当前位置:文档之家› 98【基础】高考冲刺:函数知识讲解

98【基础】高考冲刺:函数知识讲解

98【基础】高考冲刺:函数知识讲解
98【基础】高考冲刺:函数知识讲解

高考冲刺:函数

编稿:辛文升 审稿:孙永钊

【高考展望】

函数知识是高中数学的重要内容之一,也是每年高考必考的重要知识点之一, 分析历年高考函数试题,大致有这样几个特点:

1.常常通过选择题和填空题,全面考查函数的基本概念,性质和图象.

2.在解答题的考查中,常常与不等式、导数、数列,偶尔也与解析几何等结合命题,以综合题的形式出现.

3.从数学具有高度抽象性的特点出发,没有忽视对抽象函数的考查.

4.每年高考题中都会涌现出一些函数新题型,但考查的重点仍然是对函数有关知识的深刻理解. 【知识升华】

1.了解映射的概念,理解函数的概念并能在简单的问题中应用.

2.理解函数的单调性和奇偶性的概念,掌握判断一些简单函数的单调性的方法,并能利用函数的性质简化函数图象的绘制过程.

3.掌握基本初等函数的图像,掌握某些简单函数的图像变换.

4.理解分数指数的概念,掌握有理指数幂的运算性质,掌握指数函数的概念、图象和性质.

5.理解对数的概念,掌握对数的运算性质,掌握对数函数的概念、图象和性质. 6.能够运用函数的性质、指数函数和对数函数的性质解决某些简单的实际问题.

【高清课堂:高考冲刺第3讲 函数的概念、图象和性质 368992知识要点】

【典型例题】

类型一:函数的定义域及其求法

函数的定义域及其求法是近几年高考考查的重点内容之一.这里主要帮助考生灵活掌握求定义域的各种方法,并会应用用函数的定义域解决有关问题.

例1

.函数y =( )

(A )(3,+∞) (B )[3, +∞) (C )(4, +∞) (D )[4, +∞)

【思路点拨】此为复合函数的定义域求解,对数、根式等不能漏

【解析】由2

4.log 20x x x >??≥?

-≥?,故选D. 举一反三:

【变式1

】函数2()f x =的定义域为 .

【答案】[3,)+∞

【解析】由210x --≥且10x ->且11x -≠得3x ≥

例2.若函数f (x )=log a (x +1)(a >0,a ≠1)的定义域和值域都是[0,1],则a 等于

A. 3

1

B. 2

C.22

D.2

【思路点拨】因为底数不确定,需要讨论.

【解析】f (x )=log a (x +1)的定义域是[0,1],∴0≤x ≤1,则1≤x +1≤2. 当a >1时,0=log a 1≤log a (x +1)≤log a 2=1,∴a =2;

当0<a <1时,log a 2≤log a (x +1)≤log a 1=0,与值域是[0,1]矛盾. 综上,a =2. 【答案】D

举一反三:

【变式1】函数y = )

A .{}|0x x ≥

B .{}|1x x ≥

C .{}{}|1

0x x ≥

D .{}

|01x x ≤≤

【答案】C.

【解析】由()10x x -≥且0x ≥得1x ≥或0x =.

类型二:复合函数问题

复合函数问题属于偏难些的内容.此类题目往往分为两类:一是结合函数解析式的求法来求复合函数的值.二是应用已知函数定义域求复合函数的定义域.

例3.若函数()y f x =的值域是1[,3]2,则函数1

()()()

F x f x f x =+的值域是( )

A .1[,3]2

B .10[2,

]3 C .510

[,]23

D .10[3,]3 【思路点拨】对于复合函数的很多问题都是可以通过换元法来解决的.

【答案】B

【解析】令()t f x =,则1[,3]2t ∈,110()[2,]3

F x t t =+∈ 举一反三:

【变式1】函数()f x 对于任意实数x 满足条件()()

1

2f x f x +=

,若()15,f =-则()()5f f =__________.

【答案】1

5

-

【解析】由()()12f x f x +=

,得()()

1

4()2f x f x f x +=

=+,所以(5)(1)5f f ==-,则()()11

5(5)(1)(12)5

f f f f f =-=-=

=--+.

【高清课堂:高考冲刺第3讲 函数的概念、图象和性质 368992 例1】

例4.

已知1

3

2(0)()(01)log (1)

x

x f x x x x ?<=≤≤>?? 求((()))f f f a 。

【思路点拨】分段函数求值,也应该从自变量的分段开始. 【解析】当0a <

时,1

((()))((2))2

a

f f f a f f f ===-

当01a ≤≤

时,1((()))(()2

2

f f f a f f f ==-=

当1a >

时,13

log 13

((()))((log ))(2

)a

a f f f a f f f ===

所以1

(0)2((()))(01)2(1)a f f f a a a ?-?

举一反三:

【变式1】设函数2

211()21x x f x x x x ?-?=?+->??,

,,,

≤则1()(2)f f 的值为( ) A .

15

16

B .2716

-

C .

89

D .18

【答案】A

【解析】∵2

(2)2224f =+-=, ∴211115(

)()1()(2)4416

f f f ==-=. 类型三:函数的重要性质(单调性、奇偶性和周期性)

函数的单调性、奇偶性和周期性是高考的重点内容之一,考查内容灵活多样. 这里主要帮助读者深刻理解奇偶性、单调性和周期性的定义,掌握判定方法,正确认识单调函数与奇偶函数的图象.

例5.若函数()f x 、()g x 分别是R 上的奇函数、偶函数,且满足()()x

f x

g x e -=,则有( )

A .(2)(3)(0)f f g <<

B .(0)(3)(2)g f f <<

C .(2)(0)(3)f g f <<

D .(0)(2)(3)g f f <<

【思路点拨】根据两个函数的奇偶性可以分别求出这两个函数,再看各自的单调性. 【答案】D

【解析】∵()()()()x x f x g x e f x g x e -?-=??---=??即()()()()x

x

f x

g x e

f x

g x e

-?-=??--=??,

∴()2x x e e f x --=,()2

x x

e e g x -+=-

∴(0)1g =,又∵()2x x e e f x --=单调递增, ∴(2)(3)f f <且22

(2)12

e e

f --=

>. 举一反三:

【变式1】()f x ,()g x 是定义在R 上的函数,()()()h x f x g x =+,则“()f x ,()g x 均为偶函数”是“()h x 为偶函数”的( )

A .充要条件

B .充分而不必要的条件

C .必要而不充分的条件

D .既不充分也不必要的条件

【答案】B

【解析】先证充分性:因为()f x ,()g x 均为偶函数, 所以()()f x f x -=,()()g x g x -=,

有()()()()()()h x f x g x f x g x h x -=-+-=+=, 所以()h x 为偶函数.

反过来,若()h x 为偶函数,()f x ,()g x 不一定是偶函数. 如2()h x x =,(),f x x =2()g x x x =-,故选B. 方法二:可以选取两个特殊函数进行验证.

例6.设)(x f 是奇函数,)(x g 是偶函数,并且x x x g x f -=-2

)()(,求)(x f .

【思路解析】)(x f 、)(x g 的奇偶性已知,可以从奇函数、偶函数的定义来分析问题。 【解析】)(x f 为奇函数 )()(x f x f -=-∴ )(x g 为偶函数 )()(x g x g -=-∴

x x x g x f x x x g x f +=---∴-=-22)()( )()(

从而 x x x g x f x x x g x f --=++=--2

2

)()(,)()(

???-=-=??

??--=+-=-222)()()()()()(x x g x x f x x x g x f x x x g x f

举一反三:

【变式1】设奇函数()f x 在(0)+∞,上为增函数,且(1)0f =,则不等式

()()

0f x f x x

--<的解集为( )

A .(10)

(1)-+∞,, B .(1)(01)-∞-,,

C .(1)(1)-∞-+∞,,

D .(10)

(01)-,,

【答案】D .

【解析】由奇函数()f x 可知()()2()

0f x f x f x x x

--=<,而(1)0f =,

则(1)(1)0f f -=-=,

方法一:当0x >时,()0(1)f x f <=;

当0x <时,()0(1)f x f >=-,

又()f x 在(0)+∞,上为增函数,则奇函数()f x 在(,0)-∞上为增函数, ∴01,10x x <<-<<或.

方法二:作出函数()f x 的示意图,有

当0x >时,()0(1)f x f <=即01x <<; 当0x <时,()0(1)f x f >=-,即10x -<<.

类型四:函数的图象与性质

函数的图象与性质是高考考查的重点内容之一,它是研究和记忆函数性质的直观工具,利用它的直观性解题,可以起到化繁为简、化难为易的作用.因此,读者要掌握绘制函数图象的一般方法,掌握函数图象变化的一般规律,能利用函数的图象研究函数的性质.此类题目还很好的考查了数形结合的解题思想. 例7.(2015 安徽高考)函数()()

2

+=

+ax b

f x x c 的图像如图所示,则下列结论成立的是( )

A.a >0,b >0,c <0

B.a <0,b >0,c >0

C.a <0,b >0,c <0

D.a <0,b <0,c <0

【思路点拨】分别根据函数的定义域,函数的零点以及()0f 的取值进行判断即可. 【答案】C

【解析】函数在点P 处无意义,由图像看P 在y 轴右边,所以-c >0即c <0

()200=

>b

f c

0∴>b 由()0=f x 得0+=ax b 即=-

b x a 由图像知0->b

a

0∴0,c <0故选C.

【总结升华】函数图像的判断问题,可以根据函数图象变换方法判断,也可以根据函数图像中关键点,关键线,关键值进行解答.

举一反三:

【变式】(2015 北京高考)汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,如图描述了甲、乙、丙三辆汽车在不同速度下燃油效率情况,下列叙述中正确的是( )

A. 消耗1升汽油,乙车最多可行使5千米

B. 以相同的速度行驶相同路程,三辆车中,甲车消耗汽油最多

C. 甲车以80千米/小时的速度行驶1小时,消耗10升汽油

D. 某城市机动车最高限速80千米/小时,相同条件下,在该市用丙车比用乙车更省油 【答案】D

【解析】对于选项A ,从图中可以看车当乙车的行驶速度大于40千米每小时时的燃油效率大于5千米没升,故乙车消耗1升汽油的行驶路程远大于5千米,故A 错误.

对于选项B,以相同速度行驶相同路程,三辆车中,甲车消耗汽油最小,故B 错误.

对于选项C ,甲车以80千米/小时的速度行驶1小时,里程为80千米,燃油效率为10,故消耗8升汽油,故C 错误.

对于选项D ,因为在速度低于80千米/小时,丙的燃油效率高于乙的燃油效率,故D 正确. 例8. 直线y x b =+与函数21y x =-求实数b 的取值范围。 【思路点拨】在同一直角坐标系中作出两个函数的图像,当直线介于AB 和CD 之间时,直线和函数21y x =-

【解析】如图,直线CD 和半圆相切,所以22

||1=∴=

b b

因为点)1,0(B ,所以11=∴=b b 所以实数b 的取值范围为

)2,1[

举一反三:

【变式1】设函数()|1|||f x x x a =++-的图象关于直线1x =对称,则a 的值为( ) (A) 3 (B)2 (C)1 (D)1- 【答案】A

【解析】∵函数()|1|||f x x x a =++-的图象关于直线1x =对称 ∴(0)(2)f f =即2|||2|a a =--,把选项ABCD 的值逐一代入,

可以确定选A.

类型五:函数与其它知识的综合应用 与数列知识结合的函数、不等式,解题时往往以不等式和数列知识结合为工具, 结合函数知识,通过计算和推理来解决问题.

例9.设数列{}n a 的前n 项和为n S ,点*

,()n S n n N n

??∈ ??

?

均在函数32y x =-的图像上. (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)设13n n n b a a +=

,n T 是数列{}n b 的前n 项和,求使得20

n m T <对所有*

n N ∈都成

立的最小正整数m .

【思路点拨】数列是特殊的函数,因此绝大多数的数列综合题都可以应用函数的方法、思想来解决.

【解析】(I )依题意得,

32,n

S n n

=-即232n S n n =-. 当2n ≥时,()2

2

1(32)312(1)65n n n a S S n n n n n -??=-=-----=-??

;

当1n =时,2

113121615a S ==?-==?-. 所以65()n a n n N *

=-∈.

(II )由(I )得[]131111

()(65)6(1)526561

n n n b a a n n n n +=

==--+--+,

11

11111111(1)()...()(1)277136561261

n

n b n n n T =??-=

-+-++-=-??-++??∑. 因此,使得()11(1)26120

m

n N n *-<∈+成立的m 必须满足1220m ≤,即10m ≥, 故满足要求的最小整数m 为10.

举一反三:

【变式1】已知函数f(x)=a 1x+a 2x 2+…+a n x n (n ∈N *),且a 1,a 2,a 3,…,a n 构成数列{a n },又f(1)=n 2.

(1)求数列{a n }的通项公式; (2)求证:1)3

1

(

【解析】(1)由题意:f(1)=a 1+a 2+…+a n =n 2,(n ∈N *)

n=1时,a 1=1

n≥2时,a n =(a 1+a 2+…+a n )-(a 1+a 2+…+a n-1)=n 2-(n-1)2=2n-1 ∴对n ∈N *总有a n =2n-1, 即数列{a n }的通项公式为a n =2n-1. (2)21111()13(21)333

3

n f n =?+?

++-?

=)31(31f 123

1)12(31)32(311+-+-++?n n n n ∴

231

21111

11

()12()(21)33333

33n n f n +=?+++

-- 111

11213(21)1393

13

n n n -+-

=+?---

1222,33n n ++=- ∴11()1133

n n f +=-<

专题13幂函数知识点归纳

3 幂函数知识点归纳 一、 幂函数定义:对于形如:() x f x α=,其中α为常数.叫做幂函数 定义说明: 1、 定义具有严格性,x α 系数必须是1,底数必须是x 2、 α取值是R . 3、 《考试标准》要求掌握α=1、2、3、?、-1五种情况 二、 幂函数的图像 幂函数的图像是由α决定的,可分为五类: 1)1α>时图像是竖立的抛物线.例如:()2x f x = 2)=1α时图像是一条直线.即() x f x = 3)01α<< 时图像是横卧的抛物线.例如()1 2 x f x = 4)=0α时图像是除去(0,1)的一条直线.即() 0x f x =(0x ≠) 5)0α<时图像是双曲线(可能一支).例如 ()-1 x f x = 具备规律: ①在第一象限内x=1的右侧:指数越大,图像相对位置越高(指大图高) ②幂指数互为倒数时,图像关于y=x 对称 ③结合以上规律,要求会做出任意一种幂函数图像 练习:做出下列函数的图像: 1、1α> ①3 y x =或53y x = ②2y x =或43y x = ③32y x =或74 y x = 2、01α<< ①13y x = ②23y x = ③12 y x = 3、0α< ①2 y x -= ②1 y x -= ③32 y x - = ④43 y x =— 三、 幂函数的性质 y=x

3 幂函数的性质要结合图像观察,随着α取值范围的变化,性质有所不同。 1、 定义域、值域与α有关,通常化分数指数幂为根式求解 2、 奇偶性要结合定义域来讨论 3、 单调性:α>0时,在(0,+∞)单调递增:α=0无单调性;α<0时,在(0,+∞)单调递减 4、 过定点:α>0时,过(0,0)、(1,1)两点;α≤0时,过(1,1) 5、 由 ()0 x f x α=>可知,图像不过第四象限 四、 幂函数类型题归纳 (一) 定义应用: 1、下列函数是幂函数的是 ______ ①21()y x -= ②22y x = ③21 (1)y x -=+ ④0 y x = ⑤1y = 2、若幂函数()y f x = 的图像过点2????? ,则函数()y f x =的解析式为______. 3、已知函数()() 22 1 44m m f x m m x --=--是幂函数,且经过原点,则实数m 的值为__________. 4、已知函数()()2 2 k k f x x k Z -++=∈满足()()23f f <,则k 的值为________ ,函数()f x 的 解析式为__________ 5、设1112,1,,,,1,2,3232a ? ? ∈--- ???? ,已知幂函数()f x x α=是偶函数,且在区间()0,+∞上是减函数,则满足要求的α值的个数是__________. 6、设()y f x =和()y g x =是两个不同的幂函数,集合()(){} |M x f x g x ==,则集合M 中 元素的个数是( ) (A)1或2或0 (B) 1或2或3(C)1或2或3或4 (D)0或1或2或3 (二) 图像及性质应用 1、 右图为幂函数y x α =在第一象限的图像,则 ,,,a b c d 的大小关系是 ( ) ()A a b c d >>> ()B b a d c >>> d y=x ()C a b d c >>> ()D a d c b >>> 2、如图:幂函数n m y x =(m 、n N ∈,且m 、n 互质)的图象在第一,二象限,且不经过原点,则有 ( ) ()A m 、n 为奇数且 1m n < ()B m 为偶数,n 为奇数,且1m n > ()C m 为偶数,n 为奇数,且1m n < b c

二次函数知识点大全

二次函数知识点归纳及提高训练 1.定义:一般地,如果c b a c bx ax y ,,(2 ++=是常数,)0≠a ,那么y 叫做x 的二次函数. 2.二次函数2 ax y =的性质 (1)抛物线2ax y =)(0≠a 的顶点是坐标原点,对称轴是y 轴.(2)函数2 ax y =的图像与a 的符号关系. ①当0>a 时?抛物线开口向上?顶点为其最低点;②当0a 时,开口向上;当0a b (即a 、b 同号)时,对称轴在y 轴左侧; ③0c ,与y 轴交于正半轴;③0

知识讲解 三角函数的性质及其应用 提高

三角函数的性质及其编稿:李霞审稿:孙永钊 【考纲要求】 1、了解函数sin()yAx????的物理意义;能画出sin()yAx????的图象,了解参数 A,?,?对函数图象变化的影响. 2、了解三角函数是描述周期变化现象的重要函数模型,会用三角函数解决一些简单实际问题. 【知识络】 【考点梳理】 考点一、函数sin()yAx????(0A?,0??)的图象的作法 1.五点作图法: 作sin()yAx????的简图时,常常用五点法,五点的取法是设tx????,由t取0、 2?、?、32?、2?来求相应的x值及对应的y值,再描点作图。 2.图象变换法: (1)振幅变换:把sinyx?的图象上各点的纵坐标伸长(A>1)或缩短(00)或向右(?<0)平行移动|?|个单位,得到sin()yAx???的图象; (3)周期变换:把sin()yAx???的图象上各点的横坐标缩短(ω>1)或伸长(0<ω<1)到原来的?1倍(纵坐标不变),可得到sin()yAx????的图象. (4)若要作sin()yAxb????,可将sin()yAx???的图象向上(0)b?或向下(0)b? 平移b个单位,可得到sin()yAxb????的图象.记忆方法仍为“左加右减,上正下负,纵伸(A>1)横缩(ω>1)”。 要点诠释: 由sinyx?的图象利用图象变换作函数sin()yAx????的图象时要特别注意:当周期

变换和相位 sin()yAx???? sin 图象的作法三角函的质其 图象的性 变换的先后顺序不同时,原图象沿x轴的伸缩量有区别. 考点二、sin()yAx????的解析式 1.sin()yAx????的解析式 sin()yAx????(0A?, 0??),[0,)x???表示一个振动量时,A叫做振幅,2T??? 叫做周期,12fT????叫做频率,x???叫做相位,0x?时的相位?称为初相. 2.根据图象求sin()yAx????的解析式 求法为待定系数法,突破口是找准五点法中的第一零点(,0)???. 求解步骤是先由图象求出A与T,再由2T???算出?,然后将第一零点代入0x????求出?. 要点诠释:若图象未标明第一零点,就只能找特殊点用待定系数法计算. 考点三、函数 sin()yAx????(0A?,0??)的性质 1. 定义域: xR?,值域:y∈[-A,A]. 2.周期性: 2T??? 3. 奇偶性:2k?????时为偶函数;k???时为奇函数,kZ?. 4.单调性:单调增区间 :[????????????22,22kk] , kZ? 单调减区间:[????????????232,22kk] , kZ? 5. 对称性:对称中心(????k,0),kZ?;对称轴

中考数学复习专题二次函数知识点归纳

二次函数知识点归纳 一、二次函数概念 1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。 这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数. 2. 二次函数2y ax bx c =++的结构特征: ⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. 二、二次函数的基本形式 1. 二次函数基本形式:2y ax =的性质: o o 结论:a 的绝对值越大,抛物线的开口越小。 总结: 2. 2y ax c =+的性质: 结论:上加下减。 a 的符号 开口方向 顶点坐标 对称轴 性质 0a > 向上 ()00, y 轴 0x >时,y 随x 的增大而增大;0x <时,y 随x 的增大而减小;0x =时,y 有最小值0. 0a < 向下 ()00, y 轴 0x >时,y 随x 的增大而减小;0x <时,y 随x 的增大而增大;0x =时,y 有最大值0.

总结: 3. ()2 y a x h =-的性质: 结论:左加右减。 总结: 4. ()2 y a x h k =-+的性质: 总结: a 的符号 开口方向 顶点坐标 对称轴 性质 0a > 向上 ()0c , y 轴 0x >时,y 随x 的增大而增大;0x <时,y 随x 的增大而减小;0x =时,y 有最小值c . 0a < 向下 ()0c , y 轴 0x >时,y 随x 的增大而减小;0x <时,y 随x 的增大而增大;0x =时,y 有最大值c . a 的符号 开口方向 顶点坐标 对称轴 性质 0a > 向上 ()0h , X=h x h >时,y 随x 的增大而增大;x h <时,y 随x 的增大而减小;x h =时,y 有最小值0. 0a < 向下 ()0h , X=h x h >时,y 随x 的增大而减小;x h <时,y 随x 的增大而增大;x h =时,y 有最大值0. a 的符号 开口方向 顶点坐标 对称轴 性质

指数函数对数函数和幂函数知识点归纳

一、幂函数 1、幂的有关概念 正整数指数幂: ...() n n a a a a n N =∈ 零指数幂: 01(0) a a =≠ 负整数指数幂: 1 (0,) p p a a p N a -=≠∈ 分数指数幂:正分数指数幂的意义是: (0,,,1) m n m n a a a m n N n =>∈> 且 负分数指数幂的意义是: 1 (0,,,1) m n m n m n a a m n N n a a - ==>∈> 且 2、幂函数的定义 一般地,函数 a y x =叫做幂函数,其中x是自变量,a是常数(我们只讨论a是有理数的情况). 3、幂函数的图象 幂函数a y x = 当 11 ,,1,2,3 32 a= 时的图象见左图;当 1 2,1, 2 a=--- 时的图象见上图: 由图象可知,对于幂函数而言,它们都具有下列性质:

a y x =有下列性质: (1)0a >时: ①图象都通过点(0,0),(1,1); ②在第一象限内,函数值随x 的增大而增大,即在(0,)+∞上是增函数. (2)0a <时: ①图象都通过点(1,1); ②在第一象限内,函数值随x 的增大而减小,即在(0,)+∞上是减函数; ③在第一象限内,图象向上与y 轴无限地接近,向右与x 轴无限地接近. (3)任何幂函数的图象与坐标轴至多只有一个交点; (4)任何幂函数图象都不经过第四象限; (5)任何两个幂函数的图象最多有三个交点. 二、指数函数 ①定义:函数)1,0(≠>=a a a y x 且称指数函数, 1)函数的定义域为R ; 2)函数的值域为),0(+∞; 3)当10<a 时函数为增函数. 4)有两个特殊点:零点(0,1),不变点(1,)a . 5)抽象性质: ()()(),()()/()f x y f x f y f x y f x f y +=?-= 三、对数函数 如果b a N =(0a >,1a ≠),那么b 叫做以a 为底N 的对数,记作log a N b = log b a a N N b =?=(0a >,1a ≠,0N >). 1.对数的性质 ()log log log a a a MN M N =+. log log log a a a M M N N =-.

二次函数知识点整理

二次函数知识点整理: 1.二次函数的图象特征与a ,b ,c 及判别式ac b 42-的符号之间的关系 (1)字母a 决定抛物线的形状. 即开口方向和开口大小;决定二次函数有最大值或最小值. a >0时开口向上,函数有最小值; a <0时开口向下,函数有最大值; a 相同,抛物线形状相同,可通过平移、对称相互得到; a 越大,开口越小. (2)字母b 、a 的符号一起决定抛物线对称轴的位置. ab=0 (a ≠0,b=0), 对称轴为y 轴; ab >0(a 与b 同号),对称轴在y 轴左侧; ab <0(a 与b 异号),对称轴在y 轴右侧. (3)字母c 决定抛物线与y 轴交点的位置. c=0, 抛物线经过原点; c >0,抛物线与y 轴正半轴相交; c <0,抛物线与y 轴负半轴相交. (4)ac b 42-决定抛物线与x 轴交点的个数. ac b 42-=0,抛物线与x 轴有唯一交点(顶点); ac b 42->0抛物线与x 轴有两个不同的交点; ac b 42-<0抛物线与x 轴无交点. 2.任意抛物线()k h x a y +-=2 都可以由抛物线2ax y =经过平移得到,具体平移方法如 下: 【注意】 二次函数图象间的平移,可看作是顶点间的平移,因此只要掌握了顶点是如何平移的,就掌握了二次函数间的平移. 二次函数图象间对称变换也是同样的道理. 3.用待定系数法求二次函数的解析式 确定二次函数的解析式一般需要三个独立条件,根据不同条件选不同的设法 (1)设一般式:c bx ax y ++=2 (a ,b ,c 为常数、a ≠0)

若已知条件是图象上的三点,将已知条件代入所设一般式,求出a,b,c 的值 (2)设顶点式:()k h x a y +-=2 (a,h,k 为常数,a ≠0) 若已知二次函数图象的顶点坐标或对称轴方程与最大值(或最小值),将已知条件代入所设顶点式,求出待定系数,最后将解析式化为一般形式. (3)设两点式:()()21x x x x a y --=(a ≠0,a 、1x 、2x 为常数) 若已知二次函数图象与x 轴的两个交点的坐标为()()0,0,21x x ,将第三点(m,n ) 的坐标(其中m ,n 为已知数)或其他已知条件代入所设交点式,求出待定系数a ,最后将解析式化为一般形式. 4. 二次函数c bx ax y ++=2(a ≠0)与一元二次方程02=++c bx ax 的关系 (1)二次函数c bx ax y ++=2(a ≠0)中,当y=0时,就变成了一元二次方程02=++c bx ax (2)一元二次方程02=++c bx ax 的根就是二次函数c bx ax y ++=2的图象与x 轴交点的横坐标. (3)二次函数的图象与x 轴交点的个数与一元二次方程根的个数一致. (4)在它俩的关系中,判别式△=ac b 42-起着重要作用. 二次函数的图象与x 轴有两个交点?对应方程的△>0 二次函数的图象与x 轴有一个交点?对应方程的△=0 二次函数的图象与x 轴无交点 ?对应方程的△<0 5.二次函数应用 包括两方面 (1)用二次函数表示实际问题中变量之间的关系; (2)用二次函数解决最大化问题即最值问题.

三角函数知识点及例题讲解

三角函数知识点 1.特殊角的三角函数值: (1)平方关系:222222sin cos 1,1tan sec ,1cot csc αααααα+=+=+= (2)倒数关系:sin αcsc α=1,cos αsec α=1,tan αcot α=1, (3)商数关系:sin cos tan ,cot cos sin αα αααα == ) 3、两角和与差的正弦、余弦、正切公式及倍角公式: ()sin sin cos cos sin sin 22sin cos 令αβ αβαβαβααα=±=±???→= ()()2222222cos cos cos sin sin cos 2cos sin 2cos 112sin tan tan 1+cos2tan cos 1tan tan 2 1cos2sin 2 2tan tan 21tan 令 = = αβ αβαβαβααα αα αβα αβααβα αα αα =±=???→=-↓=-=-±±= ?-↓= - (1)巧变角(已知角与特殊角的变换、已知角与目标角的变换、角与其倍角的变换、 两角与其和差角的变换. 如()()ααββαββ=+-=-+,2()()ααβαβ=++-, 2()()αβαβα=+--,22 αβαβ++=?,()( ) 222αββ ααβ+=---等), (2)三角函数次数的降升(降幂公式:21cos 2cos 2αα+=,21cos 2sin 2 α α-=与升幂公 式:21cos 22cos αα+=,21cos 22sin αα-=)。如

(; (3)常值变换主要指“1”的变换(221sin cos x x =+22sec tan tan cot x x x x =-=? tan sin 42 ππ=== 等),. 。 (4)周期性:①sin y x =、cos y x =的最小正周期都是2π;②()sin()f x A x ω?=+和 ()cos()f x A x ω?=+的最小正周期都是2||T π ω=。如 (5)单调性:()sin 2,222y x k k k Z ππππ? ?=-+∈??? ?在上单调递增,在 ()32,222k k k Z ππππ??++∈??? ?单调递减;cos y x =在[]()2,2k k k Z πππ+∈上单调递减,在[]()2,22k k k Z ππππ++∈上单调递增。特别提醒,别忘了k Z ∈! (6)、形如sin()y A x ω?=+的函数: 1几个物理量:A ―振幅;1 f T =―频率(周期的倒数); x ω?+― 相位;?―初相; 2函数sin()y A x ω?=+表达式的确定:A 由周 期确定;?由图象上的特殊点确()sin()(0,0f x A x A ω?ω=+>>,||)2 π?<()f x =_____(答:15()2sin()23 f x x π =+); 3函数sin()y A x ω?=+图象的画法:①“五点法”――设X x ω?=+,令X =0,3,,,222 ππ ππ求出相应的x 值,计算得出五点的坐标,描点后得出图象;②图象变换法:这是作函数简图常用方法。 4函数sin()y A x k ω?=++的图象与sin y x =图象间的关系:①函数sin y x =的图象纵坐标不变,横坐标向左(?>0)或向右(?<0)平移||?个单位得()sin y x ?=+的图象;②函数()si n y x ?=+图象的纵坐标不变,横坐标变为原来的 1 ω ,得到函数 ()sin y x ω?=+的图象;③函数()sin y x ω?=+图象的横坐标不变,纵坐标变为原来的A 倍,得到函数sin()y A x ω?=+的图象;④函数sin()y A x ω?=+图象的横坐标不变,纵坐标向上(0k >)或向下(0k <),得到()sin y A x k ω?=++的图象。要特别注意,若由 ()sin y x ω=得到()sin y x ω?=+的图象,则向左或向右平移应平移| |? ω 个单位,如 (1)函数2sin(2)14 y x π =--的图象经过怎样的变换才能得到sin y x =的图象?

(完整版)二次函数知识点汇总(全)

二次函数知识点(第一讲) 一、二次函数概念: 1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。 这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数. 2. 二次函数2y ax bx c =++的结构特征: ⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. 二、二次函数的基本形式 1. 二次函数基本形式:2y ax =的性质: a 的绝对值越大,抛物线的开口越小。 2. 2y ax c =+的性质:(上加下减)

3. ()2 y a x h =-的性质:(左加右减) 4. ()2 y a x h k =-+的性质: 三、二次函数图象的平移 1. 平移步骤: 方法一:⑴ 将抛物线解析式转化成顶点式()2 y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k , 处,具体平移方法如下: 【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位 2. 平移规律 在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”.概括成八个字“左加右减,上加下减”.

方法二: ⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成 m c bx ax y +++=2(或m c bx ax y -++=2) ⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成 c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2) 四、二次函数() 2 y a x h k =-+与2 y ax bx c =++的比较 从解析式上看,()2 y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到 前者,即2 2424b ac b y a x a a -? ?=++ ??? ,其中2424b ac b h k a a -=-= ,. 五、二次函数2y ax bx c =++图象的画法 五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方 向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为: 顶点、与y 轴的交点()0c , 、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点). 画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点. 六、二次函数2y ax bx c =++的性质 1. 当0a >时,抛物线开口向上,对称轴为2b x a =-,顶点坐标为2424b ac b a a ??-- ??? ,. 当2b x a <- 时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2b x a =-时,y 有最小值2 44ac b a -. 2. 当0a <时,抛物线开口向下,对称轴为2b x a =-,顶点坐标为2424b ac b a a ??-- ??? ,.当2b x a <- 时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2b x a =-时,y 有最大值244ac b a -. 七、二次函数解析式的表示方法 1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠); 2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠); 3. 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标).

幂函数知识点总结与练习题

幂函数 (1)幂函数的定义: 一般地,函数y x α =叫做幂函数,其中x 为自变量,α是常数. ①图象分布:幂函数图象分布在第一、二、三象限,第四象限无图象.幂函数是偶函数时,图象分布在第一、二象限(图象关于y 轴对称);是奇函数时,图象分布在第一、三象限(图象关于原点对称);是非奇非偶函数时,图象只分布在第一象限. ②过定点:所有的幂函数在(0,)+∞都有定义,并且图象都通过点(1,1). ③单调性:如果0α>,则幂函数的图象过原点,并且在[0,)+∞上为增函数.如果0α<,则幂函数的图象在(0,)+∞上为减函数,在第一象限,图象无限接近x 轴与y 轴. ④奇偶性:当α为奇数时,幂函数为奇函数,当α为偶数时,幂函数为偶函数.当q p α= (其中,p q 互质,p 和q Z ∈),若p 为奇数q 为奇数时,则q p y x =是奇函数,若p 为奇数q 为偶数时,则q p y x =是偶函数,若p 为偶数q 为奇数时,则q p y x =是非奇非偶函数. ⑤图象特征:幂函数,(0,)y x x α =∈+∞,当1α>时,若01x <<,其图象在直线y x =下 方,若1x >,其图象在直线y x =上方,当1α<时,若01x <<,其图象在直线y x =上

方,若1x >,其图象在直线y x =下方. 幂函数练习题 一、选择题: 1.下列函数中既是偶函数又是(,)-∞0上是增函数的是 ( ) A .y x =43 B .y x =32 C .y x =-2 D .y x =-14 2.函数2 -=x y 在区间]2,2 1[上的最大值是 ( ) A . 4 1 B .1- C .4 D .4- 3.下列所给出的函数中,是幂函数的是 ( ) A .3 x y -= B .3 -=x y C .3 2x y = D .13 -=x y 4.函数3 4x y =的图象是 ( ) A . B . C . D . 5.下列命题中正确的是 ( ) A .当0=α时函数α x y =的图象是一条直线 B .幂函数的图象都经过(0,0)和(1,1)点 C .若幂函数αx y =是奇函数,则α x y =是定义域上的增函数 D .幂函数的图象不可能出现在第四象限 6.函数3 x y =和3 1 x y =图象满足 ( ) A .关于原点对称 B .关于x 轴对称 C .关于y 轴对称 D .关于直线x y =对称 7. 函数R x x x y ∈=|,|,满足 ( ) A .是奇函数又是减函数 B .是偶函数又是增函数 C .是奇函数又是增函数 D .是偶函数又是减函数 8.如图1—9所示,幂函数α x y =在第一象限的图象,比较1,,,,,04321αααα的大小( ) A .102431<<<<<αααα B .104321<<<<<αααα 1α 4α 2α

知识讲解_已知三角函数值求角

已知三角函数值求角 【学习目标】 1、掌握已知三角函数值求角的解题步骤; 2、要求学生初步(了解)理解反正弦,反余弦,反正切函数的意义,会由已知角的正弦值、余弦值、正切值求出[]π2,0范围内的角,并能用反正弦,反余弦,反正切的符号表示角或角的集合 【要点梳理】 要点一:反正弦,反余弦,反正切函数的定义 (1)一般地,对于正弦函数sin y x =,如果已知函数值[](1,1)y y ∈-,那么在,22ππ?? -???? 上有唯一的x 值 和它对应,记为arcsin x y =(其中11,22y x ππ-≤≤-≤≤).即arcsin y (||1y ≤)表示,22ππ?? -???? 上正弦等于y 的那个角. (2)在区间[]0,π上符合条件cos (11)x y y =-≤≤的角x ,记为arccos x y =. (3)一般地,如果tan ()x y y R =∈,且,22x ππ??∈- ???,那么对每一个正切值y ,在开区间,22ππ?? - ??? 内, 有且只有一个角x ,使tan x y =.符合上述条件的角x ,记为arctan ,(,)22 x y x ππ =∈-. 要点二:已知正弦值、余弦值和正切值,求角 已知角x 的一个三角函数值求角x ,所得的角不一定只有一个,角的个数要根据角的取值范围来确定,这个范围应该在题目中给定,如果在这个范围内有已知三角函数值的角不止一个,解法可以分为以下几步: 第一步,决定角可能是第几象限角. 第二步,如果函数值为正数,则先求出对应的锐角1x ;如果函数值为负数,则先求出与其绝对值对应的锐角1x . 第三步,如果函数值为负数,则可根据x 可能是第几象限角,得出(0,2π)内对应的角;如果它是第二象限角,那么可表示为-1x +π;如果它是第三或第四象限角,那么可表示为1x +π或-1x +2π. 第四步,如果要求(0,2π)以外对应的角,则可利用终边相同的角有相同的三角函数值这一规律写出结果. 【典型例题】 类型一:已知正弦值、余弦值,求角 例1.已知sin 2 x =- ,(1)x ∈[]0,2π,(2)x R ∈,求角x . 【思路点拨】因为所给的正弦值是负数,所以先求出其绝对值对应的锐角,然后在求出其他象限的角. 【解析】 (1)由sin 2 x =- 知x 的正弦值是个负值,所以x 是第三象限或第四象限的角.因为sin 42π=,所 以第三象限的那个角是544π ππ+ = ,第四象限的角是7244 ππ π-=.

幂函数知识点及典型题

幂函数 知识点 一、幂函数的定义 一般地,形如y x α =(R x ∈)的函数称为幂孙函数,其中x 是自变量,α是常数.如1 12 3 4 ,,y x y x y x -===等 都是幂函数 二、幂函数的图像 幂函数n y x =随着n 的不同,定义域、值域都会发生变化,可以采取按性质和图像分类记忆的方法.熟练掌握n y x =,当11 2,1,,,323 n =±±± 的图像和性质,列表如下. ① 它们都过点()1,1,除原点外,任何幂函数图像与坐标轴都不相交,任何幂函数图像都不过第四象限. ② 11 ,,1,2,332a =时,幂函数图像过原点且在[)0,+∞上是增函数. ③ 1 ,1,22 a =---时,幂函数图像不过原点且在()0,+∞上是减函数. ④ 任何两个幂函数最多有三个公共点. 三、幂函数基本性质 (1)所有的幂函数在(0,+∞)都有定义,并且图象都过点(1,1); (2)α>0时,幂函数的图象都通过原点,并且在[0,+∞]上,是增函数 (3)α<0时,幂函数的图象在区间(0,+∞)上是减函数. 四、解题方法总结 1.在研究幂函数的性质时,通常将分式指数幂化为根式形式,负整指数幂化为分式形式再去进行讨论; 2.对于幂函数y =α x ,我们首先应该分析函数的定义域、值域和奇偶性,由此确定图象的位置,即所在象 限,其次确定曲线的类型,即α<0,0<α<1和α>1三种情况下曲线的基本形状,还要注意α=0,±1三个曲线的形状;对于幂函数在第一象限的图象的大致情况可以用口诀来记忆:“正抛负双,大竖小横”,即α>0(α≠1)时图象是抛物线型;α<0时图象是双曲线型;α>1时图象是竖直抛物线型;0<α<1时图象是横卧抛物线型. 典型题 类型一、求函数解析式 例1.已知幂函数2 223 (1)m m y m m x --=--,当(0)x ∈+, ∞时为减函数,则幂函数y =__________. 类型二、比较幂函数值大小 例2.比较下列各组数的大小. (1)4 3 3.14 -与43 π - (2)35 (- 与35 (- (3)比较0.5 0.8 ,0.5 0.9,0.5 0.9 -的大小 类型三、求参数的范围

二次函数基本知识点梳理及训练(最新)

① 二次函数 考点一 一般地,如果y =ax 2+bx +c(a 、b 、c 是常数,a ≠0),那么y 叫做x 的二次函数. 1.结构特征:①等号左边是函数,右边是关于自变量x 的二次式;②x 的最高次数是2;③二次项系数a ≠0. 2.二次函数的三种基本形式 一般形式:y =ax 2+bx +c(a 、b 、c 是常数,且a ≠0); 顶点式:y =a(x -h)2+k(a ≠0),它直接显示二次函数的顶点坐标是(h ,k); 交点式:y =a(x -x 1)(x -x 2)(a ≠0),其中x 1 、x 2 是图象与x 轴交点的横坐标. 考 点二 二次函数的图象和性质

考点三 二次函数y=ax2+bx+c的图象特征与a、b、c及b2-4ac的符号之间的关系 考点四 任意抛物线y=a(x-h)2+k可以由抛物线y=ax2经过平移得到,具体平移方法如下: 考点五 1.设一般式:y=ax2+bx+c(a≠0). 若已知条件是图象上三个点的坐标.则设一般式y=ax2+bx+c(a≠0),将已知条件代入,求出a、b、c的值.2.设交点式:y=a(x-x1)(x-x2)(a≠0). 若已知二次函数图象与x轴的两个交点的坐标,则设交点式:y=a(x-x1)(x-x2)(a≠0),将第三点的坐标或其他已知条件代入,求出待定系数a,最后将解析式化为一般式. 3.设顶点式:y=a(x-h)2+k(a≠0). 若已知二次函数的顶点坐标或对称轴方程与最大值或最小值,则设顶点式:y=a(x-h)2+k(a≠0),将已知条件代入,求出待定系数化为一般式 考点六 二次函数的应用包括两个方法 ①用二次函数表示实际问题变量之间关系. ②用二次函数解决最大化问题(即最值问题),用二次函数的性质求解,同时注意自变量的取值范围. (1)二次函数y=-3x2-6x+5的图象的顶点坐标是() A.(-1,8) B.(1,8) C.(-1,2)D.(1,-4) (2)将二次函数y=x2-2x+3化为y=(x-h)2+k的形式,结果为() A.y=(x+1)2+4 B.y=(x-1)2+4 C.y=(x+1)2+2 D.y=(x-1)2+2 (3)函数y=x2-2x-2的图象如下图所示,根据其中提供的信息,可求得使y≥1成立的x的取值范围是() ②

指数、对数及幂函数知识点小结及习题

指数函数、对数函数及幂函数 Ⅰ.指数与指数函数 1.指数运算法则:(1)r s r s a a a +=; (2)() s r rs a a =; (3)()r r r ab a b =; (4)m n m n a a =; (5)m n n m a a - = (6),||,n n a n a a n ?=? ?奇偶 2. 指数函数: 【基础过关】 类型一:指数运算的计算题 此类习题应牢记指数函数的基本运算法则,注意分数指数幂与根式的互化,在根式运算或根 指数函数 01 图 象 表达式 x y a = 定义域 R 值 域 (0,)+∞ 过定点 (0,1) 单调性 单调递减 单调递增

式与指数式混合运算时,将根式化为指数运算较为方便 1 、5+的平方根是______________________ 2、 已知2=n a ,16=mn a ,则m 的值为………………………………………………( ) A .3 B .4 C .3 a D .6 a 3、 化简 (b a b +-的结果是………………………………( ) A 、a - 、a a D 、2b a + 4、已知0.001a = ,求:413 3 223 3 8(14a a b a b -÷-+=_________________ 5、已知1 3x x -+=,求(1)1 12 2 x x - +=________________(2)332 2 x x -+=_________________ 6 、若y y x x -+=,其中1,0x y ><,则y y x x --=______________ 类型二:指数函数的定义域、表达式 指数函数的定义域主要涉及根式的定义域,注意到负数没有偶次方根;此外应牢记指数函数的图像及性质 函数) (x f a y =的定义域与)(x f 的定义域相同 1、若集合A={ 113x x y -= },B={ x s A B =?= 则____________________ 2、如果函数()y f x =的定义域是[1,2],那么函数 1(2)x y f -=的定义域是________ 3、下列函数式中,满足f(x+1)=1 2f(x)的是……………………………………………( ) A 、()1 12x + B 、 1 4x + C 、2x D 、

二次函数知识点总结及典型题目

二次函数知识点总结及典型题目 一.定义: 一般地,如果c b a c bx ax y ,,(2++=是常数,)0≠a ,那么y 叫做x 的二次函数. 二次函数的图象是抛物线,所以也叫抛物线y=ax2+bx+c ;抛物线关于对称轴对称且以对称轴为界,一半图象上坡,另一半图象下坡;其中c 叫二次函数在y 轴上的截距, 即二次函数图象必过(0,c )点. 二.二次函数2ax y =的性质 (1)抛物线2ax y =的顶点是坐标原点,对称轴是y 轴. (2)函数2ax y =的图像与a 的符号关系. ①当0>a 时?抛物线开口向上?顶点为其最低点; ②当0

1.4.1正弦函数、余弦函数的图象知识点归纳与练习(含详细答案)

第一章 三角函数 §1.4 三角函数的图象与性质 1.4.1 正弦函数、余弦函数的图象 课时目标 1.了解正弦函数、余弦函数的图象.2.会用“五点法”画出正弦函数、余弦函数 的图象. 1.正弦曲线、余弦曲线 2.“五点法”画图 画正弦函数y =sin x ,x ∈[0,2π]的图象,五个关键点是_________________________; 画余弦函数y =cos x ,x ∈[0,2π]的图象,五个关键点是__________________________. 3.正、余弦曲线的联系 依据诱导公式cos x =sin ????x +π2,要得到y =cos x 的图象, 只需把y =sin x 的图象向________平移π 2个单位长度即可. 知识点归纳: 1.正、余弦曲线在研究正、余弦函数的性质中有着非常重要的应用,是运用数形结合思想解决三角函数问题的基础. 2.五点法是画三角函数图象的基本方法,要熟练掌握,与五点法作图有关的问题是高考常考知识点之一. 一、选择题 1.函数y =sin x (x ∈R )图象的一条对称轴是( ) A .x 轴 B .y 轴 C .直线y =x D .直线x =π 2 2.函数y =cos x (x ∈R )的图象向右平移π 2 个单位后,得到函数y =g (x )的图象,则g (x )的解析 式为( ) A .-sin x B .sin x C .-cos x D .cos x

3.函数y =-sin x ,x ∈[-π2,3π 2 ]的简图是( ) 4.在(0,2π)内使sin x >|cos x |的x 的取值范围是( ) A.????π4,3π4 B.????π4,π2∪????5π4,3π2 C.????π4,π2 D.??? ?5π4,7π4 5.若函数y =2cos x (0≤x ≤2π)的图象和直线y =2围成一个封闭的平面图形,则这个封闭图形的面积是( ) A .4 B .8 C .2π D .4π 6.方程sin x =lg x 的解的个数是( ) 7.函数y =sin x ,x ∈R 的图象向右平移π 2个单位后所得图象对应的函数解析式是__________. 8.函数y =2cos x +1的定义域是________________. 9.方程x 2-cos x =0的实数解的个数是________. 10.设0≤x ≤2π,且|cos x -sin x |=sin x -cos x ,则x 的取值范围为________. 三、解答题 11.利用“五点法”作出下列函数的简图: (1)y =1-sin x (0≤x ≤2π); (2)y =-1-cos x (0≤x ≤2π).

相关主题
文本预览
相关文档 最新文档