不能仅仅着眼于记住这几个 条件,而应该深入思考每一个条件的涵,通过 深思熟虑,才能真正明确为什么要有这些条件 才能充当载体。 教材拓展: 拓展点一限制酶所识别序列的特点 限制酶所识别的序列的特点是:呈现碱基互补对称,无论是奇数个碱

高中生物基因工程核心知识点

基因工程核心知识点 一、基因工程的概念 基因工程是指按照人们的愿望,进行严格的设计,通过体外DNA重组和转基因技术,赋予生物以新的遗传特性,创造出更符合人们需要的新的生物类型和生物产品。基因工程是在DNA分子水平上进行设计和施工的,又叫做DNA重组技术。 (一)基因工程的基本工具 1.“分子手术刀”——限制性核酸内切酶(限制酶) (1)来源:主要是从原核生物中分离纯化出来的。 (2)功能:能够识别双链DNA分子的某种特定的核苷酸序列,并且使每一条链中特定部位的两个核苷酸之间的磷酸二酯键断开,因此具有专一性。 (3)结果:经限制酶切割产生的DNA片段末端通常有两种形式:黏性末端和平末端。 2.“分子缝合针”——DNA连接酶 (1)两种DNA连接酶(E?coliDNA连接酶和T4-DNA连接酶)的比较: ①相同点:都缝合磷酸二酯键。 ②区别:E?coliDNA连接酶来源于T4噬菌体,只能将双链DNA片段互补的黏性末端之间的磷酸二酯键连接起来;而T4DNA连接酶能缝合两种末端,但连接平末端的之间的效率较低。 (2)与DNA聚合酶作用的异同:DNA聚合酶只能将单个核苷酸加到已有的核苷酸片段的末端,形 成磷酸二酯键。DNA连接酶是连接两个DNA片段的末端,形成磷酸二酯键。 *比较有关的DNA酶 (1)DNA水解酶:能够将DNA水解成四种脱氧核苷酸,彻底水解成膦酸、脱氧核糖和含氮碱基 (2)DNA解旋酶:能够将DNA或DNA的某一段解成两条长链,作用的部位是碱基和碱基之间的氢键。注意:使DNA解成两条长链的方法除用解旋酶以外,在适当的高温(如94℃)、重金属盐的作用下,也可使DNA解旋。(3)DNA聚合酶:能将单个的核苷酸通过磷酸二酯键连接成DNA长链。 (4)DNA连接酶:是通过磷酸二酯键连接双链DNA的缺口。注意比较DNA聚合酶和DNA 连接酶的异同点。 3.“分子运输车”——载体 (1)载体具备的条件:①能在受体细胞中复制并稳定保存。 ②具有一至多个限制酶切点,供外源DNA片段插入。 ③具有标记基因,供重组DNA的鉴定和选择。 (2)最常用的载体是质粒,它是一种裸露的、结构简单的、独立于细菌染色体之外,并具有自我复制能力的双链环状DNA分子。 (3)其它载体:噬菌体的衍生物、动植物病毒 【解题技巧】 (1)限制酶是一类酶,而不是一种酶。 (2)限制酶的成分为蛋白质,其作用的发挥需要适宜的理化条件,高温、强酸或强碱均易使之变性失活。 (3)在切割目的基因和载体时要求用同一种限制酶,目的是产生相同的黏性末端。(4)获取一个目的基因需限制酶剪切两次,共产生4个黏性末端或平末端。 (5)不同DNA分子用同一种限制酶切割产生的黏性末端都相同,同一个DNA分子用不同的限制酶切割,产生的黏性末端一般不相同。 (6)限制酶切割位点应位于标记基因之外,不能破坏标记基因,以便于进行检测。 (二)基因工程的基本操作程序 第一步:目的基因的获取 1.目的基因主要是指编码蛋白质的结构基因,目前被广泛提取使用的目的基因有:苏云金杆菌抗虫基因、植物抗病基因(抗病毒、抗细菌)、人胰岛素基因等。 2.获得目的基因的方法

基因工程主要知识点整理

第一章基因克隆 基因工程的基本技术有哪些? 答:对核算分子的分离、纯化、回收、分析和检测、切割、连接和修饰,以及序列测定、诱变、扩增和转移等基因操作技术。 构建基因文库一般使用什么作为载体? 答:一般使用大肠杆菌作为载体 克隆与亚克隆? 答:克隆在一等程度上等同于基因的分离。亚克隆是将目的基因所对应的小段的DNA片段找出来。 PCR对基因克隆有什么作用? 答:现在基因克隆可以不用通过构建基因文库来实现,可以通过理性设计和PCR扩增获得大多数所需要的基因。但是尽管如此,在不知道基因序列的情况下,如相互作用的基因,表达调控因子,新基因等,还需要构建基因文库来进行基因克隆。 第二章分子克隆工具酶 限制与修饰系统? 答:限制系统可以排除外来DNA。限制的作用实际就是降解外源DNA,维护宿主稳定的保护机制。甲基化是常见的修饰作用,宿主通过甲基化来达到识别自身遗传物质和外来遗传物质的作用。并且能够保证自身的DNA不被降解。 使用最广泛的限制酶? 答:EcoR I是应用最广泛的限制性内切酶 限制性内切酶的命名? 答:宿主属名第一字母、种名头两个字母、菌株号+序列号。 如:HindIII 限制与修饰系统分类? 答:至少可分为3类。II类所占比例最大,其酶分子为内切酶与甲基化分子不在一起,识别位点为4-6bp的回文序列,切割位点为识别位点中或者靠近识别位点。其限制反应与甲基化反应是分开的反应。不需要ATP的参与。 限制酶识别的序列长度?结构?

答:一般为4-6个bp,即每256和每4096个碱基中存在一个识别位点。回文序列,不对称序列,多种不同序列,间断对称序列 限制酶产生的末端? 答:1、黏末端2、平末端3、非对称突出末端 什么是同裂酶?分类? 答:识别相同序列的限制酶称为同裂酶。但他们的切割位点有可能不同。分为:1、同位同切酶2、同位异切酶3、同工多位酶4、其他 限制性内切酶的作用是什么?它的反酶是什么? 答: 什么是同尾酶? 答:许多不同的限制酶切割DNA产生的末端是相通的,切实对称的,即他们可产生相同的黏性突出末端。 酶切的缓冲液中一般含有什么?作用是? 答:调控pH的缓冲剂:稳定溶液的pH M g2+:稳定酶的作用,提高酶的活性,提高酶的特异性 DDT(二硫苏糖醇):防止DNA二聚化,影响酶切结果 BSA(小牛血清蛋白):防止了酶的贴壁效应(可使酶变形),同时减少非特异性吸附,对酶有稳定和促进的作用。 酶切的反应温度?反应时间?中止酶切的方法? 答:反应温度大多为37℃,时间一般为2-3h。中止的方法是在65℃下反应20min。 什么星星活性?抑制其发生的办法? 答:在极端非标准条件下,限制酶能够切割与识别序列相似的序列,这个改变的特性称为星星活性。抑制星星活性的措施有很多,如减少酶的用量(可避免过分酶切)、减少甘油浓度、保证反应体系中唔有机溶剂或乙醇、提高离子强度到100-150mmol/L(如果不会抑制酶活性的话)和降低反应pH至pH7.0以及保证使用M g2+作为2价阳离子。 影响酶活性的因素有? 答:可分为内因和外因 外因是可预见的,可控的:反应条件、底物的纯度(是否有杂质、是否有盐离子和苯酚的污染)、何时加酶、操作是否恰当、反应提及的选择以及反应时间的长短等。 内因有:星星活性、底物甲基化和底物构象(线性还是超螺旋) 原核细胞有几种DNA聚合酶?其特点是什么? 答:DNA聚合酶I是单链多肽,可催化单链或者双链DNA的延长;DNA聚合酶II则与低分子脱氧核苷酸链的延长有关;DNA聚合酶III在细胞中存在的数目不多,是促进DNA链延长的主要酶。

专题1基因工程知识点梳理(含教材答案)

专题1 基因工程 ※基因工程的概念: 基因工程是指按照人们的愿望,进行严格的设计,通过体外DNA重组和转基因技术,赋予生物以新的遗传特性,创造出更符合人们需要的新的生物类型和生物产品。基因工程是在DNA分子水平上进行设计和施工的,又叫做DNA重组技术。 ﹡原理:基因重组 ﹡目的:创造出更符合人们需要的新的生物类型和生物产品。 ﹡意义:能够打破生物种属的界限(即打破生殖隔离,克服远源杂交不亲和的障碍),在分子水平上定向改变生物的遗传特性。 ﹡操作水平:DNA分子水平 【思考】: (1)基因工程的物质基础是:所有生物的DNA均由四种脱氧核苷酸组成。 (2)基因工程的结构基础是:所有生物的DNA均为双螺旋结构。 (3)一种生物的DNA上的基因之所以能在其他生物体内得以进行相同的表达,是因为它们共用一套遗传密码子。 一、基因工程的基本工具 1.“分子手术刀”——限制性核酸内切酶(限制酶) (1)来源:主要是从原核生物中分离纯化出来的。 (2)功能:能够识别双链DNA分子的某种特定的核苷酸序列,并且使每一条链中特定部位的两个核苷酸之间的磷酸二酯键断开,因此具有专一性。 (3)结果:经限制酶切割产生的DNA片段末端通常有两种形式:黏性末端和平末端(回文结构特点)。 ①在中心轴线两侧将DNA切开,切口是黏性末端。 ②沿着中心轴线切开DNA,切口是平末端。 2.“分子缝合针”——DNA连接酶

(1)分类:根据酶的来源不同,可分为E·coliDNA连接酶和T4DNA连接酶两类 (2)功能:恢复被限制酶切开了的两个核苷酸之间的磷酸二酯键。 ★两种DNA连接酶(E·coliDNA连接酶和T4DNA连接酶)的比较: ①相同点:都缝合磷酸二酯键 ②区别:E.coIiDNA连接酶来源于大肠杆菌,只能使黏性末端之间连接; T4DNA连接酶能缝合两种末端,但连接平末端之间的效率较低。 (3)与DNA聚合酶作用的异同: DNA聚合酶只能将单个核苷酸加到已有的核苷酸片段的末端,形成磷酸二酯键。DNA连接酶是连接两个DNA片段的末端,形成磷酸二酯键。 (4)与DNA分子相关的酶

基因工程基础知识梳理(二)

基因工程基础知识梳理(二) 三、基因工程的应用 .植物基因工程的成果 提高农作物的_____能力、改良农作物的品质、利用植物生产_____等。 ( )抗虫转基因植物 ①方法:将_____导入植物体,使其具有抗虫性。 ②成果:各种抗虫作物,如抗虫水稻、抗虫棉、抗虫玉米等。 ③意义:减少_____,降低生产成本,减少环境污染。 ④主要杀虫基因:_____、蛋白酶抑制剂基因、淀粉酶抑制剂基因、植物凝集素基因等。 ( )抗病转基因植物 ①方法:将_____导入植物体中,使其具有抗病特性。 ②成果:多种抗病作物,如抗病的烟草、小麦、甜椒、番茄等。 ③意义:提高作物抗病力,增产。 ④主要抗病基因:抗病毒的_____和病毒的复制酶基因;抗真菌的_____ 基因和抗毒素合成基因。 ( )抗逆转基因植物 ①方法:将_____基因导入植物体,获得抗逆作物。 ②成果:多种抗逆植物,如抗盐碱和干旱的烟草、抗寒番茄、抗除草剂大豆和玉米等。 ③意义:提高作物抗逆能力,稳定高产。 ④主要抗逆基因:抗盐碱、抗干旱的_____基因、耐寒的_____基因、抗除草剂基因。 ( )利用转基因改良植物的品质 ①方法:将优良性状基因导入植物体,获得_____。 ②成果:_____含量较高的玉米、耐储存番茄、新花色的矮牵牛。 ③意义:改良植物的某些品种。 ④主要优良性状基因:_____的蛋白质编码基因、控制番茄果实成熟的基因、与植物花青素代谢有关的基因。 .动物基因工程的成果

( )提高动物的生长速度 ①生长基因:外源_____基因。 ②成果:转基因绵羊、转基因鲤鱼。 ( )改善畜产品的品质 ①优良基因:肠_____基因。 ②成果:转基因牛乳汁中_____含量少。 ( )转基因动物生产药物 ①基因来源:药用蛋白基因+乳腺蛋白基因的_____。 ②成果:乳腺生物反应器。 ( )转基因动物作器官移植的供体 ①器官供体:抑制或除去_____。 ②成果:利用_____培育没有免疫排斥反应的猪器官。 .基因工程药物 ( )来源:转基因_____。 ( )成果:_____、抗体、疫苗、激素等。 ( )作用:预防和治疗人类肿瘤、心血管疾病、遗传病、各种传染病、_____、类风湿等疾病。 .基因治疗 ( )特点:把 _____导入病人体内,使该基因的表达产物发挥功能,从而达到治疗疾病的目的。 ( )成果:将腺苷酸脱氨酶基因导入患者的_____,治疗复合型免疫缺陷症。 ( )方法:分为体外基因治疗法和_____基因治疗法。 四、蛋白质工程 .蛋白质工程的崛起 ( )实质:将一种生物的_____转移到另一种生物体内,后者产生它本不能产生的蛋白质,从而产生新性状。 ( )目的:生产符合人们生活需要的、并非自然界已存在的_____。 ( )实例:天冬氨酸激酶和________的活性受细胞内__________的影响,当赖氨酸浓度达到一定量时会抑制这两种酶的活性,改变两种酶的特性后,玉米游离赖氨酸含量提高。 .蛋白质工程原理

高考生物基因工程专项知识点

-高考生物基因工程专项知识点 基因工程技术为基因的结构和功能的研究提供了有力 的手段,下文是为考生准备的生物基因工程专项知识点的内容。 基因工程是指按照人们的愿望,进行严格的设计,通过体外DNA重组和转基因技术,赋予生物以新的遗传特性,创造出更符合人们需要的新的生物类型和生物产品。基因工程是在DNA分子水平上进行设计和施工的,又叫做DNA重组技术。 (一)基因工程的基本工具 1.“分子手术刀”——限制性核酸内切酶(限制酶) (1)来源:主要是从原核生物中分离纯化出来的。 (2)功能:能够识别双链DNA分子的某种特定的核苷酸序列,并且使每一条链中特定部位的两个核苷酸之间的磷酸二酯 键断开,因此具有专一性。 (3)结果:经限制酶切割产生的DNA片段末端通常有两种形式:黏性末端和平末端。 2.“分子缝合针”——DNA连接酶 (1)两种DNA连接酶(E?coliDNA连接酶和T4-DNA连接酶)的比较: ①相同点:都缝合磷酸二酯键。 ②区别:E?coliDNA连接酶来源于T4噬菌体,只能将双链DNA片段互补的黏性末端之间的磷酸二酯键连接起来;而

T4DNA连接酶能缝合两种末端,但连接平末端的之间的效率较低。 (2)与DNA聚合酶作用的异同:DNA聚合酶只能将单个核苷酸加到已有的核苷酸片段的末端,形成磷酸二酯键。DNA连接酶是连接两个DNA片段的末端,形成磷酸二酯键。 3.“分子运输车”——载体 (1)载体具备的条件:①能在受体细胞中复制并稳定保存。 ②具有一至多个限制酶切点,供外源DNA片段插入。 ③具有标记基因,供重组DNA的鉴定和选择。 (2)最常用的载体是??质粒,它是一种裸露的、结构简单的、独立于细菌染色体之外,并具有自我复制能力的双链环状DNA分子。 (3)其它载体:噬菌体的衍生物、动植物病毒 (二)基因工程的基本操作程序 第一步:目的基因的获取 1.目的基因是指:编码蛋白质的结构基因。 2.原核基因采取直接分离获得,真核基因是人工合成。人工合成目的基因的常用方法有反转录法_和化学合成法_。 3.PCR技术扩增目的基因 (1)原理:DNA双链复制 (2)过程:第一步:加热至90~95℃DNA解链;第二步:冷却到55~60℃,引物结合到互补DNA链;第三步:加热至70~

(完整版)《基因工程》知识点默写

专题1 基因工程 基因工程的概念 基因工程是指按照人们的愿望,进行严格的设计,通过体外和 ,赋予生物以新的,创造出更符合人们需要的新的和 。基因工程是在上进行设计和施工的,又叫做。 基因工程育种的原理:;优点:、 (一)基因工程的基本工具(工具酶:、) 1.“分子手术刀”—— (1)来源:主要是从中分离纯化出来的。 (2)功能:能够识别双链DNA分子的某种的核苷酸序列,并且使每一条链中部位的两个核苷酸之间的断开,因此具有性。 (3)结果:经限制酶切割产生的DNA片段末端通常有两种形式:末端和末端。(4)限制酶自身DNA,原因是原核生物中或识别序列已经被。 2.“分子缝合针”—— (1)两种DNA连接酶(E·coliDNA连接酶和T4-DNA连接酶)的比较: ①相同点:都缝合键。 ②区别:E·coliDNA连接酶来源于,只能将双链DNA片段互补的之间的磷酸二酯键连接起来;而T4DNA连接酶能缝合,但连接平末端的之间的效率较。 (2)与DNA聚合酶作用的异同:DNA聚合酶只能将核苷酸加到已有的核苷酸片段的末端, 形成磷酸二酯键。DNA连接酶是连接的末端,形成磷酸二酯键。 3.“分子运输车”—— (1)载体具备的条件:①。 ②。 ③。 (2)最常用的载体是 ,它是一种裸露的、结构简单的、独立于之外,并具有的 DNA分子。 (3)其它载体:、 . (二)基因工程的基本操作程序 第一步: 1.目的基因是指:。

2.获取目的基因的方法有、 和。 3.基因文库是指:将含有某种生物的许多DNA片段,导入 中储存,各个受体菌分别含有这种生物的,称为基因文库。包含了一种生物所有的基因,这种基因文库称为;包含了一种生物的一部分基因,这种基因文库称为,如。 获取目的基因的依据有哪些?如、、 、、。 4.PCR技术扩增目的基因 (1)原理: (2)特点: (3)条件:()、、()、()。 (4)仪器:。 5.人工合成目的基因的方法有:、。第二步: ----也是基因工程的 1.目的:。 2.组成:+++ (1)启动子含义及作用: 。 (2)终止子含义及作用:。 注意与终止密码子的区别 (3)标记基因的作用:。 常用的标记基因是、。 第三步: 1.转化的概念:是进入受体细胞内,并且在受体细胞内的过程。 2.常用的转化方法: 将目的基因导入植物细胞:采用最多的方法是,其次还有和 等。其中单子叶常有的方法是。

基因工程知识点超全

基因工程 一、基因工程的概念 基因工程是指按照人们的愿望,进行严格的设计,并通过体外DNA重组和转基因等技术,赋予生物以新的遗传特性,从而创造出更符合人们需要的新的生物类型和生物产品。由于基因工程是在 二、基因工程的基本工具 1、限制性核酸内切酶-----“分子手术刀” 2、DNA连接酶-----“分子缝合针” 3、基因进入受体细胞的载体-----“分子运输车” 1.“分子手术刀”——限制性核酸内切酶(限制酶) (1)存在:主要存在于原核生物中。 (2)特性:特异性,一种限制酶只能 识别一种特定的核苷酸序列,并且能在 特定的切点上切割DNA分子。 (3)切割部位:磷酸二酯键 (4)作用:能够识别双链DNA分子的 某种特定核苷酸序列,并且使每一条链 中特定部位的两个核苷酸之间的磷酸 二酯键断开。

(5)识别序列的特点: (6)切割后末端的种类:DNA 分子经限制酶切割产生的DNA 片段末端通常有两种形式——黏性末端和平末端。当限制酶在它识别序列的中轴线两侧将DNA 的两条链分别切开时,产生的是黏性末端,而当限制酶在它识别序列的中轴线处切开时,产生的则是平末端。

2.“分子缝合针”——DNA连接酶 (1)作用:将限制酶切割下来的DNA片段拼接成DNA分子。 (2)类型 相同点:都连接磷酸二酯键 3.“分子运输车”——载体 (1)载体具备的条件: ①能在受体细胞中复制并稳定保存。 ②具有一个至多个限制酶切点,供外源DNA片段插入。 ③具有标记基因,供重组DNA的鉴定和选择。 (2)最常用的载体是质粒,它是一种裸露的、结构简单的、独立于细菌拟核之外,并具有自我复制能力的双链环状DNA分子。 (3)其他载体:λ噬菌体的衍生物、动植物病毒。 (4)载体的作用: ①作为运载工具,将目的基因送入受体细胞。 ②在受体细胞内对目的基因进行大量复制。 【解题技巧】 (1)限制酶是一类酶,而不是一种酶。 (2)限制酶的成分为蛋白质,其作用的发挥需要适宜的理化条件,高温、强酸或强碱均易使之变性失活。 (3)在切割目的基因和载体时要求用同一种限制酶,目的是产生相同的黏性末端。 (4)获取一个目的基因需限制酶剪切两次,共产生4个黏性末端或平末端。 (5)不同DNA分子用同一种限制酶切割产生的黏性末端都相同,同一个DNA分子用不同的限制酶切割,产生的黏性末端一般不相同。 (6)限制酶切割位点应位于标记基因之外,不能破坏标记基因,以便于进行检测。 (7)基因工程中的载体与细胞膜上物质运输的载体不同。基因工程中的载体是DNA分子,能将目的

最新基因工程细胞工程知识点汇总

基因工程细胞工程知识点汇总 一、基因工程 (一)基因工程的概念 基因工程是指按照人们的愿望,进行严格的设计,通过体外DNA重组和转基因技术,赋予生物以新的遗传特性,创造出更符合人们需要的新的生物类型和生物产品。基因工程是在DNA分子水平上进行设计和施工的,又叫做DNA重组技术。 (一)基因工程的基本工具 1.“分子手术刀”——限制性核酸内切酶(限制酶) (1)来源:主要是从原核生物中分离纯化出来的。 (2)功能:能够识别双链DNA分子的某种特定的核苷酸序列,并且使每一条链中特定部位的两个核苷酸之间的磷酸二酯键断开,因此具有专一性。 (3)结果:经限制酶切割产生的DNA片段末端通常有两种形式:黏性末端和平末端。 2.“分子缝合针”——DNA连接酶 (1)两种DNA连接酶(E·coliDNA连接酶和T4DNA连接酶)的比较: ①相同点:都缝合磷酸二酯键。 ②区别:E·coliDNA连接酶来源于T4噬菌体,只能将双链DNA片段互补的黏性末端之间的磷酸二酯键连接起来;而T4DNA连接酶能缝合两种末端,但连接平末端的之间的效率较低。 (2)与DNA聚合酶作用的异同: DNA聚合酶只能将单个核苷酸加到已有的核苷酸片段的末端,形成磷酸二酯键。DNA连接酶是连接两个DNA片段的末端,形成磷酸二酯键。 3.“分子运输车”——载体 (1)载体具备的条件:①能在受体细胞中复制并稳定保存。②具有一至多个限制酶切点,

供外源DNA片段插入。③具有标记基因,供重组DNA的鉴定和选择。 (2)最常用的载体是 质粒,它是一种裸露的、结构简单的、独立于细菌染色体之外,并具有自我复制能力的双链环状DNA分子。 (3)其它载体: 噬菌体的衍生物、动植物病毒 (二)基因工程的基本操作程序 第一步:目的基因的获取 1.目的基因是指:编码蛋白质的结构基因。 2.原核基因采取直接分离获得,真核基因是人工合成。人工合成目的基因的常用方法有反转录法_和化学合成法_。 3.PCR技术扩增目的基因 (1)原理:DNA双链复制 (2)过程:第一步:加热至90~95℃DNA解链;第二步:冷却到55~60℃,引物结合到互补DNA链;第三步:加热至70~75℃,热稳定DNA聚合酶从引物起始互补链的合成。第二步:基因表达载体的构建 1.目的:使目的基因在受体细胞中稳定存在,并且可以遗传至下一代,使目的基因能够表达和发挥作用。 2.组成:目的基因+启动子+终止子+标记基因 (1)启动子:是一段有特殊结构的DNA片段,位于基因的首端,是RNA聚合酶识别和结合的部位,能驱动基因转录出mRNA,最终获得所需的蛋白质。 (2)终止子:也是一段有特殊结构的DNA片段,位于基因的尾端。 (3)标记基因的作用:是为了鉴定受体细胞中是否含有目的基因,从而将含有目的基因的细胞筛选出来。常用的标记基因是抗生素基因。

基因工程基础知识梳理

基因工程的基本工具 一、基因工程的概念: 二、基因工程的原理和优点: 三、基因工程的基本工具 1.分子手术刀: (1)来源: (2)作用: (3)不同类限制酶的区别: (4)与DNA连接酶的异同点: 相同点: 不同点: 2.分子缝合针: (1)分类: (2)作用: (3)区别: (4)与DNA聚合酶的异同点: 区别: 相同点: 3.分子运输车: (1)作用: (2)种类: (3)质粒是什么? (4)质粒的特点及每一个特点的作用: <1>.特点: 作用: <2>.特点: 作用:

<3>.特点: 作用: 基因工程的基本操作程序 一、目的基因的获取 1.目的基因指什么: 2.获取目的基因的来源: 3.获取目的基因的方法 1.条件: 2.基因文库的分类: 基因组文库: 部分基因文库(cDNA文库): 3.基因文库的构建流程 4.两种基因文库的区别: 1.条件: 2.中文名称: 3.原理: 4.原料:

5.过程及每一步的作用: 第一步: 第二步: 第三步: 1.条件: 二、基因表达载体的构建(核心步骤) 1.基因表达载体的结构元件 1①目的基因 2启动子: 3终止子: 4标记基因: 5复制原点 2.构建基因表达载体的目的: 3.构建的方法:[理解单酶切和双酶切的区别] 三、将目的基因导入受体细胞(转化) 1.植物细胞(充当受体细胞)的转化 1农杆菌: 2Ti质粒: 3总体思路: 4农杆菌侵染植物时的机理: ⑤适用范围:

注意事项: 注意事项: 2.动物细胞(充当受体细胞)的转化 1技术: 2具体谁来充当受体细胞: 3.微生物细胞(充当受体细胞)的转化 Ca2+转化法: 四、目的基因的检测与鉴定 1.分子水平的检测 目的: 方法: 结果: 目的: 方法: 结果: 目的: 方法: 结果: 2.个体水平的检测

高中生物基因工程核心知识点

高中生物基因工程核心知识点 专题1 基因工程 基因工程的概念 基因工程是指按照人们的愿望,进行严格的设计,通过体外DNA重组和转基因技术,赋予生物以新的遗传特性,创造出更符合人们需要的新的生物类型和生物产品。基因工程是在DNA分子水平上进行设计和施工的,又叫做DNA重组技术。 (一)基因工程的基本工具 1.“分子手术刀”——限制性核酸内切酶(限制酶) (1)来源:主要是从原核生物中分离纯化出来的。 (2)功能:能够识别双链DNA分子的某种特定的核苷酸序列,并且使每一条链中特定部位的两个核苷酸之间的磷酸二酯键断开,因此具有专一性。 (3)结果:经限制酶切割产生的DNA片段末端通常有两种形式:黏性末端和平末端。 2.“分子缝合针”——DNA连接酶 (1)两种DNA连接酶(E?coliDNA连接酶和T4-DNA连接酶)的比较: ①相同点:都缝合磷酸二酯键。 ②区别:E?coliDNA连接酶来源于T4噬菌体,只能将双链DNA片段互补的黏性末端之间的磷酸二酯键连接起来;而T4DNA连接酶能缝合两种末端,但连接平末端的之间的效率较低。 (2)与DNA聚合酶作用的异同:DNA聚合酶只能将单个核苷酸加到已有的核苷酸片段的末端,形成磷酸二酯键。DNA连接酶是连接两个DNA片段的末端,形成磷酸二酯键。 3.“分子运输车”——载体 (1)载体具备的条件:①能在受体细胞中复制并稳定保存。 ②具有一至多个限制酶切点,供外源DNA片段插入。 ③具有标记基因,供重组DNA的鉴定和选择。 (2)最常用的载体是质粒,它是一种裸露的、结构简单的、独立于细菌染色体之外,并具有自我复制能力的双链环状DNA分子。

基因工程知识点全

第一章基因工程概述 1.什么是基因工程,基因工程的基本流程? 基因工程(Genetic engineering)原称遗传工程。从狭义上讲,基因工程是指将一种或多 种生物体(供体)的基因与载体在体外进行拼接重组,然后转入另一种生物体(受体)内, 使之按照人们的意愿遗传并表达出新的性状。因此,供体、受体和载体称为基因工程的三大 要素。 1.分离目的基因 2.限制酶切目的基因与载体 3.目的基因和载体DNA在体外连接 4.将重组DNA分子转入合适的宿主细胞,进行扩增培养 5.选择、筛选含目的基因的克隆 6.培养、观察目的基因的表达 第二章基因工程的载体和工具酶 1. 基因工程载体必须满足哪些基本条件? ?具有对受体细胞的可转移性或亲和性。 ?具有与特定受体细胞相适应的复制位点或整合位点。 ?具有多种单一的核酸内切酶识别切割位点。 ?具有合适的筛选标记。 ?分子量小,拷贝数多。 ?具有安全性。 2. 质粒载体有什么特征,有哪些主要类型? 1、自主复制性 2、可扩增性 3、可转移性 4、不相容性 主要类型有 1.克隆质粒 2.测序质粒 3.整合质粒 4.穿梭质粒 5.探针质粒 6.表达质粒3. 质粒的构建 (1)删除不必要的 DNA 区域,尽量缩小质粒的分子量,以提高外源 DNA 片段的装载量。一般来说,大于20Kb 的质粒很难导入受体细胞,而且极不稳定。 (2)灭活某些质粒的编码基因,如促进质粒在细菌种间转移的 mob 基因,杜绝重组质粒扩散污染环境,保证 DNA 重组实验的安全,同时灭活那些对质粒复制产生负调控效应的基因, 提高质粒的拷贝数 (3)加入易于识别的选择标记基因,最好是双重或多重标记,便于检测含有重组质粒的受 体细胞。 (4)在选择性标记基因内引入具有多种限制性内切酶识别及切割位点的 DNA序列,即多克隆接头(Polylinker),便于多种外源基因的重组,同时删除重复的酶切位点,使其单一 化,以便环状质粒分子经酶处理后,只在一处断裂,保证外源基因的准确插入。 (5)根据外源基因克隆的不同要求,分别加装特殊的基因表达调控元件。 4. 什么是人工染色体载体? 将细菌接合因子、酵母或人类染色体上的复制区、分配区、稳定区与质粒组装在一起, 即可构成染色体载体 5. 什么是穿梭载体? 人工构建的、具有两种不同复制起点和选择标记、可以在两种不同的寄主细胞中存活和复制的载体。 6.入-噬菌体载体及构建 -DNA为线状双链DNA分子,长度为48.5kb,在分子两端各有12个碱基的单链互补粘性末端。 ?1缩短长度提高外源 DNA 片段的有效装载量删除重复的酶切位点 ?引入单一的多酶切位点接头序列,增加外源DNA片段克隆的可操作性 ?灭活某些与裂解周期有关基因。 ?使λ-DNA载体只能在特殊的实验条件下感染裂解宿主细菌,以避免可能出现的污染

基因工程复习资料

一、绪论 1、简述基因工程的概念。 答:基因工程是指按照人们的设计,用生物技术直接操作生物的基因组。通过分离和拷贝目的基因或人工合成外源基因,在体外将外源基因插入到载体分子中,成为重组DNA,再导入宿主细胞内,进行扩增和表达。此过程所涉及的方法学称为重组DNA技术,也称分子克隆或基因操作。 2、列举基因工程中常用的一些技术。 答:(1)基因敲入:以ES细胞培养技术和同源重组为基础,通过转基因将外源基因整合到特定的靶位点,利用靶位点全套的表达调控元件以实现特异性的异位表达。 (2)基因敲除:将一个特地设计的DNA片段导入生物体中,通过同源重组使靶基因被置换出而失活的实验技术。 (3)基因敲落:是用反义技术,RNAi等降低或抑制靶基因的表达活性。 (4)基因打靶:是用同源重组来瞄准希望改变的特定内源基因。 (5)基因组编辑:用基因组编辑核酸酶,如锌指核酸酶(ZFN)、归巢核酸内切酶、转录激活子样效应物(TALE)和成簇间隔短回文重复(CRISPR)进行剪切。 二、基因工程的分子遗传学基础 (一)名词解释 1、基因表达:指DNA分子经转录产生互补的RNA分子。 2、半保留复制:亲代DNA双链分离后的两条单链均可作为新链合成的模板,复制完成后的子代DNA分子的核苷酸序列均与亲代DNA分子相同,但子代DNA分子的双链一条来自亲代,另一条为新合成的链,故称为半保留复制。 3、半不连续复制:是指DNA复制时,前导链上DNA的合成是连续的,后随链上是不连续的,故称为半不连续复制。半不连续模型是DNA复制的基本过程。 4、DNA的变性:指核酸双螺旋碱基对的氢键断裂,双链变成单链,从而使核酸的天然构象和性质发生改变。变性DNA常发生一些理化及生物学性质的改变:溶液粘度降低、溶液旋光性发生改变、增色效应。 5、DNA的复性:指变性DNA在适当条件下,两条互补链全部或部分恢复到天然双螺旋结构的现象,是变性的一种逆转过程。热变性DNA一般经缓慢冷却后即可复性,此过程称之为“退火”。 6、增色效应:指变性后DNA溶液的紫外吸收作用增强的效应。DNA分子中碱基间电子的相

基因工程知识点全

基因工程知识点全 第一章基因工程概述 1.什么是基因工程,基因工程的基本流程? 基因工程(Genetic engineering)原称遗传工程。从狭义上讲,基因工程是指将一种或多种生物体(供体)的基因与载体在体外进行拼接重组,然后转入另一种生物体(受体)内,使之按照人 们的意愿遗传并表达出新的性状。因此,供体、受体和载体称为基因工程的三大要素。 1.分离目的基因 2.限制酶切目的基因与载体 3.目的基因和载体DNA在体外连接 4.将重组DNA分子转入合适的宿主细胞,进行扩增培养 5.选择、筛选含目的基因的克隆 6.培养、观察目的基因的表达 第二章基因工程的载体和工具酶 1.基因工程载体必须满足哪些基本条件? 具有对受体细胞的可转移性或亲和性。 具有与特定受体细胞相适应的复制位点或整合位点。 具有多种单一的核酸内切酶识别切割位点。 具有合适的筛选标记。 分子量小,拷贝数多。 具有安全性。

2.质粒载体有什么特征,有哪些主要类型? 1、自主复制性 2、可扩增性 3、可转移性 4、不相容性 主要类型有 1.克隆质粒 2.测序质粒 3.整合质粒 4.穿梭质粒 5.探针质粒 6.表达质粒 3.质粒的构建 (1)删除不必要的DNA区域,尽量缩小质粒的分子量,以提高外源DNA片段的装载量。一般来说,大于20Kb的质粒很难导入受体细胞,而且极不稳定。 (2)灭活某些质粒的编码基因,如促进质粒在细菌种间转移的 mob基因,杜绝重组质粒扩散污染环境,保证DNA重组实验的安全,同时灭活那些对质粒复制产生负调控效应的基因,提高质粒的拷贝数 (3)加入易于识别的选择标记基因,最好是双重或多重标记, 便于检测含有重组质粒的受体细胞。 (4)在选择性标记基因内引入具有多种限制性内切酶识别及切 割位点的DNA序列,即多克隆接头(Polylinker),便于多种外源基因的重组,同时删除重复的酶切位点,使其单一化,以便环状质粒分子经酶处理后,只在一处断裂,保证外源基因的准确插入。 (5)根据外源基因克隆的不同要求,分别加装特殊的基因表达

相关主题
文本预览
相关文档 最新文档