当前位置:文档之家› 2019年中考数学一模试卷及答案

2019年中考数学一模试卷及答案

2019年中考数学一模试卷及答案

一、选择题

1.在同一坐标系内,一次函数y ax b =+与二次函数2y ax 8x b =++的图象可能是

A .

B .

C .

D .

2.一个正多边形的内角和为540°,则这个正多边形的每一个外角等于( ) A .108°

B .90°

C .72°

D .60°

3.三张外观相同的卡片分别标有数字1,2,3,从中随机一次性抽出两张,则这两张卡片上的数字恰好都小于3的概率是( ) A .

1

9

B .

16

C .

13

D .

23

4.某球员参加一场篮球比赛,比赛分4节进行,该球员每节得分如折线统计图所示,则该球员平均每节得分为( )

2019年中考数学一模试卷及答案

A .7分

B .8分

C .9分

D .10分

5.等腰三角形的两边长分别为3和6,则这个等腰三角形的周长为( ) A .12 B .15 C .12或15 D .18

6.如图,在△ABC 中,∠ACB=90°, ∠ABC=60°, BD 平分∠ABC ,P 点是BD 的中点,若AD=6, 则CP 的长为( )

2019年中考数学一模试卷及答案

A .3.5

B .3

C .4

D .4.5

7.如图,某小区规划在一个长16m ,宽9m 的矩形场地ABCD 上,修建同样宽的小路,使其中两条与AB 平行,另一条与AD 平行,其余部分种草,如果使草坪部分的总面积为112m 2

,设小路的宽为xm ,那么x 满足的方程是( )

2019年中考数学一模试卷及答案

A .2x 2-25x+16=0

B .x 2-25x+32=0

C .x 2-17x+16=0

D .x 2-17x-16=0

8.二次函数y=ax 2+bx+c 的图象如图所示,对称轴是x=-1.有以下结论:①abc>0,②4ac2,其中正确的结论的个数是( )

2019年中考数学一模试卷及答案

A .1

B .2

C .3

D .4

9.下列各曲线中表示y 是x 的函数的是( )

A .

B .

C .

D .

10.如图是一个几何体的三视图(图中尺寸单位:cm ),根据图中所示数据求得这个几何体的侧面积是( )

2019年中考数学一模试卷及答案

A .212cm

B .()2

12πcm +

C .26πcm

D .28πcm

11.下列计算错误的是( ) A .a 2÷

a 0?a 2=a 4 B .a 2÷(a 0?a 2)=1

C .(﹣1.5)8÷(﹣1.5)7=﹣1.5

D .﹣1.58÷(﹣1.5)7=﹣1.5

12.今年我市工业试验区投资50760万元开发了多个项目,今后还将投资106960万元开发多个新项目,每个新项目平均投资比今年每个项目平均投资多500万元,并且新增项目数量比今年多20个.假设今年每个项目平均投资是x 万元,那么下列方程符合题意的是( )

A.10696050760

20

500

x x

-=

+

B.

50760106960

20

500

x x

-=

+

C.10696050760

500

20

x x

-=

+

D.

50760106960

500

20

x x

-=

+

二、填空题

13.如图,在Rt△AOB中,OA=OB=32,⊙O的半径为1,点P是AB边上的动点,过点P作⊙O的一条切线PQ(点Q为切点),则切线PQ的最小值为.

2019年中考数学一模试卷及答案

14.甲、乙两人在1200米长的直线道路上跑步,甲、乙两人同起点、同方向出发,并分别以不同的速度匀速前进,已知,甲出发30秒后,乙出发,乙到终点后立即返回,并以原来的速度前进,最后与甲相遇,此时跑步结束.如图,y(米)表示甲、乙两人之间的距离,x(秒)表示甲出发的时间,图中折线及数据表示整个跑步过程中y与x函数关系,那么,乙到达终点后_____秒与甲相遇.

2019年中考数学一模试卷及答案

15.在Rt△ABC中,∠C=90°,AC=6,BC=8,点E是BC边上的动点,连接AE,过点E作AE的垂线交AB边于点F,则AF的最小值为_______

16.分解因式:2x2﹣18=_____.

17.从﹣2,﹣1,1,2四个数中,随机抽取两个数相乘,积为大于﹣4小于2的概率是

_____.

18.如图,反比例函数y=k

x

的图象经过?ABCD对角线的交点P,已知点A,C,D在坐标

轴上,BD⊥DC,?ABCD的面积为6,则k=_____.

2019年中考数学一模试卷及答案

19.在学校组织的义务植树活动中,甲、乙两组各四名同学的植树棵数如下,甲组:9,9,11,10;乙组:9,8,9,10;分别从甲、乙两组中随机选取一名同学,则这两名同学

的植树总棵数为19的概率______.

20.如图,在平面直角坐标系xOy 中,函数y=

k

x

(k >0,x >0)的图象经过菱形OACD 的顶点D 和边AC 的中点E ,若菱形OACD 的边长为3,则k 的值为_____.

2019年中考数学一模试卷及答案

三、解答题

21.(问题背景)

如图1,在四边形ABCD 中,AB =AD ,∠BAD =120°,∠B =∠ADC =90°,点E 、F 分别是边BC 、CD 上的点,且∠EAF =60°,试探究图中线段BE 、EF 、FD 之间的数量关系.

小王同学探究此问题的方法是:延长FD 到点G ,使GD =BE ,连结AG ,先证明△ABE ≌△ADG ,再证明△AEF ≌△AGF ,可得出结论,他的结论应是 . (探索延伸)

如图2,若在四边形ABCD 中,AB =AD ,∠B +∠D =180°,点E 、F 分别是边BC 、CD 上的点,且∠EAF =∠BAD ,上述结论是否仍然成立,并说明理由. (学以致用)

如图3,在四边形ABCD 中,AD ∥BC (BC >AD ),∠B =90°,AB =BC =6,E 是边AB 上一点,当∠DCE =45°,BE =2时,则DE 的长为 .

2019年中考数学一模试卷及答案

22.甲乙两人做某种机械零件,已知甲每小时比乙多做4个,甲做120个所用的时间与乙做100个所用的时间相等,求甲乙两人每小时各做几个零件?

23.如图是某市一座人行天桥的示意图,天桥离地面的高BC 是10米,坡面AC 的倾斜角

45CAB ∠=?,在距A 点10米处有一建筑物HQ .为了方便行人推车过天桥,市政府部门决定降低坡度,使新坡面DC 的倾斜角30BDC ∠=?,若新坡面下D 处与建筑物之间需留下至少3米宽的人行道,问该建筑物是否需要拆除(计算最后结果保留一位小数).

2 1.414≈

3 1.732≈)

2019年中考数学一模试卷及答案

24.某公司推出一款产品,经市场调查发现,该产品的日销售量y(个)与销售单价x (元)之间满足一次函数关系.关于销售单价,日销售量,日销售利润的几组对应值如下表:

销售单价x(元)8595105115

日销售量y(个)17512575m

日销售利润w

(元)

87518751875875

(注:日销售利润=日销售量×(销售单价﹣成本单价))

(1)求y关于x的函数解析式(不要求写出x的取值范围)及m的值;

(2)根据以上信息,填空:

该产品的成本单价是元,当销售单价x=元时,日销售利润w最大,最大值是元;

(3)公司计划开展科技创新,以降低该产品的成本,预计在今后的销售中,日销售量与销售单价仍存在(1)中的关系.若想实现销售单价为90元时,日销售利润不低于3750元的销售目标,该产品的成本单价应不超过多少元?

25.某公司销售两种椅子,普通椅子价格是每把180元,实木椅子的价格是每把400元.(1)该公司在2019年第一月销售了两种椅子共900把,销售总金额达到了272000元,求两种椅了各销售了多少把?

(2)第二月正好赶上市里开展家俱展销活动,公司决定将普通椅子每把降30元后销售,实木椅子每把降价2a%(a>0)后销售,在展销活动的第一周,该公司的普通椅子销售量比上

一月全月普通椅子的销售量多了10

3

a%:实木椅子的销售量比第一月全月实木椅子的销售

量多了a%,这一周两种椅子的总销售金额达到了251000元,求a的值.【参考答案】***试卷处理标记,请不要删除

一、选择题

1.C

解析:C

【解析】

【分析】

x=0,求出两个函数图象在y轴上相交于同一点,再根据抛物线开口方向向上确定出a>0,然后确定出一次函数图象经过第一三象限,从而得解.

【详解】

x=0时,两个函数的函数值y=b,

所以,两个函数图象与y轴相交于同一点,故B、D选项错误;

由A、C选项可知,抛物线开口方向向上,

所以,a>0,

所以,一次函数y=ax+b经过第一三象限,

所以,A选项错误,C选项正确.

故选C.

2.C

解析:C

【解析】

【分析】

首先设此多边形为n边形,根据题意得:180(n-2)=540,即可求得n=5,再由多边形的外角和等于360°,即可求得答案.

【详解】

解:设此多边形为n边形,

根据题意得:180(n-2)=540,

解得:n=5,

∴这个正多边形的每一个外角等于:360

5

=72°.

故选C.

【点睛】

此题考查了多边形的内角和与外角和的知识.注意掌握多边形内角和定理:(n-2)?180°,外角和等于360°.

3.C

解析:C

【解析】

【分析】

画出树状图即可求解.

【详解】

解:画树状图得:

2019年中考数学一模试卷及答案

∵共有6种等可能的结果,而两张卡片上的数字恰好都小于3有2种情况,

∴两张卡片上的数字恰好都小于3概率=1

3

故选:C.

【点睛】

本题考查的是概率,熟练掌握树状图是解题的关键.

4.B

解析:B

【解析】

【分析】

根据平均数的定义进行求解即可得.

【详解】

根据折线图可知该球员4节的得分分别为:12、4、10、6,

所以该球员平均每节得分=124106

4

+++

=8,

故选B.

【点睛】

本题考查了折线统计图、平均数的定义等知识,解题的关键是理解题意,掌握平均数的求解方法.

5.B

解析:B

【解析】

试题分析:根据题意,要分情况讨论:①、3是腰;②、3是底.必须符合三角形三边的关系,任意两边之和大于第三边.

解:①若3是腰,则另一腰也是3,底是6,但是3+3=6,∴不构成三角形,舍去.

②若3是底,则腰是6,6.

3+6>6,符合条件.成立.

∴C=3+6+6=15.

故选B.

考点:等腰三角形的性质.

6.B

解析:B

【解析】

【分析】

【详解】

解:∵∠ACB=90°,∠ABC=60°,

∴∠A=30°,

∵BD平分∠ABC,

∴∠ABD=1

2

∠ABC=30°,

∴∠A=∠ABD,

∴BD=AD=6,

∵在Rt△BCD中,P点是BD的中点,

∴CP=1

2

BD=3.

故选B.

7.C

解析:C

【解析】

解:设小路的宽度为xm,那么草坪的总长度和总宽度应该为(16-2x)m,(9-x)m;根据题意即可得出方程为:(16-2x)(9-x)=112,整理得:x2-17x+16=0.故选C.

点睛:本题考查了一元二次方程的运用,弄清“草坪的总长度和总宽度”是解决本题的关键.

8.C

解析:C

【解析】

【详解】

①∵抛物线开口向下,∴a<0,∵抛物线的对称轴为直线x==﹣1,∴b=2a<0,∵抛

物线与y轴的交点在x轴上方,∴c>0,∴abc>0,所以①正确;

②∵抛物线与x轴有2个交点,∴△=b2-4ac>0,∴4ac

③∵b=2a,∴2a﹣b=0,所以③错误;

④∵x=﹣1时,y>0,∴a﹣b+c>2,所以④正确.

故选C.

9.D

解析:D

【解析】

根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,故D正确.故选D.

10.C

解析:C

【解析】

【分析】

根据三视图确定该几何体是圆柱体,再计算圆柱体的侧面积.

【详解】

先由三视图确定该几何体是圆柱体,底面半径是2÷2=1cm,高是3cm.

所以该几何体的侧面积为2π×1×3=6π(cm2).

故选C.

【点睛】

此题主要考查了由三视图确定几何体和求圆柱体的侧面积,关键是根据三视图确定该几何体是圆柱体.

11.D

解析:D

【解析】

分析:根据同底数幂的除法法则,同底数幂的乘法的运算方法,以及零指数幂的运算方法,逐项判定即可.

详解:∵a2÷a0?a2=a4,

∴选项A不符合题意;

∵a2÷(a0?a2)=1,

∴选项B不符合题意;

∵(-1.5)8÷(-1.5)7=-1.5,

∴选项C不符合题意;

∵-1.58÷(-1.5)7=1.5,

∴选项D符合题意.

故选D.

点睛:此题主要考查了同底数幂的除法法则,同底数幂的乘法的运算方法,以及零指数幂的运算方法,同底数幂相除,底数不变,指数相减,要熟练掌握,解答此题的关键是要明确:①底数a≠0,因为0不能做除数;②单独的一个字母,其指数是1,而不是0;③应用同底数幂除法的法则时,底数a可是单项式,也可以是多项式,但必须明确底数是什么,指数是什么.

12.A

解析:A

【解析】

试题分析:∵今后项目的数量﹣今年的数量=20,∴10696050760

20

500

x x

-=

+

.故选A.

考点:由实际问题抽象出分式方程.

二、填空题

13.【解析】试题分析:连接OPOQ∵PQ是⊙O的切线∴OQ⊥PQ根据勾股定理知PQ2=OP2﹣OQ2∴当PO⊥AB时线段PQ最短此时∵在Rt△AOB中

OA=OB=∴AB=OA=6∴OP=AB=3∴

2019年中考数学一模试卷及答案

解析:

【解析】

试题分析:连接OP、OQ,

2019年中考数学一模试卷及答案

∵PQ是⊙O的切线,∴OQ⊥PQ.

根据勾股定理知PQ2=OP2﹣OQ2,

∴当PO⊥AB时,线段PQ最短.此时,

∵在Rt△AOB中,OA=OB=,∴AB=OA=6.

∴OP=AB=3.

∴.

14.30【解析】【分析】由图象可以V甲=9030=3m/sV追=90120-30=1m/s 故V乙=1+3=4m/s由此可求得乙走完全程所用的时间为:12004=300s则可以求得此时乙与甲的距离即可求出

解析:30

【解析】

【分析】

由图象可以V甲==3m/s,V追==1m/s,故V乙=1+3=4m/s,由此可求得乙走完全程所用的时间为:=300s,则可以求得此时乙与甲的距离,即可求出最后与甲相

遇的时间.

【详解】

由图象可得V甲==3m/s,V追==1m/s,

∴V乙=1+3=4m/s,

∴乙走完全程所用的时间为:=300s,

此时甲所走的路程为:(300+30)×3=990m.

此时甲乙相距:1200﹣990=210m

则最后相遇的时间为:=30s

故答案为:30

【点睛】

此题主要考查一次函数图象的应用,利用函数图象解决行程问题.此时就要求掌握函数图象中数据表示的含义.

15.【解析】试题分析:如图设AF的中点为D那么DA=DE=DF所以AF的最小值取决于DE的最小值如图当DE⊥BC时DE最小设DA=DE=m此时DB=m由AB=DA+DB

得m+m=10解得m=此时AF=2

解析:15 2

【解析】

试题分析:如图,设AF的中点为D,那么DA=DE=DF.所以AF的最小值取决于DE的最小值.

2019年中考数学一模试卷及答案

如图,当DE⊥BC时,DE最小,设DA=DE=m,此时DB=5

3

m,由AB=DA+DB,得m+

5

3

m=10,解

得m=15

4

,此时AF=2m=

15

2

.

故答案为15 2

.

2019年中考数学一模试卷及答案

16.2(x+3)(x﹣3)【解析】【分析】原式提取2再利用平方差公式分解即可【详解】原式=2(x2﹣9)=2(x+3)(x﹣3)故答案为:2(x+3)(x﹣3)【点睛】此题考查了提公因式法与公式法的综合

解析:2(x+3)(x﹣3)

【解析】

【分析】

原式提取2,再利用平方差公式分解即可.

【详解】

原式=2(x2﹣9)=2(x+3)(x﹣3),

故答案为:2(x+3)(x﹣3)

【点睛】

此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.17.【解析】【分析】列表得出所有等可能结果从中找到积为大于-4小于2的结果数根据概率公式计算可得【详解】列表如下: -2 -1 1 2 -2 2 -2 -

4 -1 2 -1 -2 1 -2 -

解析:1 2

【解析】

【分析】

列表得出所有等可能结果,从中找到积为大于-4小于2的结果数,根据概率公式计算可得.

【详解】

列表如下:

2019年中考数学一模试卷及答案

∴积为大于-4小于2的概率为

6

12

=

1

2

故答案为1

2

【点睛】

此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;用到的知识点为:概率=所求情况数与总情况数之比.

18.-3【解析】分析:由平行四边形面积转化为矩形BDOA面积在得到矩形PDOE面积应用反比例函数比例系数k的意义即可详解:过点P做PE⊥y轴于点E∵四边形ABCD为平行四边形∴AB=CD又∵BD⊥x轴∴

解析:-3

【解析】

分析:由平行四边形面积转化为矩形BDOA面积,在得到矩形PDOE面积,应用反比例函数比例系数k的意义即可.

详解:过点P做PE⊥y轴于点E,

2019年中考数学一模试卷及答案

∵四边形ABCD为平行四边形

∴AB=CD

又∵BD⊥x轴

∴ABDO为矩形

∴AB=DO

∴S矩形ABDO=S?ABCD=6

∵P为对角线交点,PE⊥y轴

∴四边形PDOE为矩形面积为3

即DO?EO=3

∴设P点坐标为(x,y)

k=xy=﹣3

故答案为:﹣3

点睛:本题考查了反比例函数比例系数k的几何意义以及平行四边形的性质.

19.【解析】【分析】【详解】画树状图如图:∵共有16种等可能结果两名同学的植树总棵数为19的结果有5种结果∴这两名同学的植树总棵数为19的概率为

解析:

5 16

【解析】

【分析】

【详解】

画树状图如图:

2019年中考数学一模试卷及答案

∵共有16种等可能结果,两名同学的植树总棵数为19的结果有5种结果,

∴这两名同学的植树总棵数为19的概率为

5 16

.

20.【解析】【分析】过D作DQ⊥x轴于Q过C作CM⊥x轴于M过E作EF⊥x轴于F设

D点的坐标为(ab)求出CE的坐标代入函数解析式求出a再根据勾股定理求出b 即可请求出答案【详解】如图过D作DQ⊥x轴于Q

解析:25

【解析】

【分析】过D作DQ⊥x轴于Q,过C作CM⊥x轴于M,过E作EF⊥x轴于F,设D点的坐标为(a,b),求出C、E的坐标,代入函数解析式,求出a,再根据勾股定理求出b,即可请求出答案.

【详解】如图,过D作DQ⊥x轴于Q,过C作CM⊥x轴于M,过E作EF⊥x轴于F,

2019年中考数学一模试卷及答案

设D点的坐标为(a,b),则C点的坐标为(a+3,b),

∵E为AC的中点,

∴EF=1

2

CM=

1

2

b,AF=

1

2

AM=

1

2

OQ=

1

2

a,

E点的坐标为(3+1

2

a,

1

2

b),

把D、E的坐标代入y=k

x

得:k=ab=(3+

1

2

a)

1

2

b,

解得:a=2,

在Rt△DQO中,由勾股定理得:a2+b2=32,

即22+b2=9,

解得:5

∴5

故答案为5

【点睛】本题考查了勾股定理、反比例函数图象上点的坐标特征、菱形的性质等,得出关于a、b的方程是解此题的关键.

三、解答题

21.【问题背景】:EF=BE+FD;【探索延伸】:结论EF=BE+DF仍然成立,见解析;【学以致用】:5.

【解析】

【分析】

[问题背景]延长FD到点G.使DG=BE.连结AG,即可证明△ABE≌△ADG,可得AE

=AG,再证明△AEF≌△AGF,可得EF=FG,即可解题;

[探索延伸]延长FD到点G.使DG=BE.连结AG,即可证明△ABE≌△ADG,可得AE =AG,再证明△AEF≌△AGF,可得EF=FG,即可解题;

[学以致用]过点C作CG⊥AD交AD的延长线于点G,利用勾股定理求得DE的长.【详解】

[问题背景】解:如图1,

在△ABE和△ADG中,

DG BE

B ADG AB AD

=

?

?

∠=∠

?

?=

?

∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,

∵∠EAF=1

2

∠BAD,

∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD﹣∠EAF=∠EAF,∴∠EAF=∠GAF,

在△AEF和△GAF中,

AE AG

EAF GAF AF AF

=

?

?

∠=∠

?

?=

?

∴△AEF≌△AGF(SAS),

∴EF=FG,

∵FG=DG+DF=BE+FD,

∴EF=BE+FD;

故答案为:EF=BE+FD.

[探索延伸]解:结论EF=BE+DF仍然成立;

理由:如图2,延长FD到点G.使DG=BE.连结AG,在△ABE和△ADG中,

DG BE

B ADG AB AD

=

?

?

∠=∠

?

?=

?

∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,

∵∠EAF=1

2

∠BAD,

∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD﹣∠EAF=∠EAF,∴∠EAF=∠GAF,

在△AEF和△GAF中,

AE AG

EAF GAF AF AF

=

?

?

∠=∠

?

?=

?

∴△AEF≌△AGF(SAS),

∴EF=FG,

∵FG=DG+DF=BE+FD,

∴EF=BE+FD;

[学以致用]如图3,过点C作CG⊥AD,交AD的延长线于点G,

由【探索延伸】和题设知:DE=DG+BE,

设DG=x,则AD=6﹣x,DE=x+3,

在Rt△ADE中,由勾股定理得:AD2+AE2=DE2,

∴(6﹣x)2+32=(x+3)2,

解得x=2.

∴DE=2+3=5.

故答案是:5.

2019年中考数学一模试卷及答案

2019年中考数学一模试卷及答案

2019年中考数学一模试卷及答案

【点睛】

此题是一道把等腰三角形的判定、勾股定理、全等三角形的判定结合求解的综合题.考查学生综合运用数学知识的能力,解决问题的关键是在直角三角形中运用勾股定理列方程求解.

22.甲每小时做24个零件,乙每小时做20个零件.

【解析】 【分析】

设甲每小时做x 个零件,则乙每小时做(x-4)个零件,根据工作时间=工作总量÷工作效率结合甲做120个所用的时间与乙做100个所用的时间相等,即可得出关于x 的分式方程,解之经检验后即可得出结论. 【详解】

解:设甲每小时做x 个零件,则乙每小时做(x ﹣4)个零件,

根据题意得:

120100

4

x x =-, 解得:x=24,

经检验,x=24是分式方程的解, ∴x ﹣4=20.

答:甲每小时做24个零件,乙每小时做20个零件. 【点睛】

本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键. 23.该建筑物需要拆除. 【解析】

分析:根据正切的定义分别求出AB 、DB 的长,结合图形求出DH ,比较即可. 详解:由题意得,10AH =米,10BC =米, 在Rt ABC ?中,45CAB ∠=?, ∴10AB BC ==,

在Rt DBC ?中,30CDB ∠=?,

∴tan BC

DB CDB

=

=∠

2019年中考数学一模试卷及答案

∴()DH AH AD AH DB AB =-=--

2019年中考数学一模试卷及答案

2019年中考数学一模试卷及答案

101020 2.7=-=-≈(米), ∵2.7米3<米, ∴该建筑物需要拆除.

点睛:本题考查的是解直角三角形的应用-坡度坡角问题,掌握锐角三角函数的定义、熟记特殊角的三角函数值是解题的关键.

24.(1)25;(2)80,100,2000;(3)该产品的成本单价应不超过65元. 【解析】

分析:(1)根据题意和表格中的数据可以求得y 关于x 的函数解析式; (2)根据题意可以列出相应的方程,从而可以求得生产成本和w 的最大值; (3)根据题意可以列出相应的不等式,从而可以取得科技创新后的成本. 详解;(1)设y 关于x 的函数解析式为y=kx+b ,

8517595125k b k b +??+?==,得5

600

k b ==-???, 即y 关于x 的函数解析式是y=-5x+600,

当x=115时,y=-5×115+600=25,

即m的值是25;

(2)设成本为a元/个,

当x=85时,875=175×(85-a),得a=80,

w=(-5x+600)(x-80)=-5x2+1000x-48000=-5(x-100)2+2000,

∴当x=100时,w取得最大值,此时w=2000,

(3)设科技创新后成本为b元,

当x=90时,

(-5×90+600)(90-b)≥3750,

解得,b≤65,

答:该产品的成本单价应不超过65元.

点睛:本题考查二次函数的应用、一元二次方程的应用、不等式的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用函数和数形结合的思想解答.

25.(1)普通椅子销售了400把,实木椅子销售了500把;(2)a的值为15.

【解析】

【分析】

(1)设普通椅子销售了x把,实木椅子销售了y把,根据总价=单价×数量结合900把椅子的总销售金额为272000元,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)根据销售总价=销售单价×销售数量,即可得出关于a的一元二次方程,解之取其正值即可得出结论.

【详解】

(1)设普通椅子销售了x把,实木椅子销售了y把,

依题意,得:

900 180400272000 x y

x y

+=

?

?

+=

?

解得:

400

500 x

y

=

?

?

=

?

答:普通椅子销售了400把,实木椅子销售了500把.

(2)依题意,得:(180﹣30)×400(1+10

3

a%)+400(1﹣2a%)×500(1+a%)=

251000,

整理,得:a2﹣225=0,

解得:a1=15,a2=﹣15(不合题意,舍去).

答:a的值为15.

【点睛】

本题考查了二元一次方程组的应用以及一元二次方程的应用,找准等量关系,正确列出二元一次方程组和一元二次方程是解题关键.

相关文档
  • 2019年中考数学模拟

  • 2019年中考数学一模

  • 2019年中考数学测试卷

  • 2019年中考数学试卷

  • 2019年中考数学压轴题

相关文档推荐: