当前位置:文档之家› A New Experiment to Study Hyperon CP Violation, Charmonium, and Charm

A New Experiment to Study Hyperon CP Violation, Charmonium, and Charm

A New Experiment to Study Hyperon CP Violation,

Charmonium,and Charm ?

Daniel M.Kaplan ?

Physics Division,Illinois Institute of Technology

Chicago,Illinois 60616,USA

February 5,2008

Abstract

Fermilab operates the world’s most intense antiproton source,now exclusively dedicated to serving the needs of the Tevatron Collider.The anticipated 2009shutdown of the Tevatron presents the opportunity for world-leading low-and medium-energy antiproton programs.We summarize the status of the Fermilab antiproton facility and review physics topics for which a future experiment could make the world’s best measurements.

1Overview

Fermilab operates the world’s highest-energy (8GeV kinetic)and highest-intensity antiproton source.The luminosity needs of the Tevatron Collider have engen-dered a continuous performance-improvement pro-gram,so that the stacking rate,≈2×1011p /hr,is now some ?ve times that in E835[1](the last time the Antiproton Source was used for medium-energy experiments),and an order of magnitude beyond that planned [2]for the Gesellschaft f¨u r Schwerio-nenforschung (GSI)Facility for Antiproton and Ion Research (FAIR)in Darmstadt,Germany [3].With the planned 2009shutdown of the Tevatron,the Fer-milab Antiproton Source could once again become available for medium-energy experiments.

Using the Antiproton Source,Fermilab experi-ments E760and E835made the world’s most precise measurements of charmonium masses and widths [1,

4].This precision (<~

100keV)re?ects the narrow en-ergy spread of the stochastically cooled antiproton beam and the absence of Fermi motion and negligi-ble energy loss in hydrogen cluster-jet targets.The other key advantage of pp annihilation is its ability to produce charmonium states of all quantum num-bers,whereas e +e ?machines produce primarily 1??states.

?Contributed

to XXIII International Symposium on Lep-ton and Photon Interactions at High Energy (LP07),Daegu,Korea,Aug.13–18,2007.

?E-mail address:kaplan@https://www.doczj.com/doc/878833901.html,

Additional running in the charmonium region would be valuable for clarifying some still-elusive as-pects of the charmonium system (Figure 1),includ-ing the h c mass and width,χc radiative-decay angular

distributions,and η

c (2S )full an

d radiativ

e widths.It would also a?ord the opportunity for precision stud-ies o

f a number of recently observed states in the charmonium region whose nature has not been de-termined:the X (3872),X (3940),Y (3940),Y (4260),and Z (3930)[5].As we will see,improved sensitivity is possible not only by virtue of longer runnin

g time,but also via higher luminosity and use of a magnetic spectrometer (in contrast to that of E760and E835,whic

h relied primarily on electromagnetic calorime-try to “dig”the rare charmonium signals out of the ~100mb total cross section).

Antiproton annihilation has also proved valuable for hyperon studies [6].Possibly the highest-impact issue in hyperon physics today is whether and to what extent hyperon decays violate CP symmetry.As Ta-ble 2indicates,until 2000the world’s most sensi-tive search for hyperon CP violation was by PS185at LEAR,using an antiproton ?ux <106Hz.The orders-of-magnitude-higher rate at Fermilab can en-able the world’s most sensitive search and possibly ?nd so-far elusive contributions due to new physics.

Currently the world’s most sensitive hyperon ex-periment is HyperCP,where a surprise—the obser-vation of apparent ?avor-changing neutral currents (FCNC)in hyperon decay [7]—deserves further ex-perimental attention.a r X i v :0707.1917v 1 [h e p -e x ] 13 J u l 2007

Figure 1:Spectrum of the charmonium system.Shown are masses,widths (or for those not yet measured,90%con?dence level upper limits on widths),and quantum numbers of observed charmo-nium states,with some of the important transitions

also indicated [9,5].

The rate of D -pair production has been estimated at about 100/s for √

s near the ψ(4040)[8].This could lead to a sample of ~109events/year produced and ~108/year reconstructed,roughly an order of magnitude beyond the statistics accumulated by the B Factories so far.There is thus the potential for competitive measurements,e.g.,of D 0mixing and possible CP violation in charm decay.Table 1lists center-of-mass energies and lab-frame antiproton momenta for some processes of possible interest.The measurements mentioned above can be performed with a common apparatus using existing technologies.Depending on available resources,exist-ing detector components might be recycled for these

purposes;alternatively,modest expenditures for new

equipment could yield improved performance.We

propose to run with up to ten times the typical E835luminosity [1](L <~

2×1032cm ?2s ?1),via increased store intensity or target density.

Further detail on our proposed experimental pro-gram may be found below and in [10]and [11].

2Physics Examples

We next consider representative physics examples:studying the X (3872),improved measurement of the

Table 1:Thresholds for some processes of interest and lab-frame p momentum for pp ?xed-target.

Threshold Process

√s p p

(GeV)(GeV/c )pp →ΛΛ

2.231 1.437pp →Σ?Σ+ 2.379 1.854pp →Ξ+Ξ? 2.642 2.620pp →?+??

3.345

4.938pp →ηc

2.980

3.678pp →ψ(3770) 3.771 6.572pp →X (3872)

3.871 6.991pp →X or Y (3940) 3.9407.277pp →Y (4260)

4.2608.685

parameters of the h c ,searching for hyperon CP viola-tion,and studying a recently discovered rare hyperon-decay mode.(This list is not exhaustive;see Sec.2.5for additional topics.)2.1X (3872)

The best established of the new states,the X (3872)was discovered [12]in 2003by the Belle Col-laboration via B ±→K ±X (3872),X (3872)→π+π?J/ψ,and quickly con?rmed by CDF [13],D?[14],and BaBar [15].It does not appear to ?t within the charmonium spectrum [5].The coincidence of the X (3872)with D 0D ?0threshold suggests possible novel interpretations:an S -wave cusp [16],a tetraquark state [17],or a meson-antimeson molecule—a bound state of D 0D ?0+

D ?0D 0[18].1A key measurement is the precise mass di?erence between the X and that threshold,which should be slightly negative,in accord with the small molecular binding energy [19]:0<

E X =(m D 0+m D ?0?m X )c 2 10MeV .(1)(A measurement of the width is also highly de-sirable.)Current measurements [20]give E X =

0.6±0.6MeV/c 2

,with the uncertainty dominated by that of m X .The pp formation technique should

be able to tighten the uncertainty by nearly an or-der of magnitude.Additional measurements,includ-ing B [X (3872)→π0π0J/ψ]and B [X (3872)→γψ ],will also contribute to quantum-number determina-tion [21,5].1The

mass coincidence may be accidental,and the X (3872)

a c ˉc -gluon hybrid state;however,the mass and quantum num-bers make it a poor match to lattice-QCD predictions for such states [5].

The pp→X(3872)cross section is unmeasured but estimated to be similar in magnitude to those for χc[22].This estimate is supported by the observed rates and distributions of pp→X(3872)+anything at the Tevatron[14]and of B±→K±X(3872)[9], which resemble those for charmonium states.Ex-trapolation from E760’sχc1,χc2→γJ/ψsignals[23] implies>~4×103X(3872)events per nominal month (1.0×106s)of running,a rate competitive even with that of the proposed SuperKEKB upgrade[24] (should that project go forward).

Given the uncertainties in the cross section and branching ratios[25],the above may well be an under-or overestimate of the pp formation and observation rates,perhaps by as much as an order of magnitude. Nevertheless,it appears that a new experiment at the Antiproton Source could obtain the world’s largest clean samples of X(3872),in perhaps as little as a month of running.The high statistics,event clean-liness,and unique precision available in the pp for-mation technique could enable the world’s smallest systematics.Such an experiment could thus provide

a de?nitive test of the nature of the X(3872).

2.2h c

Observing the h c(11P1)charmonium state and mea-suring its parameters were high-priority goals of E760,E835,and their predecessor experiment,CERN R704.As a narrow state with suppressed couplings both to e+e?and to the states that are easily pro-duced in e+e?annihilation,the h c is a di?cult state to study experimentally.

A key prediction of QCD and perturbation theory is that the charmonium spin-zero hyper?ne splitting, as measured by the mass di?erence?m hf between the h c and the spin-weighted average of theχc states, should be close to zero[26].Current PDG-average values[9]give?m hf=?0.57±0.28MeV,nonzero at 2σbut within the QCD expected range.

The PDG-average m(h c)value is based on claimed observations by CERN R704(Baglin et al.) of h c→J/ψX(5events)[27],E760of J/ψπ0 (59events)[28],and E835(13events)and CLEO (168±40events)ofηcγ[29,31].The PDG error on m(h c)includes a scale factor of1.5due to the tension among these measurements.Moreover,the two most precise(E760and E835)are based on statistically marginal(<3σ)signals,and the reliability of the E760result is called into question by the negative re-sults of the E835h c→J/ψπ0search[29].The R704 result is on even weaker ground:a pp→h c→J/ψX signal at the level implied by Baglin et al.[27]is most likely ruled out by E760[30]as well as by E835[29].

Thus of the four results used by the PDG,only one is clearly reliable,and the claimed precision on m(h c) is far from established.This motivates an improved experimental search.Also of interest are the width and branching ratios of the h c,for which QCD makes clear predictions;the decay modes also bear on the question of isospin conservation in such decays.

E835’s h c→ηcγ→(γγ)γsensitivity was limited by the(2.8±0.9)×10?4ηc→γγbranching ratio,and their acceptance×e?ciency was only≈3%due to cuts against the substantialπ0background[29].With a magnetic spectrometer,likelyηc modes includeφφ,φK+K?,K?K?,andη π+π?.These have branching ratios up to two orders of magnitude larger,as well as more-distinctive decay kinematics thanγγ,prob-ably allowing looser cuts and thus higher e?ciency. For example,theφφ→K+K?K+K??nal state has no quarks in common with the initial pp state and so should contain little background.E835searched forηc→φφbut without a magnet it was barely fea-sible.Assessing the degree of improvement will re-quire detailed simulation work,but at least an order of magnitude in statistics seems likely.Additional improvement will come from the higher luminosity we propose.

Provided detailed simulation studies bear out these ideas,we will soon have the opportunity to re-solve this20-year-old experimental controversy.

2.3Hyperon C P violation

The standard model(SM)predicts only slight (<~10?5)hyperon-decay CP asymmetries[32]–[34]. Standard-model processes dominate K and B CP asymmetries,thus it behooves us to study hyperons (and charm),in which new physics might stand out more sharply.

More than one hyperon CP asymmetry may be measurable in pp annihilation.To conserve baryon number,hyperon CP violation must be of the direct type.Accessible signals include angular-distribution di?erences of polarized-hyperon and antihyperon de-cay products[33];partial-rate asymmetries,at possi-bly detectable levels,are also expected[35,36].To compete with previousΞandΛCP studies would re-quire~1033luminosity.While summarizing the state of hyperon CP violation generally,we therefore em-phasize in particular the??/?+partial-rate asym-metry,for which there is no previous measurement.

By angular-momentum conservation,in the decay of a spin-1/2hyperon to a spin-1/2baryon plus a me-son,the?nal state must be either S-wave or P-wave.2 2A similar argument holds for a spin-3/2hyperon,but in-volving P and D waves.

Interference between the S-and P-wave decay ampli-tudes causes parity violation,described by Lee and Yang[37]in terms of two independent parameters αandβ,proportional respectively to the real and imaginary parts of the interference term.Hyperon CP-violation signatures include di?erences in|α|or |β|between a hyperon decay and its CP-conjugate antihyperon decay,as well as particle–antiparticle de-cay partial-width di?erences between a mode and its CP conjugate[33,38].Precision angular-distribution asymmetry measurement requires accurate knowl-edge of the relative polarizations of the initial hy-perons and antihyperons.

2.3.1Angular-distribution asymmetries Table2summarizes the experimental situation. The?rst three experiments cited studiedΛdecay only[39]–[41]setting limits on the CP-asymmetry pa-rameter[33,38]

AΛ≡αΛ+αΛ

αΛ?αΛ

,(2)

whereαΛ(αΛ)characterizes theΛ(Λ)decay to (anti)proton plus charged pion.If CP is a good sym-metry in hyperon decay,αΛ=?αΛ.

Fermilab?xed-target experiment E756[42]and CLEO[43]used the decay of chargedΞhyperons to produce polarizedΛ’s,in whose subsequent decay the slope of the(anti)proton angular distribution in the “helicity”frame measures the product ofαΞandαΛ. If CP is a good symmetry in hyperon decay this prod-uct should be identical forΞ?andΞ+events.The CP-asymmetry parameter measured is thus

AΞΛ≡αΞαΛ?αΞαΛ

αΞαΛ+αΞαΛ

≈AΞ+AΛ.(3)

Subsequent to E756,this technique was used in the“HyperCP”experiment(Fermilab E871)[44,45], which ran during1996–99and has set the world’s best limits on hyperon CP violation,based so far on about5%of the recorded(Ξ)?→(Λ)π?data sample. (The systematics of the full data sample is still under study.)HyperCP recorded the world’s largest sam-ples of hyperon and antihyperon decays,including 2.0×109and0.46×109Ξ?andΞ+events,respec-tively.When the analysis is complete,these should determine AΞΛwith a statistical uncertainty

δA=

1

2αΞαΛ

3

NΞ?

+

3

N

Ξ+

<

2×10?4.(4)

The standard model predicts[33]this asymmetry to be of order10?5.(A number of standard-model ex-tensions, e.g.nonminimal SUSY,predict e?ects as large as O(10?3)[46].)Thus any signi?cant e?ect seen in HyperCP will be evidence for new sources of CP violation in the baryon sector.Such an observa-tion could be of relevance to the mysterious mecha-nism that gave rise to the cosmic baryon asymmetry.

HyperCP has also set the world’s?rst limit on CP violation in(?)?decay,using a sample of 5.46(1.89)million??→ΛK?(?+→ΛK+) events[47].Here,as shown by HyperCP[48,49], parity is only slightly violated:α=(1.75±0.24)×10?2[9].Hence the measured magnitude and uncer-tainty of the asymmetry parameter A?Λ(inversely proportional toαas in Eq.4)are rather large: [?0.4±9.1(stat)±8.5(syst)]×10?2[47].This asym-metry is predicted to be≤4×10?5in the standard model but can be as large as8×10?3if new physics contributes[36].

2.3.2Partial-rate asymmetries

While CPT symmetry requires identical lifetimes for particle and antiparticle,partial-rate asymmetries vi-olate only CP.For most hyperon decays,these are expected to be undetectably small[34].However,for the decays??→ΛK?and??→Ξ0π?,the parti-cle/antiparticle partial-rate asymmetries could be as large as2×10?5in the standard model and one to two orders of magnitude larger if non-SM contributions dominate[35,36].The quantities to be measured are ?ΛK≡

Γ(??→ΛK?)?Γ(?+→ΛK+)

Γ(??→ΛK?)+Γ(?+→ΛK+)

1

(Γ?Γ)≈0.5(1?N/N)

(and similarly for?Ξπ),where in the last step we have assumed nearly equal numbers(N)of?and (N)of?events,as would be the case in pp an-nihilation.Sensitivity at the10?4level then re-quires O(107)reconstructed events.Measuring such a small branching-ratio di?erence reliably will require the clean exclusive?+??event sample produced less than aπ0mass above threshold,or4.938

The inclusive hyperon-production cross section at 5.4GeV/c is≈1mb[10,11](Fig.2).At2×1032cm?2s?1this amounts to some2×105hyperon events produced per second,or2×1012per year.(Ex-perience suggests that a data-acquisition system that can cope with such a high event rate is both feasible and reasonable in cost.For example,the pp inter-action rate is comparable to that in BTeV,yet the charged-particle multiplicity per event is only≈1/10 as large.)

Figure 2:Cross sections (in mb)for various pp pro-cesses vs.momentum and √s (from [50]).

To estimate the exclusive pp →??cross section requires some extrapolation,since it has yet to be measured.The cross section for Ξ+Ξ?somewhat above threshold (p p ≈3.5GeV/c )is ≈2μb [6,51,52],or about 1/30of the corresponding cross section for ΛΛ.Thus the ≈65μb cross section measured for pp →ΛΛat p p =1.642GeV/c at LEAR [53]implies σ(pp →??)~60nb at 5.4GeV/c .

For purposes of discussion we take this as the exclusive production cross section.3At 2.0×1032cm ?2s ?1luminosity,some 1.2×108

??events are then produced in a nominal 1-year run (1.0×107s).Assuming 50%acceptance times e?ciency (comparable to that for χc events in E760),we es-timate (N )

Ξπ=1.4×107events each in ??→Ξ0π?

and ?+→Ξ0π+,and (N )

ΛK =4.1×107events each in ??→ΛK ?and ?+→ΛK +,implying the partial-rate-asymmetry statistical sensitivities

δ?Ξπ≈0.5

√N Ξπ≈1.3×10?4,

δ?ΛK ≈0.5

√N ΛK

≈7.8×10?5.

Tandean and Valencia [35]have estimated ?Ξπ≈2×10?5in the standard model but possibly an order of magnitude larger with new-physics contributions.Tandean [36]has estimated ?ΛK to be ≤1×10?5in the standard model but possibly as large as 1×10?3if new physics contributes.(The large sensitivity of ?ΛK to new physics in this analysis arises from chro-momagnetic penguin operators and ?nal-state inter-3This

estimate will be testable in the upgraded MIPP ex-periment [55].

actions via ?→Ξπ→ΛK [36].4)It is worth noting that these potentially large asymmetries arise from parity-conserving interactions and hence are limited by constraints from K [35,36];they are independent of A Λand A Ξ,which arise from the interference of parity-violating and parity-conserving processes [54].

Experimental sensitivities will include systematic components whose estimation will require careful and detailed simulation studies yet to be done.Neverthe-less,the potential power of the technique is appar-ent:the experiment discussed here may be capable of observing the e?ects of new physics in Omega CP violation via partial-rate asymmetries,and it will rep-resent a substantial improvement over current sensi-tivity to Omega angular-distribution asymmetries.

2.4Study of FCNC hyperon decays

Behind its charged-particle spectrometer,HyperCP had muon detectors for rare-decay studies [45,7].Using them HyperCP has observed [7]the rarest hyperon decay ever,Σ+→pμ+μ?.Surprisingly (Fig.3),the 3observed events are consistent with a two-body decay,Σ+→pX 0,X 0→μ+μ?,with X 0mass m X 0=214.3±0.5MeV/c 2.This interpre-tation is of course not de?nitive,with the con?dence level for the form-factor decay spectrum of Fig.3d estimated at 0.8%.The measured branching ratio is [3.1±2.4(stat)±1.5(syst)]×10?8assuming two-body,or [8.6+6.6?5.4(stat)±5.5(syst)]×10

?8

assuming three-body Σ+

decay.

The X 0,if real,cannot be an ordinary hadron.A light,scalar or vector particle coupling to hadrons and muon pairs at the required level is ruled out by its non-observation in kaon decays [56]–[58].How-ever,there are at least two possible supersymmetric interpretations.It could be a pseudoscalar “sgold-stino”[56]–[58]or the light pseudoscalar Higgs boson (A 01)in the next-to-minimal supersymmetric stan-dard model [59].

Searching for this decay with exclusive Σ?Σ+events just above threshold would require p momen-tum (see Table 1)well below that previously achieved by deceleration in the Antiproton Accumulator,as well as very high luminosity to access the O (10?8)branching ratio.An experimentally less challenging but equally interesting objective is the correspond-ing FCNC decay of the ??,with O (10?6)predicted branching ratio [56]if the X 0is real.5(The larger branching ratio re?ects the additional phase space

4Large

?nal-state interactions should also a?ect ?Ξπbut

were not included in that prediction [35,54].

5The standard-model prediction is [60]B (??→Ξ?μ+μ?)=6.6×10?8.

available compared to that inΣ+→pμ+μ?.)As above,assuming2×1032luminosity and50%accep-tance times e?ciency,120or44events are predicted in the two cases(pseudoscalar or axial-vector X0) that appear to be viable[56,57]:

B(??→Ξ?X P→Ξ?μ+μ?)=

(2.0+1.6

?1.2

±1.0)×10?6, B(??→Ξ?X A→Ξ?μ+μ?)=

(0.73+0.56

?0.45

±0.35)×10?6.

Given the large inclusive hyperon rates at √

s≈

3.5GeV,su?cient sensitivity might also be available at that setting to con?rm the HyperCPΣ+→pμ+μ?results.Alternatively,it is possible that a dedicated run just aboveΣ?Σ+threshold may have competi-tive sensitivity;evaluating this will require a detailed simulation study.

2.5Additional physics

Besides the X(3872),the experiment would be com-petitive for the charmonium and related states men-tioned above.The large hyperon samples could en-able precise measurement of hyperon semileptonic and other rare decays.The APEX experiment[61] vacuum tank and pumping system could be re-installed,enabling substantially increased sensitiv-ity for p lifetime and decay modes.There is in-terest in decelerating further(e.g.,at the ends of stores)for trapped-antiproton and antihydrogen ex-periments[62,63].This capability could make Fer-milab the premier facility for such research.The p intensity available at Fermilab could enable studies not feasible at the AD,such as a measurement of the gravitational force on antimatter[63].A complemen-tary approach is the study of antihydrogen atoms in ?ight[64],which may overcome some of the di?cul-ties encountered in the trapping experiments.

3A New Experiment

We see two approaches to implementing low-cost apparatus to perform the measurements here de-scribed[10]:one based on existing equipment from E835,and the other on the D?superconducting solenoid(available once the Tevatron Collider pro-gram ends).Should su?cient resources be available, a new spectrometer,free of constraints from existing apparatus,may give better performance than either of these.The possibility of building a new storage ring has also been mentioned.We hope to study these options in detail in the coming

months.Figure3:Mass spectra for candidate single-vertex pμ+μ?events in HyperCP positive-beam data sam-ple:(a)wide mass range(semilog scale);(b)narrow range aroundΣ+mass;(c)after application of addi-tional cuts as described in Ref.[7](arrows indicate mass ofΣ+);dimuon mass spectrum of the candi-date events compared with Monte Carlo spectrum as-suming(d)standard-model virtual-photon form fac-tor(solid)or isotropic decay(dashed),or(e)decay via a narrow resonance X0. Acknowledgments

This work was supported by the US Dept.of En-ergy under grant DEFG02-94ER40840.The author thanks all of his pbar collaborators and especially D. Christian,K.Gollwitzer,G.Jackson,R.Mussa,C. Patrignani,S.Pordes,J.Rosen,and J.Rosner for useful and stimulating conversations. References

[1]G.Garzoglio et al.[E835Collaboration],Nucl.

Instrum.Meth.A519,558(2004).

[2]D.Kr¨a mer,“Current Status of the FAIR-

project,”22nd Particle Accelerator Conference (PAC07),paper THXAB02(2007).

[3]See http://www.gsi.de/fair/index e.html

[4]T. A.Armstrong et al.[E835Collaboration],

Phys.Rev.D47,772(1993).

[5]E.Eichten,https://www.doczj.com/doc/878833901.html,ne,C.Quigg,Phys.Rev.D

73,014014(2006)[Erratum-ibid.D73,079903 (2006)].

[6]N.Hamann et al.,report CERN/SPSLC92019,

SPSLC/M491,30March1992.

[7]H.K.Park et al.[HyperCP Collaboration],

Phys.Rev.Lett.94,021801(2005).

[8]M.Kotulla et al.[Panda Collaboration],Techni-

cal Progress Report for:Panda,available from http://www-panda.gsi.de/archive/public/

panda tpr.pdf

[9]W.-M.Yao et al.[Particle Data Group],J.Phys.

G33,1(2006).

[10]T.Phillips et al.,“Letter of Intent:

Low-and Medium-Energy Antiproton Physics at Fermilab”(in preparation);see https://www.doczj.com/doc/878833901.html,/hep/pbar/.

[11]D.M.Kaplan,“A New Experiment to Study Hy-

peron CP Violation and the Charmonium Sys-tem,”to appear in Proc.CTP Symposium on Supersymmetry at LHC:Theoretical and Exper-imental Perspectives,The British University in Egypt,Cairo,Egypt,11–14March2007,avail-able at arXiv:0707.1543[hep-ex].

[12]S.K.Choi et al.[Belle Collaboration],Phys.

Rev.Lett.91,262001(2003).

[13]D.Acosta et al.[CDF II Collaboration],Phys.

Rev.Lett.93,072001(2004).

[14]V.M.Abazov et al.[D0Collaboration],Phys.

Rev.Lett.93,162002(2004).

[15]B.Aubert et al.[BABAR Collaboration],Phys.

Rev.D71,071103(2005).

[16]D.V.Bugg,Phys.Lett.B598,8(2004);Phys.

Rev.D71,016006(2005).

[17]L.Maiani et al.,Phys.Rev.D71,014028(2005);

Phys.Rev.D72,031502(2005);H.Hogaasen, J.M.Richard,P.Sorba,Phys.Rev.D73,54013 (2006).

[18]N.A.T?rnqvist,Phys.Lett.B590,209(2004).[19]E.Braaten,presented at the Int.Workshop on

Heavy Quarkonium–2006,Brookhaven Na-

tional Laboratory,June27–30,2006;available

at http://www.qwg.to.infn.it/WS-jun06/

WS4talks/Tuesday AM/Braaten.pdf

[20]C.Cawl?eld et al.,Phys.Rev.Lett.98,092002

(2007).

[21]T.Barnes,S.Godfrey,Phys.Rev.D69,054008

(2004).

[22]E.Braaten,Phys.Rev.D73,011501(R)(2006);

E.Braaten,private communication.

[23]T. A.Armstrong et al.[E760Collaboration],

Nucl.Phys.B373,35(1992).

[24]See http://belle.kek.jp/superb/

[25]B.Aubert et al.[BABAR Collaboration],Phys.

Rev.Lett.96,052002(2006).

[26]E.Eichten et al.,Phys.Rev.D17,3090(1978),

and references therein; D.B.Lichtenberg,R.

Potting,Phys.Rev.D46,2150(1992),and ref-

erences therein.

[27]C.Baglin et al.[R704Collaboration],Phys.Lett.

B171,135(1986).

[28]T.Armstrong et al.[E760Collaboration],Phys.

Rev.Lett.69,2337(1992).

[29]M.Andreotti et al.[E835Collaboration],Phys.

Rev.D72,032001(2005).

[30]R.Cester,P.A.Rapidis,Ann.Rev.Nucl.Part.

Sci.44,329(1994).

[31]J.L.Rosner et al.[CLEO Collaboration],Phys.

Rev.Lett.95,102003(2005).

[32]A.Pais,Phys.Rev.Lett.3,242(1959);O.

E.Overseth,S.Pakvasa,Phys.Rev.184,1663

(1969);J.F.Donoghue,S.Pakvasa,Phys.Rev.

Lett.55,162(1985).

[33]J.F.Donoghue,X.-G.He,S.Pakvasa,Phys.

Rev.D34,833(1986);X.-G.He,H.Steger,G.

Valencia,Phys.Lett.B272,411(1991).

[34]G.Valencia,in Proc.p2000Workshop,

D.M.Kaplan,H. A.Rubin,eds.,Illi-

nois Institute of Technology,Chicago,IL

60616,USA,Aug.3–5,2000;available from

https://www.doczj.com/doc/878833901.html,/~capp/workshops/ pbar2000/pbar2000.html

[35]J.Tandean,G.Valencia,Phys.Lett.B451,382

(1999).

[36]J.Tandean,Phys.Rev.D70,076005(2004).

[37]T.D.Lee,C.N.Yang,Phys.Rev.105,1761

(1957).

[38]J.F.Donoghue, B.R.Holstein,G.Valencia,

Phys.Lett.178B,319(1986);Int.J.Mod.Phys.

A2,319(1987).

[39]P.Chauvat et al.,Phys.Lett.163B,273(1985).

[40]M.H.Tixier et al.,Phys.Lett.B212,523

(1988).

[41]P.D.Barnes et al.,Nucl.Phys.B(Proc.Suppl.)

56A,46(1997).

[42]K. B.Luk et al.,Phys.Rev.Lett.85,4860

(2000).

[43]D.E.Ja?e et al.,CLNS98/1587,CLEO98-16

(2000)(unpublished).

[44]T.Holmstrom et al.[HyperCP Collaboration],

Phys.Rev.Lett.93,262001(2004).

[45]R.A.Burnstein et al.,Nucl.Instrum.Meth.A

541,516(2005).

[46]X.-G.He et al.,Phys.Rev.D61,071701(2000).

[47]L.C.Lu et al.[HyperCP Collaboration],Phys.

Rev.Lett.96,242001(2006).

[48]Y. C.Chen et al.[HyperCP Collaboration],

Phys.Rev.D71,051102(2005).

[49]L.Lu et al.[HyperCP Collaboration],Phys.

Lett.B617,11(2005).

[50]C.Y.Chien et al.,Phys.Rev.152,1181(1066).

[51]C.Baltay et al.,Phys.Rev.140,B1027(1965).

[52]High-Energy Reactions Analysis Group,report

CERN-HERA-84-01(1984).

[53]T.Johansson,AIP Conf.Proc.796,95(2005).

[54]J.Tandean,private communication.

[55]D.Isenhower et al.,Fermilab Proposal960,avail-

able from https://www.doczj.com/doc/878833901.html,/

experiments/e907/Collaboration/P960/. [56]X.-G.He,J.Tandean,G.Valencia,Phys.Lett.

B631,100(2005).[57]N.G.Deshpande,G.Eilam,J.Jiang,Phys.Lett.

B632,212(2006).

[58]C.Q.Geng,Y.K.Hsiao,Phys.Lett.B632,215

(2006);D.S.Gorbunov,V.A.Rubakov,Phys.

Rev.D73,035002(2006).

[59]X.-G.He,J.Tandean,G.Valencia,Phys.Rev.

Lett.98,081802(2007).

[60]R.Safadi,P.Singer,Phys.Rev.D37,697(1988)

[Err.-ibid.D42,1856(1990)].

[61]S.Geer et al.,Phys.Rev.D62,052004(2000);

T.Armstrong et al.,Nucl.Instrum.Meth.A 411,210(1998).

[62]M.H.Holzscheiter,in Proc.p2000Workshop,op

cit.,p.91.

[63]T.J.Phillips,in Proc.p2000Workshop,op cit.,

p.109.

[64]G.Blanford et al.,Phys.Rev.D57,6649(1998);

Phys.Rev.Lett.80,3037(1998).

Table2:Summary of experimental limits on CP violation in hyperon decay;the hyperons studied are indicated by?,?,and?.

?

Λ?

ΞΛ

?

R608ISR1985[39]pp→ΛX,pp→X?0.02±0.14?

DM2Orsay1988[40]e+e?→J/ψ→ΛΛ0.01±0.10?

PS185LEAR1997[41]pp→ΛΛ0.006±0.015?

e+e?→Ξ?X,Ξ?→Λπ?,

CLEO CESR2000[43]

e+e?→Ξ+X,Ξ+→Λπ+

?0.057±0.064±0.039?

pN→Ξ?X,Ξ?→Λπ?,

E756FNAL2000[42]

pN→Ξ+X,Ξ+→Λπ+

0.012±0.014?

pN→Ξ?X,Ξ?→Λπ?,

HyperCP FNAL2004[44]

pN→Ξ+X,Ξ+→Λπ+

(0.0±6.7)×10?4?,§

pN→??X,??→ΛK?,

HyperCP FNAL2006[47]

pN→?+X,?+→ΛK+

?0.004±0.12?

§Based on≈5%of the HyperCP data sample;analysis of the full sample is still in progress.

财务人员常用的Excel表格使用技巧

财务人员常用的Excel表格使用技巧 1、分数的输入 如果直接输入“1/5”,系统会将其变为“1月5日”,解决办法是:先输入“0”,然后输入空格,再输入分数“1/5”。 2、序列“001”的输入 如果直接输入“001”,系统会自动判断001为数据1,解决办法是:首先输入“'”(西文单引号),然后输入“001”。 3、日期的输入 如果要输入“4月5日”,直接输入“4/5”,再敲回车就行了。如果要输入当前日期,按一下“Ctrl+;”键。 4、填充条纹 如果想在工作簿中加入漂亮的横条纹,可以利用对齐方式中的填充功能。先在一单元格内填入“*”或“~”等符号,然后单击此单元格,向右拖动鼠标,选中横向若干单元格,单击“格式”菜单,选中“单元格”命令,在弹出的“单元格格式”菜单中,选择“对齐”选项卡,在水平对齐下拉列表中选择“填充”,单击“确定”按钮(如图1)。 5、多张工作表中输入相同的内容 几个工作表中同一位置填入同一数据时,可以选中一张工作表,然后按住Ctrl键,再单击窗口左下角的Sheet1、Sheet2......来直接选择需要输入相同内容的多个工作表,接着在其中的任意一个工作表中输入这些相同的数据,此时这些数据会自动出现在选中的其它工作表之中。输入完毕之后,再次按下键盘上的Ctrl键,然后使用鼠标左键单击所选择的多个工作表,解除这些工作表的联系,否则在一张表单中输入的数据会接着出现在选中的其它工作表内。

6、不连续单元格填充同一数据 选中一个单元格,按住Ctrl键,用鼠标单击其他单元格,就将这些单元格全部都选中了。在编辑区中输入数据,然后按住Ctrl键,同时敲一下回车,在所有选中的单元格中都出现 了这一数据。 7、在单元格中显示公式 如果工作表中的数据多数是由公式生成的,想要快速知道每个单元格中的公式形式,以便编辑修改,可以这样做:用鼠标左键单击“工具”菜单,选取“选项”命令,出现“选项”对话框,单击“视图”选项卡,接着设置“窗口选项”栏下的“公式”项有效,单击“确定”按钮(如图2)。这时每个单元格中的分工就显示出来了。如果想恢复公式计算结果的显示,就再设置“窗口选项”栏下的“公式”项失效即可。 8、利用Ctrl+*选取文本 如果一个工作表中有很多数据表格时,可以通过选定表格中某个单元格,然后按下Ctrl +*键可选定整个表格。Ctrl+*选定的区域为:根据选定单元格向四周辐射所涉及到的有 数据单元格的最大区域。这样我们可以方便准确地选取数据表格,并能有效避免使用拖动鼠标方法选取较大单元格区域时屏幕的乱滚现象。 9、快速清除单元格的内容 如果要删除内容的单元格中的内容和它的格式和批注,就不能简单地应用选定该单元格,然后按Delete键的方法了。要彻底清除单元格,可用以下方法:选定想要清除的单元格或 单元格范围;单击“编辑”菜单中“清除”项中的“全部”命令,这些单元格就恢复了本来面目。 10、单元格内容的合并 根据需要,有时想把B列与C列的内容进行合并,如果行数较少,可以直接用“剪切” 和“粘贴”来完成操作,但如果有几万行,就不能这样办了。 解决办法是:在C行后插入一个空列(如果D列没有内容,就直接在D列操作),在D1中输入“=B1&C1”,D1列的内容就是B、C两列的和了。选中D1单元格,用鼠标指

财务人员必备的EXCEL

财务人员必备的EXCEL

财务人员必备的EXCEL 我的天地2010-06-17 14:02:16 阅读54 评论0 字号:大中小订阅 也许你已经在Excel中完成过上百张财务报表,也许你已利用Excel函数实现过上千次的复杂运算,也许你认为Excel也不过如此,甚至了无新意。但我们平日里无数次重复的得心应手的使用方法只不过是Excel全部技巧的百分之一。本专题从Excel中的一些鲜为人知的技巧入手,领略一下关于Excel的别样风情。 一、建立分类下拉列表填充项 我们常常要将企业的名称输入到表格中,为了保持名称的一致性,利用“数据有效性”功能建了一个分类下拉列表填充项。 1.在Sheet2中,将企业名称按类别(如“工业企业”、“商业企业”、“个体企业”等)分别输入不同列中,建立一个企业名称数据库。 2.选中A列(“工业企业”名称所在列),在“名称”栏内,输入“工业企业”字符后,按“回车”键进行确认。 仿照上面的操作,将B、C……列分别命名为“商业企业”、“个体企业”…… 3.切换到Sheet1中,选中需要输入“企业类别”的列(如C列),执行“数据→有效性”命令,打开“数据有效性”对话框。在“设置”标签中,单击“允许”右侧的下拉按钮,选中“序列”选项,在下面的“来源”方框中,输入“工业企业”,“商业企业”,“个体企业”……序列(各元素之间用英文逗号隔开),确定退出。 再选中需要输入企业名称的列(如D列),再打开“数据有效性”对话框,选中“序列”选项后,在“来源”方框中输入公式:=INDIRECT(C1),确定退出。 4.选中C列任意单元格(如C4),单击右侧下拉按钮,选择相应的“企业类别”填入单元格中。然后选中该单元格对应的D列单元格(如D4),单击下拉按钮,即可从相应类别的企业名称列表中选择需要的企业名称填入该单元格中。 提示:在以后打印报表时,如果不需要打印“企业类别”列,可以选中该列,右击鼠标,选“隐藏”选项,将该列隐藏起来即可。 二、建立“常用文档”新菜单 在菜单栏上新建一个“常用文档”菜单,将常用的工作簿文档添加到其中,方便随时调用。 1.在工具栏空白处右击鼠标,选“自定义”选项,打开“自定义”对话框。在“命令”标签中,选中“类别”下的“新菜单”项,再将“命令”下面的“新菜单”拖到菜单栏。 按“更改所选内容”按钮,在弹出菜单的“命名”框中输入一个名称(如“常用文档”)。 2.再在“类别”下面任选一项(如“插入”选项),在右边“命令”下面任选一项(如“超链接”选项),将它拖到新菜单(常用文档)中,并仿照上面的操作对它进行命名(如“工资表”等),建立第一个工作簿文档列表名称。 重复上面的操作,多添加几个文档列表名称。

会计人必学必会的Excel表格技巧

会计人必学必会的Excel表格技巧 从Excel中的一些鲜为人知的技巧入手,领略一下关于Excel的别样风情。也许你已经在Excel中完成过上百张财务报表,也许你已利用Excel函数实现过上千次的复杂运算,也许你认为Excel也不过如此,甚至了无新意。但我们平日里无数次重复的得心应手的使用方法只不过是Excel全部技巧的百分之一。 一、建立“常用文档”新菜单 在菜单栏上新建一个“常用文档”菜单,将常用的工作簿文档添加到其中,方便随时调用。 1.在工具栏空白处右击鼠标,选“自定义”选项,打开“自定义”对话框。在“命令”标签中,选中“类别”下的“新菜单”项,再将“命令”下面的“新菜单”拖到菜单栏。按“更改所选内容”按钮,在弹出菜单的“命名”框中输入一个名称(如“常用文档”)。 2.再在“类别”下面任选一项(如“插入”选项),在右边“命令”下面任选一项(如“超链接”选项),将它拖到新菜单(常用文档)中,并仿照上面的操作对它进行命名(如“工资表”等),建立第一个工作簿文档列表名称。重复上面的操作,多添加几个文档列表名称。 3.选中“常用文档”菜单中某个菜单项(如“工资表”等),右击鼠标,在弹出的快捷菜单中,选“分配超链接→打开”选项,打开“分配超链接”对话框。通过按“查找范围”右侧的下拉按钮,定位到相应的工作簿(如“工资.xls”等)文件夹,并选中该工作簿文档。重复上面的操作,将菜单项和与它对应的工作簿文档超链接起来。 4.以后需要打开“常用文档”菜单中的某个工作簿文档时,只要展开“常用文档”菜单,单击其中的相应选项即可。提示:尽管我们将“超链接”选项拖到了“常用文档”菜单中,但并不影响“插入”菜单中“超链接”菜单项和“常用”工具栏上的“插入超链接”按钮的功能。 二、建立分类下拉列表填充项 我们常常要将企业的名称输入到表格中,为了保持名称的一致性,利用“数据有效性”功能建了一个分类下拉列表填充项。 1.在Sheet2中,将企业名称按类别(如“工业企业”、“商业企业”、“个体企业”等)分别输入不同列中,建立一个企业名称数据库。 2.选中A列(“工业企业”名称所在列),在“名称”栏内,输入“工业企业”字符后,按“回车”键进行确认。仿照上面的操作,将B、C……列分别命名为“商业企业”、“个体企业”…… 3.切换到Sheet1中,选中需要输入“企业类别”的列(如C列),执行“数据→有效性”命令,打开“数据有效性”对话框。在“设置”标签中,单击“允许”右侧的下拉按钮,选中“序列”选项,在下面的“来源”方框中,输入“工业企业”,“商业企业”,“个体企业”……序列(各元素之间用英文逗号隔开),确定退出。再选中需要输入

用excel表格做账

竭诚为您提供优质文档/双击可除 用excel表格做账 篇一:用excel编制科目汇总表及会计 现已实现会计电算化,各种财务软件已经使会计核算过程更加快捷与准确,谁还用excel表格来进行会计核算,似有多此一举之嫌。本人承认,利用财务软件进行财务核算,可以免除编制会计科目汇总表的烦恼,财务数据非常准确。 但是,通过使用电子表格编制一套符合自己工作习惯的会计核算表格,在给工作带来方便的同时,也能使自己操作excel工作表及数据计算与分析的能力大有长进,还可节省购买财务软件的费用。大家知道,excel在日常办公、数据计算非常优秀的应用程序,会电脑,不会用excel,就如不会办公一样。撰写此文的目的,是为大家在学习应用excel 中互相帮助、共同进步,发挥大家的创意,探讨更加灵活有效地使用excel来处理财务核算工作的方法。通过此财务表格的编制及使用,学习提高excel函数应用,尤其是更能熟练掌握引用函数在实践中的应用,还能提高excel快捷操作的能力。 在编制本会计核算表格中,通过反复实践,并与财务软

件进行了三年的同步应用,通过使用比较发现,本套财务表格得出的数据与电算软件得出的数据完全一致。目前,这套表已基本达到了以下几个要求: 首先是得出的数据准确无误,“准”是会计核算最基本的要求,本表只要录入的数据正确,就能得出准确的总账、明细账表,并能自动生成资产负债表、收支决算表和支出明细表; 其次,本表格操作基本符合会计人员工作习惯,界面简单实用,做账时方便快捷,查账时快速、直观; 第三,能够快速正确地稽核数据,能直观地反映错误,会计人员能根据报错数据按照简便的方法快速准确查找出 差错,及时纠正错误; 第四,会计人员录入数据快速,不会低于财务软件的录入速度,“快”对于提高工作效率非常重要; 第五,凭证输入采用会计科目编码录入方式,不同的行业,只要是采用借贷记账法进行 核算的,通过对表格进行简单修改,即可用于单位的会计核算。 文中通过实例介绍,着重说明公式输入方法,可以说,公式编制输入是本表编制的基础,也是会计核算数据正确与否的关键,公式录入只要有一个错了,最后得出的财务数据就一定是错误的。因此,要求你对于excel函数公式尤其是

excel会计应用

excel会计应用 Excel会计应用 2008-10-21 08:48 也许你已经在Excel中完成过上百张财务报表,也许你已利用Excel函数实现过上千次的复杂运算,也许你认为Excel也不过如此,甚至了无新意。但我们平日里无数次重复的得心应手的使用方法只不过是Excel全部技巧的百分之一。本专题从Excel2002中的一些鲜为人知的技巧入手,领略一下关于 Excel的别样风情。 一、建立分类下拉列表填充项 我们常常要将企业的名称输入到表格中,为了保持名称的一致性,利用“数据有效性”功能建了一个分类下拉列表填充项。 1.在Sheet2中,将企业名称按类别(如“工业企业”、“商业企业”、“个体企业”等)分别输入不同列中,建立一个企业名称数据库。 2.选中A列(“工业企业”名称所在列),在“名称”栏内,输入“工业企业”字符后,按“回车”键进行确认。 仿照上面的操作,将B、C……列分别命名为“商业企业”、“个体企业”…… 3.切换到Sheet1中,选中需要输入“企业类别”的列(如C列),执行“数据?有效性”命令,打开“数据有效性”对话框。在“设置”标签中,单击“允许”右侧的下拉按钮,选中“序列”选项,在下面的“来源”方框中,输入“工业企业”,“商业企业”,“个体企业”……序列(各元素之间用英文逗号隔开),确定退出。 再选中需要输入企业名称的列(如D列),再打开“数据有效性”对话框,选中“序列”选项后,在“来源”方框中输入公式:=INDIRECT(C1),确定退出。

4.选中C列任意单元格(如C4),单击右侧下拉按钮,选择相应的“企业类别”填入单元格中。然后选中该单元格对应的D列单元格(如D4),单击下拉按钮,即可从相应类别的企业名称列表中选择需要的企业名称填入该单元格中。 提示:在以后打印报表时,如果不需要打印“企业类别”列,可以选中该列,右击鼠标,选“隐藏”选项,将该列隐藏起来即可。 二、建立“常用文档”新菜单 在菜单栏上新建一个“常用文档”菜单,将常用的工作簿文档添加到其中,方便随时调用。 1.在工具栏空白处右击鼠标,选“自定义”选项,打开“自定义”对话框。在“命令”标签中,选中“类别”下的“新菜单”项,再将“命令”下面的“新菜单”拖到菜单栏。 按“更改所选内容”按钮,在弹出菜单的“命名”框中输入一个名称(如“常用文档”)。 2.再在“类别”下面任选一项(如“插入”选项),在右边“命令”下面任选一项(如“超链接”选项),将它拖到新菜单(常用文档)中,并仿照上面的操作对它进行命名(如“工资表”等),建立第一个工作簿文档列表名称。 重复上面的操作,多添加几个文档列表名称。 3.选中“常用文档”菜单中某个菜单项(如“工资表”等),右击鼠标,在弹出的快捷菜单中,选“分配超链接?打开”选项,打开“分配超链接”对话框。通过按“查找范围”右侧的下拉按钮,定位到相应的工作簿(如“工资.xls”等)文件夹,并选中该工作簿文档。 重复上面的操作,将菜单项和与它对应的工作簿文档超链接起来。 4.以后需要打开“常用文档”菜单中的某个工作簿文档时,只要展开“常用文档”菜单,单击其中的相应选项即可。

用Excel编制科目汇总表及会计报表

现已实现会计电算化,各种财务软件已经使会计核算过程更加快捷与准确,谁还用Excel 表格来进行会计核算,似有多此一举之嫌。本人承认,利用财务软件进行财务核算,可以免除编制会计科目汇总表的烦恼,财务数据非常准确。 但是,通过使用电子表格编制一套符合自己工作习惯的会计核算表格,在给工作带来方便的同时,也能使自己操作Excel工作表及数据计算与分析的能力大有长进,还可节省购买财务软件的费用。大家知道,Excel在日常办公、数据计算非常优秀的应用程序,会电脑,不会用Excel,就如不会办公一样。撰写此文的目的,是为大家在学习应用Excel中互相帮助、共同进步,发挥大家的创意,探讨更加灵活有效地使用Excel来处理财务核算工作的方法。通过此财务表格的编制及使用,学习提高Excel函数应用,尤其是更能熟练掌握引用函数在实践中的应用,还能提高Excel快捷操作的能力。 在编制本会计核算表格中,通过反复实践,并与财务软件进行了三年的同步应用,通过使用比较发现,本套财务表格得出的数据与电算软件得出的数据完全一致。目前,这套表已基本达到了以下几个要求: 首先是得出的数据准确无误,“准”是会计核算最基本的要求,本表只要录入的数据正确,就能得出准确的总账、明细账表,并能自动生成资产负债表、收支决算表和支出明细表; 其次,本表格操作基本符合会计人员工作习惯,界面简单实用,做账时方便快捷,查账时快速、直观; 第三,能够快速正确地稽核数据,能直观地反映错误,会计人员能根据报错数据按照简便的方法快速准确查找出差错,及时纠正错误; 第四,会计人员录入数据快速,不会低于财务软件的录入速度,“快”对于提高工作效率非常重要; 第五,凭证输入采用会计科目编码录入方式,不同的行业,只要是采用借贷记账法进行

会计常用Excel技巧

会计常用E x c e l技巧 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

会计常用Excel技巧 1、巧用定位选条件单元格 Excel表格中经常会有一些字段被赋予条件格式。如果对它们进行修改,那么首先得选中它们。可是,在 工作表中,它们经常不是处于连续的位置。按住ctrl键逐列选取恐怕有点麻烦,其实,我们可以使用定 位功能来迅速查找并选择它们。方法是点击“编辑—定位”菜单命令,在弹出的“定位”对话框中,选 中“条件格式”单选项,此时,下方的“全部”和“相同”单选项成为可选。选择“相同”则所有赋予 相同条件格式的单元格会被选中。 2、在不同单元格快速输入同一内容 Excel表格中,首先选定要输入同一内容的单元格区域,然后输入内容,最后按ctrl+回车键,即可实现 在选定单元格区域中一次性输入相同内容。 3、快速返回上次编辑点 在编辑文档的时候,如果要想实现将光标快速返回到上次的编辑点,我们可以按下“shift+F5”组合键 。 4、多个单元格数据巧合并 在编辑了一个Excel工作表后,如果又需要把某些单元格中的数据进行合并,那么我们可以请“&”来帮 忙,比如需要将A、B、C三列的数据合并为D列中的数据,就在D2单元格键入公式 “=A2&B2&C2”。 5、Excel中巧用双击定位 在使用Excel时,当你想定位到行首或列首时,将鼠标指向任意一个单元格的上边框,然后双击鼠标左键 即可。 6、Excel避免计算误差 利用Excel制作财务报表,常要进行一些复杂的运算,可往往用Excel公式得出的数据结果与计算器算出 的不一致,这主要是由于Excel本身不能对数据自动进入四舍五入造成的,为了更简便的解决误差问题, 我们可以进行如下操作:依次在Excel菜单栏中点击“工具—选项—重新计算”,将“工作薄选项”中的 “以显示值为准”复选框选中,确定退出即可。 也可以用函数,方法:round((计算公式),2),其中的“round”是四舍五入函数,其中的“计算公式” 中输入你的计算算式,例如A1*A2,其中的“2”是代表你四舍五入后小数点的位数,这里是两位。 7、Excel中快速绘制文本框 通常在Excel中使用文本框来进行表格内容注释,如果按住Alt键不放再绘制文本框可实现文本框与单元 格边线的重合,从而减轻调整文本框位置的工作量。

会计常用excel表格下载

竭诚为您提供优质文档/双击可除会计常用excel表格下载 篇一:会计人员常用excel函数 会计人员常用excel函数 一、mid(text,start_num,num_chars) text:是指包含需要提取字符的文本字符串位置 start_num:需要提取的字符串在文本中开始位置 num_chars:提取的字符串个数。 举例:从以下身份证号中提取出生年月日 1、函数格式: mid(a2,7,8) a2:指身份证号位于a2位置。 7:是指从身份证号中第7个位置开始提取 8:是指按顺序一共提取8个数字 结果为: 二、sumiF(range,criteria,sum_range) range:计算区域 criteria:条件(以数字、表达式或文本形式表示)sum_range:实际参与计算的区域(可省略)

举例,在以下计算区域中对编码为a1的单元格所对应的数据进行求和 函数格式:sumiF(b3:c10,b3,c3:c10) 在区域b3:c10中把所 有编码为a1的单元格的数据进行求和 b3+b5+b8=25+33+36=e3=94 结果为 三、countiF(range,criteria) range:要进行计算的非空单元格区域 criteria:需要进行计算时满足的条件 举例:对下列区域中大于30的数进行个数统计 函数格式:countiF(b3:c10,>30) b3:c10:进行统计的区域 >30:为表达式,表示大于30的数进行个数统计 结果为: 四、 Vlookup(lookup_value,table_array,col_index_num,rang e_lookup)lookup_value:查找的目标 table_array:查找的区域 col_index_num:需要返回的值在查找区域中的列号 range_lookup:默认为tRue(即1),即模糊查找,false (即0)为精确查找

相关主题
文本预览
相关文档 最新文档