当前位置:文档之家› 台达运动控制 的基础知识

台达运动控制 的基础知识

 台达运动控制 的基础知识
 台达运动控制 的基础知识

运动控制的基础知识

位置单位

PLS 位置单位是什麽

PLS单位即编码器的脉波单位,以台达A2伺服为例,编码器解析度虽然有分17 bit与

20 bit。但PLS 单位都统一定为1280000 PLS/每圈,使用者无法更改。也就是当齿轮比设

为1:1时,命令必须下达1280000 个脉波,伺服马达才会转一圈.此单位由于解析度高,适用于驱动器底层马达控制。然而在运动控制系统中,必须建立一个绝对坐标系,若以PLS 做为位置单位,不论是命令或回授,都有以下的问题:

1.此单位对应到机械末端的位移量,通常都不是整数的公制单位,不容易观察。

以下图为例,一伺服经联轴器连接一导螺杆,编码器的解析度为1280000

PLS/每圈,螺杆的节距为10mm,则每一PLS对应的长度为0.0078125

um ,并不是整数,所以使用起来并不方便。

2.不同机种或不同厂牌的伺服马达其编码器解析度不同,更换马达后PLS单位就

不同。且一个控制系统往往不只使用一个马达,每个马达连接的机械结构尺寸各异,即使马达型号相同,各轴转一圈对应的机械位移量也不同,造成每个轴的PLS单位不同,这对多轴路径规划是极为困扰的!

3.为了马达控制性能的提升,编码器的解析度愈来愈高,但位置计数器的宽度通

常只有32 bit,若採用PLS单位会让位置计数器很容易发生溢位(Overflow)。

例如某一编码器解析度为23 bit/每圈,若初始位置为0,只需要旋转256圈[注1]就可令位置计数器溢位。在不允许溢位的应用(例如绝对坐标定位),机械的行程可能很长且有安装减速机,限制马达不可超过256圈是不切实际的。

4.传统控制器是发送实体脉波给驱动器来控制伺服马达的,若命令以PLS为单位

会造成脉波命令频率过高,以1280000 PLS/每圈为例,若要达到3000

rpm :

脉波命令频率= 1280000 (PLS/Rev)x 3000 (Rev/min) / 60

(sec/min)

= 64000000 PLS/sec

= 64 MHz

控制器很难发送如此高频率的实体脉波,必须藉由电子齿轮比来放大倍

率,使脉波命令的频率降低。而命令放大前的单位即为使用者单位

(PUU)。

[注1]位置计数器虽然是32 位元,因为是有号数的关係所以必须扣掉

1 个符号位元,最终能够不溢位的马达旋转圈数<

2 (32-1-23)= 2 8 = 256

PUU 位置单位观念说明

在运动控制系统中,包含许多位置计数器,来纪录机械当时的位置,命令与误差。以PLS做为单位并不适合,(原因请参考连结)。因此必须引入新的位置单位,称为使用者单位PUU(Pos of User Unit),在传统以脉冲作为位置命令的系统称为脉冲当量,表示一个脉冲对应的移动距离,由于目前控制系统可透过通讯发送命令,没有实体脉冲,使用者可更加自由的设定想要的位置单位,称为使用者单位PUU。PUU与PLS的关係即为电子齿轮比

(N/M),如下所示:

PUU(数目/每转)* N/M (电子齿轮比分子/分母)= PLS(数目/每转)

电子齿轮比左侧,属于控制系统,採用PUU单位。齿轮比右侧,属于驱动器内部,採用PLS单位[注1]。两侧都各有位置回授(FB),命令(CMD)与误差(ERR)。且满足ERR = CMD – FB。

[注1],藉由提升编码器的解析度(目前已达23 bit/Rev),可让位置分辨率与低转速的速度估测更精确。驱动器的目标是让马达控制的性能最佳,自然是直接以PLS单位来处理为佳!

使用PUU单位的主要优点:

1,方便观察PUU 代表的单位是由使用者所定义,自然可以选择常用且易于观察的单位。例如公制单位m 或角度。

?直线运动的机构,PUU通常定义成10um 或1um 或0.1 um。

?旋转运动的机构,通常机构一週定义成360000个PUU 或再补若干个0,让PUU等于0.001度或更细。也可以定义旋转一週为100000PUU,如此一个PUU即表示1/100000 圈。

如此PUU就是常用单位的千分之一或万分之一,很容易由PUU直接理解机构实际的位置。

2,单位统一在控制系统中往往不只一个马达,每个马达连接的机械结构尺寸各异,马达型号或编码器解析度也许不同,各轴转一圈对应的机械位移量就会不同,使每个轴的PLS单位不同。运动控制器在做路径规划时各轴的位置单位必须要统一才会方便!使用PUU 便可以满足此要求。

由于编码器解析度通常很高(例如20 bit/rev),PLS单位太细,因此电子齿轮比通常会远大于1,来降低PUU 的解析度。这样可以让控制系统的位置

计数器比较不容易溢位。但也要注意电子齿轮比太大的时候,会造成马达运转命令不够平滑,尤其是低转速下的抖动会很明显,甚至有走走停停的现象。

一般建议马达一转对应的PUU 数目宜在5000 PUU/rev 以上为佳!

若以台达A2伺服马达为例,PLS单位是1280000 PLS/rev,则电子齿轮比设定的最大值应为?

因爲PUU数目/rev = 1280000 PLS/rev * M/N (电子齿轮比倒数)>

5000 (PUU/rev)

所以电子齿轮比N/M < 1280000/5000

电子齿轮比N/M < 256

PUU 与齿轮比的优先顺序:

由以上分析得知,PUU 是根据我们的喜好或需求选定的,所以应该是先决定PUU 单位,然后再算出对应的齿轮比!这个顺序不应该颠倒,毕竟伺服是为人们提供服务的,不该让使用者被动的接受奇怪的PUU单位!计算齿轮比的方法可以参考:由机构末端反推电子齿轮比.

电子齿轮比

电子齿轮比公式推导-丝杆机构

本文针对丝杆(螺杆)机构提供伺服驱动器电子齿轮比的公式推导,决定齿轮比的原则是:先决定位置单位PUU(Pos of User Unit),必须要方便观察,通常PUU = 1~10 μm,依此计算出对应的齿轮比,而不是先决定齿轮比,再算出一个PUU 是多少的长度,否则就是自找麻烦了(原因请参考PUU 观念说明),首先说明符号定义:

? 1 mm 对应的PUU数(P):PUU为使用者单位,或PLC 脉波单位

?机械的减速比(n1 : n2):减速时n1 <=n2,

?螺杆圈数单位(REV):大写

?马达圈数单位(rev);小写,rev = REV ×(n2/n1)

?螺杆的导程(Pitch):螺杆转一圈机械移动的距离(mm/REV)

?编码器解析度(R):编码器一圈的PLS 数(PLS/rev )

?电子齿轮比(Num/Den):PUU 脉波数经齿轮比放大得到PLS 脉波数

电子齿轮比的公式推导:

根据齿轮比的定义,(PUU)乘以电子齿轮比(Num/Den),就得到编码器脉波单位(PLS),即:

(4)式即为电子齿轮比的计算公式!接着推导模拟资讯:就是先假定机械的线速度为V (mm/sec),分别求出当时的马达转速与控制器下达的命令脉波频率,以及马达一圈的PUU 数,如下所示:

计算电子齿轮比其实不难,但还必须检查在要求的机械线速度下,马达的转速不可超过它的规格,控制器的脉波频率也必须足够快[注1],否则这一组参数就不能用,必须重新设计例如更改减速比,螺杆导程,或是重做马达与控制器的选型.这个过程可能会反复好几次,利用本站的螺杆机构齿轮比自动计算工具可以帮助您节省一些时间!另外,马达一圈的PUU 数,尽量不要太低(建议大于5000),否则马达运转起来会有顿挫感,不够平滑,转速愈低时会愈明显!

[注1]这是採用实体脉波的控制器才有的限制,例如某PLC 的脉波输出频率最快可能为500 KHz,就必须检查是否满足!若是採用通讯控制或是本身具备路径规划能力的智能伺服就没有这个问题了!

由機構末端反推電子齒輪比

伺服電子齒輪比(P1-44 & P1-45)的配置往往是運動控制案例首當其衝的課題

Q1. 如下圖配置示意,螺桿的pitch為1 cm,且馬達與螺桿的機械齒比關係為10 : 1,求電子齒輪比P1-44 與P1-45 設定值為何較洽當?

<解>

螺桿的pitch為 1 cm,故螺桿轉動1圈相當於滑台移動10000 μm,得出公式a.

我們已較細的單位「μm」來計算,故 1 cm = 10000 PUU

又馬達與螺桿的比例關係為10 : 1 (馬達轉動10圈= 螺桿轉動1圈) ,故得出公式b.

因此由公式a. 與 b. 的對等關係中得出齒輪比為:

該電子齒輪比的配置下PUU已相等於μm,故欲讓滑台移動3000 μm則可控制伺服馬達增量 3000 PUU

Q2. 如下圖輸送帶示意,輸送帶圓盤半徑r為10 cm,該馬達與輸送帶的機械齒比關係為5 : 1 ,求電子齒輪比P1-44 與P1-45 設定值為何較洽當?

<解>

圓盤轉1圈相當於輸送帶移動該圓周2πr,得出公式 a.

我們已較細的單位「μm」來計算,故半徑10 cm = 100000 PUU

又馬達與輸送帶的機械齒比關係為 5 : 1 ,得出公式 b.

因此由公式a. 與 b. 的對等關係中得出齒輪比為:

分度与直线坐标

分度座标与直线坐标

在运动控制的场合,选择适合的坐标系是很重要的.不同的机械结构或应用,适合的坐标系也不同.本文针对常见的直线与分度座标,加以说明其特性与适用场合.一般而言,机械根据末端形式可区分为二类:(1)有限行程,(2)无限行程,代表性的例子分别如下:

1,螺杆机构:二端有死点,行程有限,无週期性

2,分度盘机构:没有死点,行程无限,有週期性

週期性是指,马达即使只往单方向旋转,机构也会回到原来的位置,有周而復始的特性.现在的问题是:我们用伺服马达来推动机构,可以知道马达的位置(PLS),但真正关心的是机构(末端)的位置,马达转到哪裡其实不重要!那麽,该如何得到机构末端的位置呢?

直线坐标位置计算:

以螺杆机构而言,机械的位置与马达旋转的脉波数是线性关係的:

[注1]此为不考虑全闭环的情况,否则须将式中马达脉波数更改为光学尺或辅助编码器的脉波.

[注2]此式是数学上的表示法,实际计算时,因机构是无限行程,位置L 会发生溢位,处理方法略为複杂!所以分度坐标不该由使用者来计算,而是由系统自动计算,才是功能完整的运动控制器!

分度/直线坐标的比较

分度坐标与直线坐标都是用来描述机械位置的参考标准,两者是同时存在的,不需硬性规定只能使用哪个坐标系!马达位置(PLS)与这两个坐标(PUU)之间的关係如下图形示:蓝线表示直线坐标,红线为分度坐标

坐标建立的时机

当原点復归完成,坐标系就建立了,此时分度坐标与直线坐标的原点0是重合的.

分度坐标的特性

当马达开始转动,PLS数值增大,分度坐标(PUU)也随之增加,当到达A点时,因为分度PUU数值到达L0(以台达伺服而言就是参数P2-52),根据分度坐标的定义,就立即归零!相当于圆周到了360度,就等于0度一样!以后每增加L0,坐标都会归0,适合描述圆周或週期性的机构位置!直线坐标的特性

当马达开始转动,PLS数值增大,直线坐标(PUU)也随之增加,当到达A点前,直线与分度坐标的数值完全相同;而A点后,直线坐标继续增加,不

像分度坐标会归零,因此,若机械属于无限行程(例如分度盘,刀塔),直线坐标迟早会发生溢位(Overflow),如图中B点![注1]

总之,分度坐标与直线坐标是同时存在的,只是计算坐标的方式不同,可参考:分度/直线坐标计算公式.两种坐标系对应的定位命令可参考:定位命令与坐标系的关係(待续)!

分度与直线坐标特性总结如下

分度功能的用途

分度功能简单来说,就是针对分度座标的定位功能,适用于位置有週期性的机械,例如“旋转工作台“,不论正转或反转都可到达指定的位置,所以有一律正转/一律反转/最短路径三种方向选择,分度功能的主要应用有:

1.分度定位:例如刀库,刀塔,角度分割器的定位应用

2.定点停车:例如飞剪的刀轴,缝纫机的针头,需停止于指定的位置!

3.相位回復:凸轮发生警报后,利用分度座标,来恢復主/从轴正确的相位

分度定位与绝对定位的比较

分度定位是针对週期性的机械所设计的一种定位功能,例如旋转工作臺,转盘的0°,360°,720°位置,虽然绝对座标不同,但实际是没有差别的!假

设机械转盘在720°,若希望转到90°的分度位置,只需要再正转90°就好,而不需要反转630°!前者(正转90°)就是分度定位,比后者(反转630°)的绝对定位有效率多了!所以分度定位很适合这类机械使用.

定点停车功能

当机械已经在转动时,停止的命令在任意时刻下达,都必须停止于指定的角度.而且必须一次到位,不能过头再反转,也不能先停止再走到目标角度(二段式).在电子凸轮的应用中,可在主轴使用定点停车功能,来控制从轴停止的位置.例如飞剪的切刀/缝纫机停止时必须停在最高点!

第3种“相位回復” 功能,虽未直接使用分度定位,但会参考当时分度座标的位置,作为凸轮相位回復的依据

标准凸轮曲线

凸轮曲线应用-(1)直线

电子凸轮的作用是根据主轴的位置,计算出从轴的位置命令.而两者的关係就是”凸轮曲线”!本文先介绍最简单与最常见的曲线型式-”直线“!这表示主/从轴的位置呈现线性关係,如下图所示,其特性有:

1.当主轴行走一周(3600),从轴行走H (如图)

2.当主轴静止不动,从轴也静止!

3.若主轴等速运行,从轴也是等速运行

4.当主轴速度愈快,从轴速度也愈快,呈线性关係

图(一)凸轮曲线-直线

虽然直线凸轮看似简单,但是却大有用处,常见的应用有:(点进连结有精彩内容)

?同步输送带:(参考连结)两输送带间没有任何机构连接,单纯靠伺服做凸轮同步,相位关係必须正确维持!

?枕式包装机:(参考连结)主轴是送料轴或是虚拟主轴,从轴是送膜轴,採用直线凸轮,需要对标记!

?圆瓶贴标机:(参考影片)主轴是旋转刀或是虚拟主轴,从轴是送膜轴,採用直线凸轮,需要对标记!

凸轮曲线应用-(2)梯形

本文介绍第二种常见的凸轮曲线型式-”梯形“!表示当主轴在等速运转的状态下,从轴的速度呈现梯形的型态,也就是由静止加速,经过一段等速区,再减速停止的过程(如下图所示),常见于追剪(锯)与贴标的应用中!

凸轮曲线-梯形

梯形曲线的组成

图中速度曲线(蓝色)为梯形,由左起分别为加速区,等速区,减速区,说明如下:

1.

1.加速区速度由零加速到等速的区域,所佔的角度愈大,马达出力愈轻鬆,电流愈小,但

会压缩到其他区域的角度.一般会在马达能力与机台震动允许的范围内尽量减少加/减速区,多留空间给等速区使用.

2.等速区若要求主轴与从轴的运动速度相等,来进行加工(例如追剪/贴标),因此等

速区也称为“同步区“!此区域必须足够长,才能提供切(锯)断所需的时间!

3.减速区由等速区减速到零的区域,设置要领类似加速区.

4.S型曲线图中速度转折处有少许弧线是S型曲线的平滑效果,用来让加速度变化缓和!

但只能适量使用,因为在同样的凸轮週期中,愈大的S曲线会使随后的加速度有更高的峰值,即先乐后苦的写照!

5.位置曲线(红色)凸轮运转一周的位移量H,就是速度曲线下方的面积总和.

梯形凸轮曲线的常见应用

?追剪(锯):伺服(从轴)带动锯刀平台,由静止追上产品(主轴),当两者速度相同时进行锯断的动作.由于生产不必停止,故能提升产量!常见于钢板,铁管,角铁,胶管(牙膏,化妆品)的生产切割中!由于切断后锯刀必须回头,凸轮曲线不必走完,可以衔接点对点命令回到起点!此类应用的机构通常不轻,且速度/精度要求愈来愈高,对伺服性能与运动控制是很好的展现!

?贴标机:主轴是输送带,用来运送产品,从轴则是伺服带动的标籤纸。由于产品是随机出现,需要靠感测器侦测,当侦测到产品时,凸轮啮合带动标籤纸开始加速,当与产品速度相同时,刚好两者贴合!另一感测器用来侦测标籤结束,令凸轮脱离并停止送标!因此凸轮曲线也不会走完,造曲线时可以造一条最长的曲线,来满足所有的标籤长度。”贴标” 同样也是要求速度与精度的应用,除了考验伺服性能,也对DI 的响应速度很敏感!

凸轮曲线应用-(3)三角形

本文介绍第三种常见的凸轮曲线型式– “三角形“!表示当主轴在等速运转的状态下,从轴的速度呈现三角形的轮廓,也就是由静止加速,到达最高速度,就开始减速停止!没有等速区(如下图所示),常见于不需要与主轴速度同步但必须频繁地启动与停止的场合,例如:横切机与马达定子绕线机!

三角形曲线的组成

上图中速度曲线(蓝色)为三角形,由左而右为加速区=>减速区,说明如下:

1.

1.加速区速度由零加速到最高速的区域,所佔的角度愈大,马达出力愈轻鬆,电流愈

小.

2.减速区由最高速度减速到零的区域,特性同加速区,通常会设计成“对称的三角形

“,也就是加/减速区同宽,但有时马达受外力作用,加减速区实际电流不一定相同,需要调整加/减速区的比例,让加减速的电流峰值相同,以取得平衡.另外,若减速区太窄,容易让回升能量太大,可能造成驱动器回升错误!

3.S型曲线图中速度转折处有少许弧线是S型曲线的平滑效果,用来让加速度变化缓和!

但只能适量使用,因为在同样的凸轮週期中,愈大的S曲线会使随后的加速度有更高的峰值,也会让电流更高!

4.位置曲线(红色)凸轮运转一周的位移量H,就是速度曲线下方的面积总和.

为何要使用三角形凸轮曲线?

如左图:比较三角形与梯形速度曲线在相同的运作时间(横轴长度)与相同的定位距离(曲线下方的面积)时,可以发现,三角形在加减速时的斜率比较小,不像梯形那麽陡!因此,三角形速度曲线的加速度最缓和,马达的电流最小!所以在需要“频繁地启动/停止” 的工作场合,採用三角形曲线,可以让马达较不容易发生过载,机械的生产速度也可以获得提升!虽然三角形曲线的最高速度较高,但对于行走距离不长的情况,通常伺服马达很难超过最高转速,不太需要担心

三角形凸轮曲线的常见应用:

?横切机:切刀为主轴;伺服(凸轮)为从轴用来输送纸张,必须在主轴特定的角度范围,才能送纸,其馀的角度,切刀已闭合,伺服必须停止送纸!因此属于频繁启动/停止的应用,适用三角形凸轮曲线.横切机的机构通常不轻,要求生产速度高(与送纸长度有关),切纸要对标记(凸轮对位),精度有要求,对伺服性能与运动控制都有一定的考验!

?糖果扭结包装机:动作与横切机一样,都是切刀为主轴;伺服为凸轮从轴用来送纸,只是纸张小得多!因此速度也较快,笔者遇过的案子可以到350 包/min,视机械震动而定,伺服的负荷并不算高,高速时的标记对位精度必须要能保证!

?马达定子绕线机:凸轮主轴可採用控制器虚拟轴,从轴有:上下轴/水平轴/排线进给轴,每绕线一匝,上下轴往返一次,水平轴来回一次,排线移动一线径.以水平轴而言,绕线针头必须离开定子槽,才能开始移动,否则会撞坏针头,有固定的工作角度与停止角度!也适用三角形曲线.绕线速度可到600 匝/min 左右,对马达性能的要求很高!

飛剪凸輪曲線

飞剪曲线–同步区角度如何设定?

剪是电子凸轮的一种常见的应用,例如:枕式包装机的切刀轴(架构如图,本文说明建造飞剪曲线时,同步区的角度大小该如何拿捏才洽当.设定不足将造成扯膜现象,设定太大会压缩到其他区域的角度,使加减速过于剧烈,必须妥善设定之...

飞剪曲线的组成如下图:

同步区角度的规划,可以根据包装膜一包的长度(L)与刀宽(K)来决定:

计算公式如下:

同步区角度

原因是包装膜与主轴是直线的关係,所以可以由包装膜来看主轴的角度,一包的长度L 对应主轴360°!由于裁切时切刀速度必须与包装膜同步,才不会发生扯膜现象,所以切刀宽(图中刀痕区域K)就是同步区的角度范围!例如:裁切长度L = 58 mm,切刀宽K = 18 mm,则同步区角度Y = 18/58 × 360° = 111.7°,可以取115°,稍微取大一点!由公式可以看

出,裁切长度愈短,同步区就需要愈大!使用台达伺服的巨集#7 飞剪建

表时,同步区角度P5-94 就可套用上述公式得出.

扯膜的发生原因:

扯膜是指切刀接触包装膜时,因切刀速度较快而发生的拉膜现象,也会发出声响!通常因包装膜受热收缩或因包装物品而隆起使包装膜长度变短,所以飞剪曲线必须修正:

1.同步速度太快:因包装膜变短了,速度较慢,所以切刀走快了!

2.同步区角度不足:切刀还接触着包装膜,曲线却已离开同步区!

解决法:可将曲线的同步速度降低(例如巨集#7 速度倍率P5-96 的V 调慢,通常V = 0.8 ~ 0.95)就可以改善扯膜的现象!同步区角度若根据上述公式设定便已足够,通常不用修改!

飞剪曲线–切长比的影响与设定法

飞剪应用时,产品切长可以任意指定,只要切长改变,凸轮曲线就必须重新建造,而切长比(产品切长与单位切刀长的比值),是建造飞剪曲线的重要依据!当使用台达A2 或M-R 伺服的巨集#7 建造飞剪曲线时,可根据本文公式来计算切长比(P5-96),正确的设定才能让裁切时切刀与产品的速度同步,否则可能发生卡料,甚至损坏设备,不可不慎!...常见的飞剪应用有:枕式包装机的切刀轴

其中:

?r:切刀顶端到轴心的距离,即旋转半径

?L:产品的裁切长度,或称目标切长

刀轴上可以安装多个刀具,数量为C,必须对称安装,如下图:

说明如下:

?R > 1 时,同步速度是曲线中的高速区域,也就是初始速度慢,裁切时速度快.

?R < 1 时,同步速度是曲线中的低速区域,也就是初始速度快,裁切时速度慢.

?R = 1 时,同步速度与飞剪曲线完全重合,一直维持等速(不考虑速度补偿的前提下)

飞剪曲线–等待区的影响与设定技巧

在建造飞剪曲线时,除了设定同步区与切长比(含速度补偿)之外,还有一个自由度称为“等待区“.本文说明等待区角度对飞剪曲线的影响,以

最新电力拖动自动控制系统--运动控制系统第四版复习题考试题目1精编版

2020年电力拖动自动控制系统--运动控制系统第四版复习题考试题目1精编版

1弱磁控制时电动机的电磁转矩属于恒功率性质只能拖动恒功率负载而不能拖动恒转矩负载。(Ⅹ) 2采用光电式旋转编码器的数字测速方法中,M法适用于测高速,T法适用于测低速。(√) 3只有一组桥式晶闸管变流器供电的直流电动机调速系统在位能式负载下能实现制动。(√) 4直流电动机变压调速和降磁调速都可做到无级调速。(√) 5静差率和机械特性硬度是一回事。(Ⅹ) 6带电流截止负反馈的转速闭环系统不是单闭环系统。(Ⅹ) 的大小并非仅取决7电流—转速双闭环无静差可逆调速系统稳态时控制电压U k 于速度定 U g*的大小。(√) 8双闭环调速系统在起动过程中,速度调节器总是处于饱和状态。 (Ⅹ) 9逻辑无环流可逆调速系统任何时候都不会出现两组晶闸管同时封锁的情况。(Ⅹ) 10可逆脉宽调速系统中电动机的转动方向(正或反)由驱动脉冲的宽窄决定。(√) 11双闭环可逆系统中,电流调节器的作用之一是对负载扰动起抗扰作用。(Ⅹ) 与开环系统相比,单闭环调速系统的稳态速降减小了。(Ⅹ) 12α=β配合工作制的可逆调速系统的制动过程分为本组逆变和它组制动两阶段(√)

13转速电流双闭环速度控制系统中转速调节为PID调节器时转速总有超调。(Ⅹ) 14 电压闭环相当于电流变化率闭环。(√) 15 闭环系统可以改造控制对象。(√) 16闭环系统电动机转速与负载电流(或转矩)的稳态关系,即静特性,它在形式上与开环机械特性相似,但本质上却有很大的不同。 17直流电动机弱磁升速的前提条件是恒定电动势反电势不变。(√) 18 直流电动机弱磁升速的前提条件是恒定电枢电压不变。(Ⅹ) 19电压闭环会给闭环系统带来谐波干扰,严重时会造成系统振荡。(√) 20对电网电压波动来说,电压环比电流环更快。(√) 二选择题 1直流双闭环调速系统中出现电源电压波动和负载转矩波动时,( A)。 A ACR抑制电网电压波动,ASR抑制转矩波动 B ACR抑制转矩波动,ASR抑制电压波动 C ACR 放大转矩波动,ASR抑制电压波动 D ACR放大电网电压波动,ASR抑制转矩波动 3与机组相比,相控整流方式的优点是(A、B、C、D ),缺点是( E、F )。 A 功率放大倍数小于1000倍 B 可逆运行容易实现 C 控制作用的快速性是毫秒级 D 占地面积小,噪音小 E 高次谐波丰富 F 高速时功率因数低 4系统的静态速降△ned一定时,静差率S越小,则(C )。 A 调速范围D越小 B 额定转速?Skip Record If...?越大

电力传动控制系统——运动控制系统

电力传动控制系统——运动控制系统 (习题解答) 第 1 章电力传动控制系统的基本结构与组成.......... 第 2 章电力传动系统的模型................. 第 3 章直流传动控制系统................... 第 4 章交流传动控制系统................... 第 5 章电力传动控制系统的分析与设计* ............ 错误!未定义书签错误!未定义书签错误!未定义书签错误!未定义书签错误!未定义书签

第1章电力传动控制系统的基本结构与组成 1.根据电力传动控制系统的基本结构,简述电力传动控制系统的基本原理和共性问题。 答:电力传动是以电动机作为原动机拖动生产机械运动的一种传动方式,由于电力传输和变换的便利,使电力传动成为现代生产机械的主要动力装置。电力传动控制系统的基本结构如图1-1所示,一般由电源、变流器、电动机、控制器、传感器和生产机械(负载)组成。 控制指令 图1-1电力传动控制系统的基本结构 电力传动控制系统的基本工作原理是,根据输入的控制指令(比如:速度或位置指令),与传感器采集的系统检测信号(速度、位置、电流和电压等),经过一定的处理给出相应的反馈控制信号,控制器按一定的控制算法或策略输出相应的控制信号,控制变流器改变输入到电动机的电源电压、频率等,使电动机改变转速或位置,再由电动机驱动生产机械按照相应的控制要求运动,故又称为运动控制系统。 虽然电力传动控制系统种类繁多,但根据图1-1所示的系统基本结构,可以归纳出研发或应用电力传动控制系统所需解决的共性问题: 1)电动机的选择。电力传动系统能否经济可靠地运行,正确选择驱动生产 机械运动的电动机至关重要。应根据生产工艺和设备对驱动的要求,选择合适的电动机的种类及额定参数、绝缘等级等,然后通过分析电动机的发热和冷却、工作制、过载能力等进行电动机容量的校验。 2)变流技术研究。电动机的控制是通过改变其供电电源来实现的,如直流 电动机的正反转控制需要改变其电枢电压或励磁电压的方向,而调速需要改变电 枢电压或励磁电流的大小;交流电动机的调速需要改变其电源的电压和频率等,因此,变流技术是实现电力传动系统的核心技术之一。 3)系统的状态检测方法。状态检测是构成系统反馈的关键,根据反馈控制 原理,需要实时检测电力传动控制系统的各种状态,如电压、电流、频率、相位、 磁链、转矩、转速或位置等。因此,研究系统状态检测和观测方法是提高其控制

运动控制系统第五周重点归纳

3.19直播课,3.16请提前自主学习以下重点(看慕课和教材) 1、双闭环的参数计算,典型题教材P100习题4-1 4-2 4-3(下周习题课会讲解下) 会解释: (1)双闭环中,ACR和ASR分别起什么作用? (2)启动过程电流波形和转速波形有何特点? 2、双闭环直流调速系统的动态结构框图(教材上找一找)传递函数形式 了解双闭环和单闭环动态抗扰性能有何不同? 3、双闭环工程设计方法的基本思路(两步走:先选结构再定参数、先内环再外环)(1)选结构,保证动态稳定性和稳态精度,抓主要矛盾; (2)再定参数(查表)进一步考虑其他动态性能指标

PS:其中涉及到大量的自控理论内容(如典型I型典型II型稳定性判定方法和各类动态特性指标),工程设计方法实际上是寻求一个折中的方案,依据与典型系统的关系(查公式、图表)来解决。 4、转速检测的数字化手段(运用光电码盘、霍尔传感器等) 实际应用中,单片机或者PLC根据脉冲计数来测量转速的方法有以下三种: (1)在规定时间内测量所产生的脉冲个数来获得被测速度,称为M法测速; (2)测量相邻两个脉冲的时间来测量速度,称为T法测速; (3)同时测量检测时间和在此时间内脉冲发生器发出的脉冲个数来测量速度,称为M/T 法测速。其中,M法适合于测量较高的速度,能获得较高分辨率;T法适合于测量较低的速度,这时能获得较高的分辨率。 重点掌握M法测速 要求会解释:为什么M法适合测量高速?(可看课件上的公式) M法是测量单位时间内的脉数换算成频率,因存在测量时间内首尾的半个脉冲问题,可能会有2个脉的误差(客观存在)。速度较低时,因测量时间内的脉冲数变少,误差所占的比例会变大,所以M法宜测量高速。 掌握分辨率、测速最大误差率以及M法测速公式(自行整理),会做教材P111习题5-1

运动控制系统基本要求

11级电气工程与自动化专业《运动控制系统》基本要求(2014-05-23) 第一章 绪论 了解本课程的研究内容。 第二章 (转速单)闭环控制的直流调速系统 1、 了解V (SCR )--M 、PWM--M 两种主电路方案及其特点(2.1节、P16、P97--98、笔记); 2、 他励(或永磁)直流电动机三种数学模型及转换,解耦模型中I do ~U d 环节的处理(P27--28、笔记); 3、 稳态性能指标中D 、S 间关系及适用范围(2.2.1节、P29--30、笔记); 4、 转速单闭环直流调速系统组成原理、特点及适用范围(P2 5、笔记); 5、 带电流截至负反馈的转速单闭环直流调速系统的组成原理、特点(笔记、2.5.2节)。 第三章 转速、电流反馈控制的直流调速系统 1、 双闭环直流调速系统的组成原理(主要指:V —M 不可逆调速系统、PWM-M 调速系统)、特点,符合实际的系统数学模型,静(稳)态参数的整定及计算(P60、P59--6 2、笔记); 2、 ASR 、ACR 的作用(P65); 3、 典1、典2系统的特点、适用范围、参数整定依据(3.3.2节、笔记); 4、 基于工程设计法的ASR 、ACR 调节器参数整定方法(P77--78、3.3.3节、例3-1、3-2、笔记); 5、 理解ASR 退饱和时的(阶跃响应)转速超调量等时域指标算式(P86--88、笔记); 6、 系统分别在正常恒流动态、稳态阶段,及机械堵转故障、转速反馈断开故障下的(新稳态)物理量计算; 7、 M 、T 、M/T 三种数字测速方法及特点(2.4.2节、笔记); 8、 了解了解M/T 数字测速的技术实现方法、系统控制器的技术实现方法(P82-85、笔记)。 第四章 可逆控制和弱磁控制的直流调速系统 1、 PWM--M 可逆直流调速系统组成原理及特点(4.1节,笔记) 2、 V (SCR )--M 可逆主电路中的环流概念、类型、特点(P103--104、笔记); 3、 常用的晶闸管-直流电动机可逆调速系统组成原理及特点(4.2.2节,图4-1 4、图4-1 5、4.2.3节)。 第五章 基于稳态模型的异步电动机调速系统 1、 异步电动机定子调压调速的机械特性簇与特点,转速闭环调压调速系统组成原理及适用范围(5.1--5.2节); 2、 软起动器的作用及适用条件(5.2.4节); 3、 异步电动机变压变频调速的基本协调控制关系(一点两段)及其依据(5.3.1节); 4、 异步电动机四种协调控制的特点,各自的机械特性簇、特点及比较(5.3.2节--5.3.3节、笔记); 5、 SPWM 、CFPWM 、SVPWM 变频调速器组成原理与特点,及其中各环节的作用(5.4节); 6、 了解基于转差频率控制的转速闭环变频变压调速系统的基本原理(5.6节)。 第六章 基于动态模型的异步电动机调速系统 1、 交流电动机坐标变换的作用,矢量控制(VC )的基本思想、特点(6.6、6.7、笔记); 2、 异步电动机VC 系统的一般组成原理(图6-20); 3、 了解各种具体的VC 系统组成方案,理解转子磁链直接与间接定向控制的区别(6.6. 4、6.6.6节、笔记); 4、 异步电动机直接转矩控制(DTC )系统的基本原理及特点(6.7.3节),DTC 与VC 的比较(6.8节)。 第七章 绕线转子异步电动机双馈调速系统 1、 绕线转子异步电动机次同步串级调速主电路及其工作原理,()S f β=公式及特点(7.2.1节、笔记); 2、 绕线转子异步电动机双闭环次同步串级调速系统组成原理;起动、停车操作步骤;(7.5、7.6、7.4.3节、笔记)。 第八章 同步电动机变压变频调速系统 1、 正弦波永磁同步电动机(PMSM )矢量控制系统组成原理,0sd i =时的转矩公式(8.4.3节); 2、 具有位置、速度闭环的正弦波永磁同步电动机(伺服)矢量控制系统组成原理(图8-26、27扩展、笔记)。 第九章 伺服系统 1、 位置伺服系统的典型结构(开环、半闭环、闭环、混合闭环)及特点(笔记、9.1.2); 2、 位置伺服系统的三种运行方式、位置伺服系统的三种方案;(笔记、9.3.2--9.3.4) 3、 数字伺服系统中电子齿轮的作用(笔记); 4、 数字式位置、速度伺服系统的指令形式(笔记)。 *** 考试须知---要点提示: (1)无证件者不能考试;(2)未交卷者中途不得离场;(3)严禁带手机到座位,操作手机者按作弊论处。 附:答疑地点(2-216)、时间:(1)2014-6-6,13:00--15:00;(2)2014-6-7,8:00--11:00,13:00--15:00。

运动控制系统 复习知识点总结

1 运动控制系统的任务是通过对电动机电压、电流、频率等输入电量的控制,来改变工作机械的转矩、速度、位移等机械量,使各种工作机械按人们期望的要求运行,以满足生产工艺及其他应用的需要。(运动控制系统框图) 2. 运动控制系统的控制对象为电动机,运动控制的目的是控制电动机的转速和转角,要控制转速和转角,唯一的途径就是控制电动机的电磁转矩,使转速变化率按人们期望的规律变化。因此,转矩控制是运动控制的根本问题。 第1章可控直流电源-电动机系统内容提要 相控整流器-电动机调速系统 直流PWM变换器-电动机系统 调速系统性能指标 1相控整流器-电动机调速系统原理 2.晶闸管可控整流器的特点 (1)晶闸管可控整流器的功率放大倍数在104以上,其门极电流可以直接用电子控制。(2)晶闸管的控制作用是毫秒级的,系统的动态性能得到了很大的改善。 晶闸管可控整流器的不足之处 晶闸管是单向导电的,给电机的可逆运行带来困难。 晶闸管对过电压、过电流和过高的du/dt与di/dt都十分敏感,超过允许值时会损坏晶闸管。 在交流侧会产生较大的谐波电流,引起电网电压的畸变。需要在电网中增设无功补偿装置和谐波滤波装置。 3.V-M系统机械特 4.最大失控时间是两个相邻自然换相点之间的时间,它与交流电源频率和晶闸管整流器的类型有关。 5.(1)直流脉宽变换器根据PWM变换器主电路的形式可分为可逆和不可逆两大类 (2)简单的不可逆PWM变换器-直流电动机系统 (3)有制动电流通路的不可 逆PWM-直流电动机系统 (4)桥式可逆PWM变换器 (5)双极式控制的桥式可逆PWM变换器的优点 双极式控制方式的不足之处 (6)直流PWM变换器-电动机系统的能量回馈问题 ”。(7)直流PWM调速系统的机械特性 6..生产机械要求电动机在额定负载情况下所需的最高转速和最低转速之比称为调速范围,用字母D来表示(D的表达式) 当系统在某一转速下运行时,负载由理想空载增加到额定值时电动机转速的变化率,称为静差率s。 D与s的相互约束关系 对系统的调速精度要求越高,即要求s越小,则可达到的D必定越小。 当要求的D越大时,则所能达到的调速精度就越低,即s越大,所以这是一对矛盾的指标。第二章闭环控制的直流调速系统 内容提要 ?转速单闭环直流调速系统 ?转速、电流双闭环直流调速系统 调节器的设计方法 1.异步电动机从定子传入转子的电磁功率可分成两部分:一部分是机械轴上输出的机械功率;另一部分是与转差率成正比的转差功率。.异步电动机按调速性能分类第一类基于稳态模型,动

(完整版)运动控制考试复习题

一、填空题 1、控制系统的动态性能指标是指跟随指标和抗扰指标,而调速系 统的动态指标通常以抗扰性能指标为主 2、直流电机调速方法有变压调速、电枢串电阻调速和弱磁调速。异 步电动机调速方式常见有6种分别是:降压调速、差离合调速、转子串电阻调速、串级调速和双馈电动机调速、变级调速、变压变频调速。其中转差率不变型有:变级调速、变压变频调速,只有变压变频应用最广,可以构成高动态性能的交流调速系统。 同步电动机按频率控制方式不同分为:他控式变频调速和自控式变频调速。(变电阻调速:有级调速。变转差率调速:无级调速。调压调速:调节供电电压进行调速) 按按转差功率可以怎么划分电动机:转差功率消耗型、转差功率不变型、转差功率馈送型 3、对于异步电动机变压变频调速,在基频以下,希望维持气隙磁 通不变,需按比例同时控制定子电压和定子频率,低频时还应当抬高电压以补偿阻抗压降,基频以下调速属于恒转矩调速; 而基频以上,由于电压无法升高,只好仅提高定子频率而迫使磁通减弱,相当直流电动机弱磁升速情况,基频以上调速属于恒功率调速。 4、对于SPWM型逆变器,SPWM的含义为正弦波脉宽调制,以正弦波 作为逆变器输出的期望波形,SPWM波调制时,调制波为频率和期望波相同的正弦波,载波为频率比期望波高得多的等腰三角波,SPWM型逆变器控制方式有同步调制、异步调制、混合调制。

SPWM 型逆变器的输出的基波频率取决于正弦波。SPWM 控制技术 包括单极性控制和双极性控制两种方式。 5、调速系统的稳定性能指标包括调速范围和静差率 6、供变压调速使用的可控直流电源有:旋转交流机组(G-M 系统)、静止式可控整流器(V-M 系统)与直流斩波器(PWM-M 系统)或脉宽调制变换器。 7、典型 I 型系统与典型 II 型系统相比, 前者跟随性能好、超调小,但抗扰性能差。 典型I 型系统和典型Ⅱ型系统在稳态误差和动态性能上有什么区别? 答:稳态误差:对于典型I 型系统,在阶跃输入下,稳态时是无差的;但在斜坡输入下则有恒值稳态误差,且与K 值成反比;在加速度输入下稳态误差为∞ 。对于典型II 型系统,在阶跃和斜坡输入下,稳态时均无差;加速度输入下稳态误差与开环增益K 成反比。 动态性能:典型 I 型系统在跟随性能上可以做到超调小,但抗扰性能稍差;典型Ⅱ型系统的超调量相对较大,抗扰性能却比较好。 8、数字测速中,T 法测速适用于低速,M 法测速适用于高速。 9、PI 调节器的双重作用是指:一是比例部分加快动态进程;二是积 分部分最终消除偏差。 10、 直流调速系统的理论依据φ e n C R I U d d -= ,交流调速系统的理论依据)1(60n s p f -=。 11、交-直-交电压型变频器的主要电路基本组成为整流器、直流平滑电路、逆变器。 12、在交-直-交逆变器中,直流侧所用滤波元件为大电容,因而直流电压波形比较平直,在理想情况下是一个内阻为零的恒压源,成

运动控制系统练习题

判断题 1弱磁控制时电动机的电磁转矩属于恒功率性质只能拖动恒功率负载而不能拖动恒转矩负载。(Ⅹ) 3只有一组桥式晶闸管变流器供电的直流电动机调速系统在位能式负载下能实现制动。(√)4直流电动机变压调速和降磁调速都可做到无级调速。(√) 5静差率和机械特性硬度是一回事。(Ⅹ) 6带电流截止负反馈的转速闭环系统不是单闭环系统。(Ⅹ) 7电流—转速双闭环无静差可逆调速系统稳态时控制电压U k的大小并非仅取决于速度定 U g*的大小。(√) 8双闭环调速系统在起动过程中,速度调节器总是处于饱和状态。(Ⅹ) 9逻辑无环流可逆调速系统任何时候都不会出现两组晶闸管同时封锁的情况。(Ⅹ) 10可逆脉宽调速系统中电动机的转动方向(正或反)由驱动脉冲的宽窄决定。(√) 11双闭环可逆系统中,电流调节器的作用之一是对负载扰动起抗扰作用。(Ⅹ) 与开环系统相比,单闭环调速系统的稳态速降减小了。(Ⅹ) 12α=β配合工作制的可逆调速系统的制动过程分为本组逆变和它组制动两阶段(√) 13转速电流双闭环速度控制系统中转速调节为PID调节器时转速总有超调。(Ⅹ) 14 电压闭环相当于电流变化率闭环。(√) 15 闭环系统可以改造控制对象。(√) 16闭环系统电动机转速与负载电流(或转矩)的稳态关系,即静特性,它在形式上与开环机械特性相似,但本质上却有很大的不同。 17直流电动机弱磁升速的前提条件是恒定电动势反电势不变。(√) 18 直流电动机弱磁升速的前提条件是恒定电枢电压不变。(Ⅹ) 19电压闭环会给闭环系统带来谐波干扰,严重时会造成系统振荡。(√) 20对电网电压波动来说,电压环比电流环更快。(√) 选择题 1.转速电流双闭环调速系统中的两个调速器通常采用的控制方式是 A.PID B.PI C.P D.PD 2.静差率和机械特性的硬度有关,当理想空载转速一定时,特性越硬,静差率A.越小B.越大C.不变D.不确定3.下列异步电动机调速方法属于转差功率不变型的调速系统是 A.降电压调速B.串级调速C.变极调速D.变压变频调速4.可以使系统在无静差的情况下保持恒速运行,实现无静差调速的是 A.比例控制B.积分控制C.微分控制D.比例微分控制5.控制系统能够正常运行的首要条件是 A.抗扰性B.稳定性C.快速性D.准确性6.在定性的分析闭环系统性能时,截止频率ωc越低,则系统的稳态精度 A.越高B.越低C.不变D.不确定8.转速电流双闭环调速系统中电流调节器的英文缩写是 A.ACR B.AVR C.ASR D.ATR 9.双闭环直流调速系统的起动过程中不包括 A.转速调节阶段 B.电流上升阶段 C.恒流升速阶段 D.电流下降阶段

机电运动控制系统离线作业必

机电运动控制系统离线作 业必 Newly compiled on November 23, 2020

浙江大学远程教育学院 《机电运动控制系统》课程作业(必做) 姓名:严超学号: 3 年级:16秋电气学习中心:武义 ————————————————————————————— 1.直流电机有哪些调速方法根据其速度公式说明之, 并说明如何釆用电力电子手段实现。 答:根据直流电机速度公式,有 (1)电枢电压Ua控制-调压调速(向下调速):采用电力电子手段时,有晶闸管可控整流器供电和自关断器件H型桥脉宽调制(PWM)供电等方式,其损耗小,控制性能好。 (2)磁场φ控制-弱磁(向上调速),采用电力电子手段时,有晶闸管可控整流器供电励磁控制。 (3)由于运行损耗大、效率低,一般不再采用串Ra调速。 2.画出双闭环晶闸管—直流电动机不可逆调速系统电原理图(非方块图),须清楚表达两个闭环的关键元件,写出各部分名称,标注有关信号量;指出两闭环连接上的特点及相互关系。 答:双闭环晶闸管-直流电动机不可逆调速系统电路原理图如下: 两闭环连接上的关系是速度调节器的输出作为电流调节器的输入,这就使得该系统具有由速度调节器的输出限幅值确定了电流环的给定值,进面确定了系统的最大电流的特点。 3.分析双闭环晶闸管—直流电动机不可逆调速系统:

(1) 如果要改变转速,应调节什么参数为什么 (2) 如要控制系统的起动电流、确保系统运行安全,应调节什么参数为什么 答:(1)改变转速时只能改变速度调节器的输入ug,因为它是速度环的指令信号。改变速度调节哭的参数对稳态速度无调节作用,仅会影响动态响应速度快慢。 (2)要控制系统的起动电流、确保系统运行安全,应调节速度调节器的输出限幅值。 因为速度调节器的输出限幅值确定了电流环的给定值,进而确定了系统的最大电流。 4. 填空 : 双闭环晶闸管━直流电动机调速系统中,内环为_电流_环,外环为_速度环,其连接关系是:_速度调节器_的输出作为__电流调节器的输入,因此外环调节器的输出限幅值应按__调速系统允许最大电流_来整定;内环调节器的输出限幅值应按__可控整流器晶闸管最大、最小移相触发角_来整定。两调节器均为_PI_型调节器,调速系统能够做到静态无差是由于调节器具有_积分(记忆)功能;能实现快速动态调节是由于节器具有__饱和限幅_功能。 5.在转速、电流双闭环系统中,速度调节器有哪些作用其输出限幅值应按什么要求来调整电流调节器有哪些作用其输出限幅值应如何调整 答:速度调节器用于对电机转速进行控制,以保障:①调速精度,做至静态无差;②机械特性硬,满足负载要求。 速度调节器输出限幅值应按速系统允许最大电流来调整,以确保系统运行安全(过电流保护) 电流调节器实现对电流的控制,以保障:①精确满足负载转矩大小要求(通过电流控制);②调速的快速动态特性(转矩的快速响应)。

电力拖动自动控制系统--运动控制系统 第四版 复习题 考试题目

考试题型及分数分配 1 判断题(20分,10~20小题)范围广, 2 选择题(20分,10~20小题)内容深,细节区分 3 填空题(10分,10小题) 4 设计题(10分,2小题) 5 简述题(10分,2小题) 6 无传感器算法:磁链、转矩的计算算法 异步电动机转子磁链和定子磁链的估算、转矩的估算 7 分析计算题(20分,3小题) 直流调速系统 一判断题 1弱磁控制时电动机的电磁转矩属于恒功率性质只能拖动恒功率负载而不能拖 动恒转矩负载。(Ⅹ) 2采用光电式旋转编码器的数字测速方法中,M法适用于测高速,T法适用于测低速。(√) 3只有一组桥式晶闸管变流器供电的直流电动机调速系统在位能式负载下能实 现制动。(√) 4直流电动机变压调速和降磁调速都可做到无级调速。(√) 5静差率和机械特性硬度是一回事。(Ⅹ) 6带电流截止负反馈的转速闭环系统不是单闭环系统。(Ⅹ) 的大小并非仅取决于7电流—转速双闭环无静差可逆调速系统稳态时控制电压U k *的大小。(√) 速度定 U g 8双闭环调速系统在起动过程中,速度调节器总是处于饱和状态。(Ⅹ)9逻辑无环流可逆调速系统任何时候都不会出现两组晶闸管同时封锁的情况。(Ⅹ) 10可逆脉宽调速系统中电动机的转动方向(正或反)由驱动脉冲的宽窄决定。(√) 11双闭环可逆系统中,电流调节器的作用之一是对负载扰动起抗扰作用。(Ⅹ)与开环系统相比,单闭环调速系统的稳态速降减小了。(Ⅹ) 12α=β配合工作制的可逆调速系统的制动过程分为本组逆变和它组制动两阶段(√) 13转速电流双闭环速度控制系统中转速调节为PID调节器时转速总有超调。(Ⅹ)14 电压闭环相当于电流变化率闭环。(√)

运动控制基础教学大纲2017版

《运动控制基础》课程教学大纲 课程代码:060131004 课程英文名称:Moving-Control Foundation 课程总学时:40 讲课:36 实验:4 上机:0 适用专业:自动化专业 大纲编写(修订)时间:2017.11 一、大纲使用说明 (一)课程的地位及教学目标 本课程是高等工业学校自动化专业开设的一门专业基础课。课程主要讲授运动控制系统的动力学基础;直流运动控制系统基础;交流运动控制系统基础。 本课程的教学目的是使学生掌握运动控制系统的组成、功能及分析运动控制系统的知识;掌握电动机起动、制动、调速的实现方法:掌握直流运动控制系统、交流运动控制系统静态特性、动态特性的分析方法。为学习后续课程打下基础。 (二)知识、能力及技能方面的基本要求 通过本门课程学习,要求学生掌握运动控制系统的基本知识,并具备一定的实际工作能力。 本课程理论严谨,系统性强,教学过程中培养学生的思维能力,以及严谨的科学学风。 在本课程的教学过程中,应注意运用启发式教学,注意阐述各种分析方法的横向联系,以培养分析,归纳与总结的能力。 (三)实施说明 1.教学方法:课堂讲授中要重点对基本概念、基本设计方法和解题思路的讲解; 采用启发式教学,培养学生思考问题、分析问题和解决问题的能力;引导和鼓励学生通过实践和自学获取知识,培养学生的自学能力;增加讨论课,调动学生学习的主观能动性;讲课要联系实际并注重培养学生的创新能力。 2.教学内容:在运动控制系统动力学基础部分,着重介绍:运动方程式,多轴运动控制系统等效为单轴运动控制系统的折算原则,并在此基础上讲解各量折算式。 在直流运动控制系统基础部分,着重介绍:直流电动机机械特性,直流电动机起动、制动的实现方法及静态特性,调速的基本原理、性能指标及调速方法。 在交流运动控制系统基础部分,着重介绍:三相异步电动机的机械特性,三相异步电动机起动、制动的实现方法及静态特性,三相异步电动机调速的基本原理及调速方法。 3.教学手段:本课程属于专业基础课,在教学中采用多媒体教学先进教学手段,以确保在有限的学时内,全面、高质量地完成课程教学任务。 (四)对先修课的要求 本课程的教学必须在完成先修课程之后进行,本课程的主要先修课程有电路及电机学等。 (五)对习题课、实践环节的要求 1.对重点、难点章节应安排习题课,例题的选择以培养学生消化和巩固所学知识,用以解决实际问题为目的。因此,要求学生按时完成作业,并将作业内容带到实践环节去验证. 2.课后作业要少而精,内容要多样化,作业题内容必须包括基本概念、基本理论及计算方面的内容,作业要能起到巩固理论,掌握计算方法和技巧,提高分析问题、解决问题能力,熟悉标准、规范等的作用,对作业中的重点、难点,课上应做必要的提示,并适当安排课内讲评作业。学生必须独立、按时完成课外习题和作业,作业的完成情况应作为评定课程成绩的一部分。 3.每个学生要完成大纲中规定的必修实验,要求学生在做实验前,充分阅读实验指导书,以免实验时不知所措;要求每个学生亲自动手,通过实验,独立思考,加强对运动控制原理的理

第一部分运动控制复习要点

第一部分 运动控制复习要点(IRON ) 1、直流调速系统用的三种可控直流电源和各自的特点。P 2 1)旋转变流机组——用交流电动机和直流发电机组成机组,以获得可调的直流电压。 2)静止式可控整流器——用静止式的可控整流器,以获得可调的直流电压。 3)直流斩波器或脉宽调制变换器——用恒定直流电源或不控整流电源供电,利用电力电子开关器件斩波或进行脉宽调制,以产生可变的平均电压。 2.电流连续和断续时,V-M 系统机械特性的差别,电流断续有何不良影响。P 9 1)当电流连续时,特性还比较硬;断续段特性则很软,而且呈显著的非线性,理想空载转速翘得很高。 2)电流断续给用平均值计算描述的系统带来一种非线性因素,也引起机械特性的非线性,影响系统的运行性能。 3、直流调速系统闭环静特性和开环机械特性的联系和区别(画图分析)。P 23~24 a 、闭环系统的静态特性可以比开环系统的机械特性硬很多; b 、闭环系统的静差率比开环系统小得多; c 、如果所要求的静差率一定,则闭环系统可以大大提高调 速范围。 d 、要取得上述三项优势,闭环系统必须设置放大器。 4、电流截止负反馈及其作用。P 28 当电流大到一定程度时才出现的电流负反馈叫做电流截止负反馈,简称截流反馈。 作用:限流保护,即解决反馈闭环调速系统启动和堵转时电流过大的问题。 5、比例调节器、积分调节器、比例积分调节器各自的控制规律和特点。 比例调节器:a 、Uc=Kp ΔUn 输出信号与偏差信号成比例;有差调节。b 、能迅速响应控制作用。 积分调节器:a 、输出信号的速度与偏差信号成正比。b 、无静差调速。 比例积分调节器:a 、稳态精度高,动态响应快;b 、比例部分能迅速响应控制作用,积分部分则最 终消除稳态偏差。(控制规律即公式) 7、电压反馈电流补偿的调速系统进行稳态特性和与转速闭环调速系统的主要差别。 a 、结构框图的不同地方在于负反馈信号的取出处不同;P44 b 、电压负反馈的稳态性能比同样放大器的转速负反馈系统要差一些,在电压负反馈的基础上加入电流补偿,可以补偿一部分静差,以提高调速系统的稳态性能,但是不能指望其实现无静差,因为这时系统已经达到稳态的边缘了。 11、调节器工程设计法的思路。P 60 1、选择调节器结构,使系统典型化并满足稳定和稳态精度。 2、设计调节器的参数,以满足动态性能指标的要求。 n 0O I d I d1I d3I d2I d4 A B C A ’ D 闭环静特性 开环机械特性 图1-26 闭环系统静特性和开环机械特性的关系 U d4U d3U d2U d1

运动控制系统考试资料

问答题部分 1、试述交流调速系统要获得工业应用的条件,为什么 条件:(1)使用高转子电阻电动机 (2)系统工作点只是沿着极限开环特性变化 原因:能够在恒转矩负载下扩大调整范围,并使电动机能够在较低转速下运行而不致过热。 2、简述交流软启动器的作用。 定义:软启动器是一种集软停车、轻载节能和多种保护功能于一体的新颖电机控制装置,它的主要构成是串接于电源与被控电极之间的三相反并联晶闸管及其电子控制电路。 作用:防止电动机启动电流过大损坏电机,或造成电网电压下降过大,使电机无法正常启动。 3、简述恒压频比控制方式。 绕组中的感应电动势是难以直接控制的,当电动势较高时,可以忽略定子绕组的漏磁阻抗压降,而认为定子相电压s g U E ≈,则得:1 s U f =常值 这是恒压频比的控制方式。但是,在低频时s U 和g E 都比 较小,定子阻抗压降所占的分量就比较显著,不再能忽略。这时,需要人为地把电压s U 抬高一些,以便近似地补偿定子压降。 4、交流电机矢量控制的基本思想是什么 基本思路:将异步电动机经过坐标变换等效在直流电动机,模仿直流电动机的控制策略,得到直流电动机的控制量,再经过相应的坐标反变换,控制异步电机。(关键词:坐标变换) 5、试分析矢量控制系统与直接转矩控制系统的优缺点。 VC 系统强调c T 与r ψ的解耦,有利于分别设计转速与磁链调节器,实现连续调节,可以获得较宽的调速范围,但是按 定向受电动机转子参数的影响,降低了系统的鲁棒性。DTC 系统则实行e T 与r ψ的砰-砰控制,避开了旋转坐标变换,简化了控制结构,控制定子磁链而不是转子磁链,不受转子参数变化的影响,但不可避免的产生转矩脉动,低速性能较差,调速范围受到限制。 6、试分析什么是转差频率控制转差频率控制的规律是什么(P188、189) 定义:控制转差频率就代表控制转矩,这就是转差频率控制的基本概念。 控制规律:(1)在s sm w w ≤的范围内,转矩e T 基本上与s w 成正比,条件是气隙磁通不变。 (2)在不同的定子电流值时,按下图的1s s U f w I =()函数关系控制定子电压和频率,就能 保持气隙磁通m Φ恒定。

几种运动控制系统的比较

运动控制的实现方法 1、以模拟电路硬接线方式建立的运动控制系统 早起的运动控制系统一般采用运算放大器等分离器件以硬接线的方式构成,这种系统的优点: (1)通过对输入信号的实时处理,可实现系统的高速控制。 (2)由于采用硬接线方式可以实现无限的采样频率,因此,控制器的精度较高并且具有较大的带宽。 然而,与数字化系统相比,模拟系统的缺陷也是很明显的: (1)老化与环境温度的变化对构成系统的元器件的参数影响很大。 (2)构成系统所需的元器件较多,从而增加了系统的复杂性,也使得系统最终的可靠性降低。 (3)由于系统设计采用的是硬接线的方式,当系统设计完成之后,升级或者功能修改几乎是不可能的事情。 (4)受最终系统规模的限制,很难实现运算量大、精度高、性能更加先进的复杂控制算法。 模糊控制系统的上述缺陷使它很难用于一些功能要求比较高的场合。然而,作为控制系统最早期的一种实现方式,它仍然在一些早期的系统中发挥作用; 另外,对于一些功能简单的电动机控制系统,仍然可以采用分立元件构成。 2、以微处理器为核心的运动控制系统 微处理器主要是指以MCS-51、MCS-96等为代表的8位或16位单片机。采用微处理器取代模拟电路作为电动机的控制器,所构成的系统具有以下的优点:(1)使电路更加简单。模拟电路为了实现逻辑控制需要很多的元器件,从而使电路变得复杂。采用微处理器以后,大多数控制逻辑可以采用软 件实现。 (2)可以实现复杂的控制算法。微处理器具有较强的逻辑功能,运算速度快、精度高、具有大容量的存储器,因此有能力实现较复杂的控制算 法。 (3)灵活性和适应性强。微处理器的控制方式主要是由软件实现,如果需要修改控制规律,一般不需要修改系统德硬件电路,只需要对系统的

运动控制的基础

运动控制的基础 概观本教程是在NI测量基础系列的一部分。每个在这个系列的教程,教你一个常用的测量应用的特定主题的解释理论概念,并提供实际的例子。在本教程中,学习运动控制系统的基础知识,包括软件,运动控制器,驱动器,电机,反馈装置,I / O。您还可以查看交互式演示,通过本教程的材料在自己的步伐。有关更多信息,返回到NI测量基础主页。目录运动控制系统的组成部分软件配置,原型设计,开发运动控制器移动类型电机放大器和驱动器汽车和机械要素反馈装置和运动的I / O NI相关产品运动控制系统的组成部分图1显示了一个运动控制系统的不同组件。图1。运动控制系统组件应用软件-您可以使用应用软件,以命令的目标位置和运动控制型材。运动控制器-运动控制系统的大脑作用到所需的目标位置和运动轨迹,并建立电机的轨迹遵循,但输出±10 V的伺服电机或步进和方向脉冲信号,步进电机。 放大器或放大器(也称为驱动器)驱动器-从控制器的命令和需要开车或关闭电机的电流产生。电机-电机机械能变成电能和生产所需的目标位置移动到所需的扭矩。机械部件-电机的设计提供一些力学的扭矩。这些措施包括线性滑轨,机械手臂,和特殊的驱动器。反馈装置或位置传

感器-位置反馈装置是不是需要一些运动控制应用(如步进电机控制),但重要的是为伺服电机。反馈装置,通常是一个正交编码器,感应电机的位置和结果报告控制器,从而结束循环的运动控制器。软件配置,原型设计,开发应用软件分为三大类:配置,原型和应用程序开发环境(ADE)。图2说明了运动控制系统的编程过程和相应的NI产品设计过程:图2。运动控制系统开发过程组态 做的第一件事情之一,是您的系统配置。为此,美国国家仪器公司提供测量与自动化浏览器(MAX),不仅运动控制,但所有其他NI硬件配置的交互式工具。对于运动控制,MAX 提供交互式的测试和调整面板,帮助您验证系统功能之前,你的程序。图3 NI MAX是一个交互式工具,用于配置和调整您的运动控制系统。 应用笔记 了解伺服调谐 使用1D互动的环境测试电机功能 轴运动控制器的配置 轴运动控制器设置 运动控制器的编码器设置 运动控制器的参考设置 数字运动控制器的I / O设置原型 当你配置你的系统,你可以开始原型和开发应用程序。在

电气-运动控制系统-复习重点

1、基本概念及分析 (1)直流调速方法 (2)可控电源的类型 (3)调速系统的稳态性能指标及关系 (4)V-M系统和PWM系统分别适用什么场合? (5)什么是有静差系统?什么是无静差系统?无静差的系统在稳态时,其调节器的输出是什么情况? (6)PI调节器中,P的作用是什么?I的作用是什么? (7)单闭环直流调速系统对哪些扰动能克服?哪些扰动不能克服? 2、计算 请仔细复习P31:1-9, 1-10,1-12(切记:不要死记硬背,理解计算思路,掌握计算方法,牢记计算公式) 第二章 1、基本概念及分析 (1)双闭环系统较之单闭环系统的优势? (2)双闭环系统起动能够快速的真正原因? (3)双闭环系统起动过程中经历哪几个阶段,每个阶段两个调节器的工作状态是什么样的?起动的特点是什么? (4)双闭环系统在突发状况下会如何调节?(请仔细分析P66:2-5;P67:2-9) 2、设计、计算 (1)请仔细复习P53:例题2-3, PPT中72面的例题。 (2)复习P67:2-7。 (切记:不要死记硬背,理解设计或计算思路,掌握设计或计算方法,牢记计算公式,牢记折中参数)

1、基本概念及分析 (1)可逆的含义?四象限运行时,电机分别是什么运行状态? (2)V-M可逆系统中的环流是什么电流?如何消除直流平均环流?如何抑制瞬时脉动环流?如何彻底消除环流? (3)逻辑无环流系统中的DLC起到什么作用?其控制信号是什么信号?DLC 发出切换指令的充分必要条件是什么?DLC由哪几部分组成? (4)PWM可逆系统,采用H桥双极性PWM 变换器,其驱动信号的特点是什么?电机正转、反转、停转的条件及输出电压波形如何?H桥双极性PWM 变换器控制下的电机停转和普通的电机停转有什么不一样? 第四章 1、基本概念及分析 (1)异步电机进行变频调速时,为什么要保持磁通不变? (2)简述恒压频比的控制方式。 (3)保持磁通不变有哪几种实现方式?采用不同方式,当频率降低时,各个关键量如何变化? (4)交流PWM变换器和直流PWM有什么区别?交流PWM一般有哪些控制方式,这些控制方式的目的有什么不同?SPWM怎么实现? (5)基于稳态模型的变频调速系统一般有哪两类? 第六章 1、基本概念 (1)数字调速的特点? (2)数字测速的方法及应用场合。 (3)数字PI调节器主要有哪两种类型?

运动控制系统试卷

南京农业大学试题纸 2011学年第一学期课程类型:必修试卷类型:A

基频以下运行时,采用恒压频比的控制方法具有控制简便的优点,但负载的变化将导致磁通的改变,因此采用定子电流补偿控制,根据定子电流的大小改变定子电压,可保持磁通恒定,从而解决了负载改变的扰动问题。 4. 变频能节能,请说明原因。 三.问答(40’) 1. 画出运动控制系统以及组成,并分析各个组成单元的作用?请举例说明实际项目中各个组成部分及其对应关系? 2. 直流电机的转速公式是什么?通常改变直流电机转速有哪几种方法,各有什么优缺点? 可以用强磁的方式来调速吗,为什么?对于调节电枢电压调速,为什么必须在额定电压以下进行调速? 答: n=U-IR/KeФ 方法有:1。调节电枢供电电压U;2。减弱励磁磁通Ф;3。改变电枢回路电阻R。 对于要求在一定范围内无级平滑调速的系统来说,以调节电枢供电电压的方式为最好。改变电阻只能有级调速;减弱磁通虽然能够平滑调速,但调速范围不大,往往只是配合调压方案,在额定转速以上做小范围的弱磁升速。因此,自动控制的直流调速系统往往以变压调速为主。 对于调节电枢电压调速,必须在额定电压以下进行调速,因为当电枢电压大于额定电压时,电机电线的绝缘层会被烧坏 3.名词解释PWM、SPWM 、CFPWM 、SVPWM。 p.w.m。脉冲宽度调制。:控制逆变器中电力电子器件的开通或关断,输出电压为幅值相等,宽度为按一定规律变化的脉冲序列,用这样的高频脉冲序列代替期望的输出电压。 s.p.w.m。正弦脉冲调制。:以频率与期望的输出电压波形相同的正弦波作为调制波,以频率比期望高的多的等腰三角波作为载波,当调制波与载波相交时,由它们的交点确定逆变器开关器件的通断时刻,从而获得幅值相等,宽度按正弦规律变化的脉冲序

运动控制系统第一章作业答案 曾毅编

【1-1】 某生产工艺要求:按动起动按钮S Ⅰ时,电动机M带动小车作如图题1-83所示的运动轨迹运行;按动暂停按钮S Ⅱ时,小车就地停止。重新按动启动按钮S Ⅰ时小车从暂停位置,开始键继续运行。假设:KM 1得电小车向右运行,KM 2得电小车向左运行,小车每次反向运行前都暂停t 秒。 1)试设计满足该运动轨迹的运动控制线路图。 2)当小车运行在B-C 区间时,如果突然停电或此时按动清零停止按钮,当来电后再按动起动按钮将会发生什么现象?如何处理这种问题? 解:1)假设:正反向速度继电器分别为:KS 1、KS 2;短路制动电阻的接触器为KM 3。 系统带降压起动电阻与反接制动的主电路图如答图1所示,其输出方程和控制方程如下: 图1-83 题1-1小车运行轨迹 答图1 题【1-1】(2)解答

2)来电后再按动起动按钮S I ,小车将一直向右走,出现失控现象。 解决续行问题的方法: ①最普通的方法是在运动轨迹的周边增加限位行程开关,并在输出方程中增加正反向点动按钮。假设:左、右限位保护分别为ST A 、ST B (如答图2所示) 、右限位;正、反向点动按钮分别为SF 、SR ,修改后的电气控制逻辑代数方程组: R F T F A R R B F S S t KT S S KM K ST K ST K ST K ST K ST S KM S ST KM KM S K K K KM S ST KM KM S K K K KM ?????+?+?+?+?+?+=????+++=←????+++=→)()()()(152413224131642225311ⅡⅡⅡⅡⅡ ②在控制方程组中与转步信号并联时间超限脉冲发生信号。 ③系统小车没有回到原点前,不清控制方程组,或者不要在控制方程中增加停止按钮。 ④增加回原点功能的按钮。 【1-2】 已知电动机M 1带动小车左右运动;电动机M 2带动小车上下运动。生产工艺要求的运动轨迹如图题1-84所示。假设:KM 1得电小车向右运行,KM 2得电小车向左运行;KM 3得电小车向上运行,KM 4得电小车向下运行。生产工艺要求分别按动启动按钮S 1、S 2、S 3时,小车的运行轨迹分别如图1-84a 、b 、c 所示;按动暂停按钮S Ⅱ,小车就地停止,小车每次转弯运行前都暂停t 秒,按动回原点按键S 0,小车会以最短的路径返回到原点A ,试设计满足该运动轨迹的运动控制线路图。 解:假设小车的转步信号及程序步如答图2所示 答图2 题【1-1】(2)解答

相关主题
文本预览
相关文档 最新文档