当前位置:文档之家› 20届高考数学一轮复习讲义(提高版) 专题7.4 二项分布(解析版)

20届高考数学一轮复习讲义(提高版) 专题7.4 二项分布(解析版)

20届高考数学一轮复习讲义(提高版) 专题7.4 二项分布(解析版)
20届高考数学一轮复习讲义(提高版) 专题7.4 二项分布(解析版)

第四讲 二项式分布

一.条件概率及其性质 (1)条件概率的定义

对于两个事件A 和B ,在已知事件B 发生的条件下事件A 发生的概率,称为事件B 发生的条件下事件A 的条件概率.

(2)条件概率的求法

求条件概率除了可借助定义中的公式,还可以借助古典概率公式,即P (B |A )=

P (AB )

P (A )

. 二.二项分布

在n 次独立重复试验中,用X 表示事件A 发生的次数,设每次试验中事件A 发生的概率为p ,则P (X =k )=C k n p k

(1-p )

n -k

(k =0,1,2,…,n ),此时称随机变量X 服从二项分布,记为X ~B (n ,p ).

考向一 条件概率

【例1】已知盒中装有3只螺口灯泡与7只卡口灯泡,这些灯泡的外形与功率都相同且灯口向下放着,现需要一只卡口灯泡,电工师傅每次从中任取一只且不放回,则在他第1次取到的是螺口灯泡的条件下,第2次取到的是卡口灯泡的概率为________. 【答案】 79

【解析】 方法一 设事件A 为“第1次取到的是螺口灯泡”,事件B 为“第2次取到的是卡口灯泡”, 则P (A )=310,P (AB )=310×79=730,则所求概率为P (B |A )=P (AB )P (A )=7

30310

=7

9

.

方法二 第1次取到螺口灯泡后还剩余9只灯泡,其中有7只卡口灯泡,故第2次取到卡口灯泡的概率为C 1

7

C 1

9=79

.

【举一反三】

1.在100件产品中有95件合格品,5件不合格品,现从中不放回地取两次,每次任取一件,则在第一次取到不合格品后,第二次取到不合格品的概率为________.

【答案】

499

【解析】 方法一 (应用条件概率公式求解)设事件A 为“第一次取到不合格品”,事件B 为“第二次取到不合格品”,则所求的概率为P (B |A ),

因为P (AB )=C 25

C 2100=1495,P (A )=C 15

C 1100=120,所以P (B |A )=P (AB )P (A )=1

495120

=4

99

.

方法二 (缩小样本空间求解)第一次取到不合格品后,也就是在第二次取之前,还有99件产品,其中有4件不合格品,因此第二次取到不合格品的概率为4

99

.

2. 某险种的基本保费为a (单位:元),继续购买该险种的投保人称为续保人,续保人的本年度的保费与其上年度出险次数的关联如下:

设该险种续保人一年内出险次数与相应概率如下:

(1)求续保人本年度的保费高于基本保费的概率;

(2)若续保人本年度的保费高于基本保费,求其保费比基本保费高出60%的概率; (3)求续保人本年度的平均保费与基本保费的比值.

【答案】(1)0.55 (2)

3

11

. (3)1.23. 【解析】(1)设A 表示事件“续保人本年度的保费高于基本保费”,则事件A 发生当且仅当一年内出险次数大于1,故P (A )=0.2+0.2+0.1+0.05=0.55.

(2)设B 表示事件“续保人本年度的保费比基本保费高出60%”,则事件B 发生当且仅当一年内出险次数大于3,故P (B )=0.1+0.05=0.15.

又P (AB )=P (B ),故P (B |A )=

P (AB )P (A )=P (B )P (A )=0.150.55=311.因此所求概率为3

11

. (3)平均保费E (A )=0.85a ×0.3+0.15a +1.25a ×0.2+1.5a ×0.2+1.75a ×0.1+2a ×0.05=1.23a , 因此续保人本年度的平均保费与基本保费的比值为1.23a

a

=1.23

考向二 二项分布

【例2】为研究家用轿车在高速公路上的车速情况,交通部门随机选取100名家用轿车驾驶员进行调查,得到其在高速公路上行驶时的平均车速情况为:在55名男性驾驶员中,平均车速超过100 km/h 的有40人,不超过100 km/h 的有15人;在45名女性驾驶员中,平均车速超过100 km/h 的有20人,不超过100 km/h 的有25人.

(1)在被调查的驾驶员中,从平均车速不超过100 km/h 的人中随机抽取2人,求这2人恰好有1名男性驾驶员和1名女性驾驶员的概率;

(2)以上述样本数据估计总体,从高速公路上行驶的家用轿车中随机抽取3辆,记这3辆车平均车速超过100 km/h 且为男性驾驶员的车辆为X ,求X 的概率分布.

【答案】(1)25

52

(2)见解析

【解析】 (1)平均车速不超过100 km/h 的驾驶员有40人,从中随机抽取2人的方法总数为C 2

40,记“这2人恰好有1名男性驾驶员和1名女性驾驶员”为事件A ,则事件A 所包含的基本事件数为C 1

15C 125,所以所求的概率P (A )=C 1

15C 1

25C 240=15×2520×39=25

52

.

(2)根据样本估计总体的思想,从总体中任取1辆车,平均车速超过100 km/h 且为男性驾驶员的概率为

40

100=25,故X ~B ? ????3,25.所以P (X =0)=C 03? ????250? ????353

=27125

, P (X =1)=C 13? ????25? ????

352=

54

125, P (X =2)=C 23? ????252? ????

35=36

125,P (X =3)=C 33? ????253? ????

350=8

125

. 所以X 的概率分布为

【举一反三】

1.某兴趣小组在科学馆的帕斯卡三角仪器前进行探究实验.如图所示,每次使一个实心小球从帕斯卡三角

仪器的顶部入口落下,当它在依次碰到每层的菱形挡板时,会等可能地向左或者向右落下,在最底层的7个出口处各放置一个容器接住小球,该小组连续进行200次试验,并统计容器中的小球个数得到柱状图:

(Ⅰ)用该实验来估测小球落入4号容器的概率,若估测结果的误差小于,则称该实验是成功的.试问:该兴趣小组进行的实验是否成功?(误差)

(Ⅱ)再取3个小球进行试验,设其中落入4号容器的小球个数为,求的分布列与数学期望.(计算时采用概率的理论值)

【答案】(Ⅰ)是成功的;(Ⅱ)详见解析.

【解析】(Ⅰ)小球落入4号容器的概率的理论值为.

小球落入4号容器的概率的估测值为.

误差为,故该实验是成功的.

(Ⅱ)由(Ⅰ)可得,每个小球落入4号容器的概率为,未落入4号容器的概率为.,

.

的分布列为

0 1 2 3

由于,所以.

2.某市交通管理部门为了解市民对机动车“单双号限行”的态度,随机采访了100名市民,将他们的意见和是否拥有私家车的情况进行了统计,得到了如下的列联表:

赞同限行不赞同限行合计

没有私家车15

有私家车45

合计100

已知在被采访的100人中随机抽取1人且抽到“赞同限行”者的概率是.

(1)请将上面的列联表补充完整;

(2)根据上面的列联表判断能否在犯错误的概率不超过0.10的前提下认为“对限行的态度与是否拥有私家车有关”;

(3)将上述调查所得到的频率视为概率.现在从该市大量市民中,采用随机抽样方法每次抽取1名市民,抽取3次,记被抽取的3名市民中的“赞同限行”人数为.若每次抽取的结果是相互独立的,求的分布列、

期望和方差.

附:参考公式:,其中.

临界值表:

0.15 0.10 0.05 0.025 0.10 0.005 0.001

2.072 2.706

3.841 5.024 6.635 7.879 10.828 【答案】(1)见解析;(2) 见解析;(3)见解析

【解析】(1)因为在被采访的100人中随机抽取1人且抽到“赞同限行”者的概率是,

所以“赞同限行”的市民共75人,其中没有私家车的30人,

从而,所给列联表补充如下:

赞同限行不赞同限行合计

没有私家车30 15 45

有私家车45 10 55

合计75 25 100

(2)依据表中数据,易得的观测值为

.

因为,

因此,在犯错误概率不超过0.10的前提下,能够判断市民“对限行的态度与是否拥有私家车有关” .

(3)由题意,得~,从而

::

;.

所以的分布列为

X 0 1 2 3

P

故:.

考向三超几何分布与二项分布区分

【例3】某地区为调查新生婴儿健康状况,随机抽取6名8个月龄婴儿称量体重(单位:千克),称量结果分别为6,8,9,9,9.5,10.已知8个月龄婴儿体重超过7.2千克,不超过9.8千克为“标准体重”,否则为“不标准体重”.

(1)根据样本估计总体思想,将频率视为概率,若从该地区全部8个月龄婴儿中任取3名进行称重,则至少有2名婴儿为“标准体重”的概率是多少?

(2)从抽取的6名婴儿中,随机选取4名,设X表示抽到的“标准体重”人数,求X的分布列和数学期望.

【答案】(1)

20

()

27

P A= (2)见解析

【解析】(1)抽取的6名婴儿中“标准体重”的频率为42 63 =

故从该地区中任取1名婴儿为“标准体重”的概率为:2 3

设“在该地区8个月龄婴儿中任取3名,至少2名为‘标准体重’”为事件A

则:()2130

2333212120333327

P A C C ????????=+= ? ? ? ?

???????? (2)由题意知,X 的可能取值为2,3,4

()222446622155C C P X C ∴====;()1324468315C C P X C ===;()04244

61

415

C C P X C === X ∴的分布列为:

()234515153

E X ∴=?+?+?=

【举一反三】

1.某种水果按照果径大小可分为四类:标准果、优质果、精品果、礼品果.某采购商从采购的一批水果中随机抽取100个,利用水果的等级分类标准得到的数据如下:

(1)若将频率是为概率,从这100个水果中有放回地随机抽取4个,求恰好有2个水果是礼品果的概率.(结果用分数表示)

(2)用样本估计总体,果园老板提出两种购销方案给采购商参考. 方案1:不分类卖出,单价为20元/kg . 方案2:分类卖出,分类后的水果售价如下:

从采购单的角度考虑,应该采用哪种方案?

(3)用分层抽样的方法从这100个水果中抽取10个,再从抽取的10个水果中随机抽取3个,X 表示抽取的是精品果的数量,求X 的分布列及数学期望()E X .

【答案】(1)

96

625

;(2)第一种方案;(3)详见解析 【解析】(1)设从100个水果中随机抽取一个,抽到礼品果的事件为A ,则()201

1005

P A =

= 现有放回地随机抽取4个,设抽到礼品果的个数为X ,则1~4,5X B ??

???

∴恰好抽到2个礼品果的概率为:()22

244196255625

P X C ????=== ? ?

???? (2)设方案2的单价为ξ,则单价的期望值为:

()1342165488481618222420.61010101010

E ξ+++=?

+?+?+?== ()20E ξ>

∴从采购商的角度考虑,应该采用第一种方案

(3)用分层抽样的方法从100个水果中抽取10个,则其中精品果4个,非精品果6个 现从中抽取3个,则精品果的数量X 服从超几何分布,所有可能的取值为:0,1,2,3

则()36310106C P X C ===;()2164310112C C P X C ===;()12643103210C C P X C ===;()3

43

101

330

C P X C ===

X

∴的分布列如下:

X0123

P

1

6

1

2

3

10

1

30

()0123

6210305

E X

∴=?+?+?+?=

2.某机构对A市居民手机内安装的“APP”(英文Application的缩写,一般指手机软件)的个数和用途进行调研,在使用智能手机的居民中随机抽取了100人,获得了他们手机内安装APP的个数,整理得到如图所示频率分布直方图:

(Ⅰ)从A市随机抽取一名使用智能手机的居民,试估计该居民手机内安装APP的个数不低于30的概率;(Ⅱ)从A市随机抽取3名使用智能手机的居民进一步做调研,用X表示这3人中手机内安装APP的个数在[20,40)的人数.

①求随机变量X的分布列及数学期望;

②用Y1表示这3人中安装APP个数低于20的人数,用Y2表示这3人中手机内安装APP的个数不低于40的人数.试比较EY1和EY2的大小.(只需写出结论)

【答案】(Ⅰ)0.48;(Ⅱ)①详见解析;②.

【解析】(Ⅰ)由得.

从市随机抽取一名使用智能手机的居民,该居民手机内安装“APP”的数量不低于30的概率估计为

(Ⅱ)①从市随机抽取一名使用智能手机的居民,该居民手机内安装“APP”的数量在

的概率估计为.

所有的可能取值为0,1,2,3,则X∽B(3,).

.

所以的分布列为

0 1 2 3

所以的数学期望为

.(或者.)

②.

考向四二项分布求最值

【例4】.一年之计在于春,一日之计在于晨,春天是播种的季节,是希望的开端.某种植户对一块地的

个坑进行播种,每个坑播3粒种子,每粒种子发芽的概率均为,且每粒种子是否发芽相互独立.对每一个坑而言,如果至少有两粒种子发芽,则不需要进行补播种,否则要补播种.

(1)当取何值时,有3个坑要补播种的概率最大?最大概率为多少?

(2)当时,用表示要补播种的坑的个数,求的分布列与数学期望.

【答案】(1)当或时,有3个坑要补播种的概率最大,最大概率为;(2)见解析.

【解析】(1)对一个坑而言,要补播种的概率,

有3个坑要补播种的概率为.

欲使最大,只需,

解得,因为,所以

当时,;

当时,;

所以当或时,有3个坑要补播种的概率最大,最大概率为.

(2)由已知,的可能取值为0,1,2,3,4.,

所以的分布列为

0 1 2 3 4

的数学期望.

【举一反三】

1.为了引导居民合理用电,国家决定实行合理的阶梯电价,居民用电原则上以住宅为单位(一套住宅为一户).

某市随机抽取10户同一个月的用电情况,得到统计表如下:

(1)若规定第一阶梯电价每度0.5元,第二阶梯超出第一阶梯的部分每度0.6元,第三阶梯超出第二阶梯每度0.8元,试计算居民用电户用电410度时应交电费多少元?

(2)现要在这10户家庭中任意选取3户,求取到第二阶梯电量的户数的分布列与期望;

(3)以表中抽到的10户作为样本估计全市居民用电,现从全市中依次抽取10户,若抽到户用电量为第一阶梯的可能性最大,求的值.

【答案】(1)元;(2)分布列见解析,期望为;(3).

【解析】(1)元

(2)设取到第二阶梯电量的用户数为,可知第二阶梯电量的用户有3户,则可取0,1,2,3,

,,,

故的分布列为

(3)可知从全市中抽取10户的用电量为第一阶梯,满足,

可知()

解得:,

∴当时概率最大,

∴.

1.4个高尔夫球中有3个合格、1个不合格,每次任取一个,不放回地取两次.若第一次取到合格的高尔夫球,则第二次取到合格高尔夫球的概率为( )

A.1

2

B.

2

3

C.

3

4

D.

4

5

【答案】B

【解析】记事件A={第一次取到的是合格高尔夫球},

事件B={第二次取到的是合格高尔夫球}.

由题意可得事件B发生所包含的基本事件数n(A∩B)=3×2=6,事件A发生所包含的基本事件数n(A)=3

×3=9,所以P(B|A)=

()62

()93

n A B

n A

?

==.故选:B

2.小明早上步行从家到学校要经过有红绿灯的两个路口,根据经验,在第一个路口遇到红灯的概率为0.4,在第二个路口遇到红灯的概率为0.5,在两个路口连续遇到红灯的概率是0.2.某天早上小明在第一个路口遇到了红灯,则他在第二个路口也遇到红灯的概率是()

A.0.2 B.0.3 C.0.4 D.0.5

【答案】D

【解析】记“小明在第一个路口遇到红灯”为事件A,“小明在第二个路口遇到红灯”为事件B

【运用套路】---纸上得来终觉浅,绝知此事要躬行

“小明在第一个路口遇到了红灯,在第二个路口也遇到红灯”为事件C 则()0.4P A =,()0.5P B =,()0.2P AB = ()0.2

(|)0.5

()0.4

P AB P B A P A ===故选D. 3.某学生在上学路上要经过4个路口,假设在各路口是否遇到红灯是相互独立的,遇到红灯的概率都是,遇到红灯时停留的时间都是2 min ,这名学生在上学路上因遇到红灯停留的总时间Y 的期望为( )

A .

B .1

C .

D .

【答案】D

【解析】由题可得,遇到红灯的次数服从二项分布

即:,所以

所以因遇到红灯停留的总时间Y 的期望为故选:D

4.某次考试共有12个选择题,每个选择题的分值为5分,每个选择题四个选项且只有一个选项是正确的,学生对12个选择题中每个题的四个选择项都没有把握,最后选择题的得分为分,学生对12个选择题中每个题的四个选项都能判断其中有一个选项是错误的,对其它三个选项都没有把握,选择题的得分为分,则

的值为( )

A .

B .

C .

D .

【答案】A

【解析】设学生答对题的个数为,则得分(分),,,所以,同理设学生答对题的个数为,可知,

,所以

,所以

.故选A.

5.从1,2,3,4,5,6,中任取2个不同的数,事件A=“取到的两个数之和为偶数”,事件B=”取到的两个数均为偶数”,则(|)

P B A=_______.

【答案】1 2

【解析】依题意,事件A所包含的基本事件为13,15,24,26,35,46共六种,而事件AB所包含的基本事件

为24,26,46共三种,故()31

|

62

P B A==.

6.“微信运动”是由腾讯开发的一个类似计步数据库的公众账号.用户可以通过关注“微信运动”公众号查看自己及好友每日行走的步数、排行榜,也可以与其他用户进行运动量的或点赞.现从某用户的“微信运动”朋友圈中随机选取40人,记录他们某一天的行走步数,并将数据整理如下:

步数/步0~2000 2001~5000 5001~8000 8001~10000 10000以上

男性人数/人 1 6 9 5 4

女性人数/人0 3 6 4 2

规定:用户一天行走的步数超过8000步时为“运动型”,否则为“懈怠型”.

(1)将这40人中“运动型”用户的频率看作随机抽取1人为“运动型”用户的概率.从该用户的“微信运动”朋友圈中随机抽取4人,记为“运动型”用户的人数,求和的数学期望;

(2)现从这40人中选定8人(男性5人,女性3人),其中男性中“运动型”有3人,“懈怠型”有2人,女性中“运动型”有2人,“懈怠型”有1人.从这8人中任意选取男性3人、女性2人,记选到“运动型”的人数为,求的分布列和数学期望.

【答案】(1),(2)分布列见解析,

【解析】(1)由题意可知,“运动型”的概率为,

且 ,则,

.

(2)由题意可知,的所有取值为,

相应的概率分别为:

,,

,,

所以的分布列为:

2 3 4 5

.

7.为了调查某款电视机的寿命,研究人员对该款电视机进行了相应的测试,将得到的数据分组:,,,,,并统计如图所示:

并对不同性别的市民对这款电视机的购买意愿作出调查,得到的数据如下表所示:

愿意购买该款电视机不愿意购买该款电视机总计

男性800 1000

女性600

总计1200

(1)根据图中的数据,试估计该款电视机的平均寿命;

(2)根据表中数据,能否在犯错误的概率不超过0.001的前提下认为“是否愿意购买该款电视机”与“市民的性别”有关;

(3)以频率估计概率,若在该款电视机的生产线上随机抽取4台,记其中寿命不低于4年的电视机的台数为X,求X的分布列及数学期望.

参考公式及数据:,其中.

0.100 0.050 0.010 0.001

2.706

3.841 6.635 10.828

【答案】(1)该款电视机的平均寿命约为7.76年;(2)在犯错误的概率不超过0.001的前提下认为“是否愿意购买该款电视机”与“市民的性别”有关.;(3).

【解析】(1)

故该款电视机的平均寿命约为7.76年.

(2)依题意,完善表中的数据如下表所示:

愿意购买该款电视机不愿意购买该款电视机总计

男性800 200 1000

女性400 600 1000

总计1200 800 2000

计算得的观测值为.

故能在犯错误的概率不超过0.001的前提下认为“是否愿意购买该款电视机”与“市民的性别”有关. (3)依题意,,

故,,,

,.

故X的分布列为

X 0 1 2 3 4

P

.

8.某地因受天气,春季禁渔等因素影响,政府规定每年的7月1日以后的100天为当年的捕鱼期.某渔业捕捞队对吨位为的20艘捕鱼船一天的捕鱼量进行了统计,如下表所示:

捕鱼量(单位:吨)

频数 2 7 7 3 1

高考数学选修-随机变量及其分布-二项分布及其应用

高考数学选修 二项分布及其应用 知识点 一、条件概率 1.一般的,设A,B 为两个事件,且0)(>A P ,则称) () ()|(A P AB P A B P = 为在事件A 发生的条件下,事件B 发生的条件概率。)|(A B P 读作:A 发生的条件下B 发生的概率。 2.条件概率的性质: (1)1)|(0≤≤A B P ; (2)必然事件的条件概率为1;不可能事件的条件概率为0. (3)若事件B 与C 互斥,)|()|()|(A C P A B P A C B P +=Y 二、相互独立事件 1.设A ,B 为两个事件,若)()()(B P A P AB P =,则称事件A 与事件B 相互独立。 2.条件概率的性质: (1)若事件A 与B 相互独立,则)()|(B P A B P =,)()|(A P B A P =,)()()(B P A P AB P =。 (2)如果事件A 与B 相互独立,则A 与B 、A 与B 、A 与B 三、独立重复试验与二项分布 1.独立重复试验: 一般地,在相同条件下重复做的n 次试验称为n 次独立重复试验。 2.二项分布: 一般地,在n 次独立重复试验中,用X 表示事件A 发生的次数,设每次试验中事件A 发生的概率为p ,则 n k p p C k X P k n k k n ,,2,1,0,)1()(Λ=-==-。此时称随机变量X 服从二项分布,记作),(~p n B X

题型一 条件概率 【例1】已知P (B |A )=13,P (A )=2 5,则P (AB )等于( ) A.56 B.910 C.2 15 D.1 15 【例2】抛掷一枚质地均匀的骰子所得点数的样本空间为Ω={1,2,3,4,5,6},令事件A ={2,3,5},B ={1,2,4,5,6},则P (A |B )等于 ( ) A.25 B.12 C.35 D.4 5 【例3】任意向x 轴上(0,1)这一区间内掷一个点,问: (1)该点落在区间????0,1 3内的概率是多少? (2)在(1)的条件下,求该点落在???? 15,1内的概率. 【过关练习】 1.电视机的使用寿命与显像管开关的次数有关.某品牌的电视机的显像管开关了10 000次后还能继续使用的概率是0.80,开关了1 5 000次后还能继续使用的概率是0.60,则已经开关了10 000次的电视机显像管还能继续使用到15 000次的概率是( ) A .0.75 B .0.60 C .0.48 D .0.20 2.设A ,B 为两个事件,若事件A 和B 同时发生的概率为3 10,在事件A 发生的条件下,事件B 发生的概率 为1 2 ,则事件A 发生的概率为________. 3.如图,EFGH 是以O 为圆心,半径为1的圆内接正方形,将一颗豆子随机地扔到该圆内,用A 表示事件“豆子落在正方形EFGH 内”,B 表示事件“豆子落在扇形OHE (阴影部分)内”,则P (B |A )=________.

[数学]数学高考压轴题大全

1、(本小题满分14分) 已知函数. (1)当时,如果函数仅有一个零点,求实数的取值范围; (2)当时,试比较与的大小; (3)求证:(). 2、设函数,其中为常数. (Ⅰ)当时,判断函数在定义域上的单调性; (Ⅱ)若函数的有极值点,求的取值范围及的极值点; (Ⅲ)当且时,求证:. 3、在平面直角坐标系中,已知椭圆.如图所示,斜率为且不过原 点的直线交椭圆于,两点,线段的中点为,射线交椭圆于点,交直 线于点. (Ⅰ)求的最小值; (Ⅱ)若?,(i)求证:直线过定点;

(ii )试问点,能否关于轴对称?若能,求出 此时 的外接圆方程;若不能,请说明理由. 二、计算题 (每空? 分,共? 分) 4 、设函数 的图象在点处的切线的斜率 为 ,且函数为偶函数.若函数 满足下列条件:①;② 对一切实数 ,不等式恒成立. (Ⅰ)求函数的表达式; (Ⅱ)求证: . 5 、已知函数: (1 )讨论函数的单调性; (2) 若函数 的图像在点 处的切线的倾斜角为,问:在什么范围取值 时,函数 在区间上总存在极值? (3)求证:.

6、已知函数=,. (Ⅰ)求函数在区间上的值域; (Ⅱ)是否存在实数,对任意给定的,在区间上都存在两个不同的, 使得成立.若存在,求出的取值范围;若不存在,请说明理由; (Ⅲ)给出如下定义:对于函数图象上任意不同的两点,如果对 于函数图象上的点(其中总能使得 成立,则称函数具备性质“”,试判断函数是不是具 备性质“”,并说明理由. 7、已知函数 (Ⅰ)若函数是定义域上的单调函数,求实数的最小值; (Ⅱ)方程有两个不同的实数解,求实数的取值范围; (Ⅲ)在函数的图象上是否存在不同两点,线段的中点的横坐标 为,有成立?若存在,请求出的值;若不存在,请说明理由. 8、已知函数: ⑴讨论函数的单调性;

最新高考数学压轴题专题训练(共20题)[1]

1.已知点)1,0(F ,一动圆过点F 且与圆8)1(2 2 =++y x 内切. (1)求动圆圆心的轨迹C 的方程; (2)设点)0,(a A ,点P 为曲线C 上任一点,求点A 到点P 距离的最大值)(a d ; (3)在10<

3.已知点A (-1,0),B (1,0),C (- 5712,0),D (5712 ,0),动点P (x , y )满足AP →·BP → =0,动点Q (x , y )满足|QC →|+|QD →|=10 3 ⑴求动点P 的轨迹方程C 0和动点Q 的轨迹方程C 1; ⑵是否存在与曲线C 0外切且与曲线C 1内接的平行四边形,若存在,请求出一个这样的平行四边形,若不存在,请说明理由; ⑶固定曲线C 0,在⑵的基础上提出一个一般性问题,使⑵成为⑶的特例,探究能得出相应结论(或加强结论)需满足的条件,并说明理由。 4.已知函数f (x )=m x 2+(m -3)x +1的图像与x 轴的交点至少有一个在原点右侧, ⑴求实数m 的取值范围; ⑵令t =-m +2,求[1 t ];(其中[t ]表示不超过t 的最大整数,例如:[1]=1, [2.5]=2, [-2.5]=-3) ⑶对⑵中的t ,求函数g (t )=t +1t [t ][1t ]+[t ]+[1t ]+1的值域。

高考理科数学练习训练题n次独立重复试验与二项分布含解析理

高考理科数学复习训练题 (建议用时:60分钟) A 组 基础达标 一、选择题 1.甲、乙、丙三人进行象棋比赛,每两人比赛一场,共赛三场.每场比赛没有平局,在每一场比赛中,甲胜乙的概率为23,甲胜丙的概率为14,乙胜丙的概率为1 5.则甲获第一名且丙 获第二名的概率为( ) A.11 12 B.16 C.130 D.215 D [设“甲胜乙”“甲胜丙”“乙胜丙”分别为事件A ,B ,C ,事件“甲获第一名且丙获第二名”为A ∩B ∩–C ,所以P (甲获第一名且丙获第二名)=P (A ∩B ∩–C )=P (A )P (B )P (– C )=23×14×45=215 .] 2.甲、乙两人练习射击,命中目标的概率分别为12和1 3,甲、乙两人各射击一次,有下列 说法:①目标恰好被命中一次的概率为12+13;②目标恰好被命中两次的概率为12×1 3;③目标 被命中的概率为12×23+12×13;④目标被命中的概率为1-12×2 3 ,以上说法正确的是( ) A .②③ B .①②③ C .②④ D .①③ C [对于说法①,目标恰好被命中一次的概率为12×23+12×13=1 2,所以①错误,结合选项 可知,排除B 、D ;对于说法③,目标被命中的概率为12×23+12×13+12×1 3,所以③错误,排除 A.故选C.] 3.两个实习生每人加工一个零件,加工为一等品的概率分别为23和3 4,两个零件是否加工 为一等品相互独立,则这两个零件中恰有一个一等品的概率为( ) A.12 B.512

C.14 D.16 B [设事件A :甲实习生加工的零件为一等品; 事件B :乙实习生加工的零件为一等品, 则P (A )=23,P (B )=3 4 , 所以这两个零件中恰有一个一等品的概率为 P (A B -)+P (A -B )=P (A )P (B -)+P (A - )P (B )= 23×? ????1-34+? ????1-23×34=5 12.] 4.某种电路开关闭合后会出现红灯或绿灯闪烁,已知开关第一次闭合后出现红灯的概率为12,两次闭合后都出现红灯的概率为1 5,则开关在第一次闭合后出现红灯的条件下第二次闭合后出现红灯的概率为( ) A.1 10 B.15 C.25 D.12 C [设“开关第一次闭合后出现红灯”为事件A ,“开关第二次闭合后出现红灯”为事件B ,则“开关两次闭合后都出现红灯”为事件AB ,“在第一次闭合后出现红灯的条件下第二次闭合后出现红灯”为事件B |A ,由题意得P (B |A )= P AB P A =2 5 ,故选C.] 5.(2018·绵阳诊断)某射手每次射击击中目标的概率是2 3,且各次射击的结果互不影 响.假设这名射手射击5次,则有3次连续击中目标,另外2次未击中目标的概率为( ) A.89 B.7381 C.881 D.19 C [因为该射手每次射击击中目标的概率是23,所以每次射击不中的概率为1 3,设“第i 次射击击中目标”为事件A i (i =1,2,3,4,5),“该射手在5次射击中,有3次连续击中目标,另外2次未击中目标”为事件A ,则P (A )=P (A 1A 2A 3–A 4– A 5)+P (–A 1A 2A 3A 4–A 5)+P (–A 1– A 2A 3A 4A 5) =? ????233 ×? ????132 +13×? ????233 ×13+? ????132 ×? ????233 =881 .] 二、填空题

高考数学压轴题专题训练20道

高考压轴题专题训练 1. 已知点)1,0(F ,一动圆过点F 且与圆8)1(2 2 =++y x 内切. (1)求动圆圆心的轨迹C 的方程; (2)设点)0,(a A ,点P 为曲线C 上任一点,求点A 到点P 距离的最大值)(a d ; (3)在10<

高考数学-随机变量及其分布-2-二项分布及其应用

专项- 二项分布及其应用 知识点 一、条件概率 1.一般的,设A,B 为两个事件,且0)(>A P ,则称) () ()|(A P AB P A B P = 为在事件A 发生的条件下,事件B 发生的条件概率。)|(A B P 读作:A 发生的条件下B 发生的概率。 2.条件概率的性质: (1)1)|(0≤≤A B P ; (2)必然事件的条件概率为1;不可能事件的条件概率为0. (3)若事件B 与C 互斥,)|()|()|(A C P A B P A C B P +=Y 二、相互独立事件 1.设A ,B 为两个事件,若)()()(B P A P AB P =,则称事件A 与事件B 相互独立。 2.条件概率的性质: (1)若事件A 与B 相互独立,则)()|(B P A B P =,)()|(A P B A P =,)()()(B P A P AB P =。 (2)如果事件A 与B 相互独立,则A 与B 、A 与B 、A 与B 三、独立重复试验与二项分布 1.独立重复试验: 一般地,在相同条件下重复做的n 次试验称为n 次独立重复试验。 2.二项分布: 一般地,在n 次独立重复试验中,用X 表示事件A 发生的次数,设每次试验中事件A 发生的概率为p ,则 n k p p C k X P k n k k n ,,2,1,0,)1()(Λ=-==-。此时称随机变量X 服从二项分布,记作),(~p n B X

题型一 条件概率 【例1】已知P (B |A )=13,P (A )=2 5,则P (AB )等于( ) A.56 B.910 C.2 15 D.1 15 【例2】抛掷一枚质地均匀的骰子所得点数的样本空间为Ω={1,2,3,4,5,6},令事件A ={2,3,5},B ={1,2,4,5,6},则P (A |B )等于 ( ) A.25 B.12 C.35 D.4 5 【例3】任意向x 轴上(0,1)这一区间内掷一个点,问: (1)该点落在区间????0,1 3内的概率是多少? (2)在(1)的条件下,求该点落在???? 15,1内的概率. 【过关练习】 1.电视机的使用寿命与显像管开关的次数有关.某品牌的电视机的显像管开关了10 000次后还能继续使用的概率是0.80,开关了1 5 000次后还能继续使用的概率是0.60,则已经开关了10 000次的电视机显像管还能继续使用到15 000次的概率是( ) A .0.75 B .0.60 C .0.48 D .0.20 2.设A ,B 为两个事件,若事件A 和B 同时发生的概率为3 10,在事件A 发生的条件下,事件B 发生的概率 为1 2 ,则事件A 发生的概率为________. 3.如图,EFGH 是以O 为圆心,半径为1的圆内接正方形,将一颗豆子随机地扔到该圆内,用A 表示事件“豆子落在正方形EFGH 内”,B 表示事件“豆子落在扇形OHE (阴影部分)内”,则P (B |A )=________.

历年高考数学压轴题集锦

高考数学压轴题集锦 1.椭圆的中心是原点O ,它的短轴长为(,)0F c (0>c )的准线l 与x 轴相交于点A ,2OF FA =,过点A 的直线与椭圆相交于P 、Q 两点。 (1)求椭圆的方程及离心率; (2)若0OP OQ ?=,求直线PQ 的方程; (3)设AP AQ λ=(1λ>),过点P 且平行于准线l 的直线与椭圆相交于另一点M ,证 明FM FQ λ=-. (14分) 2. 已知函数)(x f 对任意实数x 都有1)()1(=++x f x f ,且当]2,0[∈x 时,|1|)(-=x x f 。 (1) )](22,2[Z k k k x ∈+∈时,求)(x f 的表达式。 (2) 证明)(x f 是偶函数。 (3) 试问方程01 log )(4=+x x f 是否有实数根?若有实数根,指出实数根的个数;若没有实数根,请说明理由。 3.(本题满分12分)如图,已知点F (0,1),直线L :y=-2,及圆C :1)3(2 2 =-+y x 。 (1) 若动点M 到点F 的距离比它到直线L 的距离小1,求动点M 的轨迹E 的方程; (2) 过点F 的直线g (3) 过轨迹E 上一点P 点P 的坐标及S

4.以椭圆2 22y a x +=1(a >1)短轴一端点为直角顶点,作椭圆内接等腰直角三角形,试 判断并推证能作出多少个符合条件的三角形. 5 已知,二次函数f (x )=ax 2 +bx +c 及一次函数g (x )=-bx ,其中a 、b 、c ∈R ,a >b >c ,a +b +c =0. (Ⅰ)求证:f (x )及g (x )两函数图象相交于相异两点; (Ⅱ)设f (x )、g (x )两图象交于A 、B 两点,当AB 线段在x 轴上射影为A 1B 1时,试求|A 1B 1|的取值范围. 6 已知过函数f (x )=12 3++ax x 的图象上一点B (1,b )的切线的斜率为-3。 (1) 求a 、b 的值; (2) 求A 的取值范围,使不等式f (x )≤A -1987对于x ∈[-1,4]恒成立; (3) 令()()132 ++--=tx x x f x g 。是否存在一个实数t ,使得当]1,0(∈x 时,g (x )有 最大值1? 7 已知两点M (-2,0),N (2,0),动点P 在y 轴上的射影为H ,︱PH ︱是2和→ → ?PN PM 的等比中项。 (1) 求动点P 的轨迹方程,并指出方程所表示的曲线; (2) 若以点M 、N 为焦点的双曲线C 过直线x+y=1上的点Q ,求实轴最长的双曲线C 的方程。 8.已知数列{a n }满足a a a a b a a a a a a a n n n n n n +-=+=>=+设,2),0(322 11 (1)求数列{b n }的通项公式; (2)设数列{b n }的前项和为S n ,试比较S n 与 8 7 的大小,并证明你的结论. 9.已知焦点在x 轴上的双曲线C 的两条渐近线过坐标原点,且两条渐近线与以点)2,0(A 为圆心,1为半径的圆相切,又知C 的一个焦点与A 关于直线x y =对称. (Ⅰ)求双曲线C 的方程; (Ⅱ)设直线1+=mx y 与双曲线C 的左支交于A ,B 两点,另一直线l 经过M (-2,0)及AB 的中点,求直线l 在y 轴上的截距b 的取值范围; (Ⅲ)若Q 是双曲线C 上的任一点,21F F 为双曲线C 的左,右两个焦点,从1F 引21QF F ∠的平分线的垂线,垂足为N ,试求点N 的轨迹方程. 10. )(x f 对任意R x ∈都有.2 1)1()(= -+x f x f

高考数学百大经典例题 正态分布

借助于标准正态分布表求值 例 设ξ服从)1,0(N ,求下列各式的值: (1));35.2(≥ξP (2));24.1(-<ξP (3)).54.1(<ξP 分析:因为ξ用从标准正态分布,所以可以借助于标准正态分布表,查出其值.但由于表中只列出)()(,0000x x P x Φ=<≥ξ的情形,故需要转化成小于非负值0x 的概率,公式:);()()();(1)(a b b a P x x Φ-Φ=<<Φ-=-Φξ和)(1)(00x P x P <-=≥ξξ有其用武之地. 解:(1);0094.09906.01)35.2(1)35.2(1)35.2(=-=Φ-=<-=≥ξξP P (2);1075.08925.01)24.1(1)24.1()24.1(=-=Φ-=-Φ=-<ξP (3))54.1()54.1()54.154.1()54.1(-Φ-Φ=<-=<ξξP P .8764.01)54.1(2)]54.1(1[)54.1(=-Φ=Φ--Φ= 说明:要制表提供查阅是为了方便得出结果,但标准正态分布表如此简练的目的,并没有给查阅造成不便.相反其简捷的效果更突出了核心内容.左边的几个公式都应在理解的基础上记住它,并学会灵活应用. 求服从一般正态分布的概率 例 设η服从)2,5.1(2N 试求: (1));5.3(<ηP (2));4(-<ηP (3));2(≥ηP (4)).3(<ηP 分析:首先,应将一般正态分布)2,5.1(N 转化成标准正态分布,利用结论:若),(~2σμηN ,则由)1,0(~N σμηξ-=知:,)(?? ? ??-Φ=<σμηx x P 其后再转化为非负标准正态分布情况的表达式,通过查表获得结果. 解:(1);8413.0)1(25.15.3)5.3(=Φ=??? ??-Φ=<ηP

高考数学压轴题秒杀

秒杀压轴题第五章关于秒杀法的最难掌握的一层,便是对于高考数很多朋友留言说想掌握秒杀的最后一层。压轴题,各省的难度不一致,但毫无疑问,尤其是理科的,会难倒很多学压轴题的把握。很多很多人。出题人很怕很怕全省没多少做出来的,相反,压轴题并不是那般神秘难解,不过,明白么?他很怕。那种思想,在群里面我也说过,在这里就不多啰嗦了。想领悟、把握压轴题的思路,给大家推荐几道题目。08的除的外我都没做过,所以不在推荐围)。09全是数学压轴题,且是理科(全国一07,08,07全国二,08全国一,可脉络依然清晰。虽然一年过去了,做过之后,但这几道题,很多题目都忘了,一年过去了,都是一些可以秒杀的典型压轴题,望冲击清华北大的同学细细研究。记住,压轴题是出题人在微笑着和你对话。会在以后的视频里面讲以及怎么发挥和压榨一道经典题目的最大价值,,”精“具体的题目的解的很清楚。 \ 不过,我还是要说一下数列压轴题这块大家应该会什么(难度以及要求依次增高)尤其推荐通项公式的求法(不甚解的去看一下以前的教案,或者问老师,这里必考。:1 )我押题的第一道数列解答题。裂项相消(各种形式的都要会)、迭加、迭乘、错位相减求和(这几个是最基本和简:2. 单的数列考察方式,一般会在第二问考)数学归纳法、不等式缩放:3 基本所有题目都是这几个的组合了,要做到每一类在脑中都至少有一道经典题想对应才行哦。开始

解答题了哦,先来一道最简单的。貌似的大多挺简单的。意义在只能说不大。这道题意义在什么呢?对于这道题在高考中出现的可能性我不做解释,于,提醒大家四个字,必须必须必须谨记的四个字:分类讨论!!!!!!!年高考的这道导数题,对分类讨论的考察尤为经典,很具参考性,类似的题目07下面年高考题中见了很多。10、09、08在) 分14本小题满分(22)(2≠0.b其中+1),x ln(b+x)=x(f设函数在定义域上的单调性;)x(f时,判断函数> b当)Ⅰ( 的极值点;)x(f(Ⅱ)求函数n(Ⅲ)证明对任意的正整数. 都成立ln( )不等式, ~ 有点鸡肋了..这道题我觉得重点在于前两问,最后一问这道题,太明显了对吧? 1 第三问其实就是直接看出来么?想想我之前关于压轴题思路的讲解,,看压轴问的形式这道题就出来了。x 为1/n 很明显的令利用第一问和第二问的结论,绝大多数压轴题都是这样的。当然这只是例子之一了,这也证明了我之前对压轴题的评述吧。重点来了。下面,下面,下面,你可以利用导数去证明这个不等式的正确性, ln X<= X--1 大家是否眼熟这个不等式呢?但我想说的是,这个小小的不等式,太有用了。多么漂亮的一这样简单的线性函数,X--1 将一个对数形式的函数转化为一个什么用?个式子!可以说,导数不等式证明中,见到自然对数,我第一个想的就会是这个不等式,看能否利用这个不等式将题目转化为特别容易做的一道

高考数学压轴题汇编

高考数学压轴题汇编 1.〔本小题满分12分〕设函数在上是增函数.求正实数的取值范围; 设,求证:1 ,0>>a b .ln 1b b a b b a b a +<+<+ 高考数学压轴题练习2 2.已知椭圆C 的一个顶点为,焦点在x 轴上,右焦点到直线(0,1)A -10x y -+= 〔1〕求椭圆C 的方程; 〔2〕过点F 〔1,0〕作直线l 与椭圆C 交于不同的两点A 、B ,设,若的取值范围. 高考数学压轴题练习2 2.已知椭圆C 的一个顶点为,焦点在x 轴上,右焦点到直线(0,1)A -10x y -+= 〔1〕求椭圆C 的方程; 〔2〕过点F 〔1,0〕作直线l 与椭圆C 交于不同的两点A 、B ,设,若的取值范围. 高考数学压轴题练习4 4.设函数3 2 2 ()f x x ax a x m =+-+(0)a > 〔1〕若时函数有三个互不相同的零点,求的范围; 〔2〕若函数在内没有极值点,求的范围; 〔3〕若对任意的,不等式在上恒成立,求实数的取值范围. 高考数学压轴题练习5 5.〔本题满分14分〕 已知椭圆的离心率为,直线与以原点为圆心、以椭圆的短半轴长为半径的圆相切. 〔Ⅰ〕求椭圆的方程; 〔Ⅱ〕设椭圆的左焦点为F1,右焦点为F2,直线过点F1,且垂直于椭圆的长轴,动直线垂直于点P ,线段 PF2的垂直平分线交于点M ,求点M 的轨迹C2的方程; 〔Ⅲ〕若AC 、BD 为椭圆C1的两条相互垂直的弦,垂足为右焦点F2,求四边形ABCD 的面积的最小值. 高考数学压轴题练习6 6.〔本小题满分14分〕 已知椭圆+=1〔a>b>0〕的左.右焦点分别为F1.F2,离心率e =,右准线方程为x =2. 〔1〕求椭圆的标准方程; 〔2〕过点F1的直线l 与该椭圆相交于M .N 两点,且|+|=,求直线l 的方程. 高考数学压轴题练习7 7.〔本小题满分12分〕 已知,函数,〔其中为自然对数的底数〕. 〔1〕判断函数在区间上的单调性; 〔2〕是否存在实数,使曲线在点处的切线与轴垂直? 若存在,求出的值;若不存在,请说明理由.

高考数学复习题库 正态分布

高考数学复习题库正态分布 正态分布 一.选择题 1.已知随机变量X服从正态分布N(3,1),且P(2≤X≤4)= 0.6826,则P(X>4)=( ) A.0.1588 B.0.1587 C.0.1586 D.0.1585 解析通过正态分布对称性及已知条件得 P(X>4)===0.1587,故选B. 答案 B 2. 设随机变量服从正态分布,则函数不存在零点的概率为( ) A. B. C. D. 解析函数不存在零点,则因为,所以答案 C 3.以Φ(x)表示标准正态总体在区间(-∞,x)内取值的概率,若随机变量ξ服从正态分布N(μ,σ2),则概率P(|ξ-μ|<σ)等于( ). A.Φ(μ+σ)-Φ(μ-σ) B.Φ (1)-Φ(-1) C.Φ D.2Φ(μ+σ) 解析由题意得,P(|ξ-μ|<σ)=P=Φ (1)-Φ(-1). 答案 B 4.已知随机变量X~N(3,22),若X=2η+3,则D(η)等于( ). A.0 B.1 C.2 D.4 解析由X=2η+3,得D(X)=4D(η),而D(X)=σ2=4,∴D(η)=

1.答案 B 5.标准正态总体在区间(-3,3)内取值的概率为( ). A.0.9987 B.0.9974 C.0.944 D.0.8413 解析标准正态分布 N(0,1),σ=1,区间(-3,3),即(-3σ,3σ),概率 P=0.997 4. 答案 B 6.已知三个正态分布密度函数φi(x)=e-(x∈R,i=1,2,3)的图象如图所示,则( ). A.μ1<μ2=μ3,σ1=σ2>σ3 B.μ1>μ2=μ3,σ1=σ2<σ3 C.μ1=μ2<μ3,σ1<σ2=σ3 D.μ1<μ2=μ3,σ1=σ2<σ3 解析正态分布密度函数φ2(x)和φ3(x)的图象都是关于同一条直线对称,所以其平均数相同,故μ2=μ3,又φ2(x)的对称轴的横坐标值比φ1(x)的对称轴的横坐标值大,故有μ1<μ2=μ 3.又σ越大,曲线越“矮胖”,σ越小,曲线越“瘦高”,由图象可知,正态分布密度函数φ1(x)和φ2(x)的图象一样“瘦高”,φ3(x)明显“矮胖”,从而可知σ1=σ2<σ 3. 答案 D 7.在正态分布N中,数值前在(-∞,-1)∪(1,+∞)内的概率为( ). A.0.097 B.0.046 C.0.03 D.0.0026 解析∵μ=0,σ=∴P(X<1或x>1)=1-P(-1≤x≤1)=1-P(μ- 3σ≤X≤μ+3σ)=1-0.9974=0.002 6. 答案 D 二.填空题

历届高考数学压轴题汇总及答案

历届高考数学压轴题汇总及答案 一、2019年高考数学上海卷:(本题满分18分) 已知等差数列{}n a 的公差(0,]d π∈,数列{}n b 满足()sin n n b a =,集合 {}*|,n S x x b n N ==∈. (1)若120,3 a d π ==,求集合S ; (2)若12 a π = ,求d 使得集合S 恰好有两个元素; (3)若集合S 恰好有三个元素:n T n b b +=,T 是不超过7的正整数,求T 的所有可能的 值. 二、2019年高考数学浙江卷:(本小题满分15分) 已知实数0a ≠,设函数()=ln 0.f x a x x +> (Ⅰ)当34 a =-时,求函数()f x 的单调区间; (Ⅱ)对任意21[ ,)e x ∈+∞均有()2f x a ≤ 求a 的取值范围. 注: 2.71828e =为自然对数的底数.

设2 *012(1),4,n n n x a a x a x a x n n +=+++ +∈N .已知2 3242a a a =. (1)求n 的值; (2)设(1n a =+*,a b ∈N ,求223a b -的值. 四、2018年高考数学上海卷:(本题满分18分,第1小题满分4分,第2小题满分6分,第3小题满分8分) 给定无穷数列{}n a ,若无穷数列{}n b 满足:对任意*n N ∈,都有1n n b a -≤,则称{}n b 与{}n a “接近”。 (1)设{}n a 是首项为1,公比为1 2 的等比数列,11n n b a +=+,*n N ∈,判断数列{}n b 是否与{}n a 接近,并说明理由; (2)设数列{}n a 的前四项为:12341,248a a a a ====,,,{}n b 是一个与{}n a 接近的数列,记集合1,2,|,4{3,}i M x x b i ===,求M 中元素的个数m ; (3)已知{}n a 是公差为d 的等差数列,若存在数列{}n b 满足:{}n b 与{}n a 接近,且在 2132201200,,,b b b b b b ﹣﹣﹣中至少有100个为正数,求d 的取值范围.

2007——2014高考数学新课标卷(理)函数与导数压轴题汇总

2007——2014高考数学新课标卷(理)函数与导数综合大题 【2007新课标卷(海南宁夏卷)】 21.(本小题满分12分) 设函数2()ln()f x x a x =++ (I )若当1x =-时,()f x 取得极值,求a 的值,并讨论()f x 的单调性; (II )若()f x 存在极值,求a 的取值范围,并证明所有极值之和大于e ln 2 . 【解析】(Ⅰ)1()2f x x x a '= ++,依题意有(1)0f '-=,故32a =. 从而2231(21)(1) ()3322 x x x x f x x x ++++'==++. ()f x 的定义域为32?? -+ ??? ,∞,当312x -<<-时,()0f x '>; 当1 12 x -<<-时,()0f x '<; 当1 2 x >- 时,()0f x '>. 从而,()f x 分别在区间3 1122????---+ ? ?????,,, ∞单调增加,在区间112?? -- ??? ,单调减少. (Ⅱ)()f x 的定义域为()a -+,∞,2221 ()x ax f x x a ++'=+. 方程2 2210x ax ++=的判别式2 48a ?=-. (ⅰ)若0?< ,即a << ()f x 的定义域内()0f x '>,故()f x 的极值. (ⅱ)若0?= ,则a a = 若a = ()x ∈+ ,2 ()f x '= . 当x =时,()0f x '=,

当2 x ? ??∈-+ ? ????? ,∞时, ()0f x '>,所以()f x 无极值. 若a =)x ∈+,()0f x '= >,()f x 也无极值. (ⅲ)若0?>,即a > a <22210x ax ++=有两个不同的实根 1x = 2x = 当a <12x a x a <-<-,,从而()f x '有()f x 的定义域内没有零点, 故()f x 无极值. 当a > 1x a >-,2x a >-,()f x '在()f x 的定义域内有两个不同的零点, 由根值判别方法知()f x 在12x x x x ==,取得极值. 综上,()f x 存在极值时,a 的取值范围为)+. ()f x 的极值之和为 2221211221()()ln()ln()ln 11ln 2ln 22 e f x f x x a x x a x a +=+++++=+->-=. 【2008新课标卷(海南宁夏卷)】 21.(本小题满分12分) 设函数1 ()()f x ax a b x b =+ ∈+Z ,,曲线()y f x =在点(2(2))f ,处的切线方程为y =3. (Ⅰ)求()f x 的解析式: (Ⅱ)证明:函数()y f x =的图像是一个中心对称图形,并求其对称中心; (Ⅲ)证明:曲线()y f x =上任一点的切线与直线x =1和直线y =x 所围三角形的面积为定值,并求出此定值. 21.解:(Ⅰ)2 1 ()() f x a x b '=- +,

高考数学压轴题精编精解100题

个 个 高考数学压轴题精编精解 精选100题,精心解答{完整版} 1.设函数()1,12 1,23x f x x x ≤≤?=?-<≤? ,()()[],1,3g x f x ax x =-∈, 其中a R ∈,记函数()g x 的最大值与最小值的差为()h a 。 (I )求函数()h a 的解析式; (II )画出函数()y h x =的图象并指出()h x 的最小值。 2.已知函数()()ln 1f x x x =-+,数列{}n a 满足101a <<, ()1n n a f a +=; 数列{}n b 满足1111 ,(1)22 n n b b n b +=≥+, *n N ∈.求证: (Ⅰ)101;n n a a +<<<(Ⅱ)21;2 n n a a +< (Ⅲ)若12 ,2a =则当n ≥2时,!n n b a n >?. 3.已知定义在R 上的函数f (x ) 同时满足: (1)2 1212122()()2()cos24sin f x x f x x f x x a x ++-=+(12,x x ∈R ,a 为常数); (2)(0)()14f f π==;(3)当0, 4x π ∈[] 时,()f x ≤2 求:(Ⅰ)函数()f x 的解析式;(Ⅱ)常数a 的取值范围. 4.设)0(1),(),,(22 222211>>=+b a b x x y y x B y x A 是椭圆上的两点, 满足0),(),( 2211=?a y b x a y b x ,椭圆的离心率,23 =e 短轴长为2,0为坐标原点. (1)求椭圆的方程; (2)若直线AB 过椭圆的焦点F (0,c ),(c 为半焦距),求直线AB 的斜率k 的值; (3)试问:△AOB 的面积是否为定值?如果是,请给予证明;如果不是,请说明理由. 5.已知数列{}n a 中各项为: 12、1122、111222、 (111) ??????14243222n ??????14243 …… (1)证明这个数列中的每一项都是两个相邻整数的积. (2)求这个数列前n 项之和S n .

高考数学压轴题秒杀

第五章压轴题秒杀 很多朋友留言说想掌握秒杀的最后一层。关于秒杀法的最难掌握的一层,便是对于高考数学压轴题的把握。压轴题,各省的难度不一致,但毫无疑问,尤其是理科的,会难倒很多很多很多人。 不过,压轴题并不是那般神秘难解,相反,出题人很怕很怕全省没多少做出来的,明白么?他很怕。那种思想,在群里面我也说过,在这里就不多啰嗦了。 想领悟、把握压轴题的思路,给大家推荐几道题目。 全是数学压轴题,且是理科(09的除山东的外我都没做过,所以不在推荐范围内)。 08全国一,08全国二,07江西,08山东,07全国一 一年过去了,很多题目都忘了,但这几道题,做过之后,虽然一年过去了,可脉络依然清晰。都是一些可以秒杀的典型压轴题,望冲击清华北大的同学细细研究。 记住,压轴题是出题人在微笑着和你对话。 具体的题目的“精”,以及怎么发挥和压榨一道经典题目的最大价值,会在以后的视频里面讲解的很清楚。 不过,我还是要说一下数列压轴题这块大家应该会什么(难度以及要求依次增高)\ 1:通项公式的求法(不甚解的去看一下以前的教案,或者问老师,这里必考。尤其推荐我押题的第一道数列解答题。) 2.:裂项相消(各种形式的都要会)、迭加、迭乘、错位相减求和(这几个是最基本和简单的数列考察方式,一般会在第二问考) 3:数学归纳法、不等式缩放 基本所有题目都是这几个的组合了,要做到每一类在脑中都至少有一道经典题想对应才行哦。 开始解答题了哦,先来一道最简单的。貌似北京的大多挺简单的。 这道题意义在什么呢?对于这道题在高考中出现的可能性我不做解释,只能说不大。意义在于,提醒大家四个字,必须必须必须谨记的四个字:分类讨论!!!!!!! 下面07年山东高考的这道导数题,对分类讨论的考察尤为经典,很具参考性,类似的题目在08、09、10年高考题中见了很多。 (22)(本小题满分14分) 设函数f(x)=x2+b ln(x+1),其中b≠0. (Ⅰ)当b> 时,判断函数f(x)在定义域上的单调性; (Ⅱ)求函数f(x)的极值点; (Ⅲ)证明对任意的正整数n,不等式ln( )都成立. 这道题我觉得重点在于前两问,最后一问..有点鸡肋了~ 这道题,太明显了对吧?

五年高考真题(数学理)10.5二项分布与正态分布

第五节二项分布与正态分布 考点一条件概率与相互独立事件的概率 1.(2015·新课标全国Ⅰ,4)投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为( ) A.0.648 B.0.432 C.0.36 D.0.312 解析该同学通过测试的概率为p=0.6×0.6+C12×0.4×0.62=0.648. 答案 A 2.(2014·新课标全国Ⅱ,5)某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是( ) A.0.8 B.0.75 C.0.6 D.0.45 解析由条件概率可得所求概率为0.6 0.75 =0.8,故选A. 答案 A 3.(2011·湖南,15)如图,EFGH是以O为圆心,半径为1的圆的内接正方形.将一颗豆子随机地扔到该圆内,用A表示事件“豆子落在正方形EFGH内”,B表示事件“豆子落在扇形OHE(阴影部分)内”,则 (1)P(A)=________. (2)P(B|A)=________.

解析圆的半径为1,正方形的边长为2,∴圆的面积为π,正方形面积为2, 扇形面积为π 4 .故P(A)= 2 π , P(B|A)=P(A∩B) P(A)= 1 2 π 2 π = 1 4 . 答案(1)2 π(2) 1 4 4.(2014·陕西,19)在一块耕地上种植一种作物,每季种植成本为1 000元,此作物的市场价格和这块地上的产量均具有随机性,且互不影响,其具体情况如下表: (1)设X表示在这块地上种植1季此作物的利润,求X的分布列; (2)若在这块地上连续3季种植此作物,求这3季中至少有2季的利润不少于2 000元的概率. 解(1)设A表示事件“作物产量为300 kg”,B表示事件“作物市场价格为6元/kg”,由题设知P(A)=0.5,P(B)=0.4, 因为利润=产量×市场价格-成本, 所以X所有可能的取值为

高考数学总复习经典测试题解析版12.7 正态分布

12.7 正态分布 一、选择题 1.已知随机变量X 服从正态分布N (3,1),且P (2≤X ≤4)=0.6826,则P (X >4)=( ) A .0.1588 B .0.1587 C .0.1586 D .0.1585 解析 通过正态分布对称性及已知条件得 P(X >4)=1-2=1-0.6826 2 =0.1587,故选B . 答案 B 2. 设随机变量ξ服从正态分布 ),1(2σN ,则函数2()2f x x x ξ=++不存在零点的概率为( ) A.41 B. 31 C.21 D.32 解析 函数2()2f x x x ξ=++不存在零点,则440,1,ξξ?=-<> 因为2~(1,)N ξσ,所以1,μ=()11.2 P ξ>= 答案 C 3.以Φ(x )表示标准正态总体在区间(-∞,x )内取值的概率,若随机变量ξ 服从正态分布N (μ,σ2),则概率P (|ξ-μ|<σ)等于( ). A .Φ(μ+σ)-Φ(μ-σ) B .Φ(1)-Φ(-1) C .Φ? ?? ?? 1-μσ D .2Φ(μ+σ) 解析 由题意得,P (|ξ-μ|<σ)=P ? ???? |ξ-μσ|<1=Φ(1)-Φ(-1). 答案 B 4.已知随机变量X ~N (3,22),若X =2η+3,则D (η)等于( ). A .0 B .1 C .2 D .4 解析 由X =2η+3,得D (X )=4D (η),而D (X )=σ2=4,∴D (η)=1. 答案 B 5.标准正态总体在区间(-3,3)内取值的概率为( ). A .0.998 7 B .0.997 4 C .0.944 D .0.841 3 解析 标准正态分布N (0,1),σ=1,区间(-3,3),即(-3σ,3σ),概率 P =0.997 4.

相关主题
文本预览
相关文档 最新文档