当前位置:文档之家› 学年论文-数学分析七大定理的相互证明

学年论文-数学分析七大定理的相互证明

学年论文-数学分析七大定理的相互证明
学年论文-数学分析七大定理的相互证明

云南大学

课题名称:数学分析七大定理的相互证明

学院:数学与统计

专业:信息与计算科学

指导教师:何清海

学生姓名:段飞龙

学生学号:20101910050

目录

摘要………………………………………………………………………………………

关键词……………………………………………………………………………………

前言………………………………………………………………………………………

结论………………………………………………………………………………………

参考文献…………………………………………………………………………………

摘要:

数学分析中的单调有界性定理、闭区间套定理、确界存在性定理、有限覆盖定理、Weierstrass聚点定理、致密性定理以及柯西收敛准则,虽然他们的数学形式不同,但他们都描述了实数集的连续性,在数学分析中有着举足轻重的作用。

关键词:

单调有界性定理闭区间套定理确界存在性定理有限覆盖定理Weierstrass聚点定理致密性定理柯西收敛准则

前言:

一、七大定理

定理 1 单调有界性定理

(1)、上确界

上确界的定义

“上确界”的概念是数学分析中最基本的概念。 考虑一个实数集合M. 如果有一个实数S ,使得M 中任何数都不超过S,那么就称S 是M 的一个上界。 在所有那些上界中如果有一个最小的上界,就称为M 的上确界。 一个有界数集有无数个上界和下界,但是上确界却只有一个。

上确界的数学定义

有界集合S ,如果β满足以下条件

①对一切S x ∈,有β≤X ,即β是S 的上界;

②对任意βα<,存在S x ∈,使得α>x ,即β又是S 的最小上界, 则称β为集合S 的上确界,记作S sup =β(同理可知下确界的定义)

在实数理论中最基本的一条公理就是所谓的确界原理:“任何有上界(下界)的非空数集必存在上确界(下确界)”。

上确界的证明

(1)每一个 X x ∈满足不等式m x ≤ ;

(2) 对于任何的 0>ε, 存在有X x ∈', 使ε->M x ' 则数{}x M sup = 称为集合X 的上确界。

(2)下确界

下确界的定义

“下确界”的概念是数学分析中最基本的概念。 考虑一个实数集合M. 如果有一个实数S ,使得M 中任何数都大于等于S,那么就称S 是M 的一个下界。 在所有那些下界中如果有一个最大的下界,就称为M 的下确界。 一个有界数集有无数个上界和下界,但是下确界却只有一个。

下确界的数学定义

有界集合S ,如果ξ满足以下条件

(1)对一切S x ∈,有ξ≥x ,即ξ是S 的下界; (2)对任意0>β,存在S x ∈,使得ξβ+

在实数理论中最基本的一条公理就是所谓的下确界原理:“任何有下界的非空数集必有下确界”。

若数列{}n a 递增(递减)有上界(下界),则数列{}n a 收敛,即单调有界数列必有极限。

运用范围

(1)单调有界定理只能用于证明数列极限的存在性,如何求极限需用其他方法; (2)数列从某一项开始单调有界的结论依然成立,这是因为改变数列有限项不改变数列的极限。

定理 2 闭区间套定理

1 闭区间套定义:

设闭区间列()()[]{

}n n b a ,具有如下性质: (i)()()[]11,++n n b a 包含于()()[]n n b a ,。

(ii) ()()()0lim =-n n b a ;则称()()[]{

}n n b a ,为闭区间套,或简称区间套。

2闭区间套定理的推论及应用

(1)区间套定理:

设一无穷闭区间列()()[]{

}n n b a ,适合下面两个条件: (i )后一区间在前一区间之内,即对任一正整数n ,有n n n n b b a a ≤≤≤++11;

(ii )当∞→n 时,区间列的长度所成的数列()()[]{}n n b a ,收敛于零,即()0lim =-∞

→n n n a b ,

则区间的两个端点所成的两个数列{}n a 及{}n b 收敛于同一极限ξ,并且ξ是所有区间的唯一公共点。

证明:

由定理的条件(i)立即知道{}n a 是单调增加且有上界的数列,{}n b 是单调减少且有下界的数列。

因为单调有界数列必有极限,则n x a →

lim 存在,且极限等于{}n a 的上确界;同理,n

x b →

lim 存在,且极限等于{}n b 的下确界。亦即对任何正整数看,有:

n n k a a ∞

→≤lim ,n n k b b ∞

→≤lim (*)

由定理另一条件()0lim =-∞

→n n n a b ,并且由于一直{}n a 及{}n b 的极限都存在,则有:

()0lim lim lim =-=∞

→∞

→-∞

→n n n n n n n a b a b .

从而证明了两个极限相等,且设ξ是他们的同一极限。于是定理前一部分的结果已经得证。

余下要证的是ξ是所有区间的唯一公共点。由(*)的两个不等式,即有:

k k b a ≤≤ξ (k=1,2,3…), 也就是ξ是所有期间的一个公共点。

现在要证明ξ是唯一公共点。设除ξ外,所设区间列还有另一公共点'ξ,且ξξ≠'。由于 ξ≤n a ,n b ≤'ξ, (n=1,2,3…) 故有 ||'ξξ-≥-n n a b (n=1,2,3…)。 由数列极限的性质知道

()||lim 'ξξ-≥-∞

→n n n a b ,

由于()0lim =-∞

→n n n b a ,故有

0||'≤-ξξ, 从而ξξ='。

到此,定理的全部结果都已经证明。

(2)闭区间套定理的推论 推论 1 若开区间列(){}n n b a ,满足

(1)()()()...,...,,2211????n n b a b a b a ,且端点所成数列{}n a ,{}n b 是严格单调的,即1121......b b b a a a n n n <<<<<<<-。

(2)()0lim =-∞

→n n n a b (n=1,2,…)则存在唯一数 L 属于所有开区问(即()L b a I n n n ==∞

,1

且L b a n n n n ==∞

→∞

→lim lim

证明,构造一个闭区间列[]{}n n b a ,(n=1,2,…) 设21'

++=

n n n a a a ,2

1'

++=n n n b b b ,n=1,2,…有[

][

][]

...,...,,'

''

2

2''????n n

b a

b a b a 且有

()

022lim lim 11'

'=??

? ??-+=-++∞→∞→n n n n n n n n a b a b a b 由闭区间套定理,存在唯一数L 属于所有闭区间[]

'

',n n

b a

(n=1,2,3,…)且有L b a n n n n ==∞

→∞

→'

'lim lim 但

n n n

n n n n n n n b b b L a a a ∞→-∞→-∞→∞→=+==+=lim 2

lim 2lim lim '

'1''1 所以也有 L b a n n n n ==∞

→∞

→lim lim 。

推论2,设有半开半闭区间列(]{}n n b a ,(n=1,2,3…)数列{}n a 为非常数数列,且有 (i)(](](]...,...,,2211????n n b a b a b a ; (ii)()0lim =-∞

→n n n a b

则存在唯一数L 属于所有半开闭区间(]n n b a ,。且L b a n n n n ==∞

→∞

→lim lim

证明:

构造一个用区间列(

]{}

n n b a ,'

(n=1,2,3,…),2

1

'++=

n n a a a 满足 闭区间套定理的条件,于是存在唯一数L 属于所有闭区间[

]

n n b a ,'

,显然 这个唯一数L 也属于所有半开半闭区间(]n n b a , ,且有

L b a n n n n ==∞→∞

→lim lim '

从而也有L b a n n n n ==∞

→∞

→lim lim 证毕.

把半开半闭区间(]n n b a , (n=1,2,L )换成(]n n b a , (n=1,2,3,…)显 然有:

推论3:

设有半开半闭区间[]{}n n b a ,(n=1,2,…)数列{}n b ,非常数 数列, 且有

(i) [

][][]

...,...,,2

2????n n

b a

b a b a

(ii) ()0lim =-∞

→n n n a b

则存在唯一数L 属于所有半开半闭区问[)n n b a ,,且L b a n n n n ==∞

→∞

→lim lim 。

推论4 设有半开半闭区间列(]{}n n b a ,(n=1,2,3…){}n a 非常数数列,设b b n =。 且有:

(i)[][][]...,...,,21???b a b a b a n (ii) ()0lim =-∞

→n n a b

则存在唯一数b 属于所有半开半闭区间(]b a n , ,且b a n n =∞

→lim 。

证明:

构造一个闭区间列[

]{}

b a n ,'

(n=1,2,?)设2

1

'

++=

n n n a a a (n=1,2,…) 则闭区间列[

]{}

b a n ,'

满足闭区间套定理的条件,于是存在唯一数L 属于所有闭区间[

]

b a n ,'

且L a n n =∞

→'

lim 。但由(ii)知b a n n =∞

→lim ,且

b b

b a a a n n n n n =+=+=+∞→∞

→2

22lim

lim 1'

故L=b 。

推论5:设有半开半闭区间列(]{}n n b a ,(n=1,2,3…),{}n b 非常数 数列, 且有:

(i) [][][]...,...,,21???n b a b a b a ; (ii) ()0lim =-∞

→a b n n

则存在唯一致a 属于所有半开半闭区间[)n b a ,,且a b n n =∞

→lim 。

(3)闭区间套定理的应用

在什么情况下应用闭区间套定理呢?一般来说,证明问题需要找到具有某种性质P 的一个数。常常应用闭区问套定理将这个数“套”出来,证明中,区间套定理的构造方法.主要有以下两种:

①已知特殊点的存在区间时,利用两分法构造区间,进而套出所求特殊点,首先构造一个具有性质*P 的闭区间,性质*P 要根据性质P 来确定,其次通常采用二等分法将此区间二等分,至少由一个闭区间具有性质*P ,然后继续使用二等分法。得到满足闭区间套定理条件的和具有性*P 的闭区间列,根据闭区间套定理,就得到唯一一个具有性质P 的数。

例1:证明实轴上任一有界无限点集至少有一个聚点(聚点定理)

证明:

设E 为有界无限点集。则存在0>M ,使得[]M M E ,-?记[][]

M M b a ,,11-=,将[]

11,b a 等分:??????+2,111b a a ,??

?

???+111,2b b a .其中至少有一区间含有E 中无限多个点,记该区间为

[]22,b a .再对[]22,b a 等分,相似的讨论下去,则得到区间列[]{}n n b a ,,它满足[][]11,,++?n n n n b a b a ??

?

?

?→=

-=-02,...,2,11

n n n M a b n 。故[]{}n n b a ,构成闭区间套,且其中每一个区间都含有E 中无限多个点,由闭区问套定理,存在实数[](),...2,1,,=∈n b a L n n 显然对0>?ε,0>?N 当n>N 时。有[]()ε,,L U b a n n ?即L 为E 的一个聚点.

例2:证明若fix)为[a ,b]上的连续函致,()()0

证明;

不妨设()0b f ,且[]b a x ,∈?,()0≠x f ,记[][]b a b a ,,11=。将[]11,b a 二等分,

??????+2,111b a a ,??????+111,2b b a ,当0211>??? ??+b a f 时,记[]???

???+=2,,11122b a a b a ,当0211

?

???+=11122,2,b b a b a ,则()()022

足[][]??

?

??→-=-=?-++02,...,2,1,,,111n n n n n n n q b a b n b a b a 。

故[]{}n n b a ,构成区间套,且在每个闭区间[]b a ,有()()0

闭区间套定理知存在[]n n b a x ,0∈,(n=l ,2,…) 0lim lim x b a n n n n ==∞

→∞

→,而[]b a x ,0∈故

()00≠x f ,不妨设()00>x f ,一方面。由连续函数保号性,0>?δ.当δ<-||0x x 。即

()δδ+-∈?x x x ,)有()0>x f 。另一方面.当n 充分大时。有[]()δδ+-∈00,,x x b a n n 。

已知,()()0

()00>x f 。且()00≠x f 。

同理证()00

定理 3 确界存在定理

定义

非空有上界的数集必有上确界;非空有下界的数集必有下确界。

证明:

已知实数集A 非空。存在a 属于A,不妨设a 不是A 的上界,另外,知存在b 是A 的上界,记a a =1,

b b =1 ,用1a ,1b 的中点

211b a +二等分[]11,b a ,如果2

1

1b a +属于 B ,则取12a a =,2112b a b += ;如果211b a +属于A ,则取2

112b

a a += ,12

b b = ;……如此继续下去,便得

两串数列 。其中{}n a 属于A 单调上升有上界(例如1b ),{}n b 单调下降有下界(例如1a )并且

2

1

1a b a b n n -=

-()∞→n 。由单调有界定理,知存在 r ,使r a n =l im ()∞→n 。由()0li m

=-n n a b 有 ()r b a a n n n =++lim ()∞→n 因为{}n b }是A 的上界,所以对任意x 属于A ,有n b x ≤ (n=1,2,……), 令()∞→n ,r b x n n =≤∞

→lim 所以r 是A 的上界。

而 任意c>0由r a n n =∞

→lim 知任意c>0知存在N ,当n>N 有n a c r <-

从而存在X 属于A ,使X a c r n <<- 所以 r=supA 。 同理可证非空有下界数集有下确界。 定理证完

定理 4 有限覆盖定理

定理 5 聚点定理

(1)聚点定义

定义1(经典含义):设S 为数轴上的点集,e 为定点(它可以属于S,也可以不属于S),若e 的任何ε邻域内都含有S 中的无穷多个点,则称e 为点集S 的一个聚点.

定义1*(拓扑含义):对于点集S,若点e 的任何ε邻域内都含有S 中的异于e 的点,则称e 为S 的一个聚点。

0()111????

--m m

1 由闭区间套定理到Weierstrass 聚点定理的证明 证:

设E 为有界无限点集,E x ∈?,b x a ≤≤,等分区间[]b a ,为两个小区间,则至少有一个小区间含有E 中的无穷个互异点,把这一区间记为[]11,b a ,再等分区间[]11,b a 为两个小区间,记含有E 中的无穷个互异点的小区间为[]22,b a ,依次类推不断分割,则得到一个区间列[]{}n n b a ,,这个区间显然符合线面两个条件: 1) [][][]...,...,,2211????n n b a b a b a 2)()0lim =-∞

→n n n a b

于是由闭区间套定理, 必有点[](),...3,2,1,=∈n b a n n ξ,易知当∞→n 时有ξ→n a ,

ξ→n b 。

每一闭区间[]k k b a ,中均含Α 中无穷个互异点, 且[]k k b a ,∈ξ,ξ→k a ,ξ→k b ,所以对于任意0>ε,存在正整数0>N ,对任意N k >时,[]()εξ,,??k k b a ,所以()εξ,?含有E 中无限个互异点,根据聚点定义,ξ是E 的一个聚点。因此有界无限点集E 至少有一个聚点。

2 有致密性定理到单调有界性定理的证明

证:

数列{}n x 单调有界,设{}n x 单调递减,由致密性定理{}n x 中存在瘦脸的子数列{}nk x ,

ξ=∞

→nk k x lim ,即对于任意0>ε,存在正整数0>N ,任意N k >,有

εξ<-||nk x (1)

易知,ξ?,总存在1k ,2k ,

使得21nk n nk x x x <<,从而知ξ<<<21nk n nk x x x ,因此,由(1)式||||1ξξ-≤-nk nk x x 。

由定义,ξ=∞

→k n x lim 。所以,单调递增的有界{}n x 。同理可证,单调递减的有界数列{}n x 也存在极限。

3 由确界存在性定理到柯西收敛准则的证明

证:

因为收敛列一定是柯西列,所以只需证明柯西列一定是收敛列。设{}n a 为柯西列,利用三角不等式得{}n a 为有界数列,即存在0>M 使(),...3,2,1,||=≤n M a n 成立。由确界存在性定理,不妨对于每个自然数n ,下述两种数列n α,n β存在,

{},...,inf 1+=n n n a a α {},...,sup 1+=n n n a a β

则有,(),...3,2,1=≤n n n βα,由n α的有界性,易知n α,n β也是有界数列。

再由确界存在性定理,存在确界{}n n α1

sup ≥,{}n n β1

inf ≥,由上下极限的有关定理知道:

{}{}{}n n n n n n ββα1

__

inf lim lim ≥∞→∞→== {}{}{}n n n n n n ααα1

___

sup lim lim ≥∞

→∞

→==

n α为柯西列,即对于任意的0>ε,存在正整数0>N ,任意大于N ,n ,m ,有εαα<-||m n (n m ≥),故(),...1,+=+<<-n n m n m n εααεα,所以:

{}εαααβ+≤==n n n n ,...,sup 1 {}εαααα-≥==n n n n ,...,inf 1

结合以上不等式,且有n n βα≤,得:

εβαβ2-≥≥n n n (n>N )

取极限∞→n ,得

εββ2lim lim lim -≥≥∞

→∞

→∞

→n n n n n

再由ε的任意性知

n n n n αβ∞

→∞

→=lim lim

即n n n n αα∞

→∞

→=lim lim (有限量),从而n n α∞

→lim 存在。

4 由闭区间套定理到有界性定理的证明

证:

设{}n a 为单调有界数列,不妨设{}n a 为单调递增数列,有上界吧,区b b =1,得闭区间[]11,b a ,取[]1,2b a 中点

212b a +,若{}Φ==???

?

??+,...3,2,1|,2112n a b b a n ,取2122b a b +=,否则取12b b =,得闭区间[][]1122,,b a b a ?。以此类推,不断分割,若已经得到[]11,--n n b a ,

若{}Φ==???

?

??+--,...3,2,1|,211n a b b a n n n n ,取21-+=n n n b a b ,否则取1-=n n b b ,易证闭区间列[]{}n n b a ,满足闭区间套的两个条件:

1)[][][]...,...,,2211????n n b a b a b a 2)()0lim =-∞

→n n n a b

于是由闭区间套定理,存在一点[](),...3,2,1,=∈n b a n n ξ,且()∞→→n a n ξ,因此单调递增有界数列存在极限。同理不难证明,单调递减的有界数列{}n a 也存在极限。

5 由Weierstrass 聚点定理到柯西准则的证明

证:

类似于3,仅需证明柯西列为收敛列的情形。设{}n a 为柯西列,从而{}n a 为有界数列,不妨设b a a n ≤≤,n=1,2,3,…。利用反证法,假设{}n a 不收敛,即[]b a ,中任何一点c 都不是{}n a 的极限,则必存在00>ε,对任何正整数M ,至少存在一个自然数M m >,使得

[]0ε≥-c a n

因此,当N n >,有

2

||||||0

ε>

---≥-m n n n a a c a c a

从而在??? ?

?

+-2,200εεc c 中只包含{}n a 中的有限项。另一方面,{}n a 有界,由

Weierstrass 聚点定理可得,{}n a 必有一聚点[]b a ,∈ξ,即对0>?ε,领域?

?

?

??2,εξ含有{}n a 中无穷多个点,这与对于[]b a c ,∈?,??? ?

?

+-2,200εεc c 只包含{}n a 有限个点

矛盾。命题证毕。

参考文献:【1】毛玉萍,《会计诚信危机的原因及对策》,《黑龙江财会》 【2】邱玉泉,《会计诚信问题的治理措施》,《中国农业会计》 【3】张英明,《会计诚信缺失的原因及治理对策》,《四川会计》 【4】张鸣《会计诚信与《会计法》》,《会计之友》

(附录):(有此项内容就写,无此项内容的不写)××××××××××××××××××××××× 注:1. 摘要、关键词、正文等的各首要标题用黑体,小三号字;正文内容用宋体,小四号字;

2. 请按所附毕业论文封面格式设计封面,并在诚信承诺书上注明个人基本信息和联系方式(联系地址、邮政编码、电话等)。

初中数学定义、定理(大全)

第一篇数与代数 第一节数与式 一、实数 1.实数的分类:整数(包括:正整数、0、负整数)和分数(包括:有限小数和无限环循小数)都是有理数.如:- 3, ,0.231,0.737373…, , 等;无限不环循小数叫做无理数. 如: π, ,0.1010010001…(两个1之间依次多1个0)等.有理数和无理数统称为实数. 2.数轴:规定了原点、正方向和单位长度的直线叫数轴。实数和数轴上的点一一对应。 3.绝对值:在数轴上表示数a的点到原点的距离叫数a的绝对值,记作∣a∣。正数的绝对值 是它本身;负数的绝对值是它的相反数;0的绝对值是0。如:丨- _丨= ;丨3.14-π丨=π-3.14. 4.相反数:符号不同、绝对值相等的两个数,叫做互为相反数。a的相反数是-a,0的相反数 是0。 5.有效数字:一个近似数,从左边笫一个不是0的数字起,到最末一个数字止,所有的数字,都叫 做这个近似数的有效数字.如:0.05972精确到0.001得0.060,结果有两个有效数字6,0. 6.科学记数法:把一个数写成a×10n的形式(其中1≤a<10,n是整数),这种记数法叫做科学记 数法. 如:407000=4.07×105,0.000043=4.3×10-5. 7.大小比较:正数大于0,负数小于0,两个负数,绝对值大的反而小。 8.数的乘方:求相同因数的积的运算叫乘方,乘方运算的结果叫幂。 9.平方根:一般地,如果一个数x的平方等于a,即x2=a那么这个数a就叫做x的平方根(也叫做二次方根式)。一个正数有两个平方根,它们互为相反数;0只有一个平方根,它是0本身;负数没有平方根. 10.开平方:求一个数a的平方根的运算,叫做开平方. 11.算术平方根:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x就叫做a的算术平方根,0的算术平方根是0. 12.立方根:一般地,如果一个数x的立方等于a,即x3=a,那么这个数x就叫做a的立方根(也叫做三次方根),正数的立方根是正数;负数的立方根是负数;0的立方根是0. 13.开立方:求一个数a的立方根的运算叫做开立方. 14.平方根易错点:(1)平方根与算术平方根不分,如 64的平方根为士8,易丢掉-8,而求为64的算术平方根;(2)的平方根是士,误认为平方根为士 2,应知道=2. 15.二次根式: (1)定义:___________________________________________________叫做二次根式. 16.二次根式的化简: 17.最简二次根式应满足的条件:(1)被开方数的因式是整式或整数;(2)被开方数中不含有能开得尽的因数或因式. 18.同类二次根式:几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式就叫做同类二次根式. 19.二次根式的乘法、除法公式 20..二次根式运算注意事项:(1)二次根式相加减,先把各根式化为最简二次根式,再合并同类二次根式,防止:①该化简的没化简;②不该合并的合并;③化简不正确;④合并出错.(2)二次根式的乘法除法常用乘法公式或除法公式来简化计算,运算结果一定写成最简二次根式或整式. 21.有理数加法法则:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值;一个数同0相加,仍得这个数. 22.有理数减法法则:减去一个数,等于加上这个数的相反数.

高中数学课本中的定理公式结论的证明

数学课本中的定理、公式、结论的证明 数学必修一 第一章 集合(无) 第二章 函数(无) 第三章 指数函数和对数函数 1.对数的运算性质: 如果 a > 0 , a 1, M > 0 ,N > 0, 那么 (1)log ()log log a a a MN M N =+; (2)log log -log a a a M M N N =; (3)log log ()n a a M n M n R =∈. 根据指数幂的运算性质证明对数的运算性质 证明:(性质1)设log a M p =,log a N q =,由对数的定义可得 p M a =,q N a =, ∴p q p q MN a a a +=?=, ∴log ()a MN =p q +, 即证得log log log a a a MN M N =+. 证明:(性质2)设log a M p =,log a N q =, 由对数的定义可得 p M a =,q N a =, ∴ q p q p a a a N M -==, ∴q p N M a -=log , 即证得log log -log a a a M M N N =. 证明(性质3)设log a M p =,由对数的定义可得 p M a =, ∴n np M a =, ∴log n a M np =, 即证得log log n a a M n M =.

第四章函数应用(无) 数学必修二 第一章立体几何初步 直线与平面、平面与平面平行、垂直的判定定理与性质定理的证明. 1、直线与平面平行的判定定理 若平面外一条直线与此平面内一条直线平行,则该直线与此平面平行. 2、平面与平面平行的判定定理 如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行.

初中数学《三角形内角和定理的证明》教案

初中数学《三角形内角和定理的证明》教案第六章证明(一) 5.三角形内角和定理的证明 一、学生知识状况分析 学生技能基础:学生在以前的几何学习中,已经学习过平行线的判定定理与平行线的性质定理以及它们的严格证明,也熟悉三角形内角和定理的内容,而本节课是建立在学生掌握了平行线的性质及严格的证明等知识的基础上展开的,因此,学生具有优良的基础。 活动经验基础:本节课主要采取的活动形式是学生非常熟悉的自主探究与合作交流的学习方式,学生具有较熟悉的活动经验. 二、教学任务分析 上一节课的学习中,学生对于平行线的判定定理和性质定理以及与平行线相关的简单几何证明是比较熟悉的,他们已经具有初步的几何意识,形成了一定的逻辑思维能力和推理能力,本节课安排《三角形内角和定理的证明》旨在利用平行线的相关知识来推导出新的定理以及灵活运用新的定理解决相关问题。为此,本节课的教学目标是: 知识与技能:(1)掌握三角形内角和定理的证明及简单应用。 (2)灵活运用三角形内角和定理解决相关问题。 数学能力:用多种方法证明三角形定理,培养一题多解的能 力。 情感与态度:对比过去撕纸等探索过程,体会思维实验和符号化的理性作用. 三、教学过程分析 本节课的设计分为四个环节:情境引入探索新知反馈练习课堂小结

第一环节:情境引入 活动内容:(1)用折纸的方法验证三角形内角和定理.实验1:先将纸片三角形一角折向其对边,使顶点落在对边上,折线与对边平行(图6-38(1))然后把另外两角相向对折,使其顶点与已折角的顶点相嵌合(图(2)、(3)),最后得图(4)所示的结果 (1)(2)(3)(4) 试用自己的语言说明这一结论的证明思路。想一想,还有其它折法吗? (2)实验2:将纸片三角形三顶角剪下,随意将它们拼凑在一起。 试用自己的语言说明这一结论的证明思路。想一想,如果只剪下一个角呢? 活动目的: 对比过去撕纸等探索过程,体会思维实验和符号化的理性作用。将自己的操作转化为符号语言对于学生来说还存在一定 困难,因此需要一个台阶,使学生逐步过渡到严格的证明.教学效果: 说理过程是学生所熟悉的,因此,学生能比较烂熟地说出用撕纸的方法可以验证三角形内角和定理的原因。 第二环节:探索新知 活动内容: ① 用严格的证明来论证三角形内角和定理. ② 看哪个同学想的方法最多? 方法一:过A点作DE∥BC ∵DE∥BC DAB=B,EAC=C(两直线平行,内错角相等)

初中数学竞赛定理大全

欧拉(Euler)线: 同一三角形的垂心、重心、外心三点共线,这条直线称为三角形的欧拉线; 且外心与重心的距离等于垂心与重心距离的一半。 九点圆: 任意三角形三边的中点,三高的垂足及三顶点与垂心间线段的中点,共九个点共圆,这个圆称为三角形的九点圆; 其圆心为三角形外心与垂心所连线段的中点,其半径等于三角形外接圆半径的一半。

费尔马点: 已知P为锐角△ABC内一点,当∠APB=∠BPC=∠CPA=120°时,PA+PB+PC的值最小,这个点P称为△ABC的费尔马点。 海伦(Heron)公式:

塞瓦(Ceva)定理: 在△ABC中,过△ABC的顶点作相交于一点P的直线,分别 交边BC、CA、AB与点D、E、F,则(BD/DC)·(CE/EA)·(AF/FB)=1;其逆亦真。 密格尔(Miquel)点: 若AE、AF、ED、FB四条直线相交于A、B、C、D、E、F六点, 构成四个三角形,它们是△ABF、△AED、△BCE、△DCF, 则这四个三角形的外接圆共点,这个点称为密格尔点。

葛尔刚(Gergonne)点: △ABC的内切圆分别切边AB、BC、CA于点D、E、F, 则AE、BF、CD三线共点,这个点称为葛尔刚点。 西摩松(Simson)线: 已知P为△ABC外接圆周上任意一点,PD⊥BC,PE⊥ACPF⊥AB,D、E、F为垂足, 则D、E、F三点共线,这条直线叫做西摩松线。

黄金分割: 把一条线段(AB)分成两条线段,使其中较大的线段(AC)是原线段(AB) 与较小线段(BC)的比例中项,这样的分割称为黄金分割。 帕普斯(Pappus)定理: 已知点A1、A2、A3在直线l1上,已知点B1、B2、B3在直线l2上,且A1 B2与A2 B1交于点X,A1B3与A3 B1交于点Y,A2B3于A3 B2交于 点Z,则X、Y、Z三点共线。

(经典)高中数学正弦定理的五种全证明方法

(经典)高中数学正弦定理的五种全证明方法

————————————————————————————————作者:————————————————————————————————日期:

高中数学正弦定理的五种证明方法 ——王彦文 青铜峡一中 1.利用三角形的高证明正弦定理 (1)当?ABC 是锐角三角形时,设边AB 上的高是CD ,根据锐角三角函数的定义,有=sin CD a B ,sin CD b A =。 由此,得 sin sin a b A B = ,同理可得 sin sin c b C B = , 故有 sin sin a b A B = sin c C = .从而这个结论在锐角三角形中成立. (2)当?ABC 是钝角三角形时,过点C 作AB 边上的高,交AB 的延长线于点D ,根据锐角三角函数的定义,有=∠=∠sin sin CD a CBD a ABC ,sin CD b A = 。由此,得 = ∠sin sin a b A ABC ,同理可得 = ∠sin sin c b C ABC 故有 = ∠sin sin a b A ABC sin c C = . 由(1)(2)可知,在?ABC 中, sin sin a b A B = sin c C = 成立. 从而得到:在一个三角形中,各边和它所对角的正弦的比值相等,即 sin sin a b A B = sin c C = . 2.利用三角形面积证明正弦定理 已知△ABC,设BC =a, CA =b,AB =c,作AD⊥BC,垂足为D 则Rt△ADB 中,AB AD B =sin ∴S △ABC =B ac AD a sin 2121=?同理,可证 S △ABC =A bc C ab sin 21 sin 21= ∴ S △ABC =B ac A bc C ab sin 2 1 sin 21sin 21== 在等式两端同除以ABC,可得b B a A c C sin sin sin ==即C c B b A a sin sin sin ==. 3.向量法证明正弦定理 (1)△ABC 为锐角三角形,过点A 作单位向量j 垂直于AC ,则j 与AB 的夹角为90°-A ,j 与 CB 的夹角为90°-C 由向量的加法原则可得 AB CB AC =+ a b D A B C A B C D b a D C B A

初中数学证明题定理

初中数学证明题定理 线 1.过两点有且只有一条直线(简:两点决定一条直线) 2.两点之间线段最短 3.过一点有且只有一条直线和已知直线垂直 5.直线外一点与直线上各点连接的所有线段中,垂线段最短(简:垂线段最短) 平行公理 1.经过直线外一点,有且只有一条直线与这条直线平行 2.如果两条直线都和第三条直线平行,这两条直线也互相平行(简:平行于同一直线的两直线平行) 三角形 1.三角形两边的和大于第三边、三角形两边的差小于第三边. 2. 三角形内角和定理三角形三个内角的和等于180°. 3.三角形的一个外角等于和它不相邻的两个内角的和. 4. 三角形的一个外角大于任何一个和它不相邻的内角. 全等三角形的性质、判定 1.边角边(SAS)有两边和它们的夹角对应相等的两个三角形全等. 2.角边角(ASA)有两角和它们的夹边对应相等的两个三角形全等. 3.角角边(AAS)有两角和其中一角的对边对应相等的两个三角形全等. 4.边边边(SSS)有三边对应相等的两个三角形全等. 5. 斜边、直角边(HL)有斜边和一条直角边对应相等的两个直角三角形全等. 角的平分线的性质、判定 1.性质:在角的平分线上的点到这个角的两边的距离相等. 2.判定:到一个角的两边的距离相同的点,在这个角的平分线上. 等腰三角形的性质 1.等腰三角形的两个底角相等 (即等边对等角) 2.等腰三角形顶角的平分线平分底边,并且垂直于底边 3.等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合 4.等边三角形的各角都相等,并且每一个角都等于60° 5.等腰三角形判定:如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)等边三角形 1.三个角都相等的三角形是等边三角形 2.有一个角等于60°的等腰三角形是等边三角形 线段垂直平分线 1.定理:线段垂直平分线上的点和这条线段两个端点的距离相等 2.逆定理:和一条线段两个端点距离相等的点,在这条线段的垂直平分线上 3.线段的垂直平分线可看作和线段两端点距离相等的所有点的集合 直角三角形 1.直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半 2.直角三角形斜边上的中线等于斜边上的一半 多边形 1.四边形的外角和等于360°

初中数学基本公式和基本定理性质大汇总

初中数学基本公式和基本定理性质大汇总 一、基本公式 1、三角形面积公式:S △=12ah(a 为三角形的底,h 为高)。 2、梯形的面积公式:S 梯=12(a+b )h(a 、b 分别为梯形的上、下底,h 为高)。 3、正方形的面积公式:S 正=a 2(a 为正方形的边长);长方形的面积公式:S 长=ab (a 、b 分别为长方形的长、宽)。 4、正方体的体积公式:V 正=a 3;表面积公式:S 正=6a 2(a 为正方体的边长)。 5、长方体的体积公式:V 长=abh ;表面积公式:S 长=2ab+2ah+2bh (a 、b 、h 分别为长方体的长、宽、高)。 6、弧长公式:l=n 兀R /180(n 为圆心角的度数,R 为弧的半径); 7、扇形面积公式:S 扇形=n 兀R 2/360=lR /2;(n 为圆心角的度数,R 为扇形半径,l 为弧长)。 8、圆的面积公式:S =兀R 2;周长公式:C=兀d=2兀R (d 为直径,R 为半径)。 9、圆柱的体积公式:V 圆柱=S 底h=兀R 2?;表面积公式:S 表=S 侧+S 底=2兀Rh+2兀R 2(R 为底面圆的半径,h 为高)。 10、圆锥的体积公式:V 圆锥=13S 底h=13兀R 2?;表面积公式:S 表=S 侧+S 底=兀Rl+兀R 2(l 为圆锥的母线长,R 为底面圆的半径)。 11、球的体积公式:V 球==43兀R 3(R 为球半径)。 12、三角函数公式:正弦sinA=∠A 的对边斜边 ;余弦cosA=∠A 的邻边斜边;正切tanA=∠A 的对边∠A 的邻边。 13、平方差公式:22()()a b a b a b +-=-。 14、完全平方公式:222()2a b a b ab +=++;222 ()2a b a b ab -=+-。 15、一元二次方程的求根公式:若x 是一元二次方程(a ≠0)20ax bx c ++=的根,则 x =240b ac -≥); 根的判别式:240b ac -><=>方程有两个不等的实数根;240b ac -=<=>方程有两个相等 的实数根;240b ac -<<=>方程没有实数根;根与系数的关系:1x +2x =b a -;1x 2x =c a

高中数学相关定理及证明

高中数学相关定理、公式及结论证明 汉阴中学正弦定理证明 内容:在ABC ?中,c b a ,,分别为角C B A ,,的对边,则.sin sin sin C c B b A a == 证明: 1.利用三角形的高证明正弦定理 (1)当?ABC 是锐角三角形时,设边AB 上的高是CD , 根据锐角三角函数的定义,有sin CD b A ==sin CD a B 。 由此,得 sin sin a b A B = , 同理可得 sin sin c b C B = , 故有 sin sin a b A B = sin c C = . 从而这个结论在锐角三角形中成立. (2)当?ABC 是钝角三角形时,过点C 作AB 边上的高, 交AB 的延长线于点D ,根据锐角三角函数的定义, 有=∠=∠sin sin CD a CBD a ABC ,sin CD b A = 。 由此,得 =∠sin sin a b A ABC ,同理可得 =∠sin sin c b C ABC 故有 = ∠sin sin a b A ABC sin c C = . (3)在ABC Rt ?中,,sin ,sin c b B c a A == ∴ c B b A a ==sin sin , .1sin ,90=?=C C Θ.sin sin sin C c B b A a ==∴ 由(1)(2)(3)可知,在?ABC 中, sin sin a b A B = sin c C = 成立. 2.外接圆证明正弦定理 在△ABC 中,已知BC=a,AC=b,AB=c,作△ABC 的外接圆,O 为圆心, 连结BO 并延长交圆于B ′,设BB ′=2R.则根据直径所对的圆周 角是直角以及同弧所对的圆周角相等可以得到 ∠BAB ′=90°,∠C =∠B ′, ∴sin C =sin B ′=R c B C 2sin sin ='=. ∴R C c 2sin =. 同理,可得R B b R A a 2sin ,2sin ==.∴R C c B b A a 2sin sin sin ===. 3.向量法证明正弦定理 a b D A B C A B C D b a

(完整版)初中数学专题命题、定理、证明含答案

5.3.2 命题、定理、证明 要点感知1 __________一件事情的语句叫做命题,命题常可以写成“如果……那么……”的形式,“如果”后面接的部分是__________,“那么”后面接的部分是__________. 预习练习1-1下列语句中,是命题的是( ) A.有公共顶点的两个角是对顶角 B.在直线AB上任取一点C C.用量角器量角的度数 D.直角都相等吗 1-2 将“两点之间,线段最短”写成“如果……那么……”的形式:______________________________. 要点感知2 题设成立,并且结论一定成立的命题叫做__________;题设成立,不能保证结论__________的命题叫做假命题. 预习练习2-1下列命题中的真命题是( ) A.锐角大于它的余角 B.锐角大于它的补角 C.钝角大于它的补角 D.锐角与钝角之和等于平角 要点感知 3 经过推理证实为正确并可以作为推理的依据的真命题叫做__________.很多情况下,一个命题的正确性需要经过推理,才能做出判断,这个推理的过程叫做__________. 预习练习3-1如图,BD平分∠ABC,若∠BCD=70°,∠ABD=55°.求证:CD∥AB. 知识点1 命题的定义 1.下列语句中,是命题的是( ) ①若∠1=60°,∠2=60°,则∠1=∠2;②同位角相等吗?③画线段AB=CD;④如果a>b,b>c,那么a>c;⑤直角都相等. A.①④⑤ B.①②④ C.①②⑤ D.②③④⑤ 知识点2 命题的结构 2.命题的题设是__________事项,结论是由__________事项推出的事项. 3.把“垂直于同一条直线的两条直线平行”改写成“如果……那么……”的形式是____________________. 4.把下列命题改写成“如果……那么……”的形式,并分别指出它们的题设和结论: (1)两点确定一条直线; (2)同角的补角相等; (3)两个锐角互余. 知识点3 命题的真假及证明

初中数学基本定理(八)

初中数学基本定理(八) 为您提供初中数学基本定理(八): 7、反证法 反证法是一种间接证法,它是先提出一个与命题的结论相反的假设,然后,从这个假设出发,经过正确的推理,导致矛盾,从而否定相反的假设,达到肯定原命题正确的一种方法。反证法可以分为归谬反证法(结论的反面只有一种)与穷举反证法(结论的反面不只一种)。用反证法证明一个命题的步骤,大体上分为:(1)反设;(2)归谬;(3)结论。 反设是反证法的基础,为了正确地作出反设,掌握一些常用的互为否定的表述形式是有必要的,例如:是、不是;存在、不存在;平行于、不平行于;垂直于、不垂直于;等于、不等于;大(小)于、不大(小)于;都是、不都是;至少有一个、一个也没有;至少有n个、至多有(n一1)个;至多有一个、至少有两个;唯一、至少有两个。 归谬是反证法的关键,导出矛盾的过程没有固定的模式,但必须从反设出发,否则推导将成为无源之水,无本之木。推理必须严谨。导出的矛盾有如下几种类型:与已知条件矛盾;与已知的公理、定义、定理、公式矛盾;与反设矛盾;自相矛盾。 8、面积法 平面几何中讲的面积公式以及由面积公式推出的与面积

计算有关的性质定理,不仅可用于计算面积,而且用它来证明平面几何题有时会收到事半功倍的效果。运用面积关系来证明或计算平面几何题的方法,称为面积方法,它是几何中的一种常用方法。 用归纳法或分析法证明平面几何题,其困难在添置辅助线。面积法的特点是把已知和未知各量用面积公式联系起来,通过运算达到求证的结果。所以用面积法来解几何题,几何元素之间关系变成数量之间的关系,只需要计算,有时可以不添置补助线,即使需要添置辅助线,也很容易考虑到。 9、几何变换法 在数学问题的研究中,常常运用变换法,把复杂性问题转化为简单性的问题而得到解决。所谓变换是一个集合的任一元素到同一集合的元素的一个一一映射。中学数学中所涉及的变换主要是初等变换。有一些看来很难甚至于无法下手的习题,可以借助几何变换法,化繁为简,化难为易。另一方面,也可将变换的观点渗透到中学数学教学中。将图形从相等静止条件下的研究和运动中的研究结合起来,有利于对图形本质的认识。 几何变换包括:(1)平移;(2)旋转;(3)对称。 10、客观性题的解题方法 选择题是给出条件和结论,要求根据一定的关系找出正确答案的一类题型。选择题的题型构思精巧,形式灵活,可以

高中数学证明公式

高中数学证明公式数学公式 抛物线:y = ax *+ bx + c 就是y等于ax 的平方加上 bx再加上 c a > 0时开口向上 a < 0时开口向下 c = 0时抛物线经过原点 b = 0时抛物线对称轴为y轴 还有顶点式y = a(x+h)* + k 就是y等于a乘以(x+h)的平方+k -h是顶点坐标的x k是顶点坐标的y 一般用于求最大值与最小值 抛物线标准方程:y^2=2px 它表示抛物线的焦点在x的正半轴上,焦点坐标为(p/2,0) 准线方程为x=-p/2 由于抛物线的焦点可在任意半轴,故共有标准方程y^2=2px y^2=-2px x^2=2py x^2=-2py 圆:体积=4/3(pi)(r^3) 面积=(pi)(r^2) 周长=2(pi)r 圆的标准方程 (x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标 圆的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0 (一)椭圆周长计算公式 椭圆周长公式:L=2πb+4(a-b) 椭圆周长定理:椭圆的周长等于该椭圆短半轴长为半径的圆周长(2πb)加上四倍的该椭圆长半轴长(a)与短半轴长(b)的差。 (二)椭圆面积计算公式 椭圆面积公式:S=πab 椭圆面积定理:椭圆的面积等于圆周率(π)乘该椭圆长半轴长(a)与短半轴长(b)的乘积。 以上椭圆周长、面积公式中虽然没有出现椭圆周率T,但这两个公式都是通过椭圆周率T推导演变而来。常数为体,公式为用。 椭圆形物体体积计算公式椭圆的长半径*短半径*PAI*高 三角函数: 两角和公式 sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB) cot(A+B)=(cotAcotB-1)/(cotB+cotA) cot(A-B)=(cotAcotB+1)/(cotB-cotA) 倍角公式 tan2A=2tanA/(1-tan2A) cot2A=(cot2A-1)/2cota cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0 cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及 sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2 tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0 ·万能公式: sinα=2tan(α/2)/[1+tan^2(α/2)] cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)] tanα=2tan(α/2)/[1-tan^2(α/2)] 半角公式

初中数学几何定理汇总

几何是初中数学中重要的一部分内容,考试时一般会出现在大题里。学习几何,需要证明,这时定理就很重要! 点的定理: 1、过两点有且只有一条直线 2、两点之间线段最短 角的定理: 1、同角或等角的补角相等 2、同角或等角的余角相等 直线定理: 1、过一点有且只有一条直线和已知直线垂直 2、直线外一点与直线上各点连接的所有线段中,垂线段最短 平行定理:经过直线外一点,有且只有一条直线与这条直线平行 推论:如果两条直线都和第三条直线平行,这两条直线也互相平行 证明两直线平行定理:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行 两直线平行推论:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补 定理:三角形两边的和大于第三边

推论:三角形两边的差小于第三边 三角形内角和定理:三角形三个内角的和等于180° 定理:全等三角形的对应边、对应角相等 边角边定理(SAS):有两边和它们的夹角对应相等的两个三角形全等 角边角定理(ASA):有两角和它们的夹边对应相等的两个三角形全等 推论(AAS):有两角和其中一角的对边对应相等的两个三角形全等 边边边定理(SSS):有三边对应相等的两个三角形全等 斜边、直角边定理(HL):有斜边和一条直角边对应相等的两个直角三角形全等 定理1:在角的平分线上的点到这个角的两边的距离相等 定理2:到一个角的两边的距离相同的点,在这个角的平分线上角的平分线是到角的两边距离相等的所有点的集合 等腰三角形的性质定理:等腰三角形的两个底角相等(即等边对等角) 推论1: 等腰三角形顶角的平分线平分底边并且垂直于底边 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合 等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)

初中数学基本定理总结

初中数学基本定理总结 1、过两点有且只有一条直线 2、两点之间线段最短 3、同角或等角的补角相等 4、同角或等角的余角相等 5、过一点有且只有一条直线和已知直线垂直 6、直线外一点与直线上各点连接的所有线段中,垂线段最短 7、平行公理经过直线外一点,有且只有一条直线与这条直线平行 8、如果两条直线都和第三条直线平行,这两条直线也互相平行 9、同位角相等,两直线平行 10、内错角相等,两直线平行 11、同旁内角互补,两直线平行 12、两直线平行,同位角相等 13、两直线平行,内错角相等 14、两直线平行,同旁内角互补 15、定理三角形两边的和大于第三边 16、推论三角形两边的差小于第三边 17、三角形内角和定理三角形三个内角的和等于180° 18、推论1 直角三角形的两个锐角互余 19、推论2 三角形的一个外角等于和它不相邻的两个内角的和 20、推论3 三角形的一个外角大于任何一个和它不相邻的内角 21、全等三角形的对应边、对应角相等 22、边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等 23、角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等 24、推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等 25、边边边公理(SSS) 有三边对应相等的两个三角形全等 26、斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等 27、定理1 在角的平分线上的点到这个角的两边的距离相等 28、定理2 到一个角的两边的距离相同的点,在这个角的平分线上 29、角的平分线是到角的两边距离相等的所有点的集合 30、等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角) 31、推论1 等腰三角形顶角的平分线平分底边并且垂直于底边 32、等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合 33、推论3 等边三角形的各角都相等,并且每一个角都等于60° 34、等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边) 35、推论1 三个角都相等的三角形是等边三角形 36、推论2 有一个角等于60°的等腰三角形是等边三角形 37、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半 38、直角三角形斜边上的中线等于斜边上的一半 39、定理线段垂直平分线上的点和这条线段两个端点的距离相等 40、逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上 41、线段的垂直平分线可看作和线段两端点距离相等的所有点的集合

初中数学公式大全(绝对经典)

初中数学公式大全 1 过两点有且只有一条直线 2 两点之间线段最短 3 同角或等角的补角相等 4 同角或等角的余角相等 5 过一点有且只有一条直线和已知直线垂直 6 直线外一点与直线上各点连接的所有线段中,垂线段最短 7 平行公理经过直线外一点,有且只有一条直线与这条直线平行 8 如果两条直线都和第三条直线平行,这两条直线也互相平行 9 同位角相等,两直线平行 10 内错角相等,两直线平行 11 同旁内角互补,两直线平行 12两直线平行,同位角相等 13 两直线平行,内错角相等 14 两直线平行,同旁内角互补 15 定理三角形两边的和大于第三边 16 推论三角形两边的差小于第三边 17 三角形内角和定理三角形三个内角的和等于180° 18 推论1 直角三角形的两个锐角互余 19 推论2 三角形的一个外角等于和它不相邻的两个内角的和 20 推论3 三角形的一个外角大于任何一个和它不相邻的内角 21 全等三角形的对应边、对应角相等 22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等 23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等 24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等 25 边边边公理(SSS) 有三边对应相等的两个三角形全等 26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等 27 定理1 在角的平分线上的点到这个角的两边的距离相等 28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上 29 角的平分线是到角的两边距离相等的所有点的集合 30 等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角) 31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边 32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合 33 推论3 等边三角形的各角都相等,并且每一个角都等于60° 34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边) 35 推论1 三个角都相等的三角形是等边三角形 36 推论2 有一个角等于60°的等腰三角形是等边三角形 37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半 38 直角三角形斜边上的中线等于斜边上的一半 39 定理线段垂直平分线上的点和这条线段两个端点的距离相等 40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上 41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合 42 定理1 关于某条直线对称的两个图形是全等形 43 定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线 44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上 45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称 46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2

(经典)高中数学正弦定理的五种最全证明方法

(经典)高中数学正弦定理的五种最全证明方法

高中数学正弦定理的五种证明方法 ——王彦文 青铜峡一中 1.利用三角形的高证明正弦定理 (1)当?ABC 是锐角三角形时,设边AB 上的高是CD ,根据锐角三角函数的定义,有=sin CD a B ,sin CD b A =。 由此,得 sin sin a b A B = ,同理可得 sin sin c b C B = , 故有 sin sin a b A B = sin c C = .从而这个结论在锐角三角形中成立. (2)当?ABC 是钝角三角形时,过点C 作AB 边上的高,交AB 的延长线于点D ,根据锐角三角函数的定义,有=∠=∠sin sin CD a CBD a ABC ,sin CD b A = 。由此,得 = ∠sin sin a b A ABC ,同理可得 = ∠sin sin c b C ABC 故有 = ∠sin sin a b A ABC sin c C = . 由(1)(2)可知,在?ABC 中, sin sin a b A B = sin c C = 成立. 从而得到:在一个三角形中,各边和它所对角的正弦的比值相等,即 sin sin a b A B = sin c C = . 2.利用三角形面积证明正弦定理 已知△ABC,设BC =a, CA =b,AB =c,作AD⊥BC,垂足为 D.则Rt△ADB 中,AB AD B =sin ,∴AD=AB·sinB=csinB. ∴S △ABC =B ac AD a sin 2121=?.同理,可证 S △ABC =A bc C ab sin 21 sin 21=. ∴ S △ABC =B ac A bc C ab sin 2 1 sin 21sin 21==.∴absinc=bcsinA=acsinB, 在等式两端同除以ABC,可得b B a A c C sin sin sin ==.即C c B b A a sin sin sin ==. 3.向量法证明正弦定理 (1)△ABC 为锐角三角形,过点A 作单位向量j 垂直于AC ,则j 与AB 的夹角为90°-A ,j 与 CB 的夹角为90°-C .由向量的加法原则可得 AB CB AC =+, a b D A B C B C D b a D C B A

初中数学定理大集合

初中数学基本定理 1、过两点有且只有一条直线 2、两点之间线段最短 3、同角或等角的补角相等 4、同角或等角的余角相等 5、过一点有且只有一条直线和已知直线垂直 6、直线外一点与直线上各点连接的所有线段中,垂线段最短 7、平行公理经过直线外一点,有且只有一条直线与这条直线平行 8、如果两条直线都和第三条直线平行,这两条直线也互相平行 9、同位角相等,两直线平行 10、内错角相等,两直线平行 11、同旁内角互补,两直线平行 12、两直线平行,同位角相等 13、两直线平行,内错角相等 14、两直线平行,同旁内角互补 15、定理三角形两边的和大于第三边 16、推论三角形两边的差小于第三 17、三角形内角和定理三角形三个内角的和等于180° 18、推论1 直角三角形的两个锐角互余 19、推论2 三角形的一个外角等于和它不相邻的两个内角的和 20、推论3 三角形的一个外角大于任何一个和它不相邻的内角 21、全等三角形的对应边、对应角相等 22、边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等 23、角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等 24、推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等 25、边边边公理(SSS) 有三边对应相等的两个三角形全等 26、斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等 27、定理1 在角的平分线上的点到这个角的两边的距离相等

28、定理2 到一个角的两边的距离相同的点,在这个角的平分线上 29、角的平分线是到角的两边距离相等的所有点的集合 30、等腰三角形的性质定理等腰三角形的两个底角相等 (即等边对等角) 31、推论1 等腰三角形顶角的平分线平分底边并且垂直于底边 32、等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合 33、推论3 等边三角形的各角都相等,并且每一个角都等于60° 34、等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边) 35、推论1 三个角都相等的三角形是等边三角形 36、推论 2 有一个角等于60°的等腰三角形是等边三角形 37、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半 38、直角三角形斜边上的中线等于斜边上的一半 39、定理线段垂直平分线上的点和这条线段两个端点的距离相等 40、逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上 41、线段的垂直平分线可看作和线段两端点距离相等的所有点的集合 42、定理1 关于某条直线对称的两个图形是全等形 43、定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线 44、定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上 45、逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称 46、勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a2+b2=c2 47、勾股定理的逆定理如果三角形的三边长a、b、c有关系a2+b2=c2,那么这个三角形是直角三角形 48、定理四边形的内角和等于360° 49、四边形的外角和等于360° 50、多边形内角和定理 n边形的内角的和等于(n-2)×180° 51、推论任意多边的外角和等于360° 52、平行四边形性质定理1 平行四边形的对角相等 53、平行四边形性质定理2 平行四边形的对边相等 54、推论夹在两条平行线间的平行线段相等 55、平行四边形性质定理3 平行四边形的对角线互相平分

初中数学所有几何证明定理

初中数学所有几何证明定理 证明题的思路 很多几何证明题的思路往往是填加辅助线,分析已知、求证与图形,探索证明。对于证明题,有三种思考方式: (1)正向思维。对于一般简单的题目,我们正向思考,轻而易举可以做出,这里就不详细讲述了。 (2)逆向思维。顾名思义,就是从相反的方向思考问题。在初中数学中,逆向思维是非常重要的思维方式,在证明题中体现的更加明显。 同学们认真读完一道题的题干后,不知道从何入手,建议你从结论出发。 例如: 可以有这样的思考过程:要证明某两条边相等,那么结合图形可以看出,只要证出某两个三角形相等即可;要证三角形全等,结合所给的条件,看还缺少什么条件需要证明,证明这个条件又需要怎样做辅助线,这样思考下去……这样我们就找到了解题的思路,然后把过程正着写出来就可以了。 (3)正逆结合。对于从结论很难分析出思路的题目,可以结合结论和已知条件认真的分析。 初中数学中,一般所给的已知条件都是解题过程中要用到的,所以可以从已知条件中寻找思路,比如给我们三角形某边中点,我们就要想到是否要连出中位线,或者是否要用到中点倍长法。给我们梯形,我们就要想到是否要做高,或平移腰,或平移对角线,或补形等等。正逆结合,战无不胜。 证明题要用到哪些原理?

要掌握初中数学几何证明题技巧,熟练运用和记忆如下原理是关键。 下面归类一下,多做练习,熟能生巧,遇到几何证明题能想到采用哪一类型原理来解决问题。 一、证明两线段相等 1.两全等三角形中对应边相等。 2.同一三角形中等角对等边。 3.等腰三角形顶角的平分线或底边的高平分底边。 4.平行四边形的对边或对角线被交点分成的两段相等。 5.直角三角形斜边的中点到三顶点距离相等。 6.线段垂直平分线上任意一点到线段两段距离相等。 7.角平分线上任一点到角的两边距离相等。 8.过三角形一边的中点且平行于第三边的直线分第二边所成的线段相等。 9.同圆(或等圆)中等弧所对的弦或与圆心等距的两弦或等圆心角、圆周角所对的弦相等。 10.圆外一点引圆的两条切线的切线长相等或圆内垂直于直径的弦被直径分成的两段相等。 11.两前项(或两后项)相等的比例式中的两后项(或两前项)相等。 12.两圆的内(外)公切线的长相等。 13.等于同一线段的两条线段相等。 二、证明两个角相等 1.两全等三角形的对应角相等。 2.同一三角形中等边对等角。 3.等腰三角形中,底边上的中线(或高)平分顶角。

初中数学重要公式定律

1 过两点有且只有一条直线 2 两点之间线段最短 3 同角或等角的补角相等 4 同角或等角的余角相等 5 过一点有且只有一条直线和已知直线垂直 6 直线外一点与直线上各点连接的所有线段中,垂线段最短 7 平行公理经过直线外一点,有且只有一条直线与这条直线平行 8 如果两条直线都和第三条直线平行,这两条直线也互相平行 9 同位角相等,两直线平行 10 内错角相等,两直线平行 11 同旁内角互补,两直线平行 12 两直线平行,同位角相等 13 两直线平行,内错角相等 14 两直线平行,同旁内角互补 15 定理三角形两边的和大于第三边 16 推论三角形两边的差小于第三边 17 三角形内角和定理三角形三个内角的和等于180° 18 推论1 直角三角形的两个锐角互余 19 推论2 三角形的一个外角等于和它不相邻的两个内角的和 20 推论3 三角形的一个外角大于任何一个和它不相邻的内角 21 全等三角形的对应边、对应角相等 22 边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等 23 角边角公理(ASA) 有两角和它们的夹边对应相等的两个三角形全等 24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等 25 边边边公理(SSS) 有三边对应相等的两个三角形全等 26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等 27 定理1 在角的平分线上的点到这个角的两边的距离相等 28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上 29 角的平分线是到角的两边距离相等的所有点的集合 30 等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角) 31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边 32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合 33 推论3 等边三角形的各角都相等,并且每一个角都等于60° 34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角 所对的边也相等(等角对等边) 35 推论1 三个角都相等的三角形是等边三角形 36 推论2 有一个角等于60°的等腰三角形是等边三角形 37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半 38 直角三角形斜边上的中线等于斜边上的一半 39 定理线段垂直平分线上的点和这条线段两个端点的距离相等 40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上 41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合

相关主题
文本预览
相关文档 最新文档