当前位置:文档之家› 偏光显微镜法观察聚合物结晶形态实验报告Word

偏光显微镜法观察聚合物结晶形态实验报告Word

实验三偏光显微镜法观察聚合物结晶形态

聚合物的各种性能是由其结构在不同条件下所决定的。研究聚合物晶体结构形态主要方法有电子显微镜、偏光显微镜和小角光散射法等。其中偏光显微镜法是目前实验室中较为简便而实用的方法。

一、实验目的要求

1、了解偏光显微镜的结构及使用方法。

2、观察聚合物的结晶形态,估算聚丙烯球晶大小。

二、实验原理

根据聚合物晶态结构模型可知:球晶的基本结构单元是具有折叠链结构的片晶(晶片厚度在100埃左右)。许多这样的晶片从一个中心(晶核)向四面八方生长,发展成为一个球状聚集体。电子衍射实验证明了在球晶中分子链(c轴)总是垂直于球晶的半径方向,而b轴总是沿着球晶半径的方向(参考图3-1和图3-2)。

在正交偏光显微镜下,球晶呈现特有的黑十字消光图案,这是球晶的双折射现象。分子链的取向排列使球晶在光学性质上具有各向异性,即在不同的方向上有不同的折光率。当在正交偏光显微镜下观察时,分子链取向与起偏器或检偏器的偏振面相平行就产生消光现象。有时,晶片会周期性地扭转,从一个中心向四周生长(如聚乙烯的球晶),结果在偏光显微镜中就会观察到一系列消光同心圆环。

图3-1 片晶的排列与分子链的取向图3-2 球晶形状

三、仪器与试样

1、仪器

偏光显微镜及附件、载玻片、盖玻片、电炉和油浴锅。

2、试样

聚丙烯(颗粒状),工业级。

四、实验步骤

1、制备样品

(1)将少许聚丙烯树脂颗粒料放在已于260℃电炉上恒温的载玻片上,待树脂熔融后,加上盖玻片,加压成膜。保温2分钟,然后迅速放入140一150℃甘油浴中,结晶2小时后取出。

(2)将少量聚乙烯粒料用以上同样的方法熔融加压法制得薄膜,然后切

断电炉电源,使样品缓慢冷却到室温。

2、熟悉偏光显微镜的结构及使用方法(参阅本实验的附录及仪器说明书)。

3、显微镜目镜分度尺的标定

将带有分度尺的目镜插入镜筒内,把载物台显微尺放在载物台上,调节到二尺基线重合。载物台显微尺长1.00毫米,等分为100格,所以每格为0.01毫米。在显微镜内观察,若目镜分度尺50格正好与显微尺10格相等,则目镜分度尺每格相当于0.01×10/50=2×l0-3

毫米。在进行测量时只要读出被测物体所对应的格数,就能知道实物的大小。

4、将制备好的样品放在载物台上,在正交偏振条件下观察球晶形态,估算球晶的半径,并和实验10对比。

五、注意事项

1、在使用偏光显微镜过程中,必须注意的是,要旋转微动手轮,使手轮处于中间位置,再转动粗调手轮,将镜筒下降使物镜靠近试样(从侧面观察),然后在观察试样的同时再慢慢上升镜筒至看清物体的像为止,这样可避免物镜与试样碰撞而压坏试样和损坏镜头。

2、培养球晶时,样品应尽可能压得薄一点,以便观察得更清楚。

六、思考题

1、观察聚丙烯在不同温度下结晶所形成的球晶的形态,讨论结晶温度的控制对球晶大小的影响。

2、讨论结晶与聚合物制品性质之间的关系。

附:偏光显微镜工作原理

一、偏振光与自然光

光波是电磁波,因而是横波。它的传播方向与振动方向垂直。如果定义由光的传播方向和振动方向所组成的平面叫振动面,那末对于自然光,它的振动方向虽然永远垂直于光的传播方向,但振动面却时时刻刻在改变。在任一瞬间,振动方向在垂直于光的传播方向的平面内可以取所有可能的方向,没有一个方向占优势见图3-3,箭头代表振动方向,传播方向垂直于纸面。

自然光偏振光

图3-3 自然光和偏振光示意图

太阳光及一般的光源发出的光都是自然光。自然光在通过尼科耳棱镜或人造偏振片以后,光线的振动被限制在某一个方向,这样的光叫做线偏振光或平面偏振光。

二、起偏器与检偏器

能够将自然光变成线偏振光的仪器叫作起偏振器,简称起偏器。通常用得较多的是尼科耳棱镜和人造偏振片。

尼科耳棱镜是用方解石晶体按一定的工艺制成的,当自然光以一定角度入射时,由于晶体的双折射效应,入射光被分成振动方向互相垂直的两条线偏振光—e光和o光,其中o光被全反射掉了,而e光射出。

人造偏振片是利用某些有机化合物(如碘化硫酸奎宁)晶体的二向色性制成的。把这种晶体的粉末沉淀在硝酸纤维薄膜上,用电磁方法使晶体C轴指向一致,排成极细的晶线.只有振动方向平行于晶线的光才能通过,而成为线偏振光。

起偏器既能够用来使自然光变成线偏振光,反过来,它又能被用来检查线偏振光,这时,它被称为检偏器或分析器。例如两个串联放着的尼科耳棱镜,靠近光源的一个是起偏器,另一个便是检偏器。当它们的振动方向平行时,透过的光强最大;而当它们的振动方向垂直时,透过的光强最弱。这种情况,我们称为“正交偏振”。

三、偏光显微镜

偏光显微镜是利用光的偏振特性对晶体、矿物、纤维等有双折射的物质进行观察研究的仪器。它的成象原理与生物显微镜相似,不同之处是在光路中加入两组偏振器(起偏器和检偏

器)以及用于观察物镜后焦面产生干涉象的勃氏透镜组。仪器结构参考图3-4。

由光源发出的自然光经起偏器变为线偏振光后,照射到置于

工作台上的聚合物晶体样品上,由于晶体的双折射效应,这束光被分解为振动方向互相垂直的两束线偏振光。这两束光不能完全通过检偏器,只有其中平行于检偏器振动方向的分量才能通过。通过检偏器的这两束光的分量具有相同的振动方向与频率而产生干涉效应。由干涉色的级序可以测定晶体薄片的厚度和双折射率等参数。

在偏振光条件下,还可以观察晶体的形态,测定晶粒大小和研究晶体的多色性等。

仪器的使用与操作,详见仪器使用说明书。

图3-4 偏光显微镜示意图

1—仪器底座;2—视场光阑(内照明灯泡);3—粗动调焦手轮;

4—微动调焦手轮;5—起偏器;6—聚光镜;7—旋转工作台(载舞台);8—物镜;9—检偏器;10—目镜;11—勃氏镜调节手轮

高分子物理实验

高分子物理实验指导书 刘艳辉周金华 材料科学与工程学院

目录

实验一、偏光显微镜法观察聚合物球晶 一、实验目的 1.熟悉偏光显微镜的构造,掌握偏光显微镜的使用方法。 2.观察不同结晶温度下得到的球晶的形态,估算聚丙烯球晶大小。 3.测定聚丙烯在不同结晶度下晶体的熔点。 4.测定25℃下聚丙烯的球晶生长速度。 二、实验原理 聚合物的结晶受外界条件影响很大,而结晶聚合物的性能与其结晶形态等有密切的关系,所以对聚合物的结晶形态研究有着很重要的意义。聚合物在不同条件下形成不同的结晶,比如单晶、球晶、纤维晶等等,而其中球晶是聚合物结晶时最常见的一种形式。球晶可以长得比较大,直径甚至可以达到厘米数量级.球晶是从一个晶核在三维方向上一齐向外生长而形成的径向对称的结构,由于是各向异性的,就会产生双折射的性质。聚合物球晶在偏光显微镜的正交偏振片之间呈现出特有的黑十字消光图形,因此,普通的偏光显微镜就可以对球晶进行观察。 偏光显微镜的最佳分辨率为200 nm,有效放大倍数超过100—630倍,与电子显微镜、x射线衍射法结合可提供较全面的晶体结构信息。 球晶的基本结构单元是具有折叠链结构的片晶,球晶是从一个中心(晶核)在三维方向上一齐向外生长晶体而形成的径向对称的结构,即—个球状聚集体。光是电磁波,也就是横波,它的传播方向与振动方向垂直。但对于自然光来说,它的振动方向均匀分布,没有任何方向占优势。但是自然光通过反射、折射或选择吸收后,可以转变为只在一个方向上振动的光波,即偏振光。—束自然光经过两片偏振片,如果两个偏振轴相互垂直,光线就无法通过了。光波在各向异性介质中传播时,其传播速度随振动方向不同而变化。折射率值也随之改变,一般都发生双折射,分解成振动方向相互垂直、传播速度不同、折射率不同的两条偏振光。而这两束偏振光通过第二个偏振片时。只有在与第二偏振轴平行方向的光线可以通过。而通过的两束光由于光程差将会发生干涉现象。 在正交偏光显微镜下观察,非晶体聚合物因为其各向同性,没有发生双折射现象,光线被正交的偏振镜阻碍,视场黑暗。球晶会呈现出特有的黑十字消光现象,黑十字的两臂分别平行于两偏振轴的方向。而除了偏振片的振动方向外,其余部分就出现了因折射而产生的光亮。在偏振光条件下,还可以观察晶体的形态,测定晶粒大小和研究晶体的多色性等等。 三、实验仪器和材料 1.偏光显微镜(图1-1)及电脑一台、附件一盒、擦镜纸、镊子; 2.热台、恒温水浴、电炉。 3.盖玻片、裁玻片。 4.聚丙烯薄膜。 四、实验步骤 1.启动电脑,打开显微镜摄像程序AVerMedia EZCapture. 2.显徽镜调整 (1)预先打开汞弧灯10min,以获得稳定的光强,插入单色滤波片。 (2)去掉显微镜目镜,起偏片和检偏片置于90°,边观察显微镜筒,边调节灯和反光镜的位置,如需要可调整检偏片以获得完全消光(视野尽可能暗)。

实验二

实验二:结晶时间对PCL均聚物结晶形态的影响实验记录 一、预习部分 1.实验目的 通过该实验,掌握高分子材料结晶样品的制备方法。 掌握偏光显微镜观察高聚物结晶形态的方法。 分析总结出PCL均聚物结晶时间对结晶形态的影响。 2.实验基本原理 结晶性高聚物只有在适宜的温度下才能结晶。结晶温度对高聚物结晶行为的影响主要表现在对高聚物结晶速率的影响。高聚物的结晶速率是成核速率与晶体生长速率的总和。结晶温度的选择会影响成核速率和晶体生长速率。低温时,主要以均相成核为主,成核速率较慢;高温时,分子链热运动过于激烈导致不易成核即使成核也极不稳定,成核速率也慢。因此只有在适宜的温度下,成核速率才能达到最大值。其次,温度过高或过低时晶体生长速率都较慢,只有在适宜温度下,晶体生长速率才能到达最大值。 同时,结晶温度也会影响高聚物晶体的尺寸和结晶度。因为晶体的形成及生长过程是需要空间的。如果结晶温度低,在成核过程中,晶核的密度过大,会导致最终形成的晶体尺寸小且结晶度低;如果结晶温度高,高聚物冷却结晶时过冷度低,高聚物在低过冷度下缓慢结晶,形成的晶体尺寸大且结晶度也高。 在没有外部应力或者流动场的作用下,高聚物从极浓溶液中析出或者从熔体状态冷却结晶时,生成一种直径在0.5-100 mm之间的圆球状晶体。在偏光显微镜下观察为圆形球状因而得名——球晶。高聚物结晶得到的结晶形态中,球晶最为常见,球晶在POM观察下呈现明显的Maltese cross消光图像。 3.主要仪器设备(含主要元器件、工具) 主要实验设备:带热台的偏光显微镜,真空干燥箱,超声波清洗器,电动搅拌器,液氮等。 二、实验操作部分 1.实验操作过程 载玻片的处理方法:首先将载玻片置于浓硫酸:双氧水=3:1溶液中(用小烧杯)中煮沸,至液体中没有气泡为止,放凉后取出,用去离子水清洗数次至中性,在超声波作用下依次侵入乙醇和丙酮溶液中洗涤30 min,最后小心用氮气吹干。 将聚ε-己内酯溶解在CHCl3中,配制成浓度为1.0%的溶液,静置一段时间使溶质充分溶解,然后将溶液滴在已经处理好的载玻片上,将样品放在真空干燥箱中真空干燥24 h,让溶剂挥发至完全,备用。 偏光显微镜测试:把处理好的样品放在热台上,加热至70 ℃等温5 min以消除热历史,然后通入液氮将样品快速冷却至所需的温度40 ℃时结晶1 h、2 h、3 h。等温结晶的温度波动范围为±1 ℃。观察样品的结晶形态。

高分子物理实验讲义

实验一偏光显微镜法观察聚合物球晶形态 一、实验目的 1. 了解偏光显微镜的基本结构和原理。 2. 掌握偏光显微镜的使用方法和目镜分度尺的标定方法。 3. 用偏光显微镜观察球晶的形态,估算聚乙烯试样球晶的大小。 二、实验原理 球晶是高聚物结晶的一种最常见的特征形式。当结晶性的高聚物从熔体冷却结晶时,在不存在应力或流动的情况下,都倾向于生成球晶。 球晶的生长过程如图1-1所示。球晶的生长以晶核为中心,从初级晶核生长的片晶,在结晶缺陷点发生分叉,形成新的片晶,它们在生长时发生弯曲和扭转,并进一步分叉形成新的片晶,如此反复,最终形成以晶核为中心,三维向外发散的球形晶体。实验证实,球晶中分子链垂直球晶的半径方向。 图1-1 聚乙烯球晶生长的取向 (a)晶片的排列与分子链的取向(其中a、b、c轴表示单位晶胞在各方向上的取向) (b) 球晶生长(c) 长成的球晶 用偏光显微镜观察球晶的结构是根据聚合物球晶具有双折射性和对称性。当一束光线进入各向同性的均匀介质中,光速不随传播方向而改变,因此个方向都具有相同的折射率。而对于各向异性的晶体来说,其光学性质是随方向而异的。当光线通过它时,就会分解为振动平面互相垂直的两束光,它们的传播速度除光轴外,一般是不相等的,于是就产生两条折射率不同的光线,这种现象称之为双折射。晶体的一切光学性质都是和双折射有关。 偏光显微镜是研究晶体形态的有效工具之一,许多重要的晶体光学研究都是在偏光镜的正交场下进行的,即起偏镜与检偏镜的振动平面相互垂直。在正交偏光镜间可以观察到球晶的形态,大小,数目及光性符号等。 当高聚物处于熔融状态时,呈现光学各向同性,入射光自起偏镜通过熔体时,只有一束与起偏镜振动方向相同的光波,故不能通过与起偏镜成90°的检偏镜,显微镜的视野为暗场。高聚物自熔体冷却结晶后,成为光学各向异向体,当结晶体的振动方向与上下偏光镜振动方向不一致时,视野明亮,就可以观察到晶体。 图1-2画出了一轴晶一个平行于它的光轴Z的切面。这类晶体有最大和最小两个主折射率值。

材料科学基础-实验指导-实验12 高分子结晶形态的偏光显微镜观察

实验十二高分子结晶形态的偏光显微镜观察一、实验目的 1.了解和掌握偏光显微镜的原理和使用方法。 2.高分子球晶在偏光和非偏光条件下的显微镜观察。 3.了解影响高分子球晶尺寸的因素。 二、实验内容说明 用偏光显微镜研究高分子(聚合物)的结晶形态是目前较为简便而直观的方法。偏光显微镜的成像原理与常规金相显微镜基本相似,所不同的是在光路中插入两个偏光镜。一个在载物台下方,称为下偏光镜,用来产生偏光,故又称起偏镜;另一个在载物台上方的镜筒内,称为上偏光镜,它被用来检查偏光的存在,故又称检偏镜。凡装有两个偏光镜,而且使偏振光振动方向互相垂直的一对偏光镜称为正交偏光镜。起偏镜的作用使入射光分解成振动方向互相垂直的两条线偏振光,其中一条被全反射,另一条则入射。正交偏光镜间无样品或有各向同性(立方晶体)的样品时,视域完全黑暗。当有各向异性样品时,光波入射时发生双折射,再通过偏振光的相互干涉获得结晶物的衬度。高分子的结晶过程是高分子大分子链以三维长程有序排列的过程。高分子可出现不同的结晶形态,如球晶,串晶,树枝晶等。当结晶的高分子具有各向异性的光学性质,就可用偏光显微镜观察其结晶形态。本实验将观察聚乙烯(PE)和聚丙烯(PP)的结晶形态。 高分子的球晶在非偏光条件下观察为圆形,而在正交偏光下却并不呈完整的圆形,而是四叶瓣的多边形,即中间有十字消光架,这些都是由于正交偏光及球晶的生长特性所决定的。高分子的结晶过程包括形核与长大。形核又分为均匀(均相)和非均匀(异质)形核两类。非均匀形核所需的过冷度较均匀形核小,因此形核剂能有效地提高形核率,细化球晶的尺寸,改善高分子的综合性能。除此外,生产上还常通过尽可能增加冷速以获得大的过冷度来细化球晶,但对于厚壁制件将导致制件内外球晶大小不匀而影响产品质量。如果采用形核剂则不会出现上述情况。观察不同过冷度和有,无形核剂(非均匀)对球晶大小的影响是本实验主要内容之一。

实验二 偏光显微镜法观测聚合物的球晶生长

实验三偏光显微镜法观测聚合物的球晶形态 一、实验目的 1、熟悉偏光显微镜的结构,掌握偏光显微镜的使用方法。 2、了解双折射体在偏光场中的光学效应及球晶黑十字消光图案的形成原理。 3、观察聚合物的结晶形态,测定球晶的尺寸,判断球晶的正负性。 二、实验原理 结晶聚合物的性能(如光学性能、冲击强度等)与球晶的结晶形态、尺寸及完善程度有密切关系。较小的球晶可以提高冲击强度及断裂伸长率。一般球晶的存在将产生光的散射而使透明度下降,球晶越小则透明度越高,直至其尺寸与光的波长相当则得到完全透明的材料。 球晶是聚合物中最常见的结晶形态,大部分由聚合物熔体和浓溶液生成的结晶形态都是球晶。球晶是以核为中心对称向外生长而成的。在生长过程中不遇到阻碍时可形成球形晶体;如在生长过程中球晶之间相碰则在相遇处形成界面而成为多面体(二维空间观察为多边形)。 影响球晶尺寸的因素有冷却速度、结晶温度、成核剂等因素 球晶在偏光显微镜下可以看到黑十字消光图案。 黑十字消光图像是高聚物球晶的双折射性质和对称性的反映。一束自然光通过起偏器后,变成平面偏振光,其振动方向都在单一方向上。一束偏振光通过高分子球晶时,发生双折射,分为两束电矢量相互垂直的偏振光,电矢量分别平行和垂直与球晶的半径方向;由于这两个方向上折射率不同,这两束光通过样品的速度是不等的,必然要产生一定的相位差而发生干涉现象,结果使通过球晶的一部分区域的光可以通过与起偏器处于正交位置的检偏器,而另一部分区域不能,

最后分别形成球晶照片上的亮暗区域。 黑十字消光原理:如图1所示,pp为通过其偏镜后的光线的偏振方向,aa 为检偏镜的偏振方向。在球晶中,b轴为半径方向,c轴为光轴,当c轴与光波方向传播方向一致时,光率体切面为一个圆,当c轴与光率体切面相交时为一椭圆。在正交偏光片之间,光线通过检偏镜后只存在pp方向上的偏振光,当这一偏振光进入球晶后,由于在pp和aa方向上的晶体光率体切面的两个轴分别平行于pp和aa方向,光线通过球晶后不改变振动方向,因此通过球晶后不改变振动方向,因此不能通过检偏镜,呈黑暗。而介于pp和aa之间的区域由于光率体切面的两个轴与pp和aa方向斜交,pp振动方向的光进入球晶后由于光振动在aa 方向上的分量,因此这四个区域变得明亮,聚乙烯球晶在偏光显微镜下还呈现一系列的同心消光圆环,这是由于在聚乙烯球晶中晶片是螺旋形的.即a轴与c轴在与b轴垂直的方向上转动,而c轴又是光轴,即使在四个明亮区域中的光率体切面也周期性地呈现圆形而造成消光。 图1 正交偏光场中球晶的偏光干涉 三、主要仪器设备及原料: 偏光显微镜、附件一盒、擦镜纸、载玻片、盖玻片若干块;聚丙烯

偏光显微镜实验报告

偏光显微镜实验报告 偏光显微镜实验报告 引言: 偏光显微镜是一种重要的实验工具,它能够通过光的偏振现象,观察和研究物 质的性质和结构。本实验旨在通过使用偏光显微镜,观察不同材料的偏光现象,深入了解光的偏振特性以及物质的光学性质。 实验步骤: 1. 准备样本:我们选择了晶体、液晶和有机物质作为观察对象,并将它们制备 成薄片。 2. 调节偏光显微镜:首先,我们调节了偏光片的角度,使其与偏振光的方向垂直。然后,我们调节了偏光显微镜的偏振器和分析器,使其互相垂直。 3. 观察样本:将样本放置在显微镜的物镜下,调节焦距和光源强度,以获得清 晰的图像。然后,我们转动样本,观察其在不同角度下的偏光现象。 实验结果: 1. 晶体的偏光现象:在观察晶体样本时,我们发现当样本转动时,图像的亮度 会发生周期性的变化。这是由于晶体的光学性质导致的,晶体具有双折射现象,使得光线在晶体内部传播时发生偏振分离。 2. 液晶的偏光现象:与晶体不同,液晶在观察时呈现出更加复杂的偏光现象。 当样本转动时,我们观察到图像的亮度不仅发生周期性的变化,还出现了彩色 条纹。这是由于液晶分子的有序排列导致的,液晶具有可控的光学性质。 3. 有机物质的偏光现象:在观察有机物质样本时,我们发现图像的亮度变化较 为微弱,但仍然存在一定的偏光现象。这是由于有机物质的分子结构导致的,

其分子在光的作用下会发生旋转和偏振分离。 讨论与分析: 通过本实验,我们深入了解了偏光显微镜的原理和应用。偏光显微镜通过对光 的偏振进行控制和观察,使我们能够研究物质的结构和性质。晶体、液晶和有 机物质在偏光显微镜下呈现出不同的偏光现象,这与它们的分子结构和光学性 质密切相关。 在实际应用中,偏光显微镜被广泛应用于材料科学、地质学、生物学等领域。 例如,在材料科学中,偏光显微镜可以用来观察材料的晶体结构,判断其性质 和质量。在地质学中,偏光显微镜可以用来研究岩石和矿物的组成和形成过程。在生物学中,偏光显微镜可以用来观察细胞和组织的结构,研究生物分子的相 互作用。 总结: 本实验通过使用偏光显微镜,观察了晶体、液晶和有机物质的偏光现象,并深 入了解了光的偏振特性和物质的光学性质。偏光显微镜作为一种重要的实验工具,可以应用于多个领域的研究和应用中。通过进一步研究和探索,我们可以 更好地理解物质的性质和结构,推动科学的发展和应用的进步。

偏光显微镜观察聚合物的结晶形态实验报告

偏光显微镜观察聚合物的结晶形态实验报告 一、实验目的 1、了解偏光显微镜的结构及使用方法; 2、学习用熔融法制备高聚合物球晶; 3、观察聚丙烯的结晶形态,估算聚丙烯球晶大小; 二、原理 球晶的基本结构单元是具有折叠结构的片厚度在100A 左右。许多这样的晶片从一个中心(晶核)向四面八方生长,发展成为一个球状聚集体。 图1-1 球晶内晶片的排列与分子链取向 图1-1示意地说明球晶中分子链是垂直球晶半径的方向排列的。分子链的取向排列使球晶在光学性质上是各向异性的,即在平行于分子链和垂直于分子链的方向上有不同的折光率。在正交偏光显微晶下观察时,在分子链平行于起偏镜或检偏镜或检偏镜的方向上将产生消光现象。呈现出球晶特有的黑十字消光图案(称为Maltase十字)。

图1-2 球晶中双折射示意图 球晶在正交偏光显微镜下出现Maltase十字的现象可以通过图1-2来理解。图中起偏镜的方向垂直于检偏镜的方向(正交)。设通过起偏镜进入球晶的线偏振光的电矢量OR,即偏振光方向沿OR方向。图1-2绘出了任意两个方向上偏振光的折射情况,偏振光OR通过与分子链发生作用,分解为平行于分子链η和分子链ε两部分,由于折光率不同,两个分量之间有一定的相差。显然ε和η不能全部通过检偏镜,只有振动方向平行于检偏镜方向的分量OF和OE能够通过检偏镜。由此可见,在起偏镜的方向上,η为零,OR=ε;在检偏镜方向上,ε为零,OR=η;在这些方向上分子链的取向使偏振光不能透过检偏镜,视野呈黑暗,形成Maltase十字。 此外,在有的情况下,晶片会周期性地扭转,从一个中心向四周生长,这样,在偏光显中就会看到由此而产生的一系列消光同心圆环。 三、仪器和试样 1、偏光显微镜及附件: 2、载玻片和盖玻片;电炉热台;剪刀;镊子。 3、等规聚丙烯粒料。 四、实验步骤

偏光显微镜观察聚合物的结晶形态

实验名称:偏光显微镜观察聚合物的结晶形态 一.实验目的 通过偏光显微镜直接观察,了解聚合物的结晶结构或无定形结构。 二.实验原理 聚合物的性能主要决定于它的结构。高分子聚集在一起有两种主要方式,即结晶态和无定形态。如果高分子链在空间三个方向上形成有序排列,这种有规律的排列结构称为聚合物的结晶态结构;若高分子链成为无序排列,则称为非晶相或称为无定形结构。 利用普通光学显微镜能直接观察聚合物的外观结构,如均匀性、粒子的大小及分布等。不含填料和杂质的多数无定形聚合物,在显微镜下都是无色清澈透明的。但普通光学显微镜只能看到聚合物中的粒子形态,不能鉴别是晶体还是非晶体,而偏光显微镜利用晶体与非晶体对偏振光有不同的反应,可以观察到粒子是晶体还是非晶体。 三.实验试剂与实验仪器 1.偏光显微镜 偏光显微镜的主要结构与普通光学显微镜相同,主要有目镜和物镜组成,所产生的图象是样品放大的倒像。总的放大倍数等于目镜和物镜放大倍数的乘积。不同的是偏光显微镜比普通光学显微镜多加了两块偏振镜。 下偏振镜位于光源与聚光镜之间,它的作用是使通过样品前的自然光变成偏振光,而上偏振镜位于目镜与物镜之间,它的物理作用与下偏振镜相同。当光线通过上偏振镜时,如果是具有一定振动方向的偏振光,旋转上偏振镜则视场有明暗之别;如果是没有确定方向的自然光,旋转上偏振镜,光都能通过,则视场始终是明亮的,故上偏振镜又称检偏振镜。 上、下两偏振镜的偏振轴相互平行时,光线能全部通过上偏振镜,视场最亮。上、下两偏振镜的偏振轴相互垂直时,光线完全不能通过上偏振镜,视场最暗。因此,当固定其中一个偏振镜,把另一个偏振镜转动180o,就看到视场有明暗交替出现的现象。 上、下两偏振镜的偏振轴相互垂直,便组成所谓“正交偏光镜”,用偏光显微镜观察聚合物结晶状态时,通常是在正交偏光镜下观察。 在正交偏光镜下观察非晶态聚合物时,视场是暗的,这种现象叫消光。把载物台旋转360o,消光现象不变,这叫永久消光或全消光(见图1 所示),永久消光是非晶态聚合物的固有特征,是区分结晶聚合物和非晶态聚合物的重要依据。 在非晶态聚合物中,光在各个方向的传播速度是相同的。这是因为非晶态聚合物的分子链呈无序排列属于均匀体,它对于来自于下偏振镜的偏振光不会改变入射偏光的振动方向,传至上偏振镜时,光的振动方向仍然与上偏振镜允许通过的振动方向互相垂直,光不能通过,故视场呈黑暗。又因非晶体各向同性,故转动载物台也不会改变入射光的性质,所以消光现象不变。 在正交偏光镜下观察结晶态聚合物时,当转动载物台360o,视场出现明暗交替四次(见图2所示)。四次消光是结晶聚合物的特征。因为结晶聚合物的分子链有规律排列,它对来自下偏光镜的偏光能产生双折射现象,分解形成两个互相垂直的偏光,以不同的速度通过结晶聚合物,传至上偏振镜时,其中一个偏光与上偏振镜中允许通过的振动方向相互垂直,光不能通过,而另一个则与上偏振镜允许通过的振动方向平行,光能通过,则视场明亮,可以看到晶体状态。当转动载物台360o时,由于双折射而形成的偏振光与上下偏光镜的振动面有四次平行与垂直,故出现明暗交替四次。

偏光显微实验报告

偏光显微实验报告 实验题目:偏光显微实验报告 实验目的: 1. 了解偏光显微镜的原理和结构; 2. 学习使用偏光显微镜观察和区分晶体材料; 3. 掌握偏光显微镜的调节方法。 实验仪器和材料: 1. 偏光显微镜; 2. 透射式光源; 3. 透明晶体样品。 实验原理: 偏光显微镜是在普通显微镜的基础上增加了偏光装置,可以观察非晶质、单晶和聚晶材料的显微结构和光学性质。其主要由物镜、偏光片、偏光镜和偏光旋转台等部分组成。 当样品放置在偏光镜下时,透过透射式光源产生的线偏振光经偏光片后成为偏振光,再通过样品进入物镜,被放大后进入目镜观察。通过调节偏光片和偏光旋转台的角度,可以改变样品上的偏振光的振动方向和强度。

实验步骤: 1. 打开透射式光源,调节至适当亮度; 2. 将样品放置在偏光台上,先调节物镜至最低放大倍数,调节样品焦平面; 3. 调节偏光片,让样品上的图像变为全黑; 4. 逐渐增加物镜的放大倍数,观察样品上的特殊结构和图案; 5. 通过旋转偏光片和偏光旋转台,观察和调节样品上的偏振光的振动方向和强度; 6. 记录观察到的现象和结论。 实验结果与讨论: 通过实验,我观察到了不同晶体材料在偏光显微镜下的不同表现。当样品为非晶质材料时,观察到的图像为均匀的亮度分布,没有明显的结构和花纹。当样品为单晶体材料时,观察到的图像会呈现出不同颜色的干涉条纹,这是因为单晶体能够将不同偏振方向的光产生相位差而形成干涉现象。当样品为聚晶材料时,观察到的图像为多个晶粒的重叠,可以看到晶粒的边界和交错现象。 通过调节偏光片和偏光旋转台,我可以改变样品上的偏振光的振动方向和强度。当偏振光的振动方向与样品上的晶轴方向平行时,观察到的图像会明亮,而当二者垂直时,则会出现暗区。这是由于晶体各个方向的折射率不同,当偏振方向垂直于晶体的光轴时,光的振动方向被折射程度较小的晶粒挡住,所以观察到的是暗区。通过旋转偏光旋转台,可以改变偏振光的振动方向,进而改变样品上的暗亮区的位置和形状。

偏光显微镜实验报告

课程名称: 材料科学基础实验 指导老师: 成绩: 实验名称:无机材料偏光显微镜显微结构初识 实验类型: 同组学生姓名: 一、实验目的和要求(必填) 三、主要仪器设备(必填) 五、实验数据记录和处理 七、讨论、心得 二、实验内容和原理(必填) 四、操作方法和实验步骤 六、实验结果与分析(必填) 一、实验目的和要求 偏光显微镜是对透明和半透明矿物岩石进行鉴定及显微结构研究的重要仪器,在使用前必须了解它的基本构造和使用、调节方法。 熟悉偏光显微镜的基本构造、各部分的性能,用途及使用方法;初步了解偏光显微镜的应用;了解偏光显微镜的构造及其与普通光学显微镜的区别。掌握偏光显微镜的使用、调节和校正方法。 二、主要仪器设备 XPT-7型偏光显微镜。 构造如下:目镜,销控光栏,勃氏镜,粗动手轮,粗动锁紧手柄,微调手轮,镜身,检偏振镜,物镜,旋转工作台,拉索透镜,聚光镜。 三、实验原理和内容 1、使用前检查: (1)确定起偏振镜或检偏振镜振动方向 (2)起偏振镜与检偏振镜正交 (3)目镜划分板十字线与起偏振镜、检偏振镜振动方向平行 2、物镜中心调节方法如下: (1)观察旋转工作台上的切片,在切片中找一小黑点,使位于目镜十字线中心。 (2)转动工作台,若物镜光轴与工作台中心不一致,黑点即离开十字线中心绕一个圆转动。圆的中心即为工作台的中心。 (3)将小黑点转至Oi (此时小黑点距十字线中心最远)借物镜座上两个调节螺丝调节S 与O 重合,使得小黑点自Oi 移回Ooi 距离一半。 (4)如此循环进行上述三步骤可使物镜光轴与旋转工作台中心重合。 3、用低倍物镜时,应将拉索透镜移出光路,同时用平面反射镜引入光线。用高倍物镜及观察锥光图时,必须将拉索透镜引入光路,为增加视域亮度,可用凹面反射引入光线。聚光镜之

偏光显微镜法观察聚合物的结晶形态

高分子物理实验讲义 材料学院 2008.5

目录 实验一偏光显微镜法观察聚合物的结晶形态 (2) 实验二粘度法测定聚合物的分子量 (5) 实验三聚合物的热分析—差示扫描量热法 (9) 实验四聚合物温度-形变曲线的测定 (13) 实验五高聚物表观粘度和粘流活化能的测定 (16) 实验六高分子材料应力-应变曲线的测定 (23) 实验七高聚物的应力松弛测定 (26) 实验八动态粘弹谱法测定聚合物的动态力学性能 (29) 实验九高聚物的高频介电损耗测定 (35) 参加本实验讲义编写人员如下: 实验一偏光显微镜法观察聚合物的结晶形态………………富露祥实验二粘度法测定聚合物的分子量…………………………王娜实验三聚合物的热分析—差示扫描量热法…………………马驰实验四聚合物温度-形变曲线的测定…………………………何秀娟实验五高聚物表观粘度和粘流活化能的测定………………张秀彬实验六高分子材料应力-应变曲线的测定……………………刘大晨实验七高聚物的应力松弛测定………………………………于洋实验八动态粘弹谱法测定聚合物的动态力学性能…………王重实验九高聚物的高频介电损耗测定…………………………王涛

实验一偏光显微镜法观察聚合物的结晶形态 用偏光显微镜研究聚合物的结晶形态是目前在实验室中较为简便而实用的方法。结晶条件的不同聚合物的结晶可以具有不同的形态,如单晶、球晶、纤维晶及伸直链晶体等。在通常条件下,熔体冷却结晶或浓溶液中析出结晶体时,聚合物倾向于生成球晶结构,它是由无数小晶片按结晶生长规律长在一起的多晶聚集体,球晶直径可长到几微米,甚至可达厘米数量级,用偏光显微镜可以进行观察。结晶聚合物的实际使用性能与材料内部的结晶形态、晶粒大小及完善程度有密切关系,如:光学透明性、冲击强度等。因此,对于聚合物结晶形态的研究具有重要的理论和实际意义。 一、实验目的: 1、了解偏光显微镜的结构、使用方法及目镜分度尺的标定方法。 2、学习用熔融法制备聚合物球晶样品。 3、观察聚丙烯的结晶形态,估算聚丙烯的球晶大小。 二、实验原理: 1. 自然光与偏振光 光的传播方向和振动方向所组成的平面叫振动面,自然光的振动面时刻在改变。偏振光是电矢量相对于传播方向以一固定方式振动的光。 由光源发出的自然光经过起偏器变为偏振光后,照射到聚合物晶体样品上,由于晶体的双折射效应,这束光被分解为振动方向相互垂直的两束偏振光。这两束光不能完全通过检偏器,只有其中平行于检偏器振动方向的分量才能通过。 2. 偏光显微镜的构造 偏光显微镜是一种精密的光学仪器,有一套光学放大系统和两个偏振片,可用来对结晶物质的形态进行观察和测量。常见偏光显微镜的构造如图1.1所示,主要部件为: 1目镜2目镜筒3勃氏镜手轮 4 勃氏镜左右调节手轮5勃氏镜前后调节手轮 6检偏镜7补偿器8物镜定位器 9物镜座10物镜11旋转工作台 12聚光镜13拉索透镜14可变光栏 15起偏镜16滤色片17反射镜 18镜架19微调手轮20粗调手轮 图1.1 偏光显微镜结构示意图 使用方法:首先要对光,可先装上低倍物镜和目镜,推出起偏振片,使在目镜中看到的视域为最亮,再推进起偏振片。其次是对焦,将制好的试片置于载物台上,旋转粗调手轮,使载物台上升,让试样表面接触物镜(且勿触及物镜),通过目镜仔细观察,并慢慢使试样下降,直到观察到图像以后,再转动微调手轮,使物象达到最清晰为止。此时可转换其他倍率物镜,偏光显微镜即处于可用状态。

实验六 偏光显微镜法观察聚合物球晶形态

实验六:偏光显微镜法观察聚合物结晶形态 一、实验目的 1.了解偏光显微镜的结构及使用方法。 2.了解球晶黑十字消光图案的形成原理。 3.观察聚合物的结晶形态,理解影响聚合物球晶大小的因素。 二、实验原理 用偏光显微镜研究聚合物的结晶形态是目前实验室中较为简便而实用的方法。随着结晶条件的不用,聚合物的结晶可以具有不同的形态,如:单晶、树枝晶、球晶、纤维晶及伸直链晶体等。而球晶是聚合物结晶中一种最常见的形式。在从浓溶液中析出或熔体冷却结晶时,聚合物倾向于生成这种比单晶复杂的多晶聚集体,通常呈球形,故称为“球晶”。 球晶的大小取决于聚合物的分子结构及结晶条件,因此随着聚合物种类和结晶条件的不同,球晶尺寸差别很大,直径可以从微米级到毫米级,甚至可以大到厘米。球晶尺寸主要受冷却速度、结晶温度及成核剂等因素影响。球晶具有光学各向异性,对光线有折射作用,因此能够用偏光显微镜进行观察,该法最为直观,且制样方便、仪器简单。聚合物球晶在偏光显微镜的正交偏振片之间呈现出特有的黑十字消光图象。有些聚合物生成球晶时,晶片沿半径增长时可以进行螺旋性扭曲,因此还能在偏光显微镜下看到同心圆消光图象。对小于几微米的球晶则可用电子显微镜进行观察或采用激光小角散射法等进行研究。 偏光显微镜的最佳分辨率为200nm,有效放大倍数超过500-1000倍,与电子显微镜、X射线衍射法结合可提供较全面的晶体结构信息。光是电磁波,也就是横波,它的传播方向与振动方向垂直。但对于自然光来说,它的振动方向均匀分布,没有任何方向占优势。但是自然光通过反射、折射或选择吸收后,可以转变为只在一个方向上振动的光波,即偏振光(如图1-1,箭头代表振动方向,传播方向垂直于纸面)。 a) b) 图1-1 自然光和线偏振光的振动现象 a) 自然光 b) 线偏振光 图1-2 共聚聚丙烯在145 o C时的球晶照片

偏光显微镜法观察聚合物结晶形态实验报告

试验三偏光显微镜法观测聚合物结晶形态 聚合物旳多种性能是由其构造在不一样条件下所决定旳。研究聚合物晶体构造形态重要措施有电子显微镜、偏光显微镜和小角光散射法等。其中偏光显微镜法是目前试验室中较为简便而实用旳措施。 一、试验目旳规定 1、理解偏光显微镜旳构造及使用措施。 2、观测聚合物旳结晶形态,估算聚丙烯球晶大小。 二、试验原理 根据聚合物晶态构造模型可知:球晶旳基本构造单元是具有折叠链构造旳片晶(晶片厚度在100埃左右)。许多这样旳晶片从一种中心(晶核)向四面八方生长,发展成为一种球状汇集体。电子衍射试验证明了在球晶中分子链(c轴)总是垂直于球晶旳半径方向,而b轴总是沿着球晶半径旳方向(参照图3-1和图3-2)。 在正交偏光显微镜下,球晶展现特有旳黑十字消光图案,这是球晶旳双折射现象。分子链旳取向排列使球晶在光学性质上具有各向异性,即在不一样旳方向上有不一样旳折光率。当在正交偏光显微镜下观测时,分子链取向与起偏器或检偏器旳偏振面相平行就产生消光现象。有时,晶片会周期性地扭转,从一种中心向四面生长(如聚乙烯旳球晶),成果在偏光显微镜中就会观测到一系列消光同心圆环。 图3-1 片晶旳排列与分子链旳取向图3-2 球晶形状 三、仪器与试样 1、仪器 偏光显微镜及附件、载玻片、盖玻片、电炉和油浴锅。

2、试样 聚丙烯(颗粒状),工业级。 四、试验环节 1、制备样品 (1)将少许聚丙烯树脂颗粒料放在已于260℃电炉上恒温旳载玻片上,待树脂熔融后,加上盖玻片,加压成膜。保温2分钟,然后迅速放入140一150℃甘油浴中,结晶2小时后取出。 (2)将少许聚乙烯粒料用以上同样旳措施熔融加压法制得薄膜,然后切 断电炉电源,使样品缓慢冷却到室温。 2、熟悉偏光显微镜旳构造及使用措施(参阅本试验旳附录及仪器阐明书)。 3、显微镜目镜分度尺旳标定 将带有分度尺旳目镜插入镜筒内,把载物台显微尺放在载物台上,调整到二尺基线重叠。载物台显微尺长1.00毫米,等分为100格,因此每格为0.01毫米。在显微镜内观测,若目镜分度尺50格恰好与显微尺10格相等,则目镜分度尺每格相称于0.01×10/50=2×l0-3 毫米。在进行测量时只要读出被测物体所对应旳格数,就能懂得实物旳大小。 4、将制备好旳样品放在载物台上,在正交偏振条件下观测球晶形态,估算球晶旳半径,并和试验10对比。 五、注意事项 1、在使用偏光显微镜过程中,必须注意旳是,要旋转微动手轮,使手轮处在中间位置,再转动粗调手轮,将镜筒下降使物镜靠近试样(从侧面观测),然后在观测试样旳同步再慢慢上升镜筒至看清物体旳像为止,这样可防止物镜与试样碰撞而压坏试样和损坏镜头。 2、培养球晶时,样品应尽量压得薄一点,以便观测得更清晰。 六、思索题 1、观测聚丙烯在不一样温度下结晶所形成旳球晶旳形态,讨论结晶温度旳控制对球晶大小旳影响。

偏光显微镜观察聚合物结晶形

偏光显微镜观察聚合物结晶形态 一、实验目的和要求 (1)掌握使用偏光显微镜观察聚合物结晶形态的方法; (2)理解结晶成核剂与球晶尺寸的关系; 二、实验重点和难点 (1)聚合物结晶形态与结晶条件的关系; (2)制备聚合物结晶样品时结晶条件的控制; 三、提问和互动设计 (1)聚合物的结晶形态有哪些?它们各与何种结晶条件相对应?研究球晶的重要意义?(2)使用偏光显微镜观察聚合物球晶的实验原理? (3)等温结晶和非等温结晶条件下影响结晶速度和球晶大小的因素? 四、实验讲解(原理、操作步骤) 全同聚丙烯(PP)是一种性能优良、应用广泛的结晶聚合物,具有机械性能好、无毒、密度低、耐热、耐化学品、易于加工成型等优点。但是在聚丙烯的一些实际应用中,经常遇到改善聚丙烯的光学透明性、提高制品的力学性能(刚性和韧性)和耐热性能、缩短加工成型周期等要求。这些问题涉及到聚丙烯的结晶速度、结晶度和结晶形态。聚丙烯由晶区和非晶区两部分组成,而晶区则往往是由球晶的多晶聚集体所组成,球晶的尺寸一般在0.5-100卩之间。由于晶区和非晶区的密度和折光率不同,而且晶区的尺寸通常大于可见光的波长,所以光线通过聚丙烯将在两相的界面上发生折射和反射,导致聚丙烯制品透明性下降。加入结晶成核剂是提高聚丙烯透明性的主要改性技术,在结晶聚合物中添加结晶成核剂,通过其异相成核作用可以大大增加成核密度,导致球晶尺寸明显降低,聚合物的透明性得到改善。 研究聚合物结晶形态的主要方法有电子显微镜法、偏光显微镜法、小角光散射法等,偏光显微镜法是目前实验室中较为简便而使用的方法。球晶中聚合物分子链的取向排列引起了光学的各向异性,在分子链轴平行于起偏器或检偏器的偏振面的位置将发生消光现象。在球晶生长过程中晶片以径向发射状生长,导致分子链轴方向总是与径向垂直,因此在显微镜的视场中有四个区域分子链轴的方向与起偏器或检偏器的偏振面平行,形成十字形消光图象。所以在正交偏光显微镜下,球晶呈现特有的黑十字消光图案,有时在球晶的偏光显微镜照片上,还可以清晰地看到在黑十字消光图象上重叠有一系列明暗相间的同心圆环,那是由于球晶中径向发射堆砌的条状晶片按一定周期规则地扭转的结果。因此利用偏光显微镜可以观察 出球晶的形态、大小等。

实验06 偏光显微镜-实验讲义

实验6 偏光显微镜观察化合物的晶态及液晶态结构 一、实验目的 1.了解偏光显微镜的结构及使用方法。 2.观察化合物的结晶形态及液晶态结构。 二、实验原理 用偏光显微镜研究化合物的结晶形态是目前实验室中较为简便而实用的方法。 根据振动的特点不同,光有自然光和偏振光之分。自然光的光振动(电场强度E的振动)均匀 地分布在垂直于光波传播方 向的平面内如图1所示;自 然光经过反射、折射、双折 射或选择吸收等作用后,可 以转变为只在一个固定方向 上振动的光波。这种光称为 图1 平面偏光,或偏振光如图1 (2)所示。偏振光振动方向 与传播方向所构成的平面叫做振动面。如果沿着同一方向有两个具有相同波长并在同一振动平面内的光传播,则二者相互起作用而发生干涉。由起偏振物质产生的偏振光的振动方向,称为该物质的偏振轴,偏振轴并不是单独一条直线,而是表示一种方向。如图1(2)所示。自然光经过第一偏振片后,变成偏振光,如果第二个偏振片的偏振轴与第一片平行,则偏振光能继续透过第二个偏振片;如果将其中任意一片偏振片的偏振轴旋转90°,使它们的偏振轴相互垂直。这样的组合,便变成光的不透明体,这时两偏振片处于正交。 光波在各向异性介质(如结晶化合物)中传播时,其传播速度随振动方向不同而发生变化,其折射率值也因振动方向不同而改变,除特殊的

光轴方向外,都要发生双折射,分解成振动方向互相垂直,传播速度不同,折射率不等的两条偏振光。两条偏振光折射率之差叫做双折射率。光轴方向,即光波沿此方向射入晶体时不发生双折射。晶体可分两类:第一类是一轴晶,具有一个光轴,如四方晶系、三方晶系、六方晶系;第二类是二轴晶,具有两个光轴,如斜方晶系、单斜晶系、三斜晶系。二轴晶的对称性比一轴晶低得多,故亦可称为低级晶系。聚合物由于化学结构比低分子链长,对称性低,大多数属于二轴晶系。一种聚合物的晶体结构通常属于一种以上的晶系,在一定条件可相互转换,聚乙烯晶体一般为正交晶系,如反复拉伸、辊压,发生严重变形,晶胞便变为单斜晶系。 轴晶有最大和最小两个主折射率值,在轴晶的一个平行于它的光轴Z 的切面上,假设光波振动方向平行于Z轴时,相应的折射率为最大主折 射率,垂直于Z轴时,相应的折射率为最小主折射率,并分别用N g 和N p 表示。那么,当入射光振动方向与Z轴斜交时,折射率递变于N g 和N p 之 间。不难理解,在这个晶体切面上我们可以用长短半径各为N g 和N p 的一 个椭圆来表示在该切面上各个不同方向的光振动的折射率。也可以用类似的方法处理其他方向的切面。 看置于正交偏光镜间晶体的光学性质。当光通过起偏镜时,它只允许在一定平面内振动的光通过,光从起偏镜出来后。进入到晶体的光线发生双折射,分解形成振动方向分别平行于椭圆长、短半径的两条光线x 和y,折射率分别为N g 和N p 。从晶体出来后,光线继续在这两个方向上振 动;但随后要遇到的检偏镜只允许具有振动aa的光线通过,光x分解为 沿x a 和x p 振动的两条光,光线y也分解为沿y a 和y p 振动的两条光,x a 和 y p 为检偏镜所消光,而x a 和y p 通过检偏镜能发生相互干涉。在正交偏光 镜下观察:非晶体(无定形)的化合物薄片,是光均匀体,没有双折射现象,光线被两正交的偏振片所阻拦,因此视场是暗的。而晶体在偏光显微镜下,可以观察到彩色的晶体织构。其多彩的颜色是因为样品厚度的差异。 物质具有三种状态:气态、液态和固态。另外还存在:等离子态、

实验五 偏光显微镜法观察聚合物球晶结构

实验六偏光显微镜法观察聚合物球晶结构(4课时)偏光显微镜法观察聚合物球晶结构 晶体和无定形体是聚合物聚集态的两种基本形式,很多聚合物都能结晶。聚合物在不同条件下形成不同的结晶,比如单晶、球晶、纤维晶等等,聚合物从熔融状态冷却时主要生成球晶。球晶是聚合物中最常见的结晶形态,大部分由聚合物熔体和浓溶液生成的结晶形态都是球晶。结晶聚合物材料的实际使用性能(如光学透明性、冲击强度等)与材料内部的结晶形态、晶粒大小及完善程度有着密切的联系,如较小的球晶可以提高冲击强度及断裂伸长率。例如球晶尺寸对于聚合物材料的透明度影响更为显著,由于聚合物晶区的折光指数大于非晶区,因此球晶的存在将产生光的散射而使透明度下降,球晶越小则透明度越高,当球晶尺寸小到与光的波长相当时可以得到透明的材料。因此,对于聚合物球晶的形态与尺寸等的研究具有重要的理论和实际意义。 球晶是以晶核为中心对称向外生长而成的。在生长过程中不遇到阻碍时形成球形晶体;如在生长过程中球晶之间因不断生长而相碰则在相遇处形成界面而成为多面体,在二度空间下观察为多边体结构。由分子链构成晶胞,晶胞的堆积构成晶片,晶片迭合构成微纤束,微纤束沿半径方向增长构成球晶。晶片间存在着结晶缺陷,微纤束之间存在着无定形夹杂物。球晶的大小取决于聚合物的分子结构及结晶条件,因此随着聚合物种类和结晶条件的不同,球晶尺寸差别很大,直径可以从微米级到毫米级,甚至可以大到厘米。球晶尺寸主要受冷却速度、结晶温度及成核剂等因素影响。球晶具有光学各向异性,对光线有折射作用,因此能够用偏光显微镜进行观察,该法最为直观,且制样方便、仪器简单。聚合物球晶在偏光显微镜的正交偏振片之间呈现出特有的黑十字消光图象。有些聚合物生成球晶时,晶片沿半径增长时可以进行螺旋性扭曲,因此还能在偏光显微镜下看到同心圆消光图象。对于更小的球晶则可用电子显微镜进行观察或采用激光小角散射法等进行研究。 一、实验目的和要求 了解偏光显微镜的原理、结构及使用方法。 了解双折射体在偏光场中的光学效应及球晶黑十字消光图案的形成原理。 观察聚丙烯熔体与浓溶液结晶生成的球晶形态,测定溶液结晶的球晶尺寸,判断球晶的正负性。 二、实验内容和原理 球晶 结晶与性能 结晶聚合物材料的性能(如光学性能、冲击强度等)与球晶的结晶形态、尺寸及完善程度有密切的关系。较小的球晶可以提高冲击强度及断裂伸长率。一般球晶的存在将产生光的散射而使透明度下降,球晶越小则透明度越高,直至其尺寸与光的波长相当则得到完全透明的材料。 球晶的形成 球晶是聚合物中最常见的结晶形态,大部分由聚合物熔体和浓溶液生成的结晶形态都是球晶。球晶是以核为中心对称向外生长而成的。在生长过程中不遇到阻碍时可形成球形晶体;如在生长过程中球晶之间相碰则在相遇处形成界面而成为多面体(二维空间观察为多边形)。 影响球晶尺寸的因素 冷却速度、结晶温度、成核剂等因素。 偏光显微镜原理 偏振光和双折射

高分子物理实验

高分子物理实验 目录 实验一粘度法测定聚合物的分子量 (1) 实验二聚合物熔融指数的测定 (6) 实验三偏光显微镜法观察聚合物结晶形态 (10) 实验四密度法测定聚乙烯的结晶度 (14) 实验五膨胀计法测定聚合物的玻璃化温度 (16) 实验六聚合物的差热分析及应用 (19) 前言 高分子科学既是基础科学也是实验科学。实际上高分子科学就是在大量的实验基础上发展起来。尤其是聚合物加工成型作为高分子科学中重要的分支,我校又以其作为高分子材料与工程专业的专业方向,实验技术在高分子材料的研究和教学中尤为重要。 高分子物理实验是一门综合性极强的实验课,涉及多种学科领域和相应测试方法及仪器,其实验目的一方面是学生掌握高分子物理理论知识,另一方面进一步扩大学生的知识面,帮助学生了解实验方法和仪器结构及性能,分析实验操作过程中具体影响因素,提高解决实际问题的能力。 本实验讲义主要根据教学大纲和对学生实验要求进行编写。在实验水平上,即介绍高分子科学的传统实验方法,也尽可能介绍一些有关的新技术。对近年来高分子科学、特别是高分子物理领域涌现的许多新方法、新技术,由于实验条件和教学时数的限制,只好舍弃。 实验一粘度法测定聚合物的分子量

粘度法是测定聚合物分子量的相对方法。高聚物分子量对高聚物的力学性能、溶解性、流动性均有极大影响。由于粘度法具有设备简单、操作方便、分子量适用范围广、实验精度高等优点,在聚合物的生产及科研中得到十分广泛的应用。本实验是采用乌氏粘度计测定甲苯溶液中聚苯乙烯粘度,进而测定求出PS试样分子量。 一、实验目的要求 1、掌握粘度法测定聚合物分子量的实验基本方法。 2、了解粘度法测定聚合物分子量的基本原理。 3、通过测定特性粘度,能够计算PS的分子量。 二、实验原理 1、粘性液体的牛顿型流动 粘性流体在流动过程中,由于分子间的相互作用,产生了阻碍运动的内摩擦力,粘度就是这种内摩擦力的表现。即粘度可以表征粘性液体在流动过程中所受阻力的大小。 按照牛顿的粘性流动定律,当两层流动液体间由于粘性液体分子间的内摩擦力在其相邻各流层之间产生流动速度梯度是(),液体对流动dv/dr F/A,,,dv/dr的粘性阻力是: (1-1) 该式即为牛顿流体定律。 式中,η—液体粘度,单位(Pa?s);A—平行板面积;F—外力。 符合牛顿流体定律的液体称为牛顿型液体。高分子稀溶液在毛细管中的流动基本属于牛顿型流动。在测定聚合物的特性粘度[η]时,以毛细管粘度计最为方便。 2、泊肃叶定律 高分子溶液在均匀压力p(即重力ρgh)作用下,流经半径为R、长度为L的均匀毛细管,根据牛顿粘性定律,可以导出泊肃叶公式: 4ghRt,,,, (1-2) 8LV

(整理)高分子物理实验

高分子物理实验李丽陈国文袭建人编写 山东大学(南校区)材料工程学院、材料科学系 2006、03、01

目录 实验一偏光显微镜法观察聚合物的结晶形态 (2) 实验二激光小角散射法测聚合物的球晶 (4) 实验三相差显微镜法观察共混物的结构形态 (7) 实验四粘度法测定高聚物的分子量 (9) 实验五高聚物熔融指数的测定 (13) 试验六高分子材料的电阻值的测定 (15) 实验七应力——应变曲线实验 (17) 附:塑料冲击试验 (23) 附录一:电位记录仪Y轴负荷值标定的操作 (36) 附录二:电位记录仪X轴形变值标定的操作 (37)

实验一偏光显微镜观察聚合物的结晶形态 用偏光显微镜研究聚合物的结晶形态是一种简便而实用的方法。众所周知,随着结晶条件的不同,聚合物的结晶,可以具有不同的形态,如:单晶、球晶、纤维晶及伸直链晶体等,熔体冷却结晶或浓溶液中析出结晶体时,聚合物倾向于生成球状多晶聚集物,称为球晶,球晶可以长得很大,直径甚至可达厘米数量级,对于几微米以上的球晶,用普通的偏光显微镜可以进行观察。 结晶高聚物的使用性能,如:光学透明性、冲击强度等,与材料内部的结晶形态、晶粒大小及完善程度有密切的联系,因此,对于聚合物的结晶形态的研究具有重要的理论和实际意义。 一、目的要求 1、了解偏光显微镜的结构及使用方法; 2、学习用熔融法制备高聚合物球晶; 3、观察聚丙烯的结晶形态,估算聚丙烯球晶大小; 二、原理 球晶的基本结构单元是具有折叠结构的片厚度在100A 左右。许多这样的晶片从一个中心(晶核)向四面八方生长,发展成为一个球状聚集体。 图1-1 球晶内晶片的排列与分子链取向 图1-2 球晶中双折射示意图 图1-1示意地说明球晶中分子链是垂直球晶半径的方向排列的。分子链的取向排列使球晶在光学性质上是各向异性的,即在平行于分子链和垂直于分子链的方向上有不同的折光率。在正交偏光显微晶下

相关主题
文本预览
相关文档 最新文档