当前位置:文档之家› 函数定义域求法总结

函数定义域求法总结

函数定义域求法总结
函数定义域求法总结

函数定义域求法总结

一、定义域是函数y=f(x)中的自变量x 的范围。 (1)分母不为

(2)偶次根式的被开方数 。 (3)对数中的真数 。 (4)指数、对数的底数

(5)y=tanx 中 ;y=cotx 中 等等。 ( 6 )0x 中 。 二、抽象函数的定义域

1.已知)(x f 的定义域,求复合函数()][x g f 的定义域

由复合函数的定义我们可知,要构成复合函数,则内层函数的值域必须包含于外层函数的定义域之中,因此可得其方法为:若)(x f 的定义域为()b a x ,∈,求出)]([x g f 中b x g a <<)(的解x 的范围,即为

)]([x g f 的定义域。

2.已知复合函数()][x g f 的定义域,求)(x f 的定义域

方法是:若()][x g f 的定义域为()b a x ,∈,则由b x a <<确定)(x g 的范围即为)(x f 的定义域。 3.已知复合函数[()]f g x 的定义域,求[()]f h x 的定义域

结合以上一、二两类定义域的求法,我们可以得到此类解法为:可先由()][x g f 定义域求得()x f 的定义域,再由()x f 的定义域求得()][x h f 的定义域。 4.已知()f x 的定义域,求四则运算型函数的定义域

若函数是由一些基本函数通过四则运算结合而成的,其定义域为各基本函数定义域的交集,即先求出各个函数的定义域,再求交集。

一、 求函数的定义域

1、 求下列函数的定义域:

⑴y =

⑵y =

⑶01(21)1

11

y x x =

+-+-

2、设函数f x ()的定义域为[]01,,则函数f x ()2的定义域为 ;函数f x ()-2的定义域为 ;

3、若函数(1)f x +的定义域为[]-23,,则函数(21)f x -的定义域是 ; 函数1(2)f x

+的定义域为 。

4、 知函数f x ()的定义域为 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在,求实数m 的取值范围。

5、若函数()f x = 3

44

2

++-mx mx x 的定义域为R ,则实数m 的取值范围是 ( )

A 、(-∞,+∞)

B 、(0,43]

C 、(43,+∞)

D 、[0, 4

3)

6、若函数()f x =的定义域为R ,则实数m 的取值范围是( ) (A)04m << (B) 04m ≤≤(C) 4m ≥ (D) 04m <≤ 7.已知函数()f x 的定义域为[]15-,,求(35)f x -的定义域.

8.若函数)(x f y =的定义域为??

????2,21,则)(log 2x f 的定义域为 。

9.已知函数2(22)f x x -+的定义域为[]03,,求函数()f x 的定义域.

10.已知函数的定义域为,则的定义域为________。 11. 函数定义域是,则

的定义域是( )

A.

B.

C.

D.

12.已知函数f(2x

)的定义域是[-1,1],求f(log 2x)的定义域.

13.若()f x 的定义域为[]35-,,求()()(25)x f x f x ?=-++的定义域.

14.已知函数的定义域是,求的定义域。

15.若函数f (x +1)的定义域为[-2

1,2],求f (x 2

)的定义域.

巩固训练

1. 设函数的定义域为,则(1)函数的定义域为________。

(2)函数

的定义域为__________。

2、已知函数的定义域为,则

的定义域为__________

3、已知函数

的定义域为

,则y=f(3x-5)的定义域为________。

4、设函数y=f(x)的定义域为[0,1],求y=f()3

1()31-++x f x 定义域。

.5、若函数a

ax ax y 1

2+

-=的定义域是R ,求实数a 的取值范围

1、(1){|536}x x x x ≥≤-≠-或或 (2){|0}x x ≥ (3)1

{|220,,1}2

x x x x x -≤≤≠≠≠且 2、[1,1]-; [4,9] 3、5[0,];2 11(,][,)32

-∞-+∞ 4、11m -≤≤

DB 7.41033??

????

, 8.{}

42|≤≤x x 9.[]15,.10.

11.选A12.[2,4]

13.[]40-,.14.

15.{x |

-3<x

<-

<x <3

}.巩固训练 1.(1)定义域为(2)定义域为

2.

3.5/3≤x ≤2.

4. 定义域为??????32,31.

5.??

???≤2001402

a a a a a 等价于

函数定义域的求法(习题)

一、含分式的函数

在求含分式的函数的定义域时,要注意两点:(1)分式的分母一定不能为0;(2)绝对不能先化简后求函数定义域。

例1 求函数f(x)=21

1

x x -+的定义域.

二、含偶次根式的函数

注意(1)求含偶次根式的函数的定义域时,注意偶次根式的被开方数不小于0,通过求不等式来求其定义域;(2)在研究函数时,常常用到区间的概念,它是数学中常用的术语和符号,注意区间的开闭情况. 例1 求函数y =3-ax (a 为不等于0的常数)的定义域.

三、复合型函数

注意 函数是由一些基本初等函数通过四则运算而得到的,则它的定义域是各基本函数定义域的交集,通过列不等式组来实现.

例1 求函数y =23-x +3

3

23-+x x )

(的定义域.

练习

1、求下列函数的定义域。⑴y=

x

x -||1

⑵y=

310

2++x x

(3)y=

|

|11

x -

(4)y=

2

1

21--

-x x

(5)2

143)(2-+--=

x x x x f

四、抽象函数 (一)、已知

的定义域,求的定义域,

其解法是:若的定义域为

,则

,从中解得

的取值范围即为

的定

义域。 例1. 设函数

的定义域为

,则

(1)函数的定义域为________。

(2)函数的定义域为__________。

练习

1已知f(x)的定义域为[1,3],求f(x-1)的定义域.

2已知函数)x (f 的定义域为(0,1),则函数)1x 2

1

(

f -的定义域是________。 3设函数)x (f y =的定义域为),4[A +∞=,给出下列函数:)4x (f y ),4x 2(f y 2=-=,)x

16(f y ),x 2(f y -==,其定义域仍是A 的有( )

A. 1个

B. 2个

C. 3个

D. 4个

4.(江西卷3)若函数

()y f x =的定义域是[0,2],则函数(2)

()1

f x

g x x =

-的定义域是B

A .[0,1]

B .[0,1)

C . [0,1)(1,4]

D .(0,1)

(二)、已知的定义域,求的定义域。

其解法是:若的定义域为

,则由

确定

的范围即为

的定义域。

例2. 已知函数的定义域为

,则

的定义域为________。

练习

1已知函数)4x 2(f +的定义域为(0,1),则函数)x (f 的定义域是________。

2已知f(2x-1)的定义域为[-1,1],求)x (f 的定义域

(三)、已知的定义域,求

的定义域。

其解法是:可先由定义域求得的定义域,再由的定义域求得的定义域。

例3. 函数定义域是,则

的定义域是( )

A. B.

C.

D.

练习

1函数f(2x-1)的定义域为[1,3],求函数f(x 2+1)的定义域.

2已知f(2x-1)定义域为[0,1],求f(3x)的定义域

注f(x)定义域

???????←???→

?∈∈的范围

求根据解)()(1x g D x D

x g f[g(x)]的定义域为D 1

(四)、运算型的抽象函数

求由有限个抽象函数经四则运算得到的函数的定义域,其解法是:先求出各个函数的定义域,再求交集。 例4. 已知函数

的定义域是

,求

的定义域。

练习 1.若函数)(x f y =的定义域为[-1,1],求函数)41(+=x f y )4

1

(-?x f 的定义域。

2.(2006年湖北卷)设

()x

x

x f -+=22lg

,则

??

?

??+??? ??x f x f 22的定义域为 (B ) A. ()()4,00,4 - B. ()()4,11,4 -- C. ()()2,11,2 -- D. ()()4,22,4 --

五、对于实际问题中函数的定义域

例5 用长为L 的铁丝弯成下部为矩形,上部为半圆形的框架(如图),若矩形底边长为2x ,求此此框架围成图形的面积y 关于x 的函数关系式.

解:因为半圆的半径为x ,所以矩形的另一边长为

2π2

L x x

--.

所以

2π2π222L x x y x x --=

+=2π+42

x L x -+?. 由201(2π)02

x L x x ?

?

?--??>,>,得0<x <2πL +.

故所求的函数关系式为y=2

π+42

x L x -

+?,x ∈( 0 ,

2πL +). 【点评】定义域不但要使函数的解析式有意义,还要对实际问题有意义;对于实际问题,即使题目没有明确要求写出定义域,也要注意注明.

函数定义域求法总结

一、定义域是函数y=f(x)中的自变量x 的范围。

(1)分母不为零

(2)偶次根式的被开方数非负。 (3)对数中的真数部分大于0。

(4)指数、对数的底数大于0,且不等于1

(5)y=tanx 中x ≠k π+π/2;y=cotx 中x ≠k π等等。 ( 6 )0x 中x 0≠

二、抽象函数的定义域

1.已知)(x f 的定义域,求复合函数()][x g f 的定义域

由复合函数的定义我们可知,要构成复合函数,则内层函数的值域必须包含于外层函数的定义域之中,因此可得其方法为:若)(x f 的定义域为()b a x ,∈,求出)]([x g f 中b x g a <<)(的解x 的范围,即为

)]([x g f 的定义域。

2.已知复合函数()][x g f 的定义域,求)(x f 的定义域

方法是:若()][x g f 的定义域为()b a x ,∈,则由b x a <<确定)(x g 的范围即为)(x f 的定义域。 3.已知复合函数[()]f g x 的定义域,求[()]f h x 的定义域

结合以上一、二两类定义域的求法,我们可以得到此类解法为:可先由()][x g f 定义域求得()x f 的定义域,再由()x f 的定义域求得()][x h f 的定义域。 4.已知()f x 的定义域,求四则运算型函数的定义域

若函数是由一些基本函数通过四则运算结合而成的,其定义域为各基本函数定义域的交集,即先求出各个函数的定义域,再求交集。

二、 求函数的定义域

1、 求下列函数的定义域:

⑴33y x =

+-

⑵y =

⑶01(21)1

11

y x x =

+-+-

2、设函数f x ()的定义域为[]01,,则函数f x ()2

的定义域为 ;函数f x ()

-2的定义域为 ;

3、若函数(1)f x +的定义域为[]-23,,则函数(21)f x -的定义域是 ; 函数1(2)f x

+的定义域为 。

5、 知函数f x ()的定义域为 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在,求实数m 的取值范围。

5、若函数()f x = 3

44

2++-mx mx x 的定义域为R ,则实数m 的取值范围是

( )

A 、(-∞,+∞)

B 、(0,43]

C 、(43,+∞)

D 、[0, 4

3)

6、若函数()f x =的定义域为R ,则实数m 的取值范围是( ) (A)04m << (B) 04m ≤≤(C) 4m ≥ (D) 04m <≤ 7.已知函数()f x 的定义域为[]15-,,求(35)f x -的定义域.

8.若函数)(x f y =的定义域为??

?

???2,21,则)(log 2x f 的定义域为 。

9.已知函数2(22)f x x -+的定义域为[]03,,求函数()f x 的定义域.

10.已知函数的定义域为,则的定义域为________。 11. 函数定义域是,则

的定义域是( )

A.

B.

C.

D.

12.已知函数f(2x

)的定义域是[-1,1],求f(log 2x)的定义域.

13.若()f x 的定义域为[]35-,,求()()(25)x f x f x ?=-++的定义域.

14.已知函数的定义域是

,求

的定义域。

15.若函数f (x +1)的定义域为[-2

1,2],求f (x 2

)的定义域.

巩固训练

1. 设函数的定义域为,则(1)函数的定义域为________。

(2)函数

的定义域为__________。

2、已知函数的定义域为,则

的定义域为__________

3、已知函数

的定义域为

,则y=f(3x-5)的定义域为________。

4、设函数y=f(x)的定义域为[0,1],求y=f()3

1()31

-++x f x 定义域。

.5、若函数a

ax ax y 1

2+

-=的定义域是R ,求实数a 的取值范围

1、(1){|536}x x x x ≥≤-≠-或或 (2){|0}x x ≥ (3)1

{|220,,1}2

x x x x x -≤≤≠≠≠且 2、[1,1]-; [4,9] 3、5[0,];2 11(,][,)32

-∞-+∞ 4、11m -≤≤

DB 7.41033??

????

, 8.{}

42|≤≤x x 9.[]15,.10.

11.选A12.[2,4]

13.[]40-,.14.

15.{x |

-3<x

<-

<x <3}

.巩固训练 1.(1)定义域为(2)定义域为

2.

3.5/3≤x ≤2.

4. 定义域为??????32,31.

5.??

???≤2001402

a a a a a 等价于

函数定义域的求法(习题)

一、含分式的函数

在求含分式的函数的定义域时,要注意两点:(1)分式的分母一定不能为0;(2)绝对不能先化简后求函数定义域。

例2 求函数f(x)=21

1

x x -+的定义域.

二、含偶次根式的函数

注意(1)求含偶次根式的函数的定义域时,注意偶次根式的被开方数不小于0,通过求不等式来求其定义域;(2)在研究函数时,常常用到区间的概念,它是数学中常用的术语和符号,注意区间的开闭情况. 例1 求函数y =3-ax (a 为不等于0的常数)的定义域.

三、复合型函数

注意 函数是由一些基本初等函数通过四则运算而得到的,则它的定义域是各基本函数定义域的交集,通过列不等式组来实现.

例1 求函数y =23-x +3

3

23-+x x )

(的定义域.

练习

1、求下列函数的定义域。⑴y=

x

x -||1

⑵y=

310

2++x x

(3)y=

|

|11

x -

(4)y=

2

1

21--

-x x

(5)2

143)(2-+--=

x x x x f

四、抽象函数 (一)、已知

的定义域,求

的定义域,

其解法是:若的定义域为,则中,从中解得的取值范围即为的定

义域。

例1. 设函数的定义域为,则

(1)函数的定义域为________。

(2)函数的定义域为__________。

练习

1已知f(x)的定义域为[1,3],求f(x-1)的定义域.

2已知函数)x (f 的定义域为(0,1),则函数)1x 2

1

(

f -的定义域是________。 3设函数)x (f y =的定义域为),4[A +∞=,给出下列函数:)4x (f y ),4x 2(f y 2=-=,)x

16(f y ),x 2(f y -==,其定义域仍是A 的有( )

A. 1个

B. 2个

C. 3个

D. 4个

4.(江西卷3)若函数

()y f x =的定义域是[0,2],则函数(2)

()1

f x

g x x =

-的定义域是B

A .[0,1]

B .[0,1)

C . [0,1)(1,4]

D .(0,1)

(二)、已知的定义域,求的定义域。

其解法是:若的定义域为

,则由

确定的范围即为的定义域。

例2. 已知函数的定义域为

,则

的定义域为________。

练习

1已知函数)4x 2(f +的定义域为(0,1),则函数)x (f 的定义域是________。

2已知f(2x-1)的定义域为[-1,1],求)x (f 的定义域

(三)、已知的定义域,求

的定义域。

其解法是:可先由定义域求得

的定义域,再由

的定义域求得的定义域。

例3. 函数定义域是,则

的定义域是( )

A. B.

C.

D.

练习

1函数f(2x-1)的定义域为[1,3],求函数f(x 2+1)的定义域.

2已知f(2x-1)定义域为[0,1],求f(3x)的定义域

注f(x)定义域

???????←???→

?∈∈的范围

求根据解)()(1x g D x D x g f[g(x)]的定义域为D 1

(四)、运算型的抽象函数

求由有限个抽象函数经四则运算得到的函数的定义域,其解法是:先求出各个函数的定义域,再求交集。 例4. 已知函数

的定义域是

,求

的定义域。

练习 1.若函数)(x f y =的定义域为[-1,1],求函数)41(+=x f y )4

1

(-?x f 的定义域。

2.(2006年湖北卷)设

()x

x

x f -+=22lg

,则

??

?

??+??? ??x f x f 22的定义域为 (B ) A. ()()4,00,4 - B. ()()4,11,4 -- C. ()()2,11,2 -- D. ()()4,22,4 --

五、对于实际问题中函数的定义域

例5 用长为L 的铁丝弯成下部为矩形,上部为半圆形的框架(如图),若矩形底边长为2x ,求此此框架围成图形的面积y 关于x 的函数关系式.

解:因为半圆的半径为x ,所以矩形的另一边长为

2π2

L x x

--.

所以

2π2π222L x x y x x --=

+=2π+42

x L x -+?. 由201(2π)02

x L x x ?

?

?--??>,>,得0<x <2πL +.

故所求的函数关系式为y=2

π+42

x L x -

+?,x ∈( 0 ,

2πL +). 【点评】定义域不但要使函数的解析式有意义,还要对实际问题有意义;对于实际问题,即使题目没有明确要求写出定义域,也要注意注明.

函数定义域的类型和求法

函数定义域的类型和求法 本文介绍函数定义域的类型和求法,目的在于使学生全面认识定义域,深刻理解定义域,正确求函数的定义域。现举例说明。 一、常规型 即给出函数的解析式的定义域求法,其解法是由解析式有意义列出关于自变量的不等式或不等式组,解此不等式(或组)即得原函数的定义域。 例1 求函数的定义域。 解:要使函数有意义,则必须满足 由①解得或。③ 由②解得或④ ③和④求交集得且或x>5。 故所求函数的定义域为。 例2 求函数的定义域。 解:要使函数有意义,则必须满足 由①解得③

由②解得④ 由③和④求公共部分,得 故函数的定义域为 评注:③和④怎样求公共部分?你会吗? 二、抽象函数型 抽象函数是指没有给出解析式的函数,不能常规方法求解,一般表示为已知一个抽象函数的定义域求另一个抽象函数的解析式,一般有两种情况。 (1)已知的定义域,求的定义域。 其解法是:已知的定义域是[a,b]求的定义域是解,即为所求的定义域。 例3 已知的定义域为[-2,2],求的定义域。 解:令,得,即,因此,从而,故函数的定义域是。 (2)已知的定义域,求f(x)的定义域。 其解法是:已知的定义域是[a,b],求f(x)定义域的方法是:由,求g(x)的值域,即所求f(x)的定义域。 例4 已知的定义域为[1,2],求f(x)的定义域。

解:因为。 即函数f(x)的定义域是。 三、逆向型 即已知所给函数的定义域求解析式中参数的取值范围。特别是对于已知定义域为R,求参数的范围问题通常是转化为恒成立问题来解决。 例5 已知函数的定义域为R求实数m的取值范围。 分析:函数的定义域为R,表明,使一切x∈R都成立,由项的系数是m,所以应分m=0或进行讨论。 解:当m=0时,函数的定义域为R; 当时,是二次不等式,其对一切实数x都成立的充要条件是综上可知。 评注:不少学生容易忽略m=0的情况,希望通过此例解决问题。 例6 已知函数的定义域是R,求实数k的取值范围。 解:要使函数有意义,则必须≠0恒成立,因为的定义域为R,即 无实数 ①当k≠0时,恒成立,解得;

函数定义域几种类型及其求法

函数定义域几种类型及其求法 河北省承德县一中 黄淑华 一、已知函数解析式型 即给出函数的解析式的定义域求法,其解法是由解析式有意义列出关于自变量的不等式或不等式组,解此不等式(或组)即得原函数的定义域。 例1、求函数8315 22-+--=x x x y 的定义域。 解:要使函数有意义,则必须满足?????≠-+≥--0 8301522x x x 即???-≠≠-<>11535x x x x 且或 解得1135-≠-<>x x x 且或 即函数的定义域为{}1135-≠-<>x x x x 且或。 二、抽象函数型 抽象函数是指没有给出解析式的函数,不能用常规方法求解,一般表示为已知一个抽象函数的定义域求另一个抽象函数的定义域,一般有两种情况。 (一)已知)(x f 的定义域,求[])(x g f 的定义域。 其解法是:已知)(x f 的定义域是],[b a 求[])(x g f 的定义域是解b x g a ≤≤)(,即为所求的定义域。 例2、已知)(x f 的定义域为]2,2[-,求)1(2-x f 的定义域。 解:22≤≤-x ,2122≤-≤-∴x ,解得33≤≤- x 即函数)1(2-x f 的定义域为{}33≤≤-x x (二)已知[])(x g f 的定义域,求)(x f 的定义域。 其解法是:已知[])(x g f 的定义域是],[b a 求)(x f 的定义域的方法是:b x a ≤≤,求)(x g 的值域,即所求)(x f 的定义域。 例3、已知)12(+x f 的定义域为]2,1[,求)(x f 的定义域。 解:21≤≤x ,422≤≤∴x ,5123≤+≤∴x 。 即函数)(x f 的定义域是{}53|≤≤x x 。

高考复习函数知识点总结

高考复习 函数知识点总结 一.函数概念的理解以及函数的三要素 (1)函数的概念 ①设A 、B 是两个非空的数集,如果按照某种对应法则f ,对于集合A 中任何一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的一个函数,记作:f A B →. ②函数的三要素:定义域、值域和对应法则. ③只有定义域相同,且对应法则(函数关系式)也相同的两个函数才是同一函数. (2)区间的概念及表示法 ①设,a b 是两个实数,且a b <,满足a x b ≤≤的实数x 的集合叫做闭区间,记做[,]a b ; 满足a x b <<的实数x 的集合叫做开区间,记做(,)a b ; 满足a x b ≤<,或a x b <≤的实数x 的集合叫做半开半闭区间,分别记做 [,)a b ,(,]a b ; 满足,,,x a x a x b x b ≥>≤<的实数x 的集合分别记做 [,),(,),(,],(,)a a b b +∞+∞-∞-∞. 注意:对于集合{|}x a x b <<与区间(,)a b ,前者a 可以大于或等于b ,而后者必须a b < . (3)求函数的定义域时,一般遵循以下原则: ① 分式的分母不为0; ② 偶次根式下被开方数大于0; ③ 0y x = ,则有0x ≠ ; ④ 对数函数的真数大于0,底数大于0切不等于1 注意:①解析式为整式的函数定义域为R ; ②若()f x 是由有限个基本初等函数的四则运算而合成的函数时,则

其定义域一般是各基本初等函数的定义域的交集; ③对于求复合函数定义域问题,一般步骤是:若已知() f x的定义域 为[,] a g x b ≤≤解出. f g x的定义域应由不等式() a b,其复合函数[()] (4)求函数的值域或最值 常用方法: ①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值. ②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量 的取值范围确定函数的值域或最值. ③判别式法:若函数() =可以化成一个系数含有y的关于x的二次方程 y f x 2 ++=,则在()0 a y x b y x c y ()()()0 a y≠时,由于,x y为实数,故必须有 2()4()()0 ?=-?≥,从而确定函数的值域或最值. b y a y c y ④不等式法:利用基本不等式确定函数的值域或最值. ⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代 数函数的最值问题转化为三角函数的最值问题. ⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的 值域或最值. ⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值. ⑧函数的单调性法. (5)函数解析式 ①换元法;(用于求复合函数的解析式) ②配凑法;(用于求复合函数的解析式)

函数定义域总结

函数定义域总结 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

定义域的求法 一、常规型 注意根号,分式,对数,幂函数,正切 2、常见的定义域 ①当f(x)是整式时,定义域为R 。 ②当f(x)是分式时,定义域为使分母不为零的x 的取值的集合。 ③偶次根式的定义域是使被开方式非负的x 的取值的集合。 ④零指数幂或负指数幂的定义域是使幂的底数不为0的x 的取值的集合。 ⑤对数式的定义域是使真数大于0且底大于0不等于1的x 的取值的集合。 ⑥正切函数y=tanx, , y=x x 1 x 1 x a log tan x 21-x 32 -x x 0 1求函数8|3x |15x 2x y 2-+--=的定义域。2 求函数2x 161x sin y -+=的定义域。 复合函数定义域的求法 (1)已知)x (f 的定义域,求)]x (g [f 的定义域。 其解法是:已知)x (f 的定义域是[a ,b ]求)]x (g [f 的定义域是解b )x (g a ≤≤,即为 所求的定义域。 测试:设函数()f x 的定义域为[]0,1,求函数()()(0)y f x a f x a a =++->的定义域。 (2)已知)]x (g [f 的定义域,求f(x)的定义域。

其解法是:已知)]x (g [f 的定义域是[a ,b ],求f(x)定义域的方法是:由b x a ≤≤, 求g(x)的值域,即所求f(x)的定义域。 测试:已知函数(1)f x +的定义域为[]2,3-,求函数f(x)的定义域。 (2)已知)]x (g [f 的定义域,求f(t(x))的定义域。 其解法是:已知)]x (g [f 的定义域是[a ,b ],求f(x)定义域的方法是:由b x a ≤≤, 求g(x)的值域,也就是t(x)的值域,求出t(x)的定义域 测试、已知函数(1)f x +的定义域为[]2,3-,求函数(21)y f x =-的定义域。 三、逆向型 即已知所给函数的定义域求解析式中参数的取值范围。特别是对于已知定义域为 R ,求参数的范围问题通常是转化为恒成立问题来解决。 例1 已知函数8m m x 6m x y 2++-=的定义域为R 求实数m 的取值范围。 例2 已知函数3 kx 4kx 7kx )x (f 2+++= 的定义域是R ,求实数k 的取值范围。 四 参数型 对于含参数的函数,求定义域时,必须对分母分类讨论。 例6 已知)x (f 的定义域为[0,1],求函数)a x (f )a x (f )x (F -++=的定义域。 解:因为)x (f 的定义域为[0,1],即1x 0≤≤。故函数)x (F 的定义域为下列不等式 组的解集: ???≤-≤≤+≤1a x 01a x 0,即???+≤≤-≤≤-a 1x a a 1x a 即两个区间[-a ,1-a ]与[a ,1+a ]的交集,比较两个区间左、右端点,知

函数的定义域及其求法(知识点)(教师版)

函数的定义域及其求法(知识点) 一.定义域 定义域、值域、对应法则合称为函数的三要素.本词条主要介绍函数定义域的概念及其求法. 二.函数定义域的概念 函数的定义域就是指自变量x 的取值范围,它是构成函数的重要组成部分.定义域必须是非空数集,且必须写成区间或集合的形式. 例如:一次函数()(0)f x kx b k =+≠的定义域为 (或写成(,)-∞+∞). 三.函数定义域的求法 在处理函数的相关问题时,首先应明确函数的定义域是什么,求函数定义域主要包括具体函数的定义域、抽象函数的定义域以及实际问题中函数的定义域三种. 四.具体函数的定义域 对于已知解析式的具体函数,如果未加特殊说明,函数的定义域就是指能使表达函数的式子各部分都有意义的所有实数x 的取值集合.常见情形如下: 1. 若函数()f x 为整式,则其定义域为实数集 . 例如,二次函数2()1f x x x =++的定义域为. 2. 若函数()f x 是分式,则其定义域是使分母不为零的全体实数的集合. 例如,函数1()1 f x x =-的定义域为{1}x x ≠. 3. 若函数()f x 是偶次根式,则其定义域是使得根号内的式子大于或等于零的全体实数构成的集合. 例如,函数()f x =[1,)-+∞. 4. 若函数()f x 是由几个部分的数学式子构成的,则函数的定义域是使是使各部分都有意义的实数的集合, 即交集. 例如,函数1()1 f x x =-[1,1)(1,)-+∞. 5. 若函数0()f x x =,则其定义域是{0}x x ∈≠. 注:除了上述情形,还应注意指数函数和对数函数均需满足底数大于零且不等于1,对数函数的真数必须大于零,以及三角函数的定义域,如正切函数的定义域为ππ,2x x k k ??≠+∈???? 例 :求下列函数的定义域:①y = 2310x y x x --;③() f x =. 解:①由80,30,x x +??-?≥≥得83x -≤≤.所以原函数的定义域为[]8,3-. ②由220,3100,x x x +???--≠?? ≥解得()() 2250x x x -???+-≠??≥所以2,2,5,x x x -??≠-≠?≥即25x -<<或5x >.所以原函数的定义域为()()2,55,-+∞.

函数定义域、值域求法总结

函数定义域、值域求法总结 1、函数的定义域是指自变量“x”的取值集合。 2、在同一对应法则作用下,括号整体的取值围相同。 一般地,若已知 f(x)的定义域为[a,b],求函数f[g(x)]的定义域时,由于分别在两个函数中的x和g(x)受同一个对应法则的作用,从而围相同。因此f[g(x)]的定义域即为满足条件 a≤g(x)≤b的x的取值围。 一般地,若已知 f[g(x)]的定义域为[a,b],求函数 f(x)的定义域时,由于x 和g(x) 受同一个对应法则的作用, 所以f(x)的定义域即为当a≤x≤b 时,g(x)的取值围。 定义域是X的取值围,g(x)和h(x)受同一个对应法则的影响,所以它们的围相同。 ():f(x),f[g(x)] 题型一已知的定义域求的定义域 () ():f g x,f(x) ?? ?? 题型二已知的定义域求的定义域 ()[] ():f g x,f h(x) ?? ?? 题型三已知的定义域求的定义域 () []()[])x(h f x f x g f→ →

()的定义域 求的定义域已知练习)2(],9,3[log :313-x f x f 一、定义域是函数y=f(x)中的自变量x 的围。 求函数的定义域需要从这几个方面入手: (1)分母不为零 (2)偶次根式的被开方数非负。 (3)对数中的真数部分大于0。 (4)指数、对数的底数大于0,且不等于1 (5)y=tanx 中x ≠k π+π/2;y=cotx 中x ≠k π等等。 ( 6 )0x 中x 0≠ 二、值域是函数y=f(x)中y 的取值围。 常用的求值域的方法: (1)直接法 (2)图象法(数形结合) (3)函数单调性法 (4)配方法 (5)换元法 (包括三角换元) (6)反函数法(逆求法) (7)分离常数法 (8)判别式法 (9)复合函数法 (10)不等式法 (11)平方法等等 这些解题思想与方法贯穿了高中数学的始终。

高中数学-函数定义域、值域求法总结

函数定义域、值域求法总结 一.求函数的定义域需要从这几个方面入手: (1)分母不为零 (2)偶次根式的被开方数非负。 (3)对数中的真数部分大于0。 (4)指数、对数的底数大于0,且不等于1 (5)y=tanx 中x ≠k π+π/2;y=cotx 中x ≠k π等等。 ( 6 )0x 中x 0≠ 二、值域是函数y=f(x)中y 的取值范围。 常用的求值域的方法: (1)直接法 (2)图象法(数形结合) (3)函数单调性法 (4)配方法 (5)换元法 (包括三角换元)(6)反函数法(逆求法) (7)分离常数法 (8)判别式法 (9)复合函数法 (10)不等式法 (11)平方法等等 这些解题思想与方法贯穿了高中数学的始终。 定义域的求法 1、直接定义域问题 例1 求下列函数的定义域: ① 2 1 )(-=x x f ;② 23)(+=x x f ;③ x x x f -+ +=211)( 解:①∵x-2=0,即x=2时,分式 2 1 -x 无意义, 而2≠x 时,分式 21 -x 有意义,∴这个函数的定义域是{}2|≠x x . ②∵3x+2<0,即x<-32 时,根式23+x 无意义, 而023≥+x ,即3 2 -≥x 时,根式23+x 才有意义, ∴这个函数的定义域是{x |3 2 -≥x }.

③∵当0201≠-≥+x x 且,即1-≥x 且2≠x 时,根式1+x 和分式x -21 同时有意义, ∴这个函数的定义域是{x |1-≥x 且2≠x } 另解:要使函数有意义,必须: ? ??≠-≥+0201x x ? ???≠-≥21 x x 例2 求下列函数的定义域: ①14)(2 --= x x f ②2 14 3)(2-+--= x x x x f ③= )(x f x 11111++ ④x x x x f -+= 0)1()( ⑤3 7 3132+++-=x x y 解:①要使函数有意义,必须:142 ≥-x 即: 33≤≤-x ∴函数14)(2--= x x f 的定义域为: [3,3-] ②要使函数有意义,必须:???≠-≠-≤≥?? ??≠-+≥--131 40210432x x x x x x x 且或 4133≥-≤<--

初中函数知识点总结非常全

知识点一、平面直角坐标系 1、平面直角坐标系 在平面内画两条互相垂直且有公共原点的数轴,就组成了平面直角坐标系。 其中,水平的数轴叫做x 轴或横轴,取向右为正方向;铅直的数轴叫做y 轴或纵轴,取向上为正方向;两轴的交点O (即公共的原点)叫做直角坐标系的原点;建立了直角坐标系的平面,叫做坐标平面。 为了便于描述坐标平面内点的位置,把坐标平面被x 轴和y 轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限。 注意:x 轴和y 轴上的点,不属于任何象限。 2、点的坐标的概念 点的坐标用(a ,b )表示,其顺序是横坐标在前,纵坐标在后,中间有“,”分开,横、纵坐标的位置不能颠倒。平面内点的坐标是有序实数对,当b a ≠时,(a ,b )和(b ,a )是两个不同点的坐标。 知识点二、不同位置的点的坐标的特征 1、各象限内点的坐标的特征 点P(x,y)在第一象限0,0>>?y x 点P(x,y)在第二象限0,0>?y x 2、坐标轴上的点的特征 点P(x,y)在x 轴上0=?y ,x 为任意实数 点P(x,y)在y 轴上0=?x ,y 为任意实数 点P(x,y)既在x 轴上,又在y 轴上?x ,y 同时为零,即点P 坐标为(0,0) 3、两条坐标轴夹角平分线上点的坐标的特征 点P(x,y)在第一、三象限夹角平分线上?x 与y 相等 点P(x,y)在第二、四象限夹角平分线上?x 与y 互为相反数 4、和坐标轴平行的直线上点的坐标的特征 位于平行于x 轴的直线上的各点的纵坐标相同。 位于平行于y 轴的直线上的各点的横坐标相同。 5、关于x 轴、y 轴或远点对称的点的坐标的特征 点P 与点p ’关于x 轴对称?横坐标相等,纵坐标互为相反数 点P 与点p ’关于y 轴对称?纵坐标相等,横坐标互为相反数 点P 与点p ’关于原点对称?横、纵坐标均互为相反数 6、点到坐标轴及原点的距离 点P(x,y)到坐标轴及原点的距离: (1)点P(x,y)到x 轴的距离等于y (2)点P(x,y)到y 轴的距离等于x (3)点P(x,y)到原点的距离等于2 2y x + 知识点三、函数及其相关概念 1、变量与常量 在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。 一般地,在某一变化过程中有两个变量x 与y ,如果对于x 的每一个值,y 都有唯一确定的值与它对应,那么就说x 是自变量,y 是x 的函数。 2、函数解析式 用来表示函数关系的数学式子叫做函数解析式或函数关系式。 使函数有意义的自变量的取值的全体,叫做自变量的取值范围。 3、函数的三种表示法及其优缺点 (1)解析法 两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做解析法。 (2)列表法 把自变量x 的一系列值和函数y 的对应值列成一个表来表示函数关系,这种表示法叫做列表法。 (3)图像法 用图像表示函数关系的方法叫做图像法。 4、由函数解析式画其图像的一般步骤 (1)列表:列表给出自变量与函数的一些对应值 (2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点 (3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。 知识点四、正比例函数和一次函数 1、正比例函数和一次函数的概念

1求函数定义域类型几方法(word版)

函数定义域的类型及求法 一、已知解析式型(所有同学一定要会的) 二、含参问题(很重要) 三、抽象函数(复合函数)的定义域 1已知()f x 的定义域,求[]()f g x 的定义域 其解法是:若()f x 的定义域为a x b ≤≤,则在[]()f g x 中,()a g x b ≤≤,从中解得x 的取值范围即为[] ()f g x 的定义域.

例1 已知函数()f x 的定义域为[]15-,,求(35)f x -的定义域. 分析:该函数是由35u x =-和()f u 构成的复合函数,其中x 是自变量,u 是中间变量,由于()f x 与()f u 是同一个函数,因此这里是已知15u -≤≤,即1355x --≤≤,求x 的取值范围. 解:()f x 的定义域为[]15-,,1355x ∴--≤≤,41033x ∴≤≤. 故函数(35)f x -的定义域为41033?????? ,. 2、已知[]()f g x 的定义域,求()f x 的定义域 其解法是:若[]()f g x 的定义域为m x n ≤≤,则由m x n ≤≤确定的()g x 的范围即为()f x 的定义域. 例2 已知函数2(22)f x x -+的定义域为[] 03,,求函数()f x 的定义域. 分析:令222u x x =-+,则2(22)()f x x f u -+=, 由于()f u 与()f x 是同一函数,因此u 的取值范围即为()f x 的定义域. 解:由03x ≤≤,得21225x x -+≤≤. 令222u x x =-+,则2(22)()f x x f u -+=,15u ≤≤. 故()f x 的定义域为[]15,. 3,已知[]()f g x 的定义域,求[()]f h x 的定义域 其解法是:若[]()f g x 的定义域为m x n ≤≤,则由m x n ≤≤确定的()g x 的取值范围即为()h x 的取值范围,由()h x 的取值范围即可求出 [()]f h x 的定义域x 的取值范围。 例2 已知函数(1)f x +的定义域为[]15-,,求(35)f x -的定义域. 分析:令1,35u x t x =+=-,则(1)(),(35)()f x f u f x f t +=-=, (),()f u f t 表示的是同一函数,故u 的取值范围与t 相同。 解:()f x 的定义域为[]15-,,即15x ∴-≤≤016x ∴+≤≤。 056x ∴-≤3≤

函数的定义域常见求法-含答案

【知识要点】 一、函数的定义域的定义 函数的定义域是指使函数有意义的自变量的取值范围. 二、求函数的定义域的主要依据 1、分式的分母不能为零. 2(2,)n k k N *=∈其中中0,x ≥奇次方根 (21,)n k k N *=+∈其中中,x R ∈. 3、指数函数x y a =的底数a 必须满足01,a a x R >≠∈且. 4、对数函数log a y x =的真数x 必须大于零,底数a 必须满足01a a >≠且. 5、零次幂的底数不能为零,即0x 中0x ≠. 6、正切函数tan y x =的定义域是{|,}2 x x k k z π π≠+∈. 7、复合函数的定义域的求法 (1)已知原函数()f x 的定义域为(,)a b ,求复合函数[()]f g x 的定义域:只需解不等式()a g x b <<,不等式的解集即为所求函数的定义域. (2)已知复合函数[()]f g x 的定义域为(,)a b ,求原函数()f x 的定义域:只需根据a x b <<求出函数 ()g x 的值域,即得原函数()f x 的定义域. 8、求函数()()y f x g x =+的定义域 一般先分别求函数()y f x =和函数()y g x =的定义域A 和B ,再求A B ,则A B 就是所求函数的 定义域. 9、求实际问题中函数的定义域 不仅要考虑解析式有意义,还要保证满足实际意义. 三、函数的定义域的表示 函数的定义域必须用集合表示,不能用不等式表示.函数的定义域也可以用区间表示,因为区间实际上

是集合的一种特殊表示形式. 四、求函数的定义域常用的方法有直接法、求交法、抽象复合法和实际法. 五、函数的问题,必须遵循“定义域优先”的原则. 研究函数的问题,不管是具体的函数,还是抽象的函数,不管是简单的函数,还是复杂的函数,必须优先考虑函数的定义域.之所以要做到这一点,不仅是为了防止出现错误,有时还会为解题带来方便. 【方法讲评】 【例1】求函数y . 【点评】对于类似例题的结构单一的函数,可以直接列出不等式再解答即得到函数的定义域. 【反馈检测1】求函数y =. B ,A B 就是函数 【例2】求函数y =3log cos x 的定义域. 【解析】由题得?? ? ??∈+<<-≤≤-∴???>≥-z k k x k x x x 22225 50cos 0252π πππ ∴}52 3 22235|{≤<<<--<≤-x x x x ππππ或或 所以函数的定义域为}52 3 22235|{≤<<<--<≤-x x x x ππππ或或

初中数学函数知识点归纳(1)

函数知识点总结(掌握函数的定义、性质和图像) 平面直角坐标系 1、定义:平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系 2、各个象限内点的特征: 第一象限:(+,+)点P(x,y),则x>0,y>0; 第二象限:(-,+)点P(x,y),则x<0,y>0; 第三象限:(-,-)点P(x,y),则x<0,y<0; 第四象限:(+,-)点P(x,y),则x>0,y<0; 3、坐标轴上点的坐标特征: x轴上的点,纵坐标为零;y轴上的点,横坐标为零;原点的坐标为(0 , 0)。两坐标轴的点不属于任何象限。 4、点的对称特征:已知点P(m,n), 关于x轴的对称点坐标是(m,-n), 横坐标相同,纵坐标反号 关于y轴的对称点坐标是(-m,n) 纵坐标相同,横坐标反号 关于原点的对称点坐标是(-m,-n) 横,纵坐标都反号 5、平行于坐标轴的直线上的点的坐标特征: 平行于x轴的直线上的任意两点:纵坐标相等; 平行于y轴的直线上的任意两点:横坐标相等。 6、各象限角平分线上的点的坐标特征: 第一、三象限角平分线上的点横、纵坐标相等。 第二、四象限角平分线上的点横、纵坐标互为相反数。 7、点P(x,y)的几何意义: 点P(x,y)到x轴的距离为 |y|,

点P (x,y )到y 轴的距离为 |x|。 点P (x,y )到坐标原点的距离为22y x + 8、两点之间的距离: X 轴上两点为A )0,(1x 、B )0,(2x |AB|||12x x -= Y 轴上两点为C ),0(1y 、D ),0(2y |CD|||12y y -= 已知A ),(11y x 、B ),(22y x AB|= 2 12212)()(y y x x -+- 9、中点坐标公式:已知A ),(11y x 、B ),(22y x M 为AB 的中点,则:M=(212x x + , 2 1 2y y +) 10、点的平移特征: 在平面直角坐标系中, 将点(x,y )向右平移a 个单位长度,可以得到对应点( x-a ,y ); 将点(x,y )向左平移a 个单位长度,可以得到对应点(x+a ,y ); 将点(x,y )向上平移b 个单位长度,可以得到对应点(x ,y +b ); 将点(x,y )向下平移b 个单位长度,可以得到对应点(x ,y -b )。 注意:对一个图形进行平移,这个图形上所有点的坐标都要发生相应的变化;反过来, 从图形上点的坐标的加减变化,我们也可以看出对这个图形进行了怎样的平移。 函数的基本知识: 基本概念 1、变量:在一个变化过程中可以取不同数值的量。 常量:在一个变化过程中只能取同一数值的量。 2、函数:一般的,在一个变化过程中,如果有两个变量x 和y ,并且对于x 的每一个确定的 值,y 都有唯一确定的值与其对应,那么我们就把x 称为自变量,把y 称为因变量,y 是x 的函数。 *判断A 是否为B 的函数,只要看B 取值确定的时候,A 是否有唯一确定的值与之对应 3、定义域和值域: 定义域:一般的,一个函数的自变量允许取值的范围,叫做这个函数的定义域。 值域:一般的,一个函数的因变量所得的值的范围,叫做这个函数的值域。

高中数学函数知识点总结

高中数学函数知识点总结 1. 对于集合,一定要抓住集合的代表元素,及元素的“确定性、互异性、无序性”。 2 进行集合的交、并、补运算时,不要忘记集合本身和空集的特殊情况 注重借助于数轴和文氏图解集合问题。 空集是一切集合的子集,是一切非空集合的真子集。 {} {}如:集合,A x x x B x ax =--===||2 2301 若,则实数的值构成的集合为B A a ? 3. 注意下列性质: {}()集合,,……,的所有子集的个数是;1212a a a n n 要知道它的来历:若B 为A 的子集,则对于元素a 1来说,有2种选择(在或者不在)。同样,对于元素a 2, a 3,……a n ,都有2种选择,所以,总共有2n 种选择, 即集合A 有2n 个子集。 当然,我们也要注意到,这2n 种情况之中,包含了这n 个元素全部在何全部不在的情况,故真子集个数为21n -,非空真子集个数为22n - ()若,;2A B A B A A B B ??== (3)德摩根定律: ()()()()()()C C C C C C U U U U U U A B A B A B A B ==, 有些版本可能是这种写法,遇到后要能够看懂 4. 你会用补集思想解决问题吗?(排除法、间接法) 如:已知关于的不等式 的解集为,若且,求实数x ax x a M M M a --<∈?5 0352 的取值范围。 7. 对映射的概念了解吗?映射f :A →B ,是否注意到A 中元素的任意性和B 中与之对应元素的唯一性,哪几种对应能构成映射? (一对一,多对一,允许B 中有元素无原象。) 注意映射个数的求法。如集合A 中有m 个元素,集合B 中有n 个元素,则从A 到B 的映射个数有n m 个。 如:若}4,3,2,1{=A ,},,{c b a B =;问:A 到B 的映射有 个,B 到A 的映射有 个;A 到B 的函数有 个,若}3,2,1{=A ,则A 到B 的一一映射有 个。 函数)(x y ?=的图象与直线a x =交点的个数为 个。 8. 函数的三要素是什么?如何比较两个函数是否相同? (定义域、对应法则、值域) 相同函数的判断方法:①表达式相同;②定义域一致 (两点必须同时具备) 9. 求函数的定义域有哪些常见类型?

函数定义域、值域求法总结(精彩)

函数定义域、值域求法总结 一、定义域是函数y=f(x)中的自变量x 的范围。 求函数的定义域需要从这几个方面入手: (1)分母不为零 (2)偶次根式的被开方数非负。 (3)对数中的真数部分大于0。 (4)指数、对数的底数大于0,且不等于1 (5)y=tanx 中x ≠k π+π/2;y=cotx 中x ≠k π等等。 ( 6 )0x 中x 0≠ 二、值域是函数y=f(x)中y 的取值范围。这些解题思想与方法贯穿了高中数学的始终。 常用的求值域的方法:(1)直接法 (2)图象法(数形结合) (3)函数单调性法 (4)配方法 (5)换元法 (包括三角换元) (6)反函数法(逆求法) (7)分离常数法 (8)判别式法 (9)复合函数法 (10)不等式法 (11)平方法等等 三、典例解析 1、定义域问题 例1 求下列函数的定义域: ① 21)(-= x x f ;② 23)(+=x x f ;③ x x x f -++=21 1)( 解:①∵x-2=0,即x=2时,分式21 -x 无意义, 而2≠x 时,分式21 -x 有意义,∴这个函数的定义域是{}2|≠x x . ②∵3x+2<0,即x<-3 2 时,根式23+x 无意义, 而023≥+x ,即3 2 -≥x 时,根式23+x 才有意义, ∴这个函数的定义域是{x |3 2 -≥x }. ③∵当0201≠-≥+x x 且,即1-≥x 且2≠x 时,根式1+x 和分式 x -21 同时有意义, ∴这个函数的定义域是{x |1-≥x 且2≠x } 另解:要使函数有意义,必须: ?? ?≠-≥+020 1x x ?? ?≠-≥2 1 x x

(完整版)1求函数定义域类型几方法(word版)

函数定义域的类型及求法 、已知解析式型(所有同学一定要会的) 即给出函数的解析式的定义域求袪,苴解袪是由解析式有意义列出关于自变量的不等 式或不等式组■解此不等式(或组)即得原函数的定义域° Jx 1 - 2x - 1^ 例求函数p 二 _ 的定文域. I - 15 >0 f Y > 5或丫 < -3 解*要使函数有意5C 则必须满足] ' - 即J ”工+引―8工0 [工疋5且工工―11 解得r > §或斗< 且里工一11 即口数的定义域为{工r > 5或藍丈-3且工上-11 } o 二、含参问题(很重要) 例乳已知函数$ = J 沁亍一6沁一澈十8的定义境为E 求实数战的取值范围° 分析;函数的定文域为R ,表明他:-6林亠用十S 乙0 ,使一切工E R 都成立,由厂 项的系數是刖,所以应分刪=0或旳黑0进行讨论d 解.讨论. ① 当也二0时,函数的定义域为R ; ② 当用=0时,mx ■ - 6)KX + M ? -F X > 0杲二次不等式,其对一切实数X 都成立的充 综上可知;0 £ m 玉1 ° 三、抽象函数(复合函数)的定义域 1已知f(x)的定义域,求f g(x)的定义域 其解法是:若f (x)的定义域为a < x < b ,则在f g(x)中,a < g(x) < b ,从中解得x 的取值范 要条件是.

围即为f g(x)的定义域. 例1 已知函数f(x)的定义域为1,,求f(3x 5)的定义域. 分析:该函数是由u 3x 5和f(u)构成的复合函数,其中x是自变量,u是中间变量,由于f(x)与f (u)是同一个函数,因此这里是已知 1 < u < 5,即K 3x 5 < 5,求x的取值范围. 4 10 解:Q f(x)的定义域为1,, 1 < 3x 5 < 5,4< x < 10. 3 3 故函数f(3x 5)的定义域为-,10. 3 3 2、已知f g(x)的定义域,求f (x)的定义域 其解法是:若f g(x)的定义域为m < x< n,则由m< x < n确定的g(x)的范围即为f (x)的定义域. 2 例2已知函数f(x 2x 2)的定义域为0,3,求函数f(x)的定义域. 分析:令u x2 2x 2,则f(x2 2x 2) f(u), 由于f(u)与f(x)是同一函数,因此u的取值范围即为f(x)的定义域. 解:由0 < x < 3,得 1 < x2 2x 2 < 5 . 令u x2 2x 2,贝y f (x2 2x 2) f (u),1< u < 5 . 故f (x)的定义域为1,. 3,已知f g(x)的定义域,求f[h(x)]的定义域 其解法是:若f g(x)的定义域为m < x < n,则由m < x < n确定的g(x)的取值范围即为h(x) 的取值范围,由h(x)的取值范围即可求出f[h(x)]的定义域x的取值范围。 例2 已知函数f(x 1)的定义域为1,,求f(3x 5)的定义域. 分析:令u x 1,t 3x 5,则f(x 1) f(u), f(3x 5) f(t), f (u), f (t)表示的是同一函数,故u的取值范围与t相同。 解:Q f(x)的定义域为1,,即K x < 5 0 < x 1 < 6。

高中函数定义域的求法

例1,求下列分式的定义域。 2 求函数y =23-x +30323-+x x ) (的定义域 解:(1)依题意可得,须是分母不能为零并且该根式也必须有意义,则 解得 x ≥3或x <2 因此函数的定义域为{X ︱x ≥3或x <2}。 (2) 要使函数有意义,则?????≠+≠-≥-. 03032023x x x ,,所以原函数的定义域为{x|x ≥32,且x ≠32}. 评注:对待此类有关于分式、根式的问题,切记关注函数的分母与被开方数即可,两者要同时考虑,所求“交集”即为所求的定义域。 例2,求下列关于对数函数的定义域 例1 函数x x y --=312log 2的定义域为 。 分析:对数式的真数大于零。 解:依题意知:0312>--x x 即0)3)(12(>--x x 解之,得321<--x x 已包含03≠-x 的情况,因此不再列出。 例3、⑴已知f(x)的定义域为[-1,1],求f(2x-1)的定义域。 (2)已知f(x)的定义域为[0,2],求函数f(2x-1)的定义域。 (3)已知f(x)的定义域为[0,2],求f(x 的平方)的定义域。 (4)已知f(2x-1)的定义域为(-1,5],求函数f(x)的定义域。 (5)已知f(2x-5)的定义域为(-1,5],求函数f(2-5x)的定义域。 例4,将长为a 的铁丝折成矩形,求矩形的面积y 关于一边长x 的函数解析式,并求函数的定义域。 总的来说,中学阶段研究的函数都还只是函数领域中的皮毛而已。但是不要因为这样,就高兴的太早了。毕竟还有很多同学对这方面一窍不通。对于每一个确定的函数,,其定义域是确定的,为了更明确、更深刻地揭示函数的本质,就产生了求函数定义域的问题。要全面认识定义域,深刻理解定义域,在实际寻求函数的定义域时,应当遵守下列规则: (1) 分式的分母不能为零; (2) 偶次方根的被开方数应该为非负数; (3) 有限个函数的四则运算得到新函数其定义域是这有限个函数的定义域交集(作 除法时还要去掉使除式为零的x 值); 的定义域求函数265)(:12-+-= x x x x f 020652≠-≥+-x x x

初中所有函数知识点总结

初中所有函数知识点总结 1、一次函数 2、二次函数 3、反比例函数 4、正比例函数 1、正比例函数的求法 形如y=kx(k为常数,且k不等于0),y就叫做x的正比例函数. 图象做法:1.带定系数2.描点 3.连线 图象是一条直线,一定经过坐标轴的原点 性质:当k>0时,图象经过一,三象限,y随x的增大而增大 当k<0时,图象经过二,四象限,y随x的增大而减小 形如y=k/x(k为常数且k≠0) 的函数,叫做反比例函数。 自变量x的取值范围是不等于0的一切实数。 2、反比例函数求法 反比例函数的图像为双曲线。它可以无限地接近坐标轴,但永不相交. 性质:当k>0时,图象在一,三象限,在每个象限内,y随x的增大而减小, 当k<0时,图象在二,四象限,在每个象限内,y随x的增大而增大 形如y=kx+b(k为常数,且k不等于0),y就叫做x的正比例函数。 3、一次函数求法 正比例函数过原点(0,0),属于一次函数 k>0,b>O,则图象过1,2,3象限 k>0,b<0,则图象过1,3,4象限 k<0,b>0,则图象过1,2,4象限 k<0,b<0,则图象过2,3,4象限 4、二次函数求法 二次函数:y=ax^2+bx+c (a,b,c是常数,且a不等于0) a>0开口向上 a<0开口向下 a,b同号,对称轴在y轴左侧,反之,再y轴右侧 |x1-x2|=根号下b^2-4ac除以|a| 与y轴交点为(0,c) b^2-4ac>0,ax^2+bx+c=0有两个不相等的实根 b^2-4ac<0,ax^2+bx+c=0无实根

b^2-4ac=0,ax^2+bx+c=0有两个相等的实根 对称轴x=-b/2a 顶点(-b/2a,(4ac-b^2)/4a) 顶点式y=a(x+b/2a)^2+(4ac-b^2)/4a 函数向左移动d(d>0)个单位,解析式为y=a(x+b/2a+d)^2+(4ac-b^2)/4a,向右就是减 函数向上移动d(d>0)个单位,解析式为y=a(x+b/2a)^2+(4ac-b^2)/4a+d,向下就是减 当a>0时,开口向上,抛物线在y轴的上方(顶点在x轴上),并向上无限延伸;当a<0时,开口向下,抛物线在x轴下方(顶点在x轴上),并向下无限延伸。|a|越大,开口越小;|a|越小,开口越大. 三角函数知识点总结 1、勾股定理:直角三角形两直角边a、b的平方和等于斜边c的平方a2+b2=c2。 2、如下图,在Rt△ABC中,∠C为直角,则∠A的锐角三角函数为(∠A可换成∠B): 3、任意锐角的正弦值等于它的余角的余弦值;任意锐角的余弦值等于它的余角的正弦值。 4、任意锐角的正切值等于它的余角的余切值;任意锐角的余切值等于它的余角的正切值。 5、0°、30°、45°、60°、90°特殊角的三角函数值(重要) 6、正弦、余弦的增减性: 当0°≤α≤90°时,sinα随α的增大而增大,cosα随α的增大而减小。 7、正切、余切的增减性:当0°<α<90°时,tanα随α的增大而增大,cotα随α的增大而减小。 三角函数公式 正弦(sin):角α的对边比上斜边 余弦(cos):角α的邻边比上斜边 正切(tan):角α的对边

(完整版)几种复合函数定义域的求法

配凑法就是在)]([x g f 中把关于变量x 的表达式先凑成)(x g 整体的表达式,再直接把)(x g 换成x 而得)(x f 。 f(x -1x )=x 2+1x 2,函数f(x)的解析式 换元法就是先设t x g =)(,从中解出x (即用t 表示x ),再把x (关于t 的式子)直接代入)]([x g f 中消去x 得到)(t f ,最后把)(t f 中的t 直接换成x 即得)(x f ,这种代换遵循了同一函数的原则。 f(x +1)=x 2 +x,函数f(x)的解析式: 复合函数的定义域 复合函数的定义 一般地:若)(u f y =,又)(x g u =,且)(x g 值域与)(u f 定义域的交集不空,则函数)]([x g f y =叫x 的复合函数,其中)(u f y =叫外层函数,)(x g u =叫内层函数,简言之:复合函数就是:把一个函数中的自变量替换成另一个函数所得的新函数. 例如: 2()35,()1f x x g x x =+=+; 复合函数(())f g x 即把()f x 里面的x 换成()g x , 22(())3()53(1)538f g x g x x x =+=++=+ 问:函数()f x 和函数(5)f x +所表示的定义域是否相同?为什么?(不相同;原因:定义域是 求x 的取值范围,这里x 和5x +所属范围相同,导致它们定义域的范围就不同了。)说明: ⑴复合函数的定义域,就是复合函数(())y f g x =中x 的取值范围。 ⑵x 称为直接变量,u 称为中间变量,u 的取值范围即为()g x 的值域。 ⑶))((x g f 与))((x f g 表示不同的复合函数。 设函数53)(,32)(-=+=x x g x x f ,求))(()),((x f g x g f 复合函数的定义域求法 .已知)(x f 的定义域,求复合函数()][x g f 的定义域 由复合函数的定义我们可知,要构成复合函数,则内层函数的值域必须包含于外层函数的定义域之中,因此可得其方法为:若)(x f 的定义域为()b a x ,∈,求出)]([x g f 中b x g a <<)(的解x 的范围,即为)]([x g f 的定义域。

相关主题
文本预览
相关文档 最新文档