当前位置:文档之家› 04二元函数插值与逼近方法

04二元函数插值与逼近方法

04二元函数插值与逼近方法

毕业设计(论文)材料之一(1)

安徽工程大学 2011 届本科

毕业设计(论文)选题审批表

系别:数理学院

说明:1、表中“课题类型”是指模拟课题、实践课题、科研、论文式课题,由指导教师按类填写。

2、本表用钢笔填写或用计算机打印,字迹须清晰。

3、本表须报教务处备案。教研室、系各留一份。

样条插值函数与应用

样条插值函数及应用

摘要 样条函数具有广泛的应用,是现代函数论的一个十分活跃的分支,是计算方法的主要基础和工具之一,由于生产和科学技术向前发展的推动以及电子计算机广泛应用的需要,人们便更多地应用这个工具,也更深刻的认识了它的本质。 在实际问题中所遇到许多函数往往很复杂,有些甚至是很难找到解析表达式的。根据函数已有的数据来计算函数在一些新的点处的函数值,就是插值法所需要解决的问题。 插值法是数值逼近的重要方法之一,它是根据给定的自变量值和函数值,求取未知函数的近似值。早在一千多年前,我国科学家就在研究历法时就用到了线性插值和二次插值。而在实际问题中,有许多插值函数的曲线要求具有较高的光滑性,在整个曲线中,曲线不但不能有拐点,而且曲率也不能有突变。因此,对于插值函数必须二次连续可微且不变号 ,这就需要用到三次样条插值。 关键词三次样条函数;插值法

目录 引言 0 第一章三次样条插值 (1) 1.1 样条插值函数简介 (1) 1.2 三次样条函数应用 (2) 第二章AMCM91A 估计水塔水流量 (4) 2.1 理论分析及计算 (5) 2.2运用MATLAB软件计算 (8) 参考文献 (13)

引言 样条函数具有广泛的应用,是现代函数论的一个十分活跃的分支,是计算方法的主要基础和工具之一,由于生产和科学技术向前发展的推动以及电子计算机广泛应用的需要,人们便更多地应用这个工具,也更深刻的认识了它的本质。上世纪四十年代,在研究数据处理的问题中引出了样条函数,例如,在1946年Schoenberg将样条引入数学,即所谓的样条函数,直到五十年代,还多应用于统计数据的处理方面,从六十年代起,在航空、造船、汽车等行业中,开始大量采用样条函数。 在我国,从六十年代末开始,从船体数学放样到飞机外形设计,逐渐出现了一个使用样,逐渐出现了一个使用样条函数的热潮,并推广到数据处理的许多问题中。 在实际生活中有许多计算问题对插值函数的光滑性有较高的要求,例如飞机机翼外形、发动机进、排气口都要求有连续的二阶导数,用三次样条绘制的曲线不仅有很好的光滑度,而且当节点逐渐加密时其函数值整体上能很好地逼近被插函数,相应的导数值也收敛于被插函数的导数值,不会发生“龙格现象”。 现在国内外学者对这方面的研究也越来越重视,根据我们的需要来解决不同的问题,而且函数的形式也在不断地改进,长期以来很多学者致力于样条插值的研究,对三次样条的研究已相当成熟。

计算方法 课内实验 插值法与函数逼近

《计算方法》课内实验报告 学生姓名:张学阳1009300132 及学号: 学院: 理学院 班级: 数学101 课程名称:计算方法 实验题目:插值法与函数逼近 指导教师 宋云飞讲师 姓名及职称: 朱秀丽讲师 尚宝欣讲师 2012年10月15日

目录 一、实验题目.......................................................... 错误!未定义书签。 二、实验目的.......................................................... 错误!未定义书签。 三、实验内容.......................................................... 错误!未定义书签。 四、实现结果.......................................................... 错误!未定义书签。 五、实验体会或遇到问题 (6)

插值法与函数逼近 二、实验目的 1.熟悉matlab 编写及运行数值计算程序的方法。 2.进一步理解插值法及函数逼近方法的理论基础。 3.进一步掌握给定数据后应用插值法及函数逼近方法进行数据处理并给出图示结果的实际操作过程。 三、实验内容 1.已知函数在下列各点的值为 试用4次牛顿插值多项式)(4x P 及三次样条函数)(x S (自然边界条件)对数据进行插值。给出求解过程,并用图给出 (){},10,1,0),()(,08.02.0,,4 ===+=i x S y x P y i x y x i i i i i 及。 2.下列数据点的插值 可以得到平方根函数的近似。 (1)用这9个点作8次多项式插值)(8x L 。 (2)用三次样条(第一类边界条件)插值给出)(x S 。 给出求解过程,在区间[0,64]上作图,从得到的结果看,在区间[0,64]上哪种插值结果更精确?在区间[0,1]上两种插值哪个更精确? 3.由实验给出数据表 试求3次、4次多项式的曲线拟合,再根据数据曲线形状,求一个另外函数的拟合曲线。给出求解过程,用图表示实验数据曲线及三种拟合曲线。

Lagrange插值基函数构造插值多项式

数学与软件科学学院实验报告 学期:至第学期年月日 课程名称:___计算机数值方法___ 专业: 级班 实验编号:1 实验项目一次、二次Lagrange 插值多项式指导教师__张莉_ 姓名:学号:实验成绩: 一、实验目的及要求 实验目的:体会使用Lagrange插值基函数构造插值多项式的特点,熟悉使用一次或二次Lagrange插值多项式近似函数y=f(x)的算法。掌握Lagrange插值多项式近似函数f(x)的误差表达式,并会熟练应用。 实验要求: 1. 给出一次、二次Lagrange插值算法 2. 用C语言实现算法 3. 给出误差分析。 二、实验内容 用下列插值节点数据,构造一次和二次Lagrange插值多项式,并计 三、实验步骤(该部分不够填写.请填写附页) 步骤一:用为代码描述lagrange插值多项式的算法 Step 1:输入:插值节点控制数n,插值点序列(xi,yi),i=0,1,…n,要计算的函数点x. Step 2: for j=0 to n { { for j=0 to n 对于给定的x,计算lagrange基函数li(x) 然后求tmp=tmp*(x-xj)/(xi-xj); } fx=fx+tmp*yi; } Step 3:输出结果。 步骤二:编辑程序如下:

#include #define MAX_N 3 // 定义点的最大维数 typedef struct tagPOINT /*the structer of point */ { double x; double y; }POINT; //点的结构 int main() { int n,i,j; POINT points[MAX_N+1]; double tmp=1.0; double x; double lagrange=0.0; clrscr(); printf("\nInput n value :"); /*the number of the points inserted*/ scanf("%d",&n); //输入被插值点的个数 if(n>MAX_N) { printf("The input n is larger than MAX_N,please redefine the MAX_N.\n"); return 1; } if(n<=0) { printf("Please input a number between 1 and %d.\n",MAX_N); } printf("Now input the (x_i,y_i),i=0,...%d:\n",n); for(i=0;i<=n;i++) scanf("%lf %lf",&points[i].x,&points[i].y); //输入被插值点 printf("Now input the x value:"); /*the value of x*/ scanf("%lf",&x); //输入待求的点的第一个分量 for(i=0;i<=n;i++) { for(j=0;j<=n && j!=i;j++) tmp*=(x-points[j].x)/(points[i].x-points[j].x); lagrange+=tmp*points[i].y; } //用lagrange来求多项式 printf("the results is %lf",lagrange);

对样条函数及其插值问题的一点认识

对样条函数及其插值问题的一点认识 样条函数是计算数学以及计算机辅助设计几何设计的重要工具。1946年,I. J. Schoenberg 著名的关于一元样条函数的奠定性论文“Contribution to the problem of application of equidistant data by analytic functions ”发表,建立了一元样条函数的理论基础。自此以后,关于样条函数的研究工作逐渐深入。随着电子计算机技术的不断进步,样条函数的理论以及应用研究得到迅速的发展和广泛的应用。经过数学工作者的努力,已经形成了较为系统的理论体系。 所谓(多项式)样条函数,乃指具有一定光滑性的分段(分片)多项式。一元n 次且n -1阶连续可微的样条函数具有如下的表示式: 1()()()()N n n j j j s x p x c x x x +==+--∞<<+∞∑[] 011,00,01,,...,,(1),...,(),,...,,n n n n N n N N u un u u u u x x x x x S x x x x ++++ +≥??=??

数据插值和函数逼近 MATLAB实现

数据插值和函数逼近 1 数据插值 由已知样本点,以数据更为平滑为目标,求出其他点处的函数 值。在信号处理与图像处理上应用广泛。 求解方法: y1=interp1(x,y,x1,'方法') z1=interp2(x,y,z,x1,y1,'方法') 1.1 一维数据的插值 例:假设样本点来自x e x x x f x sin )53()(52-+-=,进行插值处理,得到平 例:草图样条曲线功能。 function sketch() x=[]; y=[]; gca; hold on; axis([0 1,0 1]); while 1 [x0,y0,button]=ginput(1);

if(isempty(button)) break; end; x=[x x0]; y=[y y0]; plot(x,y,'*'); end; xx=[x(1):(x(end)-x(1))/100:x(end)]; yy=interp1(x,y,xx,'spline'); plot(xx,yy,x,y,'*'); end 1.2 二维网格数据的插值 例3:假设样本点来自xy y x e x x z ----=2 2)2(2,进行插值处理,得到平滑的曲

1.3 二维一般分布数据的插值 例4:假设样本点来自xy y x e x x z ----=22)2(2,进行插值处理,得到平滑的曲 2 样条插值函数逼近 由已知样本点,求能对其较好拟合的函数表达式。 求解方法: S=csapi(x,y); % 定义一个三次样条函数类 S=spapi(k,x,y); % 定义一个k 次B 样条函数类 ys=fnval(S,xs); % 计算插值结果 fnplt(S); % 绘制插值结果 例:从)sin(x y =中取样本点,计算三次样条函数。

五种插值法的对比研究---开题报告

五种插值法的对比研究 1. 选题依据 1.1 选题背景 插值法是一种古老的数学方法,插值法历史悠久。据考证,在公元六世纪时, 我国焯(zhuo) 已经把等距二次插值法应用于天文计算。十七世纪时,Newton 和 Gregory(格雷格里) 建立了等距节点上的一般插值公式,十八世纪时,Lagrange(拉格朗日) 给出了更一般的非等距节点插值公式。 而它的基本理论是在微积分产生以后逐渐完善的,它的实际应用也日益增多,特别是在计算机工程中。许多库函数的计算实际上归结于对逼近函数的计算。 1.2 研究的目的和意义 插值法是数值分析中最基本的方法之一。 在实际问题中碰到的函数是各种各样的,有的甚至给不出表达式,只提供了一些离散数据,例如,在查对数表时, 要查的数据在表中找不到,就先找出它相邻的数,再从旁边找出它的修正值, 按一定关系把相邻的数加以修正,从而找出要找的数,这种修正关系实际上就是一种插值。 在实际应用中选用不同类型的插值函数,逼近的效果也不同。在数值计算方法中,我们学习过五种基本的插值方法,即Lagrange 插值、Newton 插值、分段线性插值、分段三次Hermite 插值、样条插值函数。所以通过从这五种插值法的基本思想、特征、性质和具体实例入手,探讨五种插值法的优缺点和适用围,让学习者能够迅速而准确的解决实际问题,掌握插值法的应用。 2. 研究的方法 从具体实例入手并结合Matlab 在科学计算中的优势,通过实验对它们的精度和效率进行比较分析。 3. 论文结构 3.1 论文的总体结构 第一部分 导言 主要介绍选题的背景、目的及意义、研究现状、文献综述等。 第二部分 五种插值法的基本思想、性质及特点 在数值计算方法中,插值法是计算方法的基础,数值微分、数值积分和微分方程数值解都建立在此基础上。 插值问题的提法是:已知f(x)(可能未知或非常复杂函数)在彼此不同的n+1 个实点0x ,1x ,…n x 处的函数值是f(0x ),f(1x ),…,f(n x ),这时我们简单的说f(x)有n+1 个 离散数据对0n i i )}y ,{(x i .要估算f(x)在其它点x 处的函数值,最常见的一种办法就是插值, 即寻找一个相对简单的函数y(x),使其满足下列插值条件:y(i x )=f(i x ),i=0,1,…,n.,并以y(x)作为f(x)的近似值.其中y(x)称为插值函数,f(x)称为被插函数。

Matlab中插值函数汇总和使用说明.

告: Matlab中插值函数汇总和使用说明收藏 命令1 interp1 功能一维数据插值(表格查找。该命令对数据点之间计算内插值。它找出一元函数f(x在中间点的数值。其中函数f(x由所给数据决定。x:原始数据点 Y:原始数据点 xi:插值点 Yi:插值点 格式 (1yi = interp1(x,Y,xi 返回插值向量yi,每一元素对应于参量xi,同时由向量x 与Y 的内插值决定。参量x 指定数据Y 的点。 若Y 为一矩阵,则按Y 的每列计算。yi 是阶数为length(xi*size(Y,2的输出矩阵。 (2yi = interp1(Y,xi 假定x=1:N,其中N 为向量Y 的长度,或者为矩阵Y 的行数。 (3yi = interp1(x,Y,xi,method 用指定的算法计算插值: ’nearest’:最近邻点插值,直接完成计算; ’linear’:线性插值(缺省方式,直接完成计算;

’spline’:三次样条函数插值。对于该方法,命令interp1 调用函数spline、ppval、mkpp、umkpp。这些命令生成一系列用于分段多项式操作的函 数。命令spline 用它们执行三次样条函数插值; ’pchip’:分段三次Hermite 插值。对于该方法,命令interp1 调用函数p chip,用于对向量x 与y 执行分段三次内插值。该方法保留单调性与数据的外形; ’cubic’:与’pchip’操作相同; ’v5cubic’:在MATLAB 5.0 中的三次插值。 对于超出x 范围的xi 的分量,使用方法’nearest’、’linear’、’v5cubic’的插值算法,相应地将返回NaN。对其他的方法,interp1 将对超出的分量执行外插值算法。 (4yi = interp1(x,Y,xi,method,'extrap' 对于超出x 范围的xi 中的分量将执行特殊的外插值法extrap。 (5yi = interp1(x,Y,xi,method,extrapval 确定超出x 范围的xi 中的分量的外插值extrapval,其值通常取NaN 或0。 例1 1.>>x = 0:10; y = x.*sin(x; 2.>>xx = 0:.25:10; yy = interp1(x,y,xx; 3.>>plot(x,y,'kd',xx,yy 复制代码 例2 1.>> year = 1900:10:2010;

[整理]matlab绘制二元函数图形.

MATL AB绘制二元函数的图形 【实验目的】 1.了解二元函数图形的绘制。 2.了解空间曲面等高线的绘制。 3.了解多元函数插值的方法。 4.学习、掌握MATLAB软件有关的命令。 【实验内容】 画出函数2 2y z+ =的图形,并画出其等高线。 x 【实验准备】 1.曲线绘图的MATLAB命令 MATLAB中主要用mesh,surf命令绘制二元函数图形。主要命令mesh(x,y,z)画网格曲面,这里x,y,z是数据矩阵,分别表示数据点的横坐标,纵坐标和函数值,该命令将数据点在空间中描出,并连成网格。 surf(x,y,z)画完整曲面,这里x,y,z是数据矩阵,分别表示数据点的横坐标,纵坐标和函数值,该命令将数据点所表示曲面画出。 【实验重点】 1. 二元函数图形的描点法 2. 曲面交线的计算 3. 地形图的生成

【实验难点】 1. 二元函数图形的描点法 2. 曲面交线的计算 【实验方法与步骤】 练习1画出函数2 2y =的图形,其中]3,3 x z+ ? - y x。 ∈ , [ ]3,3 [ (- ) 用MATLAB作图的程序代码为 >>clear; >>x=-3:0.1:3; %x的范围为[-3,3] >>y=-3:0.1:3; %y的范围为[-3,3] >>[X,Y]=meshgrid(x,y); %将向量x,y指定的区域转化为矩阵X,Y >>Z=sqrt(X.^2+Y.^2); %产生函数值Z >>mesh(X,Y,Z) 运行结果为

图5.3 如果画等高线,用contour,contour3命令。 contour画二维等高线。 contour3画三维等高线。画图5.3所示的三维等高线的MA TLAB 代码为 >>clear; >>x=-3:0.1:3; >>y=-3:0.1:3; >>[X,Y]=meshgrid(x,y); >>Z=sqrt(X.^2+Y.^2); >>contour3(X,Y,Z,10); %画10条等高线 >>xlabel('X-axis'),ylabel('Y-axis'),zlabel('Z-axis'); %三个坐标轴的

三次样条插值作业题

例1 设)(x f 为定义在[0,3]上的函数,有下列函数值表: 且2.0)('0=x f ,1)('3-=x f ,试求区间[0,3]上满足上述条件的三次样条插值函数)(x s 本算法求解出的三次样条插值函数将写成三弯矩方程的形式: ) ()6()() 6()(6)(6)(211123 13 1j j j j j j j j j j j j j j j j x x h h M y x x h h M y x x h M x x h M x s -- + -- + -+ -= +++++其中,方程中的系数 j j h M 6, j j h M 61+,j j j j h h M y )6(2- , j j j j h h M y ) 6(211++- 将由Matlab 代码中的变量Coefs_1、Coefs_2、Coefs_3以及Coefs_4的值求出。 以下为Matlab 代码: %============================= % 本段代码解决作业题的例1 %============================= clear all clc % 自变量x 与因变量y ,两个边界条件的取值 IndVar = [0, 1, 2, 3]; DepVar = [0, 0.5, 2, 1.5]; LeftBoun = 0.2; RightBoun = -1; % 区间长度向量,其各元素为自变量各段的长度 h = zeros(1, length(IndVar) - 1); for i = 1 : length(IndVar) - 1 h(i) = IndVar(i + 1) - IndVar(i); end % 为向量μ赋值

三次样条插值方法的应用

CENTRAL SOUTH UNIVERSITY 数值分析实验报告

三次样条插值方法的应用 一、问题背景 分段低次插值函数往往具有很好的收敛性,计算过程简单,稳定性好,并且易于在在电子计算机上实现,但其光滑性较差,对于像高速飞机的机翼形线船体放样等型值线往往要求具有二阶光滑度,即有二阶连续导数,早期工程师制图时,把富有弹性的细长木条(即所谓的样条)用压铁固定在样点上,在其他地方让他自由弯曲,然后沿木条画下曲线,称为样条曲线。样条曲线实际上是由分段三次曲线并接而成,在连接点即样点上要求二阶导数连续,从数学上加以概括就得到数学样条这一概念。下面我们讨论最常用的三次样条函数及其应用。 二、数学模型 样条函数可以给出光滑的插值曲线(面),因此在数值逼近、常微分方程和偏微分方程的数值解及科学和工程的计算中起着重要的作用。 设区间[]b ,a 上给定有关划分b x x n =<<<=Λ10x a ,S 为[]b ,a 上满足下面条件的函数。 ● )(b a C S ,2∈; ● S 在每个子区间[]1,+i i x x 上是三次多项式。 则称S 为关于划分的三次样条函数。常用的三次样条函数的边界条件有三种类型: ● Ⅰ型 ()()n n n f x S f x S ''0'',==。 ● Ⅱ型 ()()n n n f x S f x S ''''0'''',==,其特殊情况为()()0''''==n n x S x S 。 ● Ⅲ型 ()()Λ3,2,1,0,0==j x S x S n j j ,此条件称为周期样条函数。

鉴于Ⅱ型三次样条插值函数在实际应用中的重要地位,在此主要对它进行详细介绍。 三、算法及流程 按照传统的编程方法,可将公式直接转换为MATLAB可是别的语言即可;另一种是运用矩阵运算,发挥MATLAB在矩阵运算上的优势。两种方法都可以方便地得到结果。方法二更直观,但计算系数时要特别注意。这里计算的是方法一的程序,采用的是Ⅱ型边界条件,取名为spline2.m。 Matlab代码如下: function s=spline2(x0,y0,y21,y2n,x) %s=spline2(x0,y0,y21,y2n,x) %x0,y0 are existed points,x are insert points,y21,y2n are the second %dirivitive numbers given. n=length(x0); km=length(x); a(1)=-0.5; b(1)=3*(y0(2)-y0(1))/(2*(x0(2)-x0(1))); for j=1:(n-1) h(j)=x0(j+1)-x0(j); end for j=2:(n-1) alpha(j)=h(j-1)/(h(j-1)+h(j)); beta(j)=3*((1-alpha(j))*(y0(j)-y0(j-1))/h(j-1)+alpha(j)*(y0(j+1)-y0(j))/h(j));

回归、插值、逼近、拟合的区别

回归、插值、逼近、拟合的区别 1、回归:一般指线性回归,是求最小二乘解的过程。在求回归前,已经假设所有型值点同时满足某一曲线方程,计算只要求出该方程的系数 2、多项式插值:用一个多项式来近似代替数据列表函数,并要求多项式通过列表函数中给定的数据点。(插值曲线要经过型值点。)离散的点 3、多项式逼近:为复杂函数寻找近似替代多项式函数,其误差在某种度量意义下最小。(逼近只要求曲线接近型值点,符合型值点趋势。)连续的函数 4、多项式拟合:在插值问题中考虑给定数据点的误差,只要求在用多项式近似代替列表函数时,其误差在某种度量意义下最小。离散的点 注意: 表列函数:给定n+1个不同的数据点(x0,y0),(x1,y1)...,(xn,yn),称由这组数据表示的函数为表列函数。 逼近函数:求一函数,使得按某一标准,这一函数y=f(x)能最好地反映这一组数据即逼近这一表列函数,这一函数y=f(x)称为逼近函数 插值函数:根据不同的标准,可以给出各种各样的函数,如使要求的函数y=f(x)在以上的n+1个数据点出的函数值与相应数据点的纵坐标相等,即yi=f(x1)(i=0,1,2....n)这种函数逼近问题称为插值问题,称函数y=f(x)为数据点的插值函数,xi称为插值点。 插值和拟合都是函数逼近或者数值逼近的重要组成部分 他们的共同点都是通过已知一些离散点集M上的约束,求取一个定义在连续集合S(M包含于S)的未知连续函数,从而达到获取整体规律的 目的,即通过"窥几斑"来达到"知全豹"。 简单的讲,所谓拟合是指已知某函数的若干离散函数值{f1,f2,…,fn},通过调整该函数中若干待定系数f(λ1, λ2,…,λ3), 使得该函数与已知点集的差别(最小二乘意义)最小。如果待定函数是线性,就叫线性拟合或者线性回归(主要在统计中),否则叫作非线性拟合或者非线性回归。表达式也可以是分段函数,这种情况下叫作样条拟合。 而插值是指已知某函数的在若干离散点上的函数值或者导数信息,通过求解该函数中待定形式的插值函数以及待定系数,使得该函数在给定离散点上满足约束。插值函数又叫作基函数,如果该基函数定义在整个定义域上,叫作全域基,否则叫作分域基。如果约束条件中只有函数值的约束,叫作Lagrange插值,否则叫作Hermite插值。 从几何意义上将,拟合是给定了空间中的一些点,找到一个已知形式未知参数的连续曲面来最大限度地逼近这些点;而插值是找到一个(或几个分片光滑的)连续曲面来穿过这些点。

函数的插值方法及matlab程序

6.1 插值问题及其误差 6.1.2 与插值有关的MATLAB 函数 (一) POLY2SYM函数 调用格式一:poly2sym (C) 调用格式二:f1=poly2sym(C,'V') 或f2=poly2sym(C, sym ('V') ), (二) POLYVAL函数 调用格式:Y = polyval(P,X) (三) POLY函数 调用格式:Y = poly (V) (四) CONV函数 调用格式:C =conv (A, B) 例 6.1.2求三个一次多项式、和的积.它们的零点分别依次为0.4,0.8,1.2. 解我们可以用两种MATLAB程序求之. 方法1如输入MATLAB程序 >> X1=[0.4,0.8,1.2]; l1=poly(X1), L1=poly2sym (l1) 运行后输出结果为 l1 = 1.0000 - 2.4000 1.7600 -0.3840 L1 = x^3-12/5*x^2+44/25*x-48/125 方法2如输入MATLAB程序 >> P1=poly(0.4);P2=poly(0.8);P3=poly(1.2); C =conv (conv (P1, P2), P3) , L1=poly2sym (C) 运行后输出的结果与方法1相同. (五) DECONV 函数 调用格式:[Q,R] =deconv (B,A) (六) roots(poly(1:n))命令 调用格式:roots(poly(1:n)) (七) det(a*eye(size (A)) - A)命令 调用格式:b=det(a*ey e(size (A)) - A) 6.2 拉格朗日(Lagrange)插值及其MATLAB程序 6.2.1 线性插值及其MATLAB程序 例 6.2.1 已知函数在上具有二阶连续导数,,且满足条件 .求线性插值多项式和函数值,并估计其误差. 解输入程序 >> X=[1,3];Y=[1,2]; l01= poly(X(2))/( X(1)- X(2)), l11= poly(X(1))/( X(2)- X(1)), l0=poly2sym (l01),l1=poly2sym (l11), P = l01* Y(1)+ l11* Y(2), L=poly2sym (P),x=1.5; Y = polyval(P,x) 运行后输出基函数l0和l1及其插值多项式的系数向量P(略)、插值多项式L和插值Y为l0 = l1 = L = Y = -1/2*x+3/2 1/2*x-1/2 1/2*x+1/2 1.2500 输入程序 >> M=5;R1=M*abs((x-X(1))* (x-X(2)))/2

二元函数插值的一般方法研究

《二元函数多项式插值的一般方法研究》的开题报告 一.课题研究的背景和意义 (一).插值问题的提出和发展过程 许多实际问题都用函数)(x f y =来表示某种内在规律的数量关系,其中相当一部分函数通过实验或观测得到的.虽然)(x f 在某个区间[]b a ,上是存在的,有的还是连续的,但却只能给出[]b a ,上一系列点i x 的函数值),...,1,0)((n i x f y i i ==,这只是一张函数表.有的函数虽有解析表达式,但由于计算复杂,使用不方便,通常也造一个函数表,如大家熟悉的三角函数表、对数表、平方根和立方根表等.为了研究函数的变化规律,往往需要求出不在表上的函数值.因此,我们希望根据给定的函数表做一个既能反应函数)(x f 的特性,又便于计算的简单函数)(x P ,用)(x P 近似)(x f .通常选一类较简单的函数(如代数多项式或分段代数多项式)作为)(x P ,并使)()(i i x f x P =对n i ,...,1,0=成立.这样确定的)(x P 就是我们希望得到的插值函数. 对于上述的)(x f y =的函数插值,前人们已经做过很多的研究,典型的有多项式插值、拉格朗日插值、牛顿插值、埃尔米特插值等.但是对于二元函数),(y x f z =的插值还没有一个较广的研究. (二).二元函数插值研究的意义 1. 理论意义: 一元函数插值主要有基函数法、拉格朗日插值法、牛顿插值法、埃尔米特插值等,但是对于二元函数插值乃至n 元插值是不能直接在一元函数插值的基础上直接推广的。多元插值是一个活跃的研究领域,至今已有非常多的多元插值公式,但是可供利用的公式十分少。 所以我们研究二元函数的插值时,可以为n 元函数插值提供新的研究思路,有助于复杂函数的偏导数的求解,也可以是对插值理论的完善。 2. 实际意义: 一元函数插值问题主要是平面的,而二元函数插值是在三维空间上的,这对我们构造三维空间图像有非常大的作用.例如,在现代机械工业中用计算机控制加工机械零件,根据设

关于三次样条插值函数的学习报告(研究生)资料

学习报告—— 三次样条函数插值问题的讨论 班级:数学二班 学号:152111033 姓名:刘楠楠

样条函数: 由一些按照某种光滑条件分段拼接起来的多项式组成的函数;最常用的样条函数为三次样条函数,即由三次多项式组成,满足处处有二阶连续导数。 一、三次样条函数的定义: 对插值区间[,]a b 进行划分,设节点011n n a x x x x b -=<< <<=,若 函数2()[,]s x c a b ∈在每个小区间1[,]i i x x +上是三次多项式,则称其为三次样条函数。如果同时满足()()i i s x f x = (0,1,2)i n =,则称()s x 为()f x 在 [,]a b 上的三次样条函数。 二、三次样条函数的确定: 由定义可设:101212 1(),[,] (),[,]()(),[,] n n n s x x x x s x x x x s x s x x x x -∈??∈?=???∈?其中()k s x 为1[,]k k x x -上的三次 多项式,且满足11(),()k k k k k k s x y s x y --== (1,2,,k n = 由2()[,]s x C a b ∈可得:''''''()(),()(),k k k k s x s x s x s x -+-+== 有''1()(),k k k k s x s x -++= ''''1()(),(1 ,2,,1)k k k k s x s x k n -+ +==-, 已知每个()k s x 均为三次多项式,有四个待定系数,所以共有4n 个待定系数,需要4n 个方程才能求解。前面已经得到22(1)42n n n +-=-个方程,因此要唯一确定三次插值函数,还要附加2个条件,一般上,实际问题通常对样条函数在端点处的状态有要求,即所谓的边界条件。 1、第一类边界条件:给定函数在端点处的一阶导数,即 ''''00(),()n n s x f s x f == 2、第二类边界条件:给定函数在端点处的二阶导数,即

第6章 函数逼近与函数插值

第六章 函数逼近与函数插值 本章介绍函数逼近与插值的有关理论和算法. 函数逼近问题与插值问题两者既有联系又有区别,它们都是用较简单的函数来近似未知的、或表达式较复杂的函数. 一般来说,函数逼近是要在整个区间、或一系列离散点上整体逼近被近似函数,而在进行插值时,则须保证在若干自变量点上的函数值与被近似函数相等. 6.1 函数逼近的基本概念 进行函数逼近一般是在较简单的函数类Φ中找一个函数p(x)来近似给定的函数f(x),以使得在某种度量意义下误差函数p (x )?f(x)最小. 被逼近函数f(x)可能是较复杂的连续函数,也可能是只在一些离散点上定义的表格函数,而函数类Φ可以是多项式、分段多项式、三角函数、有理函数,等等. 函数逼近问题中度量误差的手段主要是函数空间的范数,下面先介绍函数空间的范数、内积等有关概念,然后讨论函数逼近问题的不同类型. 6.1.1 函数空间 线性空间的概念大家都很熟悉,其定义中包括一个元素集合和一个数域,以及满足一定运算规则的“加法”和“数乘”运算. 简单说,若这个元素集合对于“加法”和“数乘”运算封闭,则为一线性空间. 线性空间的元素之间存在线性相关和线性无关两种关系,进而又有空间的基和维数的概念. 在这里我们先考虑连续函数形成的线性空间. 例如C [a,b ]按函数加法、以及函数与实数乘法,构成一个线性空间. 对于[a,b]区间上所有k 阶导数连续的函数全体C k [a,b ],也类似地构成一个线性空间. 我们一般讨论实数函数,因此对应的是实数域?,若讨论复数函数,则相应的是复数域?. 另外,与线性代数中讨论的向量空间?n 不同,连续函数空间是无限维的. 对线性空间可以定义范数的概念(见3.1.2节). 针对实连续函数空间C [a,b ],与向量空间类似,可定义如下三种函数的范数(function norm): 1) ∞-范数 设f (x )∈C [a,b ],则‖f (x )‖∞=max x∈[a,b ]|f (x )| . 其几何意义如图6-1所示,即函数值绝 对值的最大值. 2) 1-范数 ‖f (x )‖1=∫|f (x )|dx b a . 其几何意义如图6-2所示,即函数曲线 与横轴之间的面积总和. 3) 2-范数 ‖f (x )‖2=[∫f 2(x )dx b a ]1/2. 2-范数也常称为平方范数,其几何意义 与1-范数类似. 线性空间还有一个重要概念是内积,它 定义了空间中两个元素的一种运算. 下面给出一般的复数域上线性空间内积的定义.

插值问题

§2 插值问题 在应用领域中,由有限个已知数据点,构造一个解析表达式,由此计算数据点之间的函数值,称之为插值。 实例:海底探测问题 某公司用声纳对海底进行测试,在5×5海里的坐标点上测得海底深度的值,希望通过这些有限的数据了解更多处的海底情况。并绘出较细致的海底曲面图。 一、一元插值 一元插值是对一元数据点(x i,y i)进行插值。 1.线性插值:由已知数据点连成一条折线,认为相临两个数据点之间的函数值就在这两点之间的连线上。一般来说,数据点数越多,线性插值就越精确。 调用格式:yi=interp1(x,y,xi,’linear’) %线性插值 zi=interp1(x,y,xi,’spline’) %三次样条插值 wi=interp1(x,y,xi,’cubic’) %三次多项式插值 说明:yi、zi、wi为对应xi的不同类型的插值。x、y为已知数据点。 例1:已知数据: x0.1.2.3.4.5.6.7.8.91 y.3.51 1.4 1.6 1.9.6.4.8 1.52 求当x i=0.25时的y i的值。 程序: x=0:.1:1; y=[.3 .5 1 1.4 1.6 1 .6 .4 .8 1.5 2]; yi0=interp1(x,y,0.025,'linear') xi=0:.02:1; yi=interp1(x,y,xi,'linear'); zi=interp1(x,y,xi,'spline'); wi=interp1(x,y,xi,'cubic'); plot(x,y,'o',xi,yi,'r+',xi,zi,'g*',xi,wi,'k.-') legend('原始点','线性点','三次样条','三次多项式') 结果:yi0 = 0.3500 要得到给定的几个点的对应函数值,可用: xi =[ 0.2500 0.3500 0.4500] yi=interp1(x,y,xi,'spline')

多项式插值与函数最佳逼近

37、题目:3次样条插值函数 (1)编制求第一型3次样条插值函数的通用程序; (2)已知汽车门曲线型值点的数据如下: i 0 1 2 3 4 5 6 7 8 9 10 i x 0 1 2 3 4 5 6 7 8 9 10 i y 2.51 3.30 4.04 4.70 5.22 5.54 5.78 5.40 5.57 5. 70 5.80 端点条件为8.0'0=y ,2.0' 10=y ,用所编程序求车门的3次样条插值函数()x S ,并打印出 ()5.0+i S ,9,...,1,0=i 。 解:(1)%主程序 %求当自变量取值为t 时,由3次样条插值函数S3求出函数值 %输入插值点的x 坐标形成的列向量x ,y 坐标形成的列向量y %第一型边界条件端点的导数值形成的向量y1 function res=S3(x,y,y1,t) n=length(x); %求教材4.5.17矩阵方程的系数矩阵A for i=1:n-1 h(i)=x(i+1)-x(i); end for i=1:n-2 u(i)=h(i)/(h(i)+h(i+1)); l(i)=1-u(i); end A=2*eye(n); A(1,2)=1; A(n,n-1)=1; for i=2:n-1 A(i,i-1)=u(i-1); A(i,i+1)=l(i-1); end %求4.5.17矩阵方程的等式右端列向量d %求出y 的各阶差商 Diff=zeros(n); %求零阶差商 for i=1:n Diff(i,1)=y(i); end %求1到n-1阶差商 for j=1:n for i=1:(n-j) Diff(i,j+1)=(Diff(i+1,j)-Diff(i,j))/(x(i+j)-x(i));

三次样条插值自然边界条件

例:已知一组数据点,编写一程序求解三次样条插值函数满足 并针对下面一组具体实验数据 0.25 0.3 0.39 0.45 0.53 0.5000 0.5477 0.6245 0.6708 0.7280 求解,其中边界条件为. 1)三次样条插值自然边界条件源程序: function s=spline3(x,y,dy1,dyn) %x为节点,y为节点函数值,dy1,dyn分别为x=0.25,0.53处的二阶导 m=length(x);n=length(y); if m~=n error('x or y输入有误') return end h=zeros(1,n-1); h(n-1)=x(n)-x(n-1); for k=1:n-2 h(k)=x(k+1)-x(k); v(k)=h(k+1)/(h(k+1)+h(k)); u(k)=1-v(k); end g(1)=3*(y(2)-y(1))/h(1)-h(1)/2*dy1; g(n)=3*(y(n)-y(n-1))/h(n-1)+h(n-1)/2*dyn; for i=2:n-1 g(i)=3*(u(i-1)*(y(i+1)-y(i))/h(i)+v(i-1)*(y(i)-y(i-1))/h(i-1)); end for i=2:n-1; A(i,i-1)=v(i-1); A(i,i+1)=u(i-1); end A(n,n-1)=1; A(1,2)=1; A=A+2*eye(n); M=zhuigf(A,g); %调用函数,追赶法求M fprintf('三次样条(三对角)插值的函数表达式\n'); syms X;

for k=1:n-1 fprintf('S%d--%d:\n',k,k+1); s(k)=(h(k)+2*(X-x(k)))./h(k).^3.*(X-x(k+1)).^2.*y(k)... +(h(k)-2*(X-x(k+1)))./h(k).^3.*(X-x(k)).^2.*y(k+1)... +(X-x(k)).*(X-x(k+1)).^2./h(k).^2*M(k)+(X-x(k+1)).*... (X-x(k)).^2./h(k).^2*M(k+1); end s=s.'; s=vpa(s,4); %画三次样条插值函数图像 for i=1:n-1 X=x(i):0.01:x(i+1); st=(h(i)+2*(X-x(i)))./(h(i)^3).*(X-x(i+1)).^2.*y(i)... +(h(i)-2.*(X-x(i+1)))./(h(i)^3).*(X-x(i)).^2.*y(i+1)... +(X-x(i)).*(X-x(i+1)).^2./h(i)^2*M(i)+(X-x(i+1)).*... (X-x(i)).^2./h(i)^2*M(i+1); plot(x,y,'o',X,st); hold on End plot(x,y); grid on %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %调用的函数: %追赶法 function M=zhuigf(A,g) n=length(A); L=eye(n); U=zeros(n); for i=1:n-1 U(i,i+1)=A(i,i+1); end U(1,1)=A(1,1); for i=2:n L(i,i-1)=A(i,i-1)/U(i-1,i-1); U(i,i)=A(i,i)-L(i,i-1)*A(i-1,i); end Y(1)=g(1); for i=2:n Y(i)=g(i)-L(i,i-1)*Y(i-1); end M(n)=Y(n)/U(n,n); for i=n-1:-1:1 M(i)=(Y(i)-A(i,i+1)*M(i+1))/U(i,i);

相关主题
文本预览
相关文档 最新文档