当前位置:文档之家› (整理)超级电容器电极材料研究现状及存在问题.

(整理)超级电容器电极材料研究现状及存在问题.

(整理)超级电容器电极材料研究现状及存在问题.
(整理)超级电容器电极材料研究现状及存在问题.

功能材料课程报告

指导老师:

学院:材料科学与工程学院

专业:材料加工工程

姓名:

学号:

日期: 2012 年7 月13 日

超级电容器电极材料研究现状及存在问题

摘要:电极材料是决定电容器性能的重要因素,高性能电极材料的开发是超级电容器研发的重点。本文主要讨论了超级电容器阳极材料的研究现状及存在问题,这些材料包括:碳材料、贵金属氧化物、导电聚合物和一些其他材料。复合或混合型电极材料可以显著提高超级电容器的综合性能,已经成为超级电容器电极材料发展的主要趋势。

关键词:超级电容器;电极材料;研究现状;存在问题

1电极材料的研究现状

1.1正极材料

目前用作超级电容器电极的材料主要有三类:碳材料、金属氧化物材料和导电聚合物材料。

1.1.1碳材料碳是最早被用来制造超级电容器的电极材料。碳电极电容器主要是利用储存在电极与电解液界面的双电层能量,其比表面积是决定电容器容量的重要因素。尽管高比表面的碳材料比表面积越大,容量也越大,但实际利用率并不高,因为多孔碳材料中孔径一般要2nm及以上的空间才能形成双电层,从而进行有效的能量储存。而制备的碳材料往往存在微孔(小于2nm)不足的情况。所以这个系列主要是向着提高有效比表面积和可控微孔孔径(大于2nm)的方向发展。除此之外,碳材料的表面官能团、导电率、表观密度等对电容器性能也有影响[1]。

碳电极电容器其电容的大小和电极的极化电位及电极比表面积大小有关,故可以通过极化电位的升高和增大电极比表面积达到提高电容大小的目的。电极/电解质双电层上可贮存的电量其典型值约为15~40μF·cm-2。选用具有高表面积的高分散电极材料可以获得较高的电容。对理想可极化体系而言,可通过无限提高充电电压而大量储存能量。但是,对于实际体系却受电极材料和电解液组成的电极系统的可极化性和溶剂分解的限制,可通过加大电极比表面积来增加电容值。电容C可由下式给出

C=ε·ε0Ad

ε为电导体和内部赫姆霍兹面间区域的相对式中:ε

0为自由空间的绝对介电常数,

介电常数,A为电极表面积,d为导体与内赫姆霍兹面之间的距离。

近年来研究主要集中在提高碳材料的比表面积和控制碳材料的孔径及孔径分布,并开发出许多不同类型的碳材料,主要有: 多孔碳材料、活性碳材料、活性碳纤维、碳气溶胶以及最近才开发的碳纳米管等[2]。

多孔碳材料、活性碳材料和活性碳纤维:这个排列基本代表了碳材料为提高有效比表面积的发展方向。之所以发展为活性碳,主要是在于通过活化处理(如水蒸汽)后,可以增加微孔的数量,增大比表面积,提高活性碳的利用率。这些材料随制作电极工艺的不同先后出现过:活性碳粉与电解液混合制成的糊状电极;用聚四氟乙烯作粘结剂将活性碳粉粘结成型,成园片状电极以及活性碳/碳

复合体的固体电极等。

到目前为止,已找到有比表面积超过3000m2/g的活性碳材料,但其实际的利用率仅为10%左右(因为<2nm的微孔是不能形成双电层的)。致使活性碳电极材料的电容量最高只达到280F/g和120F/s(分别在水电解液和非水电解液中)。但由于其价格低廉,在市场上一直占有重要的地位[3]。

碳气溶胶材料:由于活化碳材料不能有效的控制微孔的孔径分布,造成比表面积的浪费,于是出现了碳气溶胶这种新材料·这种碳气溶胶是由于Lawrenee Livermore National Laboratory公司的R.W.Pekala研究小组开发的。将间苯二酚和甲醛按摩尔比1:2混合后,溶解在适量的去除离子且重蒸馏的水中,用碳酸钠作为碱性试剂,然后经一系列处理得到碳气溶胶。这种方法制得的碳气溶胶的比表面积为100、700 m2/g,密度为0.3、1.09g/cm”,但微孔可控制在一定的狭小范围,从而避免因微孔<2nm而不能形成双电层的限制。这种形态使得该材料具有能将所储能量迅速放出的能力,从而从理论上讲具有高的功率密度。

将这种碳气溶胶作成超级电容器的电极,微孔玻璃纤维为隔膜,4mof/L的氢氧化钾为电解液,组装成超级电容器。所得的电容器的功率可达7.7kw/kg,能量E可达27.38J/g(充电电压1.2v),比容量39F/g(以碳和电解液的重量之和为准,水电解液)。但由于此材料的制备繁琐费时,给其应用带来了一定的困难。

碳纳米管材料:随着1991年碳纳米管的首次正式提出,由于其独特的结构性能广泛地引起了各界人士的关注。其应用现在已涉及到纳米电极器件,新型储氢材料,催化剂载体材料,高性能复合材料,以及最近才开发的电池、电容器电极材料。碳纳米管作超级电容器电极材料有它的优越性:结晶度高、导电性好、比表面积大、微孔集中在一定范围内(且微孔大小可控)。从理论上讲应是做超级电容器的理想材料。

据现在报道的文献来看,用碳纳米管作电极材料大致有两种方法。一种是加粘合剂成型法;另一种是直接经过滤加热成型。采用直接热成型法作的电容器电极材料,单位比表面积为430 m2/g;用38wt%的硫酸作电解液,聚合物做隔极层,最高容量可达113F/g(0.001Hz),在0.1Hz时,其容量可达108F/g。体现了相对高频放电的优点,这同样也预示着由碳纳米管为电极材料做的电容器具有高的能量密度,而实验结果也确实证明它具有>8kw/kg的能量密度。采用粘合成型而成

的电容器电极材料,也采用38wt%的硫酸作电解液,酚醛树脂作粘合剂,玻璃纤维做隔极层,石墨片做集电体,比容量可达15-25F/cm”,后来经过进一步改进,掺杂75%的RuO2·xH2O时,电容器的比容量可达107F/cm”,即600F/g。

另据E.Rackowiak等人的报道,掺金属铿的碳纳米管电极在Liclo;电解液中在1.5-3v之间充放电时,表现出良好且独特的高压下的双电层电容效应,容量可达30F/g(非水电解液)。预示碳纳米管的另一潜在用途。

其实,碳纳米管用作电化学超级电容器电极材料的研究还有许多工作有待进行,比如:碳纳米管的石墨化程度,碳纳米管管径的大小,碳纳米管的长度,碳纳米管的弯曲程度,以及不同处理方式所带来的碳纳米管接上基团的不同等都会对由它组成的电化学超级电容器的性能产生很大的影响。现在就我们的研究来看,石墨化程度低、管径小、长度短、比表面积大的碳纳米管具有更好的可逆容量。

据现有的碳纳米管制备工艺来看,现己由我所做到公斤级,且理论成本低廉(催化剂可循环使用,只需碳源和电能)。且根据碳纳米管的生长机理,催化剂(金属颗粒)位于管径中,所以可以进行一系列的包裹实验,充分利用其比表面积大和金属的假电容现象,可望得到大容量且高功率的超级电容器[4]。

碳材料系列超级电容器电极材料正朝向高比表面积方向发展。电极材料通过各种活化手段,使比表面积不断提高,但同时需考虑使材料的微孔孔径>2nm,提高材料的有效比表面积。

1.1.2贵金属氧化物金属氧化物作为超级电容器电极材料的研究是基于法拉第准电容储能原理,即是在氧化物电极表面及体相发生的氧化还原反应而产生的吸附电容。其电容量远大于活性炭材料的双电层电容,但双电层电容器瞬间大电流放电的功率特性比法拉第电容器好。金属氧化物主要是贵金属氧化物,对贵金属氧化物电极电容器的研究,主要采用RuO2,IrO2等贵金属氧化物作为电极材料。由于RuO2电极的导电性比碳电极好,电极在硫酸中稳定,可以获得更高的比能量,制备的电容器比碳电极电容器具有更好的性能。以RuO2·nH2O无定型水合物作电极,5.3 mol·L-1H2SO4作电解液所制得的电容器比电容能达到700 F·g-1;而以无定型水合物MnO2·nH2O作电极,2 mol·L-1KCl水溶液作电解液所制得的电容器比电容也可达到200 F·g-1。比较而言,因为在中性KCl水溶

液中材料比较稳定,不发生化学副反应,以KCl水溶液作电解液适用于多种电极材料。

贵金属氧化物系列超级电容器电极材料正朝向提高材料本身的利用率方向发展。即是说,通过将材料转化为无定型态或使材料细小化(如做成纳米粉末)等手段,增加材料与电解液的接触机会,提高材料本身的利用率[4]。

1.1.3电聚合物电极:导电聚合物电极电容器作为一种新型的电化学电容器,具有高性能和比贵金属超级电容器更优越的电性能。可通过设计选择相应聚合物的结构,进一步优选提高聚合物的性能,从而提高电容器的性能。

导电聚合物电极电容器可分为3种类型: (1)对称结构——电容器中两电极为相同的可p型掺杂的导电聚合物(如聚噻吩);(2)不对称结构——两电极为不同的可进行p型掺杂的聚合物材料(如聚吡咯和聚噻吩);(3)导电聚合物可以进行p 型和n型掺杂,充电时电容器的一个电极是n型掺杂状态而另一个电极是p型掺杂状态,放电后都是去掺杂状态,这种导电聚合物电极电容器可提高电容电压到3 V,而两电极的聚合物分别为n型掺杂和p型掺杂时,电容器在充放电时能充分利用溶液中的阴阳离子,结果它具有很类似蓄电池的放电特征,因此被认为是最有发展前景的电化学电容器。

导电有机聚合物系列超级电容器电极材料正朝向与无机碳材料系列相互杂化和开辟新型高效导电有机聚合物方向发展。导电有机聚合物系列超级电容器电极材料具有工作电位高,水和非水电解液都适合的特点,在非水电解液和固体电解液超级电容器方面有潜在的应用价值。

1.1.4 除以上所述的三大系列超级电容器电极材料外,据文献报道,还有一些物质(比如杂多酸等)也用作超级电容器电极材料,同样也取得了良好的效果。

杂多酸作为超级电容器电极材料的研究主要集中在12一磷钥杂多酸。因为与其他杂多酸相比,它具有良好的质子传导性,电子传导性和大比表面积的特点。选用经处理过后的Nafion117薄膜作为隔膜,且充当固体电解液,以经处理过的12一磷钥杂多酸作超级电容器一电极,水合的HxRuO·xH2O作为另一电极,组成不对称的超级电容器:H3pMo12O4·nH2O//Nafion117//HxRuO·xH2O。这种电容器具有固体电解质的优点,不具腐蚀,操作使用方便;且具有良好的可逆比容量112F/g,能量密度可达36J/9。为超级电容器电极材料的发展做了有益的补充[5]。

1.2负极材料

超级电容器负极材料主要是炭材料,商业化使用的负极炭材料主要是石墨。国内各厂家技术的差异不大,主要是材料性能的差异。

2存在问题

2.1碳材料电极存在的问题从实用来讲,碳材料无疑是目前超级电容器各类电极材料中最具吸引力的,它几乎是市面上所有产品共同的选择,现在用于超级电容器的正极材料主要是高比表面积活性炭材料,但它的成本占到产品总成本的近30%,是导致超级电容器的生产成本较高的主要原因,这在一定程度上限制了超级电容器的推广应用,而锂离子电池正极材料已获得一定的成熟度,且成本较低。所以我们可以通过寻求一种合理的方式将两者有机的结合起来,统一在一种复合材料中,用作超级电容电池正极材料。

现在的“内组合”式超级电容电池系统就是用这个思路实现的。将锂离子电池正极材料与活性炭材料的混合物作为正极,石墨材料作为负极,锂盐作为电解质,形成的是一种新型的准电化学电容器,即一个电极为双电层电极,而另一个电极是发生氧化还原的电极,构成了不对称的超级电容器。它的功率特性完全取决于Li+在正极材料中的电化学行为,大大提高了电容器的比能量。另外充电时Li+从正极材料中脱出,回到本体电解液中,弥补了双电层导致的本体电解液的贫乏,从而降低了超级电容器的内阻[5]。

这种实现方式不仅仅是简单的叠加,而且是结构和性能的交叉与提升,同时成本也较低,是可以作为一种超级电容电池项目来开发的[1]。

2.2贵金属氧化物电极存在的问题由于贵金属的资源有限、价格昂贵限制了它的使用。寻找其他廉价的金属材料来代替贵金属氧化用作超级电容器电极材料是国内外学者研究的重要方向。氧化锰(MnO2)具有代表性,其资源广泛、价格低廉、对环境无污染,在电池电极材料和氧化催化材料上已经广泛地得到应用。现在,用于超级电容器的氧化锰电极材料研究已经取得了很大的进展。虽然这些金属氧化物在某些方面性能比较突出,但其综合电性能还远远满足不了使用要求,至今尚没有发现一种金属氧化物在性能方面可以完全代替RuO2[6]。

2.3电聚合物电极存在的问题对于电聚合物电极真正商业应用的电极材料品种还不多,价格也较高。研究工作主要集中在寻找具有优良掺杂性能的导电聚

合物,提高聚合物电极的放电性能,循环寿命和热稳定性等方面。聚乙炔、聚吡咯、聚苯胺、聚噻吩等导电聚合物是最早应用于制备电极的导电聚合物,但它们掺杂后电压过大或者循环性能不好而限制了它们的应用[7]。

研究及商业化的超级电容器大部分采用了碳材料作为电极材料。但是,为进一步提高电容器的性能,碳电极材料还存在很多问题,有待进一步改进。而导电聚合物、金属氧化物等作为电极材料还处于探索之中,停留在实验室阶段。今后超级电容器电极材料的研究重点将集中在己有材料制备工艺及结构优化,兼具法拉第准电容和双电层电容新材料的开发,高性能材料的规模化生产,以适应市场对高性能、低成本、性能稳定移动电源技术的需求[8]。

参考文献

[1] 超级电容器行业市场分析与技术现状研究胡晓。电子科技大学

[2] 超级电容器研究及其应用朱磊,吴伯荣,陈晖,刘明义,简旭宇,李志强。北

京有色金属研究总院能源材料与技术研究中心。

[3] 超级电容器电极材料的最新研究进展张易宁,何腾云。1.福建国光新型电子元件与材

料研究院,福建福州350015;2.福建国光电子科技股份有限公司。

[4] 电化学超级电容器电极材料的研究进展江奇,瞿美臻,张伯兰,于作龙。中国科学院

成都有机化学研究所功能材料研究中心

[5] 电化学超级电容器电极材料的研究进展江奇,瞿美臻,张伯兰,于作龙中国科学院成

都有机化学研究所功能材料研究中心

[6] 碳纳米管电化学储能的研究进展[J]。林克芝,徐艳辉,任伟,等。电源技术,2002,

26(4): 314

[7] 应用于超级电容器的碳纳米管电极的几个特点[J]。马仁志,魏秉庆,徐才录,等。清华

大学学报(自然科学版),2000

[8] 超级电容器用高比表面活性炭的制备与电化学表征[ J]。李晶,赖延清,李劼,等。

材料与冶金学报,2008,7(1): 33-38

基础部概念分

一、储氢材料及应用

1、储氢材料的分类和储氢方式有哪些?

答:(1)金属(或合金)储氢材料

氢几乎可以同周期表中的各种元素反应,生成各种氢化物或氢化合物。但并不是所有金属氢化物都能做储氢材料,只有那些能在温和条件下大量可逆的吸收和释放氢的金属或合金氢化物才能做储氢材料用。例如:目前以开发的具有实用价值的金属型氢化物有稀土系AB5型;锆、钛系Laves相AB2型;钛系AB型;镁系A2B型;以及钒系固溶体型等几种。

图1-1 合金储氢材料与H2反应示意图

(2)非金属储氢材料

从目前的研究的情况分析,能够可逆的吸放氢的非金属材料仅限于碳系材料、玻璃微球等非金属材料,是最近几年刚发展起来的新型储氢材料。例如碳纳米管、石墨纳米纤维、高比表面积的活性炭、玻璃微球等。这类储氢材料均属于物理吸附模型,是一种很有前途的新一代储氢材料。

图1-1碳纳米管电化学储氢方式

(3)有机液体储氢材料

某些有机液体,在合适的催化剂作用下,在较低压力和相对高的温度下,可做氢载体,达到贮存和输送氢的目的。其储氢功能是借助储氢载体(如苯和甲苯等)与H2的可逆反应来实现的。

(4) 其他储氢材料

除了上述3类储氢材料外,还有一些无机化合物和铁磁性材料可用作储氢,如KHNO3或NaHCO3作为储氢剂。磁性材料在磁场作用下可大量储氢,储氢量比钛铁材料大6~7倍。

2、推导和分析合金储氢热力学的Vant’HOlff公式(下式(1)),绘出合金吸放氢的PCT原理图并说明其代表材料储氢过程的热力学特性的物理意义。

Ln(P ep)=ΔH/(RT)-ΔS/R (1)

答:(1)范特霍夫公式的推导过程

金属与清之间的反应可写成:

M(s)H2(g)=MH x(s)

体系的热力学数据可用范特霍夫公式算出,平衡常数K与反应焓之间的关系如下:

K=

公式中是的活度;是M的活度,为氢的逸度。在理想状况下,固体的活度去1,逸度为气压,于是上式可写成:

将上式积分得:

近似等于f是金属生成氢化物的生如氢在金属相中的溶解度不大,

平台

成焓,其截距则等于此时则为相应的熵变,上式通常可以写成:

Ln(P ep)=ΔH/(RT)-ΔS/R

(2)PTC曲线机器储氢过程的特力学特性的物理意义

上述过程是一个可逆反应,吸氢时放热,吸热时放出氢气。不论是吸氢反应,还是放氢反应,都与系统温度、压力及合金成分有关。温度一定时,反应有一定的平衡压力。贮氢合金-氢气的相平衡图可由压力(p )-浓度(c )等温线,即p-c-T 曲线表示(如图1.2)。图中横轴表示固相中的氢与金属原子比;纵轴为氢压。温度不变时,从点O 开始,随着氢压的增加,金属或合金吸氢,形成含氢固溶体α相。图中对应于氢在金属中的极限溶解度。达到A 点时,α相与氢反应,开始生成氢化物相,即β相。继续加氢时,系统压力不变,而氢在恒压下被金属吸收,当所有α相都变为β相时,组成达到B 点。AB 段为两相(α+β)互溶的体系,达到B 点时,α相最终消失,全部都变成金属氢化物。与AB 段曲线相应的恒定平衡压力称为平台压(或平衡压)。在全部组成变成β相组成后,如再提高氢压,氢化物中的氢仅有少量增加,B 点以后为第3步,氢化反应结束。

3、写出镍氢电池电极方程式,并分析镍氢电池的工作原理,简述可以用来做镍氢电池负极材料的储氢合金应具备什么条件?

答:(1)电极反应方程式:

负极反应:

正极反应:

电池反应: (2)镍氢电池的工作原理:镍氢电池以Ni(OH)2作为正极,以储氢合金作为负极,氢氧化钾碱性水溶液为电解液。在电化学中,镍和氢在电化学反应的时候,氢的电位电动势比镍的电位电动势低,从而形成了电势差。在充电的时候,镍从Ni2+变成Ni 单质,氢则被氧化成0H-,而放电的时候是相反的过程,是可逆的反应,这样就能进行充电放电:

主要以KOH 作电解液(电解质7MOl /lKOH+15g /l Li(OH)

充电时,正极反应: Ni(OH)2+0H-—→NiOOH+H2O+e-

负极反应: M+H2O+e-—→MH+OH-

总 反 应: M+Ni(OH)2—→MH+NiOOH

放电时,正极反应: NiOOH+H2O+e-—→Ni(OH)2+0H-

负极反应: MH+OH-—→M+H2O+e-

总 反 应: MH+NiOOH —→M+Ni(OH)2

(3)可以用作镍氢电池负极材料的储氢合金应具备什么条件?

答:作为Ni/H 电池负极材料的储氢合金必须具有如下特点:

①吸氢量大,亦即容量大,

2()Pt, H KOH(NaOH)NiOOH(+)--221/2H + OH H O + e 0.828V ???=--22NiOOH + H O + e Ni(OH)OH 0.49V ??+?=22NiOOH + 1/2H Ni(OH) 1.318V

E ??=

②容易活化,作成电极后电化学活性高,电极反应时的可逆性好;

③吸放氢速度快,即电池可进行快速充电和放电;

④平衡分解压在102~nxlo6Pa压力,即可达到1.2V的平衡电压,且自放电较小;

⑤化学稳定性好,能保证在碱性电解液中不腐蚀;

⑥温度影响因素小。

二、锂离子二次电池材料

1、写出锂离子二次电池电极反应方程式(正极:LiCoO2,负极:石墨),并简述锂离子二次电池的工作原理及可以用来做锂离子二次电池正负极材料应该具备的基本条件。

答:(1) 锂离子二次电池电极反应方程式:

正极反应:LiCoO2 = Li(1-x)CoO2+xLi++xe-

负极反应:C+x Li++xe- = LixC

电池总反应:LiCoO2+C = Li(1-x)CoO2+LixC

(2)锂离子二次电池的工作原理:锂离子电池的构成主要有正极、负极、非水电解质和隔膜四个部分组成,两个能可逆脱嵌的锂离子化合物构成正负极。充电时锂离子从正极材料中脱出,通过隔膜经电解质溶液向负极迁移,同时电子在外电路从正极流向负极,锂离子在负极得到电子后被还原成金属锂,嵌入负极晶格中;而在放电时,负极的锂会失去电子成为锂离子,通过隔膜经电解质溶液向正极方向迁移并进入正极材料中储存。正负两极间不仅有锂离子在迁移,为保持电荷平衡,相同数量的电子经外电路也在正负两极之间传递,使正负两极发生氧化还原反应,并保持一定电位。

(3) 可以用来做锂离子二次电池正负极材料应该具备的基本条件:

①正极材料作为锂离子二次电池的一个重要组成部分, 在电池充放电过程中不仅要提供在正负极嵌锂化合物间往复嵌入/ 脱出所需要的锂, 而且还要负担在负极材料表面形成SEI 膜所需要的锂。

②负极材料应该具备高的质量比容量与体积比容量、首次充放电电容量损失低、较高的可逆容量、较好的循环性能及低成本等。

三、高熵合金材料

1、对合金而言,根据热力学理想溶液和正规则溶液模型,熵的计算一院子排列的混合熵为主,其它组态熵的贡献可以忽略,则等原子比元素组成正规则合金熔体的混合熵为:

Smax=-RΣCilnCi (2)

ΔG=ΔH-TΔS (3)

根据上式,式分析和简述高熵合金微观组成的基本规律和性能特点。答:(1)高熵合金微观组成规律:所谓“高熵合金”就是多种主要元素的合金,其中每个主要元素皆具有高的原子百分比,定义高熵合金的主要元素数目n≥5,但其原子百分比皆不超过35%,由公式得元素数目越大,混合熵越大。

(2)高熵合金的性能特点:①高熵合金是一种“超级固溶体”,因此固溶强化效应会异常强烈,在合金为结晶相时,大量的固溶原子能够阻碍位错的运动,从而

形成高强高硬固体。高熵合金组元众多,扩散时各元素配合扩散,使新相难以长大,因此常见纳米析出相,又能进一步增强合金的强度。当高熵效应使得合金内的混乱度过高而形成非晶相时,由于无位错存在,则固体的强度更高。因此,高强高硬是高熵合金主要的力学性能。

②由于高温下合金内体系的混乱度加大,高熵效应更加明显。因此高熵合金表现出优异的耐温性。

③由于多元高熵合金具有非晶、微晶、相结构简单以及低自由焓等特点,而且各耐蚀组元在合晶中都能发挥本身的耐蚀性,使得高熵合金具有很强的耐蚀性。

四、超级电容器及其电极材料

1、超级电容器(电化学电容器)储能与一般物理电容器在电荷储能上的差别和各自的特点。

答:(1)超级电容通过注入电解质来储能,电解质在电极的作用下,电极表面电荷将吸引周围电解质溶液中的异性离子,使这些离子附于电极表面上形成双电荷层,构成双电层电容。由于两电荷层的距离非常小(一般0.5mm以下),再加之采用特殊电极结构,使电极表面积成万倍的增加,从而产生极大的电容量。

①具有法拉级的超大电容量,这比普通电容要大得多。

②可以瞬间释放的功率比普通电池高近十倍,而且不会损坏。

③充放电循环寿命在十万次以上,这是最大的优点之一。

④能在40度至60度的环境温度中正常使用。

⑤有超强的荷电保持能力,漏电量非常小。

⑥充电迅速,它的速度比普通电池快几十倍,几分钟就可充满一辆汽车所需

要的电量。

⑦本身不会对环境造成污染,真正免维护。

(2)电容器是由两个电极及其间的介电材料构成的。介电材料是一种电介质,当被置于两块带有等量异性电荷的平行极板间的电场中时,由于极化而在介质表面产生极化电荷,遂使束缚在极板上的电荷相应增加,维持极板间的电位差不

变。这就是电容器具有电容特征的原因。电容器中储存的电量Q等于电容量C 与电极间的电位差U 的乘积。电容量与极板面积和介电材料的介电常数ε成正比,与介电材料厚度(即极板间的距离)成反比。

2、双电层电容器与赝电容电容器在电荷储能上的差别和各自的特点是什么?

答:(1)双电层电容器是通过电极与电解液之间形成的界面双层来存储能量的。通过对双电层充电而达到高比电容的关键是使用高比表面积和电导性好的电极。炭素材料满足了上述的要求,它具有高的导电性、电化学稳定性、多孔性以及活性等;

(2)赝电容器:赝电容器的储能原理是在电极表面或体相中的二维或准二

维空间上,使电活性物质进行欠电位沉积,发生高度的化学吸附/脱附或氧化/还原反应,产生与电极充电电位有关的电容。赝电容器也称准法拉第电容器。

3、试分析高性能超级电容器电极材料应具备哪些特征?

答:比能量高、比功率高、充放电速度快、充放电产生的热效应小、对环境无污染、循环寿命长、使用温度范围宽、安全性高,在保留了其高功率密度的同时,有望接近锂离子电池的能量密度。

超级电容器电极材料的研究进展

2011年第3期 新疆化工 11 超级电容器电极材料的研究进展 摆玉龙 (新疆化工设计研究院,乌鲁木齐830006) 摘要:超级电容器既具有超大容量,又具有很高的功率密度,因此它在后备电源、替代电源、大功率输出等方面都有极为广泛的应用前景。超级电容器的性能主要取决于电极材料,近年来各国学者对于超级电容器的电极材料进行了大量的研究。 关键词:超级电容器;电极材料 1 前言 超级电容器的种类按其工作原理可以分为双电层电容器、法拉第准电容器(也称为赝电容电容器)以及二者兼有的混合电容器。双电层电容器基于双电层理论,利用电极和电解质之间形成的界面双电层电容来储存能量。法拉第准电容器则基于法拉第过程,即在法拉第电荷转移的电化学变化过程中产生,不仅发生在电极表面,而且可以深入电极内部。根据这两种原理,目前作为超级电容器的电极材料的主要分为三类[1]:碳材料、金属氧化物及水合物材料、导电聚合物材料。 2 碳材料类电极材料 在所有的电化学超级电容器电极材料中,研究最早和技术最成熟的是碳材料。其研究是从1957年Beck发表的相关专利开始的。碳电极的研究主要集中在制备具有大的比表面积和较小内阻的多孔电极材料上,可用做超级电容器电极的碳材料主要有:活性炭、纳米碳纤维、玻璃碳、碳气凝胶、纳米碳管等。 活性炭(AC)是超级电容器最早采用的碳电极材料[2]。它是碳为主,与氢、氧、氮等相结合,具有良好的吸附作用。其特点是它的比表面积特别大,比容量比铂黑和钯黑高五倍以上[3]。J.Gamby[4]等对几种不同比表面积的活性炭超级电容器进行测试,其中比表面积最大为2315m2·g的样品得到的比容量最高,达到125F/g,同时发现比表面积和孔结构对活性炭电极的比容量和内阻有很大影响。 活性炭纤维(ACF)是性能优于活性炭的高效活性吸附材料和环保工程材料。ACF的制备一般是将有机前驱体纤维在低温(200℃~400) ℃下进行稳定化处理,随后进行炭化、活化(700℃~1000) ℃。日本松下电器公司早期使用活性炭粉为原料制备双电层电容器的电极,后来发展的型号则是用导电性优良、平均细孔孔径2~5nm、细孔容积0.7~1.5m3/g、比表面积达1500~3000m2/g的酚醛活性炭纤维[5],活性炭纤维的优点是质量比容量高,导电性好,但表观密度低。H. Nakagawa采用热压的方法研制了高密度活性炭纤维(HD-ACF)[6],其密度为0.2~0.8g/m3,且不用任何粘接剂。这种材料的电子导电性远高于活性炭粉末电极,且电容值随活性炭纤维密度的提高而增大,是一种很有前途的电极材料。用这种HD-ACF 制作超级电容器电极[7],结果表明,对于尺寸相同的单元电容器,采用HD-ACF为电极的电容器的电容明显提高。 炭气凝胶是一种新型轻质纳米级多孔性非晶炭素材料,其孔隙率高达80%~98%,典型孔隙尺寸<50nm,网络胶体颗粒尺寸3~20nm,比表面积高达60~1000m2/g,密度为0.05~0.80g/m3,是一种具有许多优异性能(如导电性、光导性和机械性能等)和广阔的应用前景的新型材料[8]。孟庆函,

超级电容器电极材料研究现状及存在问题

功能材料课程报告 指导老师: 学院:材料科学与工程学院专业:材料加工工程 姓名: 学号: 日期: 2012 年7 月13 日

超级电容器电极材料研究现状及存在问题 摘要:电极材料是决定电容器性能的重要因素,高性能电极材料的开发是超级电容器研发的重点。本文主要讨论了超级电容器阳极材料的研究现状及存在问题,这些材料包括:碳材料、贵金属氧化物、导电聚合物和一些其他材料。复合或混合型电极材料可以显著提高超级电容器的综合性能,已经成为超级电容器电极材料发展的主要趋势。 关键词:超级电容器;电极材料;研究现状;存在问题

1电极材料的研究现状 1.1正极材料 目前用作超级电容器电极的材料主要有三类:碳材料、金属氧化物材料和导电聚合物材料。 1.1.1碳材料碳是最早被用来制造超级电容器的电极材料。碳电极电容器主要是利用储存在电极与电解液界面的双电层能量,其比表面积是决定电容器容量的重要因素。尽管高比表面的碳材料比表面积越大,容量也越大,但实际利用率并不高,因为多孔碳材料中孔径一般要2nm及以上的空间才能形成双电层,从而进行有效的能量储存。而制备的碳材料往往存在微孔(小于2nm)不足的情况。所以这个系列主要是向着提高有效比表面积和可控微孔孔径(大于2nm)的方向发展。除此之外,碳材料的表面官能团、导电率、表观密度等对电容器性能也有影响[1]。 碳电极电容器其电容的大小和电极的极化电位及电极比表面积大小有关,故可以通过极化电位的升高和增大电极比表面积达到提高电容大小的目的。电极/电解质双电层上可贮存的电量其典型值约为15~40μF·cm-2。选用具有高表面积的高分散电极材料可以获得较高的电容。对理想可极化体系而言,可通过无限提高充电电压而大量储存能量。但是,对于实际体系却受电极材料和电解液组成的电极系统的可极化性和溶剂分解的限制,可通过加大电极比表面积来增加电容值。电容C可由下式给出 C=ε·ε0Ad 式中:ε ε为电导体和内部赫姆霍兹面间区域的相对0为自由空间的绝对介电常数, 介电常数,A为电极表面积,d为导体与内赫姆霍兹面之间的距离。 近年来研究主要集中在提高碳材料的比表面积和控制碳材料的孔径及孔径分布,并开发出许多不同类型的碳材料,主要有: 多孔碳材料、活性碳材料、活性碳纤维、碳气溶胶以及最近才开发的碳纳米管等[2]。 多孔碳材料、活性碳材料和活性碳纤维:这个排列基本代表了碳材料为提高有效比表面积的发展方向。之所以发展为活性碳,主要是在于通过活化处理(如水蒸汽)后,可以增加微孔的数量,增大比表面积,提高活性碳的利用率。这些材料随制作电极工艺的不同先后出现过:活性碳粉与电解液混合制成的糊状电

超级电容器研究综述

一、超级电容器的发展与进步 (一)概述 在古代,人们发现了与琥珀及橡皮相摩擦,引起表面贮存电荷的可能性。然而这一效应的缘由直到18世纪中叶方被人们理解。140年后,人们开始对电有了分子原子级的了解。早期的有关莱顿瓶的发现和研究,开启了电容器的序幕。之后,电容器不断的发展起来,现如今,其发展起来的电化学超级电容器,已经应用于国防设备、电力设备、通讯设备、铁路设施、电子产品、汽车工业等方方面面,成为当代社会不可缺少的一部分。 电能能够以两种截然不同的方式存贮:一种间接方式是作为潜在可用的化学能,存贮在电池里。另一种直接的方式,则是以静电学形式将正负电荷置于一个电容器的不同极板之间来存贮电能。超级电容器在存贮电荷时有着两种原理,一种是通过双电层原理,以非法第模式来存贮电能;而另一种则是法拉第模式,通过发生氧化还原反应来产生赝电容。目前双电层型超级电容器一般采用碳材料做电极,通过碳材料的大的比表面积来增加双电层的面积,而赝电容型超级电容器一般采用氧化物或聚合物的材料来做为电极。同时,二者在制作超级电容器的时候也可以并用,从而使得超级电容器也可以划分为对称超级电容器和非对称超级电容器,对称即指电容器的两极的材料相同,非对称则不同。在电解质方面,超级电容器绝大多数均采用液体电解质,如水及其它有机溶剂。 超级电容器的电化学性能分析有很多方法,但通常都包括以下四种图:循环伏安曲线,恒流充放电曲线,交流阻抗谱,循环稳定性曲线。通过这四种图可以比较明确地判断出一个超级电容器的电化学性能的好坏,具体判断方法之后会详细说明。 超级电容器有着非常高的功率密度,但是其能量密度却比较低,它有着极好的循环充放电稳定性但是电压窗口却比较窄。但是人们也在对其进行着不断的研究来改善超级电容器的这些弊端。 (二)超级电容器的原理 超级电容器又称为电化学电容器,是介于传统电容器和电池之间的新型电化学储能器件,它的出现填补了Ragone图中传统电容器的高比功率和电池的高比能量之间的空白。一方面,与传统电容器相比,超级电容器的电极材料往往选用高比表面积材料,如活性碳,通过静电作用在固/液界面形成对峙的双电层存储电荷,因此超级电容器拥有比传统电容器高的能量密度,静电容量能够达到千法拉至万法拉级;另一方面,与电池能量存储机理类似,超级电容器可以通过法拉第氧化还原反应完成电荷存储和释放,由于主要依靠电极表面或近表面的活性材料存储电荷,超级电容器与电池相比,能量密度较低,但是具有高的功率密度和循环稳定性。 1 传统电容器 传统的平行板电容器是所有静电电容器储能的基础,传统电容器电能的储存来源于电荷在两极板上聚集而产生电场。平行板电容器的静电电容的计算公式为: r是两极板材料的相对介电常数,0是真空介电常数,A是电极板的正对面积,d 是两极板的距离。 2 双电层超级电容器 双电层电容器是通过静电电荷分离,依靠固/液界面的双电层效应完成能量的存储和转化。电解液离子分布可为两个区域——紧密层和扩散层。其双电层电容可视为由紧密层电容和扩散层电容串联而成。双电层电容器正是基于上述理论发展起来的。充电时,电子经外电

2019超级电容器行业分析报告及技术研究现状

2012超级电容器行业分析报告及技术研究现状 一、电容器、超级电容器行业分析 超级电容器根据制造工艺和外形结构可划分为钮扣型、卷绕型和大型三种类型三者在容量上大致归类为5F以下、5F~200F、200F以上它们由于其特点的不同运用领域也有所差异。 钮扣型产品具备小电流、长时间放电的特点,可用在小功率电子产品及电动玩具产品中。而卷绕型和大型产品则多在需要大电流短时放电,有记忆存储功能的电子产品中做后备电源,适用于带CPU的智能家电、工控和通信领域中的存储备份部件。另外大型超级电容器通过串并联构成电源系统可用在汽车等高能供应装置上。 表1、表2是对三种超级电容器产业规模进行调查而得到的数据整理而成的,分别反映了世界和中国超级电容器产业的情况。从这两个表中我们不难发现三个问题: 1、超级电容器产业的发展非常迅速,无论是钮扣型还是卷绕型或是大型超级电容器,其产业规模都在高速扩展。 2、中国在钮扣型超级电容方面的竞争力不明显,在中国钮扣型市场中,海外产品几乎占据了90%以上的份额,竞争非常激烈。数据表明,近几年国内厂家的市场份额也在逐步扩大。 3、卷绕型和大型方面,中国的技术水平与国际接近,市场份额也比较理想。近几年,中国厂商的销售收人也在呈几何倍数增长。据调查,国产超级电容器已占有中国市场60%~70%的份额。 二、超级电容器技术研究现状

超级电容器是利用双电层原理的电容器。当外加电压加到超级电容器的两个极板上时,与普通电容器一样,极板的正电极存储正电荷,负极板存储负电荷,在超级电容器的两极板上电荷产生的电场作用下,在电解液与电极间的界面上形成相反的电荷,以平衡电解液的内电场,这种正电荷与负电荷在两个不同相之间的接触面上,以正负电荷之间极短间隙排列在相反的位置上,这个电荷分布层叫做双电层,因此电容量非常大。当两极板间电势低于电解液的氧化还原电极电位时,电解液界面上电荷不会脱离电解液,超级电容器为正常工作状态(通常为3V以下),如电容器两端电压超过电解液的氧化还原电极电位时,电解液将分解,为非正常状态。由于随着超级电容器放电,正、负极板上的电荷被外电路泄放,电解液的界面上的电荷响应减少。由此可以看出:超级电容器的充放电过程始终是物理过程,没有化学反应。因此性能是稳定的,与利用化学反应的蓄电池是不同的。 超级电容器因其独特的双层大容量储存结构对原材料及制作工艺提出了极高的要求。电极、电解质和隔膜的组成和质量对超级电容器的性能起着决定性的影响。下面将从原材料,制作工艺等几个方面对超级电容器的技术现状进行分析。 2.1正极材料 目前用作超级电容器电极的材料主要有三类:碳材料、金属氧化物材料和导电聚合物材料。 2.1.1 碳材料 碳是最早被用来制造超级电容器的电极材料。碳电极电容器主要是利用储存在电极与电解液界面的双电层能量,其比表面积是决定电容器容量的重要因素。尽管高比表面的碳材料比表面积越大,容量也越大,但实际利用率并不高,因为多孔碳材料中孔径一般要2nm及 以上的空间才能形成双电层,从而进行有效的能量储存,而制备的碳材料往往存在微孔(孔 径小于2nm)不足的情况。所以这个系列主要是向着提高有效比表面积和可控微孔孔径(孔径 大于2nm)的方向发展。除此之外,碳材料的表面官能团、导电率、表观密度等对电容器性 能也有影响。现在已有许多不同类型的碳材料被证明可用于制作超级电容器的极化电极,如活性炭、活性炭纤维、碳气溶胶、碳纳米管以及某些有机物的裂解碳化产物。 2.1.2 金属氧化物材料 金属氧化物作为超级电容器电极材料的研究是基于法拉第准电容储能原理,即是在氧化物电极表面及体相发生的氧化还原反应而产生的吸附电容。其电容量远大于活性炭材料的双电层电容,但双电层电容器瞬间大电流放电的功率特性比法拉第电容器好。金属氧化物作为超级电容器电极材料有着潜在的研究前景。近年来金属氧化物电极材料的研究工作主要围绕以下两个方面进行:(l)制备高比表面积的RuO2活性物质。(2) RuO2与其它金属氧化物复合。

超级电容器材料综述

超级电容器是一种新型的储能装置,具备充放电快、效率高、稳定性好等优点,是一种清洁的绿色能源,是21 世纪的新型绿色能源。超级电容器有很大的市场潜力。通过对超级电容器电极材料进行研究,发现多孔碳材料作为超级电容器电极材料的电化学性能的影响。 目前,用于超级电容器的电极材料主要是碳材料,市场上主要是活性炭材料,因为活性炭的成本较低,且活性炭具有很高的比表面积,这是超级电容器电极材料所必须具备的特点。但是,活性炭的导电性一般,微观结构主要以微孔形式存在,因此在电解液中会有很大的电阻,电解液浸透电极的过程会比较慢,在存储和传输电荷的时候也会比较慢,但是它的成本低,基本可以满足市场的要求,因此被作为市场上电容器的主要材料,其它的碳材料有比活性炭更优越的性能,但是成本较高,所以没有被用作商业化。因此,寻找性能好,成本低的电极材料是当前超级电容器领域的主要研究方向,从而制备出性能优越,成本低,能够广泛应用于市场的超级电容器,具有重大意义。 目前用于研究超级电容器电极材料的碳材料主要有活性炭、炭气凝胶、碳纳米管、玻璃碳、石墨烯、碳纤维以及碳/碳复合材料。碳材料原料低廉,表面积大,适合大规模生产。但是单纯不加修饰碳电极材料没有很高的比电容,还需要对其进行改性等研究。 1、活性炭材料 对于活性炭材料,不同的处理方法,会得到不同比表面积的活性炭,一般表面积可以高达1000~3000m2/g,而且具有不同的空隙,孔径范围宽,生产工艺简单,成本低廉,可以从沥青、植

物硬壳、石油焦、橡胶等各种原材料中得来。是一种已经商品化的超级电容器电极材料。活性炭材料的活化方法多种多样,可以分为物理活化和化学活化两种。 2、炭气凝胶电极材料 炭气凝胶是一种交联结构的网状的碳材料有多孔性,导电性好,表面积大,孔隙率高,孔径分布广,是唯一可以导电的气凝胶,电导率高。密度跨度大,孔隙率好,而且质量较轻,属于非晶态的纳米碳材料,同时,在制备的时候,可以通过调节工艺参数控制其孔径分布和微粒尺度。 3、碳纳米管 碳纳米管这是一种有类似石墨的六边形组成的碳材料,微观上看两端封闭的多层的管子,直径有几十纳米,层间距要比石墨层间距稍大。从超级电容器对电极材料的要求上看,碳纳米管材料是非常适合用来做电极材料的,因为碳纳米管的结构是空管的形状,表面积大,尤其是壁很薄的碳纳米管,比表面积更大,非常有利于双电层电容的储备。碳纳米管要是制成电极时,还会具备特殊的孔,这些孔是由微观状态下,碳纳米管互相缠绕,好似网状结构,管与管之间就形成了孔洞的结构,孔与孔之间都是互相连通的,没有堵死的情况,这在用作电极的时候,对于电解液的流通的很重要的。而且这种由管径互相缠绕得到的孔不会太小,一般都是属中孔,这会使电极的内阻很低,这些都是超级电容器电极所需要具备的。目前对碳纳米管作为超级电容器电极材料的研究主要集中在将它直接用于超级电容器上,或者将

超级电容器前景及应用

超级电容器发展现状及发展前景分析 超级电容器研究国世界分布图 超级电容器在新能源领域并不是一个陌生的名词。实际上,超级电容器已在该领域历经了几十年的坎坷,虽然它的应用形式同电池不同,但在实际应用上却总被电池取代,此外还面临成本高、技术难度大的劣势。然而,超级电容器在技术上一旦取得突破,将可对新能源产业的发展产生极大的推动力。因此,尽管研发过程困难重重,但攻克它的意义却很重大。 超级电容器的尴尬现状 超级电容器从诞生到现在,已经历了三十多年的发展历程。目前,微型超级电容器在小型机械设备上得到广泛应用,例如电脑内存系统、照相机、音频设备和间歇性用电的辅助设施。而大尺寸的柱状超级电容器则多被用于汽车领域和自然能源采集上,并可预见在该两大领域的未来市场上,超级电容器有着巨大的发展潜力。

超级电容器“全家福” 使用寿命久、环境适应力强、高充放电效率、高能量密度,这是超级电容器的四大显 著特点,这也使它成为当今世界最值得研究的课题之一。目前,超级电容器的主要研究国 为中、日、韩、法、德、加、美。从制造规模和技术水平来看,亚洲暂时领先。 然而,超级电容器的研发工作一直笼罩在电池(主要为镍氢电池、锂电池)的阴影之下。镍氢电池和锂电池的开发因为可以获得来自政府和大投资商的巨额资金支持,技术交流获 得极大推动,也更容易聚焦全世界的目光。相比之下,超级电容器却很难得到雄厚的资金 支持,技术的进步和发展也就受到很大程度地制约。另外,超级电容器成本高、能量密度 低的现状也与锂电池形成鲜明对比,这使它在很多领域备受冷落。 先驱EEStor公司勇于挑战却惨遭败北 尽管超级电容器已发展多年,但实际生产厂家的数量却少得可怜。一部分厂商面对超 级电容器技术上发育不完全的现状,不敢轻易投资,采取观望策略,期待市场能出现一个 涉足此领域并获得成功的例子。另外一部分厂商则坚信,只要超级电容器的生产成本实现 大幅下降,仅以当前它的快速充放电特性,就可实现快速普及。美国超级电容器生产商EEStor就属于后者。 上世纪90年代,美国超级电容器生产商EEStor为改变超级电容器的市场现状,曾用 好几年的时间将大量财力物力投向如何提高超级电容能量密度的研发上,期望能通过自身

超级电容器电极材料综述

超级电容器电极材料综述 原创:jqzhu 本文对超级电容器的背景,电极材料的储能原理、性能评价和电容器的制备方法,以及国内外报道的超级电容器电极材料做了详细的归纳和总结。可作为超级电容器研究的入门资料。原创作品,学术不端检索比例小于3%,可以作为本科,硕士,博士论文中第一章文献综述的重要参考资料。(全文5万余字,参考文献齐全)。值得拥有。 目 录 超级电容器综述 (2) 1.1 引言 (2) 1.2 电化学电容器的理论基础与应用 (4) 1.2.1 电双电层电容器和法拉第赝电容器 (4) 1.2.2比电容,电压,功率和能量密度 (7) 1.2.3电解液 (10) 1.2.4电化学电容器的制备 (13) 1.2.5 电极材料的评价方法 (15) 1.2. 6 电化学电容器的优点、挑战以及应用 (18) 1.3电极材料 (25) 1.3.1 碳材料 (27) 1.3.2 导电聚合物(CPs) (30)

1.3.3 非贵金属氧化物/氢氧化物 (36) 1.3.4 贵金属氧化钌电极材料 (52) 1.4 多元活性氧化物材料的结构特点及制备技术 (65) 1.4.1 多元氧化物的结构和性能特点 (65) 1.4.2 多元氧化物的制备技术 (67) 参考文献 (71)

超级电容器综述 1.1 引言 随着经济和科学技术的发展,人类对能源的需求逐年递增,导致不可再生的石化能源储量逐年减少,而排放的有害气体,温室气体却与日俱增,环境污染日趋严重。因此,当前世界各国都在致力于开发清洁、高效的可再生能源,以及能源储存和转换的新技术和新设备。 在大多数应用领域,最为有效的和实用的能量储存与转换的技术包括蓄电池、燃料电池、以及电化学超级电容器(ES)。最近的十几年里,由于具有高功率密度、长循环寿命等性能优点,超级电容器越来越受到广泛的重视。超级电容器的性能介于传统介电容器(超高功率/低能量密度)和蓄电池/燃料电池(高能量密度/低功率密度)之间,刚好填补它们的性能间隙[1, 2],因此有着广泛的应用的前景。 最早的电化学电容专利申请于1957年。然而,直到20世纪90年代,电化学电容器才真正进入人们的视野,逐渐受到少数行业的重视,例如混合电动交通工具开发领域[3, 4]。此时电化学电容器的作用是提升电池/燃料电池的性能,在汽车启动、加速或刹车瞬间提供充足的动力[5, 6]。在随后发展过程中,人们才逐渐意识到,电化学电容器还有一个非常重要的作用,即作为电池和燃料电池的能量补充,在电池或燃料电池出现瞬间断电时提供备用电能[7]。鉴于此,美国能源总署认定在未来能源储存系统中电化学电容器和电池/燃料

超级电容器的研究进展

超级电容器的研究进展

超级电容器的研究进展 摘要:超级电容器是一种新型储能装置,它具有功率密度高、充电时间短、使用寿命长、温度特性好、节约能源和绿色环保等特点。近年来,各种新兴材料 的发展,为超级电容器电极材料的选取提供了更多的选择条件,促进了超级电 容器的快速发展。本文总结了超级电容器的特点,重点介绍了超级电容器的工 作原理、分类以及超级电容器的材料。并简要展望了超级电容器电极材料的发 展方向和前景。 关键词:超级电容器碳电极贵金属氧化物导电聚合物 Abstract: Super capacitor is a new type of energy storage device. It has the characteristics of high power density, short charging time, long service life, good temperature characteristics, energy saving and green environmental protection. In recent years, the development of a variety of new materials, for the selection of the super capacitor electrode materials to provide more options to promote the rapid development of the super capacitor. This paper summarizes the characteristics of the super capacitor, and introduces the working principle of the super capacitor, classification and the material of the super capacitor. And briefly discussed the developing direction of super capacitor electrode materials and prospect. Key words: Super capacitor Carbon electrode Precious metal oxide Conducting polymer 一、引言 超级电容器是建立在德国物理学家亥姆霍兹(1821~1894)提出的界面双 电层理论基础上的一种全新的电容器,又叫电化学电容器(Electrochemcial Capacitor, EC)、黄金电容、法拉电容,通过极化电解质来储能。它是一种电化学元件,但在其储能的过程并不发生化学反应,这种储能过程是可逆的,也正因为此超级电容器可以反复充放电数十万次。超级电容器可以被视为悬浮在电

超级电容器电极材料综述

超级电容器电极材料 超级电容器,作为当下储能研究的一大热点,普遍具有以下优势: 1、快速的充放电特性 2、很高的功率密度 3、优良的循环特性 然而,它的不足完全制约了它的实际应用——能量密度很低。目前,商用的超级电容器可以提供10WhKg-1,而相比之下,锂离子电池的能力密度高达18010WhKg-1。因此,如何能提高超级电容器的能量密度,称为眼下超级电容器研究领域亟待解决的首要问题。学术圈致力于通过开发新的电极材料、电解质、独创的器件设计方案等方法,来实现这一问题的突破。 想要通过更好的电极材料(同时需要价格低廉,环境友好)来实现在超级电容器性能上的重大的进展,需要对电荷储存机理,离子电子的传输路径,电化学活性位点有全面、深远的认识。由此,纳米材料因为其可控的离子扩散距离、电化学活性位点数量的扩大等特点成为研究热门。 根据储能机理的不同,超级电容器可以分为:双电层电容器EDLC,赝电容。EDLC通过物理方法储存电荷——在电解质、电极材料界面上发生可逆的离子吸附。而赝电容通过化学方法储存电荷——在电极表面(几纳米深)发生氧化还原反应。通常,EDLC的电极材料为碳材料,包括活性炭,碳纳米管,石墨烯等。然而赝电容的电极材料包括:金属氧化物(RuO2, MnO2, CoOx, NiO,Fe2O3),导电高分子(PPy,

PANI,Pedot)。 设计一款高性能的超级电容的标准是: 1、很高的比容量 (单位质量的比容量,单位体积的比容量,或者是活性物质的面积) 2、很高的倍率性能 在高的扫速下200mV/s或电流密度下,容量的保持率。 3、很长的循环寿命 另外,活性材料的价格与毒性也需要计入考量。 为了制备高容量的电极材料,上述因素需要进一步讨论。 1、表面积:因为电荷是储存在电容器电极的表面,具有更高表面积的电极可以提高比容量。纳米结构的电极可以很好的提高电极的表面积。 2、电子和离子的导电性:因为比容量、倍率性能是由电子、离子的导电性共同决定,高的离子、电子电导将会很好的维持CV曲线中的矩形图线,以及GCD中充放电曲线的对称性。 同时,这也将减少充电电流增大后的比容量损失。 典型的增加电子电导的方法有: (1)Binder-free electrode design 不实用粘结剂 (2)纳米结构集流体设计——这可以为电子传输的提供高效途径 增加离子电导的方法:

超级电容器材料综述

目前,用于超级电容器的电极材料主要是碳材料,市场上主要是活性炭材料,因为活性炭的成本较低,且活性炭具有很高的比表面积,这是超级电容器电极材料所必须具备的特点。但是,活性炭的导电性一般,微观结构主要以微孔形式存在,因此在电解液中会有很大的电阻,电解液浸透电极的过程会比较慢,在存储和传输电荷的时候也会比较慢,但是它的成本低,基本可以满足市场的要求,因此被作为市场上电容器的主要材料,其它的碳材料有比活性炭更优越的性能,但是成本较高,所以没有被用作商业化。因此,寻找性能好,成本低的电极材料是当前超级电容器领域的主要研究方向,从而制备出性能优越,成本低,能够广泛应用于市场的超级电容器,具有重大意义。 目前用于研究超级电容器电极材料的碳材料主要有活性炭、炭气凝胶、碳纳米管、玻璃碳、石墨烯、碳纤维以及碳/碳复合材料。碳材料原料低廉,表面积大,适合大规模生产。但是单纯不加修饰碳电极材料没有很高的比电容,还需要对其进行改性等研究。 1、活性炭材料 对于活性炭材料,不同的处理方法,会得到不同比表面积的活性炭,一般表面积可以高达 1000~3000m2/g,而且具有不同的空隙,孔径范围宽,生产工艺简单,成本低廉,可以从沥青、植物硬壳、石油焦、橡胶等各种原材料中得来。是一种已经商品化的超级电容器电极材料。活性炭材料的活化方法多种多样,可以分为物理活化和化学活化两种。 2、炭气凝胶电极材料

炭气凝胶是一种交联结构的网状的碳材料有多孔性,导电性好,表面积大,孔隙率高,孔径分布广,是唯一可以导电的气凝胶,电导率高。密度跨度大,孔隙率好,而且质量较轻,属于非晶态的纳米碳材料,同时,在制备的时候,可以通过调节工艺参数控制其孔径分布和微粒尺度。 3、碳纳米管 碳纳米管这是一种有类似石墨的六边形组成的碳材料,微观上看两端封闭的多层的管子,直径有几十纳米,层间距要比石墨层间距稍大。从超级电容器对电极材料的要求上看,碳纳米管材料是非常适合用来做电极材料的,因为碳纳米管的结构是空管的形状,表面积大,尤其是壁很薄的碳纳米管,比表面积更大,非常有利于双电层电容的储备。碳纳米管要是制成电极时,还会具备特殊的孔,这些孔是由微观状态下,碳纳米管互相缠绕,好似网状结构,管与管之间就形成了孔洞的结构,孔与孔之间都是互相连通的,没有堵死的情况,这在用作电极的时候,对于电解液的流通的很重要的。而且这种由管径互相缠绕得到的孔不会太小,一般都是属中孔,这会使电极的内阻很低,这些都是超级电容器电极所需要具备的。目前对碳纳米管作为超级电容器电极材料的研究主要集中在将它直接用于超级电容器上,或者将碳纳米管和别的材料复合用作超级电容器。 4、活性炭纤维 活性炭纤维是一种环保材料,具有比活性炭更加优越的吸附性能,由它得到的高表面积的活性炭纤维布已经成功用于商业化的电极

超级电容器研究进展

超级电容器研究进展 XXX 摘要:超级电容器是一种介于化学电池与普通电容器之间的新型储能装置。本文主要介绍了超级电容器的原理、电极材料和电解质研究进展。 关键词:超级电容器电极材料电解质 Research Progress of Super Capacitor Abstract:Super capacitor is a new energy storage device between battery and conventional capacitor. In this paper, super capacitor’s principle,research progress on electrode materials and electrolytes were introduced. Key Word: super capacitor electrode materials electrolytes 1 引言 超级电容器是最近几十年来,国内外发展起来的一种新型储能装置,又被称为电化学电容器。超级电容器兼具有静电电容器和蓄电池二者优点。它既具有普通静电电容器那样出色的放电功率,又具备蓄电池那样优良的储备电荷能力。与普通静电电容器相比较,超级电容器具有法拉级别的超大电容、非常高的能量密度和较宽的工作温度区间[1-3]。此外由于超级电容器材料无毒[4]、无需维护,有极长的循环充放电寿命,可作为一种绿色环保、性能优异的的储能装备在便携式仪器设备、数据记忆存储系统、电动汽车电源等[5]方面有着广泛的应用前景。超级电容器从出现到成熟,经历漫长的发展过程。当今世界,越来越多的科研机构和商业公司致力于超级电容器的研制与开发工作。美国、日本、俄罗斯超级电容器界的三大巨头,其产品几乎占据了超级电容器市场的绝大部分。与这些超级电容强国相比,我国超级电容器研发工作起步晚,发展快,如今已初具规模,并渐趋成熟,但仍存在一定差距。 2 超级电容器工作原理 当前得到大家广泛认可的超级电容器的工作原理主要是双电层电容理论和

超级电容器材料综述

超级电容器材料综述 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT

超级电容器是一种新型的储能装置,具备充放电快、效率高、稳定性好等优点,是一种清洁的绿色能源,是21 世纪的新型绿色能源。超级电容器有很大的市场潜力。通过对超级电容器电极材料进行研究,发现多孔碳材料作为超级电容器电极材料的电化学性能的影响。 目前,用于超级电容器的电极材料主要是碳材料,市场上主要是活性炭材料,因为活性炭的成本较低,且活性炭具有很高的比表面积,这是超级电容器电极材料所必须具备的特点。但是,活性炭的导电性一般,微观结构主要以微孔形式存在,因此在电解液中会有很大的电阻,电解液浸透电极的过程会比较慢,在存储和传输电荷的时候也会比较慢,但是它的成本低,基本可以满足市场的要求,因此被作为市场上电容器的主要材料,其它的碳材料有比活性炭更优越的性能,但是成本较高,所以没有被用作商业化。因此,寻找性能好,成本低的电极材料是当前超级电容器领域的主要研究方向,从而制备出性能优越,成本低,能够广泛应用于市场的超级电容器,具有重大意义。 目前用于研究超级电容器电极材料的碳材料主要有活性炭、炭气凝胶、碳纳米管、玻璃碳、石墨烯、碳纤维以及碳/碳复合材料。碳材料原料低廉,表面积大,适合大规模生产。但是单纯不加修饰碳电极材料没有很高的比电容,还需要对其进行改性等研究。 1、活性炭材料 对于活性炭材料,不同的处理方法,会得到不同比表面积的活性炭,一般表面积可以高达1000~3000m2/g,而且具有不同的空隙,孔径范围宽,生产工艺简单,成本低廉,可以从沥青、植物硬壳、石油

超级电容器储能特性研究

超级电容器储能特性研究 时间:2009-04-24 13:40:33 来源:《电源世界》作者: 摘要:基于超级电容器等效电路模型,本文推导了超级电容器等效阻抗函数,研究了恒流充电时的超级电容器的储能基本特性。并结合实验方法,对超级电容器的端电压波动、容量、循环寿命、漏电流进行了广泛测量。在理论分析与实验对比的基础上,根据超级电容器的内部结构探讨了部分特性变化的理论原因,为高效应用超级电容器的储能研究提供了科学依据。叙词:超级电容恒流充电新能源Abstract:Based on equivalent circuit models of a super-capacitor, this paper has proposed an equivalent-resistance function for super-capacitors and investigated basic characteristics under constant-current charging conditions. By use of experimental testing methodology, termination voltage ripples, capacitance, cycle-lifetime and leakage current have been tested and analyzed. By comparing both theoretical and experimental results, the reason for partial characteristics variation of super-capacitors internal structure has been investigated and discussed. These chievements are essential for some critical applications of super-capacitors. Keyword:super-capacitor, constant-current charging, new energy 1 引言 采用电化学双电层原理的超级电容器——双电层电容器(Electric Double Layer Capacitor; EDLC),也叫功率电容器(PowerCapacitor),是一种介于普通电容器和二次电池之间的新型储能装置。超级电容器集高能量密度、高功率密度、长寿命等特性于一身,具有工作温度宽、可靠性高、可快速循环充放电和长时间放电等特点[1],广泛用作微机的备用电源、太阳能充电器、报警装置、家用电器、照相机闪光灯和飞机的点火装置等,尤其是在电动汽车领域中的开发应用已引起举世的广泛重视[2]。 超级电容器的储能原理不同于蓄电池,其充放电过程的容量状态有其自身的特点。超级电容器受充放电电流、温度、充放电循环次数等因素影响,其中充放电流是最主要的影响因素。由于超级电容器一般采用恒流限压充电的方法,本文主要分析恒流充电条件下的超级电容器特性。恒流限压充电的方法为控制最高电压为Umax,恒流充电结束后转入恒压浮充,直到超级电容器充满。采用这种充电方法的优点是:第一阶段采用较大电流以节省充电时间,后期采用恒压充电可在充电结束前达到小电流充电,既保证充满,又可避免超级电容器内部高温而影响超级电容器的容量特性。 2 超级电容器原理及优点 根据电极选择的不同,超级电容器主要有碳基超级电容器、金属氧化物超级电容器和聚合物超级电容器等类型,现在应用最为广泛的为碳基超级电容器。电化学双电层电容器的性能在很大程度上取决于碳材料的性质,电极材料的表面积、粒径分布、电导率、电化学稳定性等因素都能影响电容器的性能[3]。 碳基超级电容器的电极材料由碳材料构成,使用有机电解液作为介质,活性炭与电解液之间形成离子双电层,通过极化电解液来储能,能量贮存于双电层和电极内部,其原理如图1所示。当用直流电源为超级电容器单体充电时,电解质中的正、负离子聚集到固体电极表面,形成“电极/溶液”双电层,用以贮存电荷。双电层厚度的形成,依赖于电解质的浓度和离子的尺寸,其容量正比于电极表面积,而与“电极/溶液”双电层的厚度成反比;其贮能量受电极材料表面积、多孔电极孔隙率和电解质活度等因素的影响[4]。

关于超级电容器电极材料性能测试常用的三种电化学手段

循环伏安cyclic voltammetry (CV) 由CV曲线,可以直观的知道大致一下三个方面的信息 ? Voltage window(水系电解液的电位窗口大致在1V左右,有机电解液的电位窗口会在2.5V 左右)关于很多虫虫问,电位窗口应该从具体的哪个电位到哪个电位,这个应该和你的参比电极和测试体系有关。工作站所测试的电位都应该是相对于参比电极的,所以不要纠结于为什么别人的是0-1V,而你测试的是-0.5-0.5V,这个与参比电极的本身电位(相对于氢标的电位)以及测试的体系本身有很大关系。 ?Speci fic capacitance (比电容,这个是超级电容器重要的参数之一,可以利用三种测试手段来计算,我一般都是利用恒电流充放电曲线来计算) ?Cycle life (超级电容器电极材料好坏的另一个比较重要的参数,因为一个很棒的电极材料应该是要做到既要有比较高的比电容又要有比较好的循环稳定性) 测试的时候比较重要的测试参数:扫描速度和电位扫描范围。电位的扫描范围,一般会在一个比较宽的范围扫描一次然后选择电容性能还比较好的区间再进行线性扫描,扫描速度会影响比电容,相同的电极材料相同测试体系扫速越大计算出的比电容会越小。 恒电流充放电galvanostatic charge–discharge (GCD) 由GCD测试曲线,一般可以得到以下几方面的信息: ?the change of specific capacitance(比电容的变化可以从有限多次的恒电流充放电中体现,直观的就是每次充放电曲线的放电时间的变化) ?degree of reversibility(由充放电曲线的对称也可以中看出电极材料充放电的可逆性) ?Cycle life(循环寿命,换句话也就是随着充放电次数的增多,电极材料比电容的保持率)恒电流充放电测试过程中比较重要的测试参数有电流密度,还有充放电反转的电位值。电流密度可以设置为电流/电极面积,也可以设置为电流/活性物质质量。我在测试的过程中一般依据活性物质的质量设置为XXmA/mg。充放电反转的电位值可以依据循环伏安的电位窗口,可以设置为该区间或者小于该区间。 交流阻抗electrochemical impedance spectroscopy (EIS) 由交流阻抗曲线可以看出体系随着频率改变的变化趋势,得出测试体系某个状态下的包括溶液电阻、扩散阻抗的情况,可以通过测试交流阻抗对测试的未知体系进行电化学元件模拟。关于交流阻抗,谈谈频率和体系元件的响应关系,总的来说,交流阻抗之所以能得到诸多信息,关键在于不同器件本身对于频率的相应不同。Nyquist图中最先响应的总是纯电阻,然后是电容和电化学反应,最后是扩散过程。纯电阻,在电场建立的同时即可响应。交流阻抗的测试过程中会出现两个图:Nyquist图和Bode图,Nyquist图反应的是随着频率的变化虚轴的阻抗值和实轴的阻抗值的变化,Bode图反应的是阻抗的模值随着频率的变化以及相位角随频率的变化。 交流阻抗测试过程中比较重要的设置参数有:交流幅值以及频率范围。交流幅值对于超级电容器一般会选择5mV,频率一般会选择100kHz-10mHz,当然也会有不同体系不同对待,很多文献中会选择测试到0.1Hz就停止了,这样来说根本没有测试低频区体系真正的性能测试就已经停止了。真正反映测试体系的电容性能,漏电性的低频区的直线很重要。当然如果测

超级电容器电极碳材料的发展

2015年11月同济大学 超级电容器活性炭电极材料的发展 专业:化学工程与工艺 学号:1353901 姓名:巩宇锈

本文简单介绍了超级电容器的原理以及应用范围。提出了电容器电极材料的选择,就其中一种性能高的材料——活性炭在超级电容器的发展过程中的改进做了介绍,包括其理论提出、比表面积,孔径分布、表面官能团等性质的发展。最后对活性炭电极材料的未来发展方向进行了展望。 关键词:超级电容器活性炭材料 ABSTRACT This paper briefly introduce the principles and application prospect of supercapacitor. Selecting the capacitor electrode material is proposed. As the high performance of a material - activated carbon, its development process of supercapacitoris presented, including its proposed theory, the development of the specific surface area, pore size distribution, surface functional groups, and other properties. At last, the future direction of activated carbon electrode material is put forward. Keywords:supercapacitor; activated carbon materials

超级电容器电极材料科普

超级电容器电极材料科普 超级电容器主要由电极、集流体、电解质和隔膜等4部分组成,其中电极材料是影响超级电容器性能和生产成本的最关键因素。研究和开发高性能、低成本的电极材料是超级电容器研发工作的重要内容。目前研究较多的超级电容器电极材料主要有碳材料、金属氧化物(或者氢氧化物)、导电聚合物等,而碳材料和金属氧化物电极材料的商品化相对较成熟,是当前研究的热点。 1什么是超级电容器? 超级电容器(supercapacitors 或ultracapacitors)又称电化学电容器(electrochemical capacitors),是一种介于二次电池与常规电容器之间的新型储能器件,兼有二次电池能量密度高和常规电容器功率密度大的优点;此外,超级电容器还具有对环境无污染、效率高、循环寿命长、使用温度范围宽、安全性高等特点,在电动汽车、新能源发电、信息技术、航空航天等领域具有广泛的应用前景。 超级电容器还可以与充电电池组成复合电源系统,既能够满足电动车启动、加速和爬坡时的高功率要求,又可延长充电电池的循环使用寿命,实现电动车动力系统性能的最优化。当前,国内外已实现了超级电容器的商品化生产,但还存在着价格较高、能量密度低等问题,极大地限制了超级电容器的大规模应用。 超级电容器主要由电极、集流体、电解质和隔膜等4部分组成,其中电极材料是影响超级电容器性能和生产成本的最关键因素。研究和开发高性能、低成本的电极材料是超级电容器研发工作的重要内容。 目前研究较多的超级电容器电极材料主要有碳材料、金属氧化物(或者氢氧化物)、导电聚合物等,而碳材料和金属氧化物电极材料的商品化相对较成熟,是当前研究的热点。因此,本文将重点介绍碳材料、金属氧化物及其复合材料等高性能电极材料的最新研究进展以及商品化应用前景。

相关主题
文本预览
相关文档 最新文档