当前位置:文档之家› 等腰三角形、平行线、角平分线

等腰三角形、平行线、角平分线

等腰三角形、平行线、角平分线
等腰三角形、平行线、角平分线

等腰三角形、平行线、角平分线

一、有关等腰三角形的基本图形。 如图,若OD 平分∠AOB ,DE ∥OB 交OA 于E 。 求证:DE=OE 。

逆命题:

二、有关上图的题组练习。 1、如图,AD ∥BC ,BD 平分∠ABC 。

求证:AB=AD 。

2、已知:如图,AB=AC ,BD 平分∠ABC ,CD 平分∠ACB 。问:1、图中有几个等腰三角形?

3、如图,若过D 作EF ∥BC 交AB 于E ,交AC 于F ,图中又增加了几个等腰三角形?

4、如图,若将第(2)题中的△ABC 改为不等边三角形,其他条件不变,情况会如何?还可证出哪些线段的和差关系?

O

5、对第4题中“两内角平分线”可作怎样的推广?相应的线段和差关系如何?

推广1当过△ABC 的一个内角和一个外角平分线的交点作这两角的公共边的平行线时,如图,EF=BE-CF

推广2当过△ABC 的两个外角平分线上一点作这两个角的公共边的平行线时,如图,EF=AE+CF

(5)如图,若BD ,CD 分别平分∠ABC 和∠ACB ,过D 作DE ∥AB 交BC 于E ,作DF ∥AC 交BC 于F 。求证:BC 的长等于DEF 的周长。

6、把一张长方形纸条,像右图那样折叠,重合部分是什么形状?为什么?

7、如图,△ABC 中,∠BAC=90,AB=AC ,AD ⊥BC 于D ,BE 平分∠ABC 交AD 于E ,AF 平分∠CAD 交DC 于F ,连结EF 。指出图中的全等三角形、等腰三角形,并说明理由。

BF = 3.05 厘米m ∠FBD = 25.08?m ∠DBC = 25.56?

m CB = 3.04 厘米

角平分线和平行线构成等腰三角形的探究

角平分线和平行线构成等腰三角形的探究 -----李春蕊北京市育英学校 一、教材分析:《等腰三角形》是“人教版八年级数学(上)”第十二章第三节的内容。等腰三角形是一种特殊的三角形,它除了具备一般三角形的所有性质外,还有许多特殊的性质,由于这些特殊性质,使它比一般的三角形应用更广泛。这一单元的主要内容是等腰三角形的性质和判定,以及等边三角形的相关知识,尤其是等腰三角形的性质和判定,它们是研究等边三角形、证明线段等和角等的重要依据. 学情分析:本节课在学生已经学习了轴对称、等腰三角形性质及判定基础上,进一步探究角平分线和平行线形成等腰三角形的问题。学生具有一定说理能力,整体几何感观比较清晰,在探究活动中,能够根据老师的问题进行有切入的思考。 二、教学目标: (1)掌握角平分线和平行线形成等腰三角形的基本规律; (2)体会研究问题中用到的分类思想,经历由特征图形问题的解决,发展对问题的进一步探究,认识到在几何问题中,位置关系可得出一定数量关系,特殊的数量关系也能推出一定位置关系. (3)通过交流和研讨,使学生在探索的同时获得解决问题的一种方法,提高学生学习数学的兴趣和信心. 教学重点:掌握角平分线+平行线能形成等腰三角形这个基本规律,利用这个规律解决等腰三角形方面的有关问题. 教学难点:灵活运用角平分线和平行线形成等腰三角形这个基本规律解决有关问题. 突出重点方法:观察,思考,证明. 突出难点方法:自主探究 教学方法:启发与探究相结合 教学准备:PPT,课本,作图工具 三、教学设计: (一)复习等腰三角形相关知识 1、请同学们对等腰三角形的知识要点进行自我回顾: (由学生先进行回顾,教师补充) (二)探究过程 问题1:已知∠ABC,BD平分∠ABC,ED//BC.思考:△EBD是等腰三角形吗? 解:是;EB=ED

角平分线定理

角平分线定理 角平分线的定义:从一个角的顶点引出一条射线,把这个角分成两个相等的角,这条射线叫做这个角的角平分线。 ■ 三角形的角平分线定义:三角形顶点到其内角的角平分线交对边的点连的一条线段,叫三角形的角平分线。 【注】三角形的角平分线不是角的平分线,是线段。角的平分线是射线。 ■拓展:三角形的三条角平分线相交于一点,并且这一点到三条边的距离相等!(即内心)。 ■定理1:在角平分线上的任意一点到这个角的两边距离相等。 ■逆定理:在一个角的内部(包括顶点),且到这个角的两边距离相等的点在这个角的角平分线上。 ■定理2:三角形一个角的平分线分对边所成的两条线段与这个角的两邻边对应成比例, 如:在△ABC中,BD平分∠ABC,则AD:DC=AB:BC 提供四种证明方法: 已知,如图,AM为△ABC的角平分线,求证AB/AC=MB/MC 已知和证明1图 证明:方法1:(面积法) S△ABM=(1/2)·AB·AM·sin∠BAM, S△ACM=(1/2)·AC·AM·sin∠CAM, ∴S△ABM:S△ACM=AB:AC 又△ABM和△ACM是等高三角形,面积的比等于底的比,

证明2图 即三角形ABM面积S:三角形ACM面积S=BM:CM ∴AB/AC=MB/MC 方法2(相似形) 过C作CN‖AB交AM的延长线于N 则△ABM∽△NCM ∴AB/NC=BM/CM 又可证明∠CAN=∠ANC ∴AC=CN ∴AB/AC=MB/MC 证明3图 方法3(相似形) 过M作MN‖AB交AC于N 则△ABC∽△NMC, ∴AB/AC=MN/NC,AN/NC=BM/MC 又可证明∠CAM=∠AMN ∴AN=MN ∴AB/AC=AN/NC ∴AB/AC=MB/MC

三角形的高中线与角平分线练习题综述

43 2 1E D C B A 1 C D B 三角形的高、中线与角平分线1 1 如图,已知△ABC 中,AQ=PQ 、PR=PS 、PR ⊥AB 于R , PS ⊥AC 于S ,有以下三个结论:①AS=AR ;②QP ∥AR ; ③△BRP ≌△CSP ,其中( ). (A)全部正确 (B)仅①正确 (C)仅①、②正确 (D)仅①、③正 确 2、 如图,点E 在BC 的延长线上,则下列条件中, 不能判定AB ∥CD 的是( ) A. ∠3=∠4 B.∠B=∠DCE C.∠1=∠2. D.∠D+∠DAB=180° 3.如图,ΔACB 中,∠ACB=900,∠1=∠B. (1)试说明 CD 是ΔABC 的高; (2)如果AC=8,BC=6,AB=10,求CD 的长。 4 如图,直线DE 交△ABC 的边AB 、AC 于D 、E , 交BC 延长线于F ,若∠B =67°,∠ACB =74°, ∠AED =48°,求∠BDF 的度数 5、如图:∠1=∠2=∠3,完成说理过程并注明理由: 因为 ∠1=∠2 所以 ____∥____ ( ) 因为 ∠1=∠3 所以 ____∥____ ( ) 6.以下列各组线段为边,能组成三角形的是( ) A .2cm ,3cm ,5cm B .5cm ,6cm ,10cm C .1cm ,1cm ,3cm D .3cm ,4cm ,9cm

A.17 B.22 C.17或22 D.13 8.适合条件∠A=1 2∠B=1 3 ∠C的△ABC是() A.锐角三角形 B.直角三角形 C.钝角三角形 D.等边三角形9.已知等腰三角形的一个角为75°,则其顶角为() A.30° B.75° C.105° D.30°或75° 10.一个多边形的内角和比它的外角的和的2倍还大180°,这个多边形的边数是() A.5 B.6 C.7 D.8 11.三角形的一个外角是锐角,则此三角形的形状是() A.锐角三角形 B.钝角三角形 C.直角三角形 D.无法确定12.三角形的三边长分别为5,1+2x,8,则x的取值范围是________. 13.如图,BD平分∠ABC,DA⊥AB,∠1=60°, ∠BDC=80°,求∠C的度数. 初一三角形的高、中线与角平分线2 1 如图,BC⊥CD,∠1=∠2=∠3,∠4=60°,∠5=∠6. (1)CO是△BCD的高吗?为什么? (2)∠5的度数是多少? (3)求四边形ABCD各内角的度数. 2.△ABC中,∠A=50°,∠B=60°,则∠A+∠C=________.

全等三角形与角平分线经典题型

全等三角形与角平分线 一、知识概述 1、角的平分线的作法 (1)在∠AOB的两边OA、OB上分别截取OD、OE,使OD=OE. (2)分别以D、E为圆心,以大于1/2DE长为半径画弧,两弧交于∠AOB 内一点C. (3)作射线OC,则OC为∠AOB的平分线(如图) 指出:(1)作角的平分线的依据是三角形全等的条件——“SSS”. (2)角的平分线是一条射线,不能简单地叙述为连接. 2、角平分线的性质 在角的平分线上的点到角的两边的距离相等. 指出:(1)这里的距离是指点到角两边垂线段的长. (2)该结论的证明是通过三角形全等得到的,它可以独立作为证明两条线段相等的依据.即不需再用老方法——全等三角形. (3)使用该结论的前提条件是有角的平分线,关键是图中有“垂直”. 3、角平分线的判定 到角的两边的距离相等的点在角的平分线上. 指出:(1)此结论是角平分线的判定,它与角平分线的性质是互逆的. (2)此结论的条件是指在角的内部有点满足到角的两边的距离相等,那么

过角的顶点和该点的射线必平分这个角. 4、三角形的角平分线的性质 三角形的三条角平分线相交于一点,且这点到三角形三边的距离相等. 指出:(1)该结论的证明揭示了证明三线共点的证明思路:先设其中的两线交于一点,再证明该交点在第三线上. (2)该结论多应用于几何作图,特别是涉及到实际问题的作图题. 二、典型例题剖析 例1、如图所示,四边形ABCD中,AB=AD,AC平分∠BCD,AE⊥BC,AF⊥CD.求证:△ABE≌△ADF. 例2、如图所示,BE、CF是△ABC的高,BE、CF相交于O,且OA平分∠BAC.求证:OB=OC. 例3、如图,D为BC的中点,DE⊥DF,E、F分别在AB、AC边上,则BE+CF ()

角平分线的定义是什么

角平分线的定义是什么 本文是关于角平分线的定义是什么,仅供参考,希望对您有所帮助,感谢阅读。 角平分线的定义 角平分线定义(Anglebisectordefinition)从一个角的顶点引出一条射线,把这个角分成两个完全相同的角,这条射线叫做这个角的角平分线(bisectorofangle)。三角形三条角平分线的交点叫做三角形的内心。三角形的内心到三边的距离相等,是该三角形内切圆的圆心。其它解释:角平分线是在角的型内及形上,到角两边距离相等的点的轨迹。 角平分线的性质 在角的平分线上的点到这个角的两边的距离相等。 (逆定理)在一个角的内部(包括顶点)且到角的两边的距离相等的点在这个角的角平分线上。 三角形的角平分线定义 三角形的一个角的平分线与这个角的对边相交,连结这个角的顶点和与对边交点的线段叫做三角形的角平分线(也叫三角形的内角平分线)。由定义可知,三角形的角平分线是一条线段。由于三角形有三个内角,所以三角形有三条角平分线。三角形的角平分线交点一定在三角形内部。 角平分线的其它解释 角平分线可以看作是到角两边距离相等的所有点的集合。 三角形的一个角的平分线与这个角的对边相交,连结这个角的顶点和与对边交点的线段叫做三角形的角平分线(也叫三角形的内角平分线)。由定义可知,三角形的角平分线是一条线段。由于三角形有三个内角,所以三角形有三个角平分线。三角形的角平分线交点一定在三角形内部。 角平分线的作法 在角AOB中,画角平分线 方法一:1.以点O为圆心,以任意长为半径画弧,两弧交角AOB两边于点M,

N。 2.分别以点M,N为圆心,以大于1/2MN的长度为半径画弧,两弧交于点p。 3.作射线Op。 则射线Op为角AOB的角平分线。 证明:连接pM,pN 在△pOM和△pON中 ∵OM=ON,pM=pN,pO=pO ∴△pOM≌△pON(SSS) ∴∠pOM=∠pON,即射线Op为角AOB的角平分线 当然,角平分线的作法有很多种。下面再提供一种尺规作图的方法供参考。 方法二:1.在两边OA、OB上分别截取OM、OC和ON、OD,且使得OM=ON,OC=OD; 2.连接CN与DM,他们相交于点p; 3.作射线Op。 则射线Op为角AOB的角平分线。 角平分线的举例 求证:三角形内角平分线分对边所得的两条线段和这个角的两边对应成比例。 如图,若AD是△ABC的角平分线,则 BD/DC=AB/AC 。 证明:作CE∥AD交BA延长线于E。 ∵CE∥AD ∴△BDA∽△BCE ∴BA/BE=BD/BC ∴ BA/AE=BD/DC ∵CE∥AD ∴∠BAD=∠E,∠DAC=∠ACE ∵AD平分∠BAC ∴∠BAD=∠CAD ∴∠BAD=∠CAD=∠ACE=∠E 即∠ACE=∠E

平行线及角平分线类相似

平行线及角平分线类相似 中考要求 重难点 1.相似定义,性质,判定,应用和位似 2.相似的判定和证明 3.相似比的转化 课前预习 上一节课我们知道了相似三角形的由来,那你是否知道其他跟金子塔有关的不可思议的事实呢? 不仅建造金字搭的技术中,表现了古埃及人的非凡的数学天才;而且,它本身的许多数据,也说明了古埃及人的数学才华,巧夺天工,比如,胡夫金字塔底面周长365米,恰好是一年的天娄;周长乘以2,正是赤道的时分度;搭高乘以10九次方,正是地球到太阳的距离;周长除以塔塔高的2倍,正是圆周率3.1415926……;塔的自重乘以10的15次方,正好是地球的重量;塔里放置的棺材內部尺寸,正好是几千年后希腊数学家华连哥拉斯发现华连哥拉斯数——345 ∶∶. 数学的趣味是无法言语的,同学们可以从身边的点滴去发现其中的奥秘.

例题精讲 模块一 平行线类相似问题 平行线类相似的基本模型有 ?模型一、二类综合题 【例1】 如图,在ABC △中,M 是AC 的中点,E 是AB 上一点,且1 4 AE AB = ,连接EM 并延长,交BC 的延长线于D ,则 BC CD =____ ___. M E C B A 【难度】3星 【解析】先介绍常规的解法: B C F E D M A B C F E D M A 如图,过点C 作DE 或AB 的平行线均可,不妨以左图为例来说明. 过点C 作//CF DE ,交AB 于点F . ∵AM MC =,//CF DE ∴AE EF = ∵14AE AB = ∴2BF EF = ∵//CF DE ∴ 2BC BF CD EF == 当然,过点M 、点E 作适当的平行线,均可作出此题,这里不再给出.

三角形的中线与角平分线

一.选择题(共10小题) 1.(2016秋?阿荣旗期末)三角形一边上的中线把原三角形分成两个()A.形状相同的三角形B.面积相等的三角形 C.直角三角形D.周长相等的三角形 【分析】根据三角形的面积公式以及三角形的中线定义,知三角形的一边上的中线把三角形分成了等底同高的两个三角形,所以它们的面积相等. 【解答】解:三角形一边上的中线把原三角形分成两个面积相等的三角形. 故选:B. 【点评】考查了三角形的中线的概念.构造面积相等的两个三角形时,注意考虑三角形的中线. 2.(2016秋?大安市校级期中)如图所示,在△ABC中,D,E,F是BC边上的三点,且∠1=∠2=∠3=∠4,AE是哪个三角形的角平分线() A.△ABE B.△ADF C.△ABC D.△ABC,△ADF 【分析】根据三角形的角平分线的定义得出. 【解答】解:∵∠2=∠3, ∴AE是△ADF的角平分线; ∵∠1=∠2=∠3=∠4, ∴∠1+∠2=∠3+∠4,即∠BAE=∠CAE, ∴AE是△ABC的角平分线. 故选D. 【点评】三角形的角平分线是指三角形一个内角的平分线与对边交点连接的线段. 3.(2016春?蓝田县期中)如图,AE是△ABC的中线,D是BE上一点,若EC=6,DE=2,则BD的长为()

A.1 B.2 C.3 D.4 【分析】根据三角形中线的定义可得BE=EC=6,再根据BD=BE﹣DE即可求解.【解答】解:∵AE是△ABC的中线,EC=6, ∴BE=EC=6, ∵DE=2, ∴BD=BE﹣DE=6﹣2=4. 故选D. 【点评】本题考查了三角形的中线的定义,是基础题,准确识图并熟记中线的定义是解题的关键. 4.(2017?泰州)三角形的重心是() A.三角形三条边上中线的交点 B.三角形三条边上高线的交点 C.三角形三条边垂直平分线的交点 D.三角形三条内角平行线的交点 【分析】根据三角形的重心是三条中线的交点解答. 【解答】解:三角形的重心是三条中线的交点, 故选:A. 【点评】本题考查了三角形重心的定义.掌握三角形的重心是三条中线的交点是解题的关键. 5.(2017?诸暨市模拟)已知△ABC在正方形网格中的位置如图所示,则点P叫做△ABC的()

用角平分线构造全等三角形

善于构造 活用性质 几何问题中,若出现角平分线这一条件时,可联想角平分线的特性,灵活利用角平分线的特性来解决问题. 1.显“距离”, 用性质 很多时候,题意中只给角平分线这个条件,图上并没有出现“距离”,而角平分线性质的运用又离不开这个“距离”,所以同学们应大胆地让“距离”现身(过角平分线上的一点向角的两边作垂线段) 例1 三角形的三条角平分线交于一点,你知道这是为什么吗 分析:我们知道两条直线是交于一点的,因此可以想办法证明第三条角平分线通过前两条角平分线的交点. 已知:如图,△ABC 的角平分线AD 与BE 交于点I ,求证:点I 在∠ACB 的平分线上. 证明:过点I 作IH ⊥AB ,IG ⊥AC ,IF ⊥BC ,垂足分别是点H 、G 、F . ∵点I 在∠BAC 的角平分线AD 上,且IH ⊥AB 、IG ⊥AC ∴IH =IG (角平分线上的点到角的两边距离相等) 同理 IH =IF ∴IG =IF (等量代换) 又IG ⊥AC 、IF ⊥BC ∴点I 在∠ACB 的平分线上(到一个角的两边的距离相等的点,在这个角的平分线上).即:三角形的三条角平分线交于一点. 例2 已知:如图,PA 、PC 分别是△ABC 外角∠MAC 和∠NCA 的平分线,?它们交于点P , PD ⊥BM 于D ,PF ⊥BN 于F . 求证:BP 为∠MBN 的平分线. D C B A E H I F G

【分析】要证BP为∠MBN的平分线,只需证PD=PF,而PA、PC为外角平分线,?故可过P作PE⊥AC于E.根据角平分线性质定理有PD=PE,PF=PE,则有PD=PF,故问题得证.【证明】过P作PE⊥AC于E. ∵PA,PC分别为∠MAC与∠NCA的平分线.且PD⊥BM,PF⊥BN ∴PD=PE,PF=PE,∴PD=PF 又∵PD⊥BM,PF⊥BN,∴点P在∠MBN的平分线上, 即BP是∠MBN的平分线. 2.构距离,造全等 有角平分线时常过角平分线上的点向角两边引垂线,根据角平分线上的点到角两边距离相等,可构造处相应的全等三角形而巧妙解决问题. 例3 △ABC中,∠C=90°,AC=BC,DA平分∠CAB交BC于D点,问能否在AB?上确定一点E使△BDE的周长等于AB的长.请说明理由. 解:过D作DE⊥AB,交AB于E点,则E点即可满足要求. 因为∠C=90°,AC=BC,又DE⊥AB,∴DE=EB. ∵AD平分∠CAB且CD⊥AC、ED⊥AB,∴CD=DE. 由“H L”可证Rt△ACD≌Rt△AED.∴AC=AE. ∴L△BDE=BD+DE+EB =BD+DC+EB =BC+EB=AC+EB =AE+EB =AB. 例4 如图,∠B=∠C=90°,M是BC上一点,且DM平分∠ADC,AM平分∠DAB. 求证:AD=CD+AB.

三角形中线与角平分线专题(二)

.. 三角形中线与角平分线专题(二) 1、三角形外角平分线的四个经典结论: 结论一:三角形任意两个角平分线的夹角与第三个角的数量关系 已知如图1,BP 平分∠ABC ,CP 平分∠ACB ,求∠P 与∠A 的数量关系. 01902P A ∠=+∠ 结论二:三角形任意两个角相邻的外角的平分线说夹角与第三个角的关系. 已知如图2,BP 平分外角CBE ∠,CP 平分外角BCF ∠,求P ∠与A ∠的数量关系. 01902P A ∠=-∠ 结论三:三角形中任意一个角平分线与另一个角外角平分线的夹角与第三个角的关系 如图,BP 平分ABC ∠,CP 平分外角ACD ∠,求P ∠与A ∠的数量关系. 12 P A ∠=∠ 结论四:结论三延伸 如图,CE BE 、分别平分ACD ABC ∠∠和,连结EA ,则EA 为HAC ∠的平分线 21A E F B C 2 1P B A C

.. 应用举例: 例1:在四边形ABCD 中,?=∠120D ,?=∠100A 、ABC ∠、ACB ∠的角平分线的交 与点E ,试求BEC ∠的度数. 例2:在ABC ?中,三个外角的平分线所在的直线相交构成 DEF ?,试判断DEF ?的形 状. 例3:如图3,在ABC ?中,延长BC 到D ,ABC ∠与ACD ∠的角平分线相较于1A 点, BC A 1∠与CD A 1∠的平分线交与2A 点,以此类推,若?=∠96A ,则=∠5A , =∠n A . 图三 图四 例4:点M 是ABC ?两个角的平分线的交点,点N 是ABC ?两个外角的平分线的交点, 如果∠CMB ∶∠CNB=3∶2,那么=∠CAB 例5:( 2011年省是中考题)△ABC 的外角∠ACD 的平分线CP 的角∠ABC 平分线BP 交于 点P ,若∠BPC=40°,则∠CAP=_______.

中考数学专题复习:角与角平分线,平行线

角与角平分线 典题探究 例1 把15°30′化成度的形式,则15°30′=____度. 例2 命题“相等的角是对顶角”是______命题.(填“真”或“假”) 例3 已知∠A =67°,则∠A 的余角等于 度. 例4 如图,BD 是∠ABC 的平分线,P 是BD 上的一点,PE ⊥BA 于点E ,PE =4㎝,则点P 到边 BC 的距离为 ㎝. E P D C B A 课后练习 A 组 1.如图,表示下列各角: (1) (2) (3) 2.下列各图中有多少个小于180度的角?并把它们表示出来。 (1) (2) 3.下列四个图中,能用∠1、∠AOB 、∠O 三种方法表示同一个的是( ) 4. 计算:① 57.3°=______°=______′; ②18°15′= ° ;

③ 33°52′+21°54′=__________; ④28°23′×2 - 6°2′= __________; ⑤ 90°—43°18′= __ ; ⑥360°÷7≈ ___ (精确到分) 5.按图填空: 6.下列四个图形中2∠大于1∠的是( ) 7.如图,OC 平分∠AOB ,如果∠COB=42°,那么∠AOB=_________° B 组 8.尺规作图:求作一个角,使它等于已知角∠AOB ,不写作法,保留作图痕迹。 结论: 9.尺规作图:已知∠AOB ,求作∠AOB 的角平分线。不写作法,保留作图痕迹。 结论: 10. Rt 90ABC C BAC ∠∠在△中,=,的角平分线AD 交BC 于点D ,2CD =, 则点D 到AB 的距离是( ) A .1 B .2 C .3 D .4

角平分线的性质典型例题

【典型例题】 例1.已知:如图所示,/ C=/ C'= 90 °, AC= AC 求证:(1)Z ABC=Z ABC ; (2)BO BC(要求:不用三角形全等判定). 分析:由条件/ C=Z C = 90°, AO AC,可以把点A看作是/ CBC平分线上的点,由此可打开思路. 证明:(1)vZ C=Z C = 90°(已知), ??? ACL BC, AC丄BC (垂直的定义). 又??? AO AC (已知), ???点A在/CBC勺角平分线上(到角的两边距离相等的点在这个角的平分线上). ? / ABC=Z ABC. (2)vZ C=Z C;Z ABC=Z ABC, ?180°—(/ C+Z ABC = 180°—(/ C '+/ ABC)(三角形内角和定理)即/ BAC=Z BAC, ??? AC L BC, AC L BC, ?BO BC (角平分线上的点到这个角两边的距离相等). 评析:利用三角形全等进行问题证明对平面几何的学习有一定的积极作用,但也会产生消极作用,在解题时,要能打破思维定势,寻求解题方法的多样性. 例 2.女口图所示,已知△ ABC中, PE// AB交BC于E, PF// AC交BC于F, P是AD上一点,且D点到PE的距离与到PF的距离相等,判断AD是否平分Z BAC 并说明理由. 分析:判定一条射线是不是一个角的平分线,可用角平分线的定义和角平分线的判定定理.根据题意,首先由角平分线的判定定理推导出Z 1 = Z 2,再利用平行线推得Z 3=Z 4,最后用角平分线的定义得证. 解:AD平分Z BAC ??? D到PE的距离与到PF的距离相等, ???点D在Z EPF的平分线上. ? Z 1 = Z 2. 又??? PE// AB ???/ 1 = Z 3.

三角形的高、中线与角平分线(全国优质课一等奖)

2008年全国第六届初中数学优质课比赛教案 课题:§7.1.2三角形的高、中线与角平分线 教材:人教版义务教育课程标准实验教科书七年级数学下册第65~66页 授课教师:临川一中陈良琴 [教材分析] 1、本节教材的地位与作用: 学生已学习了角的平分线,线段的中点,垂线和三角形的有关概念及边的性质等,本节课在此基础上进一步认识三角形,为今后学习三角形的内切圆及三心等知识埋下了伏笔.本节内容着重介绍了三角形的三种特殊线段,已学过的过直线外一点作已知直线的垂线、线段的中点、角的平分线等知识是学习本节新知识的基础,其中三角形的高学生从小学起已开始接触,教材从学生已有认知出发,从高入手,利用图形,给高作了具体定义,使学生了解三角形的高为线段,进而引出三角形的另外几种特殊线段——中线、角平分线. 通过本节内容学习,可使学生掌握三角形的高、中线、角平分线与垂线、角平分线的联系与区别.另外,本节内容也是日后学习等腰三角形等特殊三角形的基础.故学好本节内容是十分必要的. 2、教学重点: 能够正确地画出三角形的“高”、“角平分线”和“中线”,并理解它们概念的含义、联系和区别.3、教学难点: 在钝角三角形中作高. 4、教学关键: 运用好数形结合的思想,特别是研究三角形的角平分线、中线、高时,从折叠、度量入手,获得三种线段的直观形象,以便准确理解上述基本知识。 [教学目标] 基于上述对教材地位与作用的分析,结合学生已有的认知水平的年龄特征,制定本节如下的教学目标: (1)知识与技能目标:通过观察、画、折等实践操作、想像、推理、交流等过程,认识三角形的高线、角平分线、中线;会画出任意三角形的高线、角平分线、中线,通过画图、折纸了解三角形的三条高线、三条角平分线、三条中线会交于一点. (2)过程与方法目标:经历画、折等实践操作活动过程,发展学生的空间观念,推理能力及创新精神.学会用数学知识解决实际问题能力,发展应用和自主探究意识,并培养学生的动手实践能力.(3)情感与态度目标:通过对问题的解决,使学生有成就感,培养学生的合作精神,树立学好数学的信心. [学情分析] 七年级的孩子思维活跃,模仿能力强,对新知事物满怀探求的欲望.同时他们也具备了一定的学习能力,在老师的指导下,能针对某一问题展开讨论并归纳总结.但是受年龄特征的影响,他们知识迁移能力不强,推理能力还需进一步培养. [教学过程] 本节课按照“创设情境,引入新课”——“合作交流,探求新知”——“拓展创新,挑战自我”——“课堂小结,感悟反思”——“走出课堂,应用数学”的流程展开.

全等三角形与角平分线专题讲解

C E O D B A 2 1C E D B A 214 3 O A 全等三角形专题讲解 专题一 全等三角形判别方法的应用 专题概说:判定两个三角形全等的方法一般有以下4种: 1.三边对应相等的两个三角形全等(简写成“SSS ”,“边边边”) 2.两边和它们的夹角对应相等的两个三角形全等(简写成“SAS ”,“边角边”) 3.两角和它们的夹边对应相等的两个三角形全等(简写成“ASA ”,“角边角”) 4.两个角和其中一个角的对边对应相等的两个三角形全等(简写成“AAS ”,“角角边”) 而在判别两个直角三角形全等时,除了可以应用以上4种判别方法外,还可以应用“斜边、直角边”,即斜边和一条直角边对应相等的两个直角三角形全等(简写成“HL ”, “斜边、直角边”).也就是说“斜边、直角边”是判别两个直角三角形全等的特有的方法,它仅适用于判别两个直角三角形全等. 三角形全等是证明线段相等,角相等最基本、最常用的方法,这不仅因为全等三角形有很多重要的角相等、线段相等的特征,还在于全等三角形能把已知的线段相等、角相等与未知的结论联系起来.那么我们应该怎样应用三角形全等的判别方法呢? (1)条件充足时直接应用 在证明与线段或角相等的有关问题时,常常需要先证明线段或角所在的两个三角形全等,而从近年的中考题来看,这类试题难度不大,证明两个三角形的条件比较充分.只要同学们认真观察图形,结合已知条件分析寻找两个三角形全等的条件即可证明两个三角形全等. 例1 已知:如图,CE ⊥AB 于点E ,BD ⊥AC 于点D ,BD 、CE 交于点O ,且AO 平分∠BAC .那么图中全等的三角形有___对. 分析:由CE ⊥AB ,BD ⊥AC ,得∠AEO=∠ADO=90o.由AO 平分∠BAC ,得∠EAO=∠DAO .又AO 为公共边,所以△AEO ≌△ADO .所以EO=DO ,AE=AD .又∠BEO=∠CDO=90o, ∠BOE=∠COD ,所以△BOE ≌△COD .由 AE=AD ,∠AEO=∠ADO=90o,∠BAC 为公 共角,所以△EAC ≌DAO .所以AB=AC .又 ∠EAO=∠DAO , AO 为公共边,所以△ABO ≌△ACO . 所以图中全等的三角形一共有4对. (2)条件不足,会增加条件用判别方法 此类问题实际是指条件开放题,即指题中没有确定的已知条件或已知条件不充分,需要补充使三角形全等的条件.解这类问题的基本思路是:执果索因,逆向思维,逐步分析,探索结论成立的条件,从而得出答案. 例2 如图,已知AB=AD ,∠1=∠2,要使△ABC ≌△ADE ,还需添加的条件是(只需填一个)_____. 分析:要使△ABC ≌△ADE ,注意到∠1=∠2, 所以∠1+∠DAC=∠2+∠DAC ,即∠BAC=∠EAC . 要使△ABC ≌△ADE ,根据SAS 可知只需AC=AE 即可; 根据ASA 可知只需∠B=∠D ;根据AAS 可知只需∠C=∠E . 故可添加的条件是AC=AE 或∠B=∠D 或∠C=∠E . (3)条件比较隐蔽时,可通过添加辅助线用判别方法在证明两个三角形全等时, 当边或角的关系不明显时,可通过添加辅助线作为桥梁,沟通边或角的关系, 使条件由隐变显,从而顺利运用全等三角形的判别方法证明两个三角形全等. 例3 已知:如图,AB=AC ,∠1=∠2.

角平分线平行线等腰三角形“知识板块”的应用

1.角平分线遇平行线出现等腰三角形。分a 、b 两种情形: a 、 如图甲:一直线与角的一边平行 b 、 如图乙:一直线与角的平分线平行 2.等腰三角形与角平分线往往出现平行线 a 、如图甲:等腰三角形的一腰与角的一边平行 b 、如图乙:等腰三角形的底边与顶角的外角平分线平行 3.等腰三角形与平行线往往出现角平分线 a 、如图甲:与一腰平行 b 、如图乙:与底边平行 角平分线、平行线、等腰三角形关系密切,在题设中若见其一,应思其二,想其三;或作其二,寻找发现其三,这种解题思路方法往往能得到打开第一道大门的金钥匙,突破解题的一个难点,使一类题目变难为易成为可能,使学生对题目一看就会成为可能。这种思维方法称为“知识板块”思维。 角平分线、平行线、等腰三角形“知识板块”的应用举例: 例1、如图1:已知在△ABC 中∠ABC 、∠ACB 的平分线交于点I ,过点I 作DE//BC ,分别交AB 、AC 于点D 、E 。求证:DE=BD+CE 。 证明: 例2、如图2:已知I 是△ABC 的内心,DI//AB 交BC 于点D ,EI//AC 交BC 于E 。求证: △DIE 的周长等于BC 。 证明: 31∠=∠?? ??∠=∠∠=∠?2123//OA CD DC DO =?() DOC 等腰三角形()ODE 等腰三角形?? ? ?? ∠=∠?? ?∠=∠∠=∠?214231//OC DE OE OD =?∠=∠?43???∠=∠∠=∠?=2131DC CO OA CD //32?∠=∠????∠+∠=∠∠=∠?=4343AOB OE OD ??? ???? ∠=∠∠=∠?AOB AOB 21 1213DE OC //31?∠=∠?? ?? ∠=∠?=∠=∠?1323//DC CO DC OA 21∠=∠?214231//43∠=∠?? ? ?? ? ???∠=∠∠=∠?∠=∠?=OC DE OE OD ??? ∠=∠∠=∠?1232//BC DE 31∠ =∠????==?EI CE DI BD 同理:CE BD IE DI DE +=+=?? ?? ∠=∠∠=∠?2131//AB DI BD DI =?∠=∠?23图甲 1 3 A B C D E I 图(2) 2 3 2 1 I E D A B C 4 3 2 O D E C B A 1 图乙

(新)角平分线的性质和判定经典题

角平分线的性质和判定复习 一知识要点: 1. 角平分线的作法(尺规作图) 思考:这一画法的根据是什么? 2. 角平分线的性质及判定 (1)角平分线的性质: 文字表达:角的平分线上的点到角的两边的距离相等. 几何表达: ∵OP平分∠MON(∠1=∠2),PA⊥OM,PB⊥ON,(已知) ∴PA=PB.(角平分线的性质) 思考:这一性质定理的根据是什么? (2)角平分线的判定: 文字表达:到角的两边的距离相等的点在角的平分线上. 几何表达: ∵PA⊥OM,PB⊥ON,PA=PB(已知) ∴∠1=∠2(OP平分∠MON)(角平分线的判定) 二、典型例题 角平分线的性质一 例题1.用直尺和圆规作一个角的平分线的示意图如图所示,则能说明∠AOC=∠BOC的依据是( ) A.SSS B.ASA C.AAS D.角平分线上的点到角两边距离相等 例题2 如图,BD平分∠ABC,DE垂直于AB于E点,△ABC的面积等于90,AB=18,BC=12,则求DE的长.

例题3 已知:如图,△ABC中,∠C=90°,AD是△ABC的角平分线,DE⊥AB于E,F在AC上BD=DF,求证: CF=EB。 D F E C B A 例题4 已知:AD是△ABC的角平分线,DE⊥AB,DF⊥AC,垂足分别是E、F,BD=CD,求证:∠B=∠C. 例题5 已知:如图所示,点O在∠BAC的平分线上,BO⊥AC,CO⊥AB,垂足分别为D,E,求证:OB=OC. 例题6 如图,△ABC中,∠C=90°,AC=BC,AD平分∠BAC交BC于D,DE⊥AB,垂足为E,且AB=10 cm,求△DEB的周长. A F D E B

初二数学知识点归纳角平分线的定义

初二数学知识点归纳:角平分线的定义 初二数学知识点归纳:角平分线的定义 角平分线的性质一、本节学习指导角平分线的性质有助于我们解决三角形全等相关题型。其实不仅仅是角平分线,还有三角形的中位线、高、中心都是解决三角形题目有效的途径。二、知识要点 1、角平 分线的定义:从一个角的顶点出发把一个角分成两个相等的角的射线叫做角的平分线。如下图:OC平分∠AOB ∵OC平分∠AOB ∴∠AOC=∠BOC 2、角的平分线的性质:角平分线上的点到角的两边的距离相等。【重点】如第一个图:∵OC平分 ∠AOB(或∠1=∠2),PE⊥OA,PD⊥OB ∴PD=PE,此时我们知道 △OPE≌△OPD(直角三角形斜边是OP即公共边,直角边斜边) 3、角的平分线的判定:角的内部到角的两边距离相等的点在角的平分线上。如第一个图:∵PE⊥OA,PD⊥OB,PD=PE ∴OC平分∠AOB(或∠1=∠2)一、本节学习指导角平分线的性质有助于我们解决三角形全等相关 题型。其实不仅仅是角平分线,还有三角形的中位线、高、中心都是解决三角形题目有效的途径。 二、知识要点 1、角平分线的定义:从一个角的顶点出发把一个角分成两个相等的角的射线叫做角的平分线。 OC平分∠AOB ∵OC平分 ∠AOB ∴∠AOC=∠BOC 2、角的平分线的性质:角平分线上的点到角的两边的距离相等。【重点】∵OC平分∠AOB(或∠1=∠2),PE⊥OA,PD⊥OB ∴PD=PE,此时我们知道△OPE≌△OPD(直角三角形斜边是OP即公共边,直角边斜边) 3、角的平分线的判定:角的内部到角的两边距离相等的点在角的平 分线上。∵PE⊥OA,PD⊥OB,PD=PE ∴OC平分∠AOB(或∠1=∠2) 4、线段的中点的定义:把一条线段分成两条相等的线段的点叫做线 段的中点。∵C是AB的中点∴AC=BC 5、垂直的定义:两条直线相交所成的四个角中有一个是直角,这两条直线互相垂直。如图:【重点】∵AB⊥CD ∴∠AOC=∠AOD=∠BOC =∠BOD=90° 或∵∠AOC=90° ∴AB⊥CD 注意:要判断两条直线垂直,只要知道这两条相交直线所 形成的四个角中的一个角是直角就可以了。反过来,两条直线互相 垂直,它们的四个交角都是直角。 6、全等三角形的性质:全等三角

三角形中线与角平分线专题(二)

三角形中线与角平分线专题(二) 1、三角形外角平分线的四个经典结论: 结论一:三角形任意两个角平分线的夹角与第三个角的数量关系 已知如图1,BP 平分∠ABC ,CP 平分∠ACB ,求∠P 与∠A 的数量关系. 01902P A ∠=+∠ 结论二:三角形任意两个角相邻的外角的平分线说夹角与第三个角的关系. 已知如图2,BP 平分外角CBE ∠,CP 平分外角BCF ∠,求P ∠与A ∠的数量关系. 01902P A ∠=-∠ 结论三:三角形中任意一个角平分线与另一个角外角平分线的夹角与第三个角的关系 如图,BP 平分ABC ∠,CP 平分外角ACD ∠,求P ∠与A ∠的数量关系. 12 P A ∠=∠ 结论四:结论三延伸 如图,CE BE 、分别平分ACD ABC ∠∠和,连结EA ,则EA 为HAC ∠的平分线 21A E F B C 2 1P B A C

应用举例: 例1:在四边形ABCD 中,?=∠120D ,?=∠100A 、ABC ∠、ACB ∠的角平分线的交与点E ,试求BEC ∠的度数. 例2:在ABC ?中,三个外角的平分线所在的直线相交构成 DEF ?,试判断DEF ?的形状. 例3:如图3,在ABC ?中,延长BC 到D ,ABC ∠与ACD ∠的角平分线相较于1A 点,BC A 1∠与CD A 1∠的平分线交与2A 点,以此类推,若?=∠96A ,则=∠5A ,=∠n A . 图三 图四 例4:点M 是ABC ?两个角的平分线的交点,点N 是ABC ?两个外角的平分线的交点, 如果∠CMB ∶∠CNB=3∶2,那么=∠CAB 例5:( 2011年省是中考题)△ABC 的外角∠ACD 的平分线CP 的角∠ABC 平分线BP 交于点P ,若∠BPC=40°,则∠CAP=_______.

角平分线的几种辅助线作法与三种模型

一、角平分线的三种“模型” 模型一:角平分线+平行线→等腰三角形 如图1,过∠AOB平分线OC上的一点P,作PE∥O B,交OA于点E,则EO=EP. AAA EPCEC DFEP OBBCOFB 图1图2图3 例1 如图2,∠ABC,∠ACB的平分线相交于点F,过F作DE∥BC,交AB于点D,交AC于点E.求证:BD+EC=DE. 模型二:角平分线+垂线→等腰三角形 如图3,过∠AOB平分线OC上的一点P,作 EF⊥OC,交OA于点E,交OB于点F,则OE=OF, PE=PF. 例2 如图4,BD是∠ABC的平分线, AD⊥BD,垂足为D,求证:∠BAD=∠DAC+∠C. 模型三:角平分线+翻折→全等三角形 在△ABC中,AD是∠BAC的平分线,沿角平分线AD将△ABD往右边折叠就得到如图5的图形.此时有:△ABD≌△AB/D.此翻折相当于

在三角形的一边截取线段等于另一边,或延长一边等于另一边构造出相等的线段.用此方法可解决一些不相等的线段和差类问题. D A E AP / BC DB /BC 图5图6 例3 如图6,点P 是△ABC 的外角∠CAD 的平分线上的一点. 求证:PB+PC>AB+AC. 二、角平分线定理使用中的几种辅助线作法 一、已知角平分线,构造三角形 1、如图所示,在△ABC 中,∠ABC=3∠C ,AD 是∠BAC 的平分线,BE ⊥AD 于F 。 求证:1()2 BE AC AB =- 2、在△ABC 中,AD 平分∠BAC ,CE ⊥AD 于E .求证:∠ACE=∠B+∠ ECD . 二、已知一个点到角的一边的距离,过这个点作另一边的垂线段 1、如图所示,∠1=∠2,P 为BN 上的一点,并且PD ⊥BC 于D ,AB +BC=2BD 。 2 1F E D C B A N P E D C B A A B D C E F 图

三角形中线和角平分线在解题中的应用(整理八种方法)

解三角形题目的思考 文科:在△ABC 中,D 是BC 的中点,若AB=4,AC=1,∠BAC=60°,则AD=_______; 理科:在△ABC 中,D 在BC 上,AD 平分∠BAC ,若AB=3,AC=1,∠BAC=60°,则AD=_______; 常规解法及题根: (15年新课标2理科)?ABC 中,D 是BC 上的点,AD 平分∠BAC ,?ABD 是?ADC 面积的2倍。 (Ⅰ)求C B ∠∠sin sin ; (Ⅱ) 若AD =1,D C = 22求BD 和AC 的长. (15年新课标2文科)△ABC 中D 是BC 上的点,AD 平分∠BAC ,BD =2DC . (I )求sin sin B C ∠∠ ; (II )若60BAC ∠=o ,求B ∠. 重点结论:角平分线性质: (1)平分角 (2)到角两边距离相等 (3)线段成比率 中点性质与结论: (1)平分线段; (2)向量结论; (3)两个小三角形面积相等。 题目解法搜集: 解法1(方程思想):两边及夹角,利用余弦定理求第三边,然后在小三角形中求解; 在△ABC 中,D 在BC 上,AD 平分∠BAC ,若AB=3,AC=1,∠BAC=60°,则AD=_______; 解:在△ABC 中,222BC =AB +AC -2AB AC cos BAC=7∠g g ,则7 因为AD 平分∠BAC ,则AB BD AC DC = ,所以BD=37,DC=7; 在△ABD 中,设AD=x ,利用cos ∠BAD=cos30°=222 2AB AD BD AB AD +-g 即2 22373323x x +-??=?,解得x= 933344。 若在△ADC 中,设AC=m ,则273=1216x x +-,解得x=333。

20全等三角形中的角平分线-学生版

全等三角形中的角平 分线 中考要求 知识点睛 板块 考试要求 A 级要求 B 级要求 C级要求 全等三角形的性质及判定 会识别全等三角形 掌握全等三角形的概念、判定和 性质,会用全等三角形的性质和判定解决简单问题 会运用全等三角形的性质和判定解决有关问题 全等三角形的性质:对应角相等,对应边相等,对应边上的中线相等,对应边上的高相等,对应角的角平分线相等,面积相等. 寻找对应边和对应角,常用到以下方法: (1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边. (2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角. (3)有公共边的,公共边常是对应边. (4)有公共角的,公共角常是对应角. (5)有对顶角的,对顶角常是对应角. (6)两个全等的不等边三角形中一对最长边(或最大角)是对应边(或对应角),一对最短边(或最小角)是对应边(或对应角). 要想正确地表示两个三角形全等,找出对应的元素是关键. 全等三角形的判定方法: (1) 边角边定理(SA S):两边和它们的夹角对应相等的两个三角形全等. (2) 角边角定理(A SA):两角和它们的夹边对应相等的两个三角形全等. (3) 边边边定理(S SS ):三边对应相等的两个三角形全等. (4) 角角边定理(A AS ):两个角和其中一个角的对边对应相等的两个三角形全等. (5) 斜边、直角边定理(H L):斜边和一条直角边对应相等的两个直角三角形全等. 全等三角形的应用:运用三角形全等可以证明线段相等、角相等、两直线垂直等问题,在证明的过程中,注意有时会添加辅助线. 第十讲

例题精讲 奥数赛点:能通过判定两个三角形全等进而证明两条线段间的位置关系和大小关系.而证明两条线段或两个角的和、差、倍、分相等是几何证明的基础. 与角平分线相关的问题 角平分线的两个性质: ⑴角平分线上的点到角的两边的距离相等; ⑵到角的两边距离相等的点在角的平分线上. 它们具有互逆性. 角平分线是天然的、涉及对称的模型,一般情况下,有下列三种作辅助线的方式: 1. 由角平分线上的一点向角的两边作垂线, 2. 过角平分线上的一点作角平分线的垂线,从而形成等腰三角形, 3. OA OB =,这种对称的图形应用得也较为普遍, A B O P P O B A A B O P 【例1】 如图,已知ABC ?的周长是21,OB ,OC 分别平分ABC ∠和ACB ∠,OD BC ⊥于 D ,且3OD =,求ABC ?的面积. 【例2】 在ABC ?中,D 为BC 边上的点,已知BAD CAD ∠=∠,BD CD =,求证:AB AC =. 【例3】 如图所示:AB AC =,AD AE =,CD 、BE 相交于点O .求证:OA 平分DAE ∠. A D O C B D C B A

相关主题
文本预览
相关文档 最新文档