当前位置:文档之家› 气动调节阀气开气关选择

气动调节阀气开气关选择

气动调节阀气开气关选择
气动调节阀气开气关选择

气动调节阀气开、气关方式的选择

气动调节阀气开、气关方式的选择主要是从生产安全角度出发来考虑的。当调节阀上信号或气源中断时,应避免损坏设备和伤害人员。如事故情况下,调节阀处于关闭位置危害小,则应选用气开式调节阀;反之,应选用气关式调节阀。举例来说,如加热炉的燃料气或燃料油调节阀,应选用气开式,以保证事故时能切断燃料,以免烧坏炉子。对于塔、储罐等设备,它们的压力控制若是通过排出物料来操纵,则调节阀应选用气关式;若是通过进入物料来进行操纵,则调节阀应选用气开式,以防事故时设备超压损坏。

对供气安全系数特别高的大型石油化工厂,因为它们除有足够容量的储气罐以外,还设有备用压缩机、外接气源等,而且工厂的供电等级也很高,所以供气系统的不安全度极小。在这种情况下,一般用途的调节阀可以根据操作习惯与方便、统一的原则来选择调节阀的气开、气关方式。对于少数极重要的调节阀,则不仅需要合理选择气开、气关方式,还需要考虑设置保位阀、事故用储气罐等专有的附属装置,以确保其在任何清况下的安全、可靠,并有利于事故后恢复生产。

气动调节阀的气开、气关方式,可以通过气动执行机构的正、反作用与阀芯正、反装的组合来实现。

确定调节阀的一些参数

一.调节阀

⑴确定计算流量:根据生产能力,设备负荷及介质状况,确定Qmax和Qmin.

⑵确定计算压差:根据系数特点选定S值,然后确定计算压差。

⑶计算流量系数:选择合适的计算公式或图表,求取最大和最小流量时的Cmax和Cmin。

⑷C值的选取:根据Cmax,在所选产品型式的标准系列中,选取大于Cmax并最接近的那

一级C值。

⑸调节阀开度验算:要求最大流量时,阀开度不大于90%,最小流量时开度不小于10%,(根据《自动化选型规定》HG/T20507-92).

对于直线特性阀,最大开度≦80%,最小开度应≧10%;

等百分比特性阀,最大开度≦90%,最小开度应≧30%.

⑹实际可调比的验算:一般要求,实际可调比不小于10.(一般选取30左右自认为)

⑺口径的确定:验证合适后,根据C值决定。

二 S值的定义

S值是调节阀全开时,阀上的压差△P v与系统中压力损失总和(在最大流量时)之比,

简称阀阻比(压降比)。

对于液体:常选S=0.3~0.5,对于高压系统,考虑到节约动力消耗允许S值到0.15,若 S<0.15,只能选用新型低S值调节阀。

对于气体:阻力损失小,S值都大于0.5,但在低压以及真空系统中,由于允许压损较小,仍在0.3~0.5之间为宜。

三.气开/气关的选择

㈠①设备安全②减少原料和动力消耗③考虑介质特性

举例如下:

⑴加热炉的进料系统:气关式

⑵油水分离器的排水线:气开式

⑶蒸馏塔的流出线:气开式

⑷压缩机入口调节阀:气关式

⑸压缩机旁路调节阀:气关式

⑹压缩机出口压力调节系统:调节阀装于防空管线上时:气关式

⑺汽包蒸汽出口调节阀:气开式

⑻汽包给水阀:气关或附加保位阀。

⑼储罐压力调节系统的调节阀:气关

⑽储罐液位调节系统,当调节阀装在出口管线上应(气关)

当调节阀装在入口管线上应(气开)

㈡蒸馏塔调节系统中的调节阀:气开气关的选择:

① 进料流量调节:气开

② 回流量调节阀:气关(大型装置可选用气开)

③ 重沸器加热流体调节阀应选气关式(大型装置选用气开)

④ 塔顶压力调节系统的调节阀应选气关式

⑤ 塔釜的排料调节阀应选气开式。

㈢反应器调节系统的调节阀,其气开气关的选择:

⒈聚合物排料的压力调节阀应选气关式

⒉聚合为放热反应时,换热器载体调节应选用气关式。

聚合为吸热反应时,换热器载体调节应选用气开式。

当聚合温度下降会产生凝聚时,应安装保位阀。

⒊反应器进料的流量调节阀应选气开式。

⒋溶剂流量调节阀调节阀应选气开式。

5.催化剂添加剂加料调节阀应选气开式。

㈣换热器条件调节系统中的调节阀,其气开和气关如何选择:

1被加热的流体出口温度过高会引起分解,自聚或结焦时,加热流体调节阀应选用气开式。

2被加热的流体出口温度过低会引起结晶,凝固等现象时,加热流体调节阀应选用气关式。

3 冷却流体为水时,调节阀应选气关式。

㈤气动调节阀胡气关和气开形式通过改变调节阀的正反装或者改变执行机构的正反作用来实现。

㈥选阀材质:

① 考虑介质的腐蚀性

② 根据气蚀冲刷是否严重

③ 介质温度选择

④ 工作压力选材

㈦C Kv Cv 的定义

① C有两个含义:1 IEC标准中各种运算的单位的流量系数的通用符号;

2 我国长期使用的流量系数符号:采用工程单位制其定义为:温度为5~40℃的水,在1kgf/cm2 压降下,

每小时流过调节阀的立方米数。

② Kv:采用国际单位制(SI制)的流量系数:定义为温度为5~40℃的水,在105Pa压降下,每小时流过调节阀的立方米数。

③ Cv:采用英制单位的流量系数,定义为40~60℉(4.4~15.6℃)的水,在1lb/in2(7KPa)压降下,每分钟流过调节阀的美

加仑数。换算关系:Kv=0.865Cv CV=1.156Kv Kv=1.01C Cv=1.167C

④ MKS仅仅是因为采用工程制压力单位:1kgf/ cm2=0.980665×105Pa

SI制:国际单位:压力单位:1kgf/ cm2=105Pa }二者差值不足2%,开方后仅约1%,差值引起的

计算误差在工程上是允许的。依照GB4213-84中,单位换算 1kgf/ cm2=100KPa=0.1MPa.长期形成C系列,并未按照:Kv=1.01C来计算:所以Cv 与Kv的换算关系:Cv=1.167Kv, C=1.156Kv.

㈧国外生产的气动薄膜调节阀铭牌上标有两个压力范围:即隔膜压力范围,和工作台压力范围(或实验台压力范围)指的是什么?

隔膜压力范围是指装在工艺管线上并有流体介质通过的气动调节阀,作全行程动作所需要的压力范围,它是根据气动调节阀工作时所受最大不平衡力决定的。

工作台压力范围:是指阀体内没有压力时,使阀作全行程动作所需要的压力范围,实际上是薄膜执行机构的弹簧范围。

当不平衡力很小时,这两个压力范围是相等的。

当不平衡力很小时,这两个压力范围是不相等的,其差值表示执行机构的最大输出力。如美国Fisher公司的执行机构,有各种弹簧范围的弹簧,能获得各种不同的输出力,以适应各种调节阀不平衡力的需要。

气动阀门常见故障分析及优化

气动阀门常见故障分析及优化 发表时间:2017-11-13T11:54:56.863Z 来源:《基层建设》2017年第24期作者:马斌王爱伟崔沛[导读] 摘要:气动蝶阀结构简单,在热轧生产线中有着广泛的应用。该文以邯宝2250mm热轧生产线为背景,从其气动蝶阀的常见故障入手,分析了气动蝶阀的故障原因并提出了优化措施,并在现场实践应用中取得了良好的实用效果,收到了很好的经济效益。 河钢邯钢邯宝热轧厂河北邯郸 056003 摘要:气动蝶阀结构简单,在热轧生产线中有着广泛的应用。该文以邯宝2250mm热轧生产线为背景,从其气动蝶阀的常见故障入手,分析了气动蝶阀的故障原因并提出了优化措施,并在现场实践应用中取得了良好的实用效果,收到了很好的经济效益。 关键词:气动蝶阀;故障分析;优化 前言 邯宝2250mm热轧生产线于2008年8月投产,该生产线是由德国西马克公司设计的一条具有国际先进水平的常规热连轧生产线,汇集了加热炉数字化燃烧、精轧机组多手段板形控制和大功率交直变频传动等先进技术,具有生产工艺先进、轧机控制手段齐全等特点。因气动蝶阀具有:1、小巧轻便,容易拆装及维修;2、结构简单、紧凑,操作扭矩小,90°回转开启迅速。3、蝶阀处于完全开启位置时,蝶板厚度是介质流经阀体时唯一的阻力,因此通过该阀门所产生的压力降很小,具有较好的流量控制特性。所以2250大量采用气动蝶阀进行水冷控制,进而控制板带温度。 1 气动蝶阀常见故障分析 投产以来,由于气动蝶阀数量大、动作频繁,故障多样,根据现场故障原因分析,总结归纳了下面几种气动蝶阀故障类型及原因:介质原因。这种原因包括气源压力过低;气源杂质致使过滤器滤芯堵塞;气源进水。 电磁阀故障。这种原因包括电磁阀进入杂质卡阻;电磁阀信号接头漏气;电磁阀阀芯窜气;电磁阀插头进水、虚接;电磁阀线圈损坏。 气动执行器故障。这种原因包括执行器进入杂质,拉伤缸壁;气缸润滑不良;执行器活塞环磨损;传动机构卡涩;机件出现故障,如梅花套碎裂。 阀体故障。这种原因包括轴与轴衬的摩擦系数增大;V 型环与轴之间摩擦阻力增大;软密封件与翻板接触面变大,表面粘有灰尘、污物,阻力变大;软密封与翻板之间卡入异物;翻板销轴脱出。 气动蝶阀无反馈信号。如果气动蝶阀没有反馈信号,要用万用表检查每个接点是否有电压。要检查线路是否正确,检查信号线是否损坏,检查信号线是否接好。 (6)气动蝶阀的阀门开度不正确。该故障一般分析可直接定位在阀门定位器故障,应先其进行重新标定检查。气动蝶阀定位器有零位和量程两个调节按钮。在调节阀阀位不正确的情况下,先调节定位器的零位调节按钮,把调节阀的零位调好;再调节定位器的量程调节按钮,把调节阀的 100%的位置调节好;再调节调节阀的量程调节按钮,调节调节阀的 25%、50%、75%的位置。通过五点的调节,来确定阀门的线性。 (7)气动蝶阀动作不稳定。气源压力不稳定。原因:减压阀故障导致信号压力不稳定;调节器输出不稳定。气源压力稳定,信号压力也稳定,但调节阀的动作仍不稳定。原因:定位器输出震荡;输出管、线漏气;执行机构刚性太小;阀杆运动中摩擦阻力大,与相接触部位有阻滞现象。 2 气动蝶阀应用的优化 1)针对气源故障,优化气源设计采用经干燥器、过滤器、油雾器处理后的干净空气或氮气。避免气源中的杂质进入电磁阀和气动执行器,也可以避免输送介质泄漏进气动元件,反向污染气源。 2)针对电磁阀故障,对电磁阀进行防水、防潮处理,插头及其与线圈结合处除原有设计密封外,采用防水胶布和绝缘胶布进行防护,可以大幅降低电磁阀的事故率。 3)通过油雾器对电磁阀及气动执行器进行润滑补油,避免阀门的卡阻。 4)将阀体中的销轴连接改为方形卡槽式连接,避免因销轴脱落造成的阀门故障。 5)对电磁阀进行点检定修制,对电磁阀排气口处出现漏气情况及时排查电磁阀故障和气动执行器故障,及时进行更换。 6)对阀体密封及易损机件进行定期更换,更换周期为2年。 7)针对阀体漏水窜入执行器,对执行器、电磁阀、气源造成污染的情况,设计了气动执行器防护装置。该防护装置,整体呈平面法兰式结构,安装于阀体与气动执行器之间中心开有与阀体中轴直径相匹配且贯通两侧平面的中轴孔,两侧平面开有与阀体法兰螺栓孔相匹配的装配孔;一侧平面沿径向开有径向贯穿的导流槽,该侧平面中心开有外径大于阀体密封套直径的导流环,导流环外径大于导流槽宽度;该防护装置可将泄漏的输送介质通过导流环和导流槽排出,实现输送介质与气动执行器能源介质的有效隔离,杜绝输送介质对气动执行器的腐蚀和对能源介质的污染,延长了气动执行器的使用寿命,大幅降低了备件和维护成本,保证了生产安全正常进行;该防护装置结构简单、组装方便、经济耐用,可广泛应用于各类气动阀门的执行器防护领域。 3 应用改进效果 气动蝶阀及气动调节阀在热轧生产线中有着广泛的应用,对于热轧生产线系统的安全可靠运行具有重大的意义,因此对这种阀门的调试和常见故障总结分析是具有普遍而重大的意义的。经过上述的气动蝶阀应用改进后,气动蝶阀的事故率降低了80%左右,实现了良好的实用稳定性,其中气动阀门执行器防护装置实现输送介质与气动执行器能源介质的有效隔离,彻底杜绝输送介质对气动执行器的腐蚀和对能源介质的污染,延长了气动执行器的使用寿命,同时,当发现有输送介质外泄时,也可及时对阀体进行维修或更换,保证正常安全生产,可广泛应用于各类气动阀门的执行器防护领域。 参考文献 [1]张鲁斌,李静,吴志欣.气动调节阀故障原因分析[J].化学工程与装备,2010(1):87-89. [2]日新.主编.工业专用阀门精品手册[M].机械工业出版社,2000.

调节阀操作说明书

气缸直行程控制阀 使用说明书 成都欧浦特控制阀门有限公司 ChengDu OPTIMUX Control Valves Co.,Ltd

一、 概述 OPGL 气缸直行程控制阀是成都欧浦特控制阀门有限公司引进美国先进技术,集多年成功的专业制造经验而生产的产品。该系列控制阀采用高刚性、大推力的气缸式执行机构,气源压力可达1.0MPa,气缸强大的推力可克服很高的介质流体压力。(OPGL 电动控制阀所配用的电动执行机构,根据用户要求确定)。自动对中心无螺纹连接卡入式阀座,使维修工作轻而易举,简单快捷。粗壮的阀杆及与其一体式的阀芯,能够承受高压差而阀芯不致脱落。另外它还综合了传统的单座控制阀、双座控制阀和笼式控制阀的优点,泄漏量小、稳定性好、允许压差高,使OPGL 气缸直行程控制阀充分显示出其独有的特点,它代表了国际九十年代末控制阀最先进的主流,我们相信广大客户在使用OPGL 气缸直行程控制阀时很快会发现其越来越多的优点。 在安装使用和维护OPGL气缸直行程控制阀前阅读本说明书将会给你很大的帮助。安装、操作或维修阀门时,使用和维修人员一定要充分地阅读安装说明,了解它的结构特点和拆装方法步骤,才能保证其安全运行。 OPGL 电动控制阀的用户请阅读本说明书和相应配套的电动执行机构的说明书。 OPGL 气缸直行程控制阀国内独家生产,具有国家发明专利的高科技产品。 二、 结构特点 1、OPGL 气缸直行程控制阀技术先进,性能卓越。具有调节、切断、切断压差大、泄漏量小等全部功能,特别适用于允许泄漏量小、而阀前后压差较大的自控系统,可同时替代薄膜式单座阀、双座阀及笼式阀。 2、标准化、模块化设计,库存备件少、维修更方便。 3、带弹簧的双作用气缸式执行机构,材质为压铸铝合金,体积小、重量轻,配双作用阀门定位器,动作灵敏、定位精度高,活塞的上部和下部同时接受纯净的压缩空气,气缸内部免受腐蚀。气源压力最高可达1.0MPa,推力大、行程速度快、使用寿命长。气源故障时弹簧可使阀门自动关闭或打开,保证了系统的安全。特殊设计的气缸卡环结构可使气关、气开方式在现场很方便地更换。同时具备了单作用执行机构和双作用执行机构的功能和优点。 4、自动调准中心插入式无螺纹连接阀座,通过阀盖和阀笼固定在阀体内,易于拆出、维修方便,控制阀可以在线检修,阀芯阀座密封面的优化设计和超精加工无需研磨就可以达到极小的泄漏量。 5、阀芯和阀杆为一体式,阀杆较传统类型阀杆粗3~4倍,可承受高压差并消除了阀芯脱落、阀杆弯曲断裂的事故隐患。 6、双顶式导向结构,阀芯与阀笼无接触,彻底消除了阀笼导向所引起的阀芯擦伤、阀笼卡死等阀门应用问题。 7、阀笼有多种设计:分别用于一般工况和高温高压差的严酷工况。如:消除气蚀型、降噪型,保护阀芯和阀体免受气蚀的损坏,大幅度降低噪音。 8、维修简单、快捷、经济,阀体不必从管线上拆下来,只需拧下阀盖法兰上的螺母,阀盖、阀芯、阀座零件就可很方便的依次取出检查,反之亦然。

调节阀关试题库

调节阀题库 一、单相选择题 1.在设备安全运行的工况下,能够满足气开式控制阀的是( A )。 A、锅炉的燃烧油(气)调节系统; B、锅炉汽包的给水调节系统; C、锅炉汽包的蒸汽入口压力调节系统; D、锅炉炉膛进口引风压力调节系统; 2.调节阀阀盖四氟填料的工作温度不适用于(D) A.20~150℃ B.-40~250℃ C.-40~450℃(加散热法) D.200~600℃ 3.某调节阀的工作温度为400℃,其上阀盖形状应选择为(B) A.普通型 B.散热型 C.长颈型 D.波纹管密封型 4.压缩机入口调节阀应选(B) A.气开型 B.气关型 C.两位式 D.快开式 5.调节阀口径大或压差高时可选用( C )执行机构。 A、薄膜式; B、活塞式; C、无弹簧气动薄膜; D、气动长行程 6.调节阀的泄漏量就是指( A )。 A.指在规定的温度和压力下,阀全关状态的流量大小 B.指调节阀的最小流量 C.指调节阀的最大量与最小量之比 D.指被调介质流过阀门的相对流量与阀门相对行程之间的比值 7.精小型调节阀具有许多优点,但不具有(C )的特点。 A.流量系数提高30% B.阀体重量减轻30% C.阀体重量增加30% D.阀体高度降低30% 8.执行机构为(A )作用,阀芯为()装,则该调节阀为气关阀。 A、正、正 B、正、反 C、反、正 D、正或反、正 9.低噪音调节阀常用的是(B)。 A.单座阀 B.套筒阀 C.隔膜阀 D.角阀 10.直通双座调节阀不存在( D)的特点。 A.有上下两个阀芯和底阀座 B.阀关闭时,泄漏量大 C.允许阀芯前后压差较大 D.阀关闭时,泄漏量小

气动控制阀结构与原理

1.方向控制阀及换向回路 方向控制阀按气流在阀内的作用方向,可分为单向型控制阀和换向型控制阀。 (1)单向型控制阀。 1)单向阀。气动单向阀的工作原理与作用与液压单向阀相同。 在气动系统中,为防止储气罐中的压缩空气倒流回空气压缩机,在空气压缩机和储气罐之间就装有单向阀。单向阀还可与其他的阀组合成单向节流阀、单向顺序阀等。 2)梭阀(或门阀)。梭阀是两个单向阀反向串联的组合阀。由于阀芯像织布梭子一样来回运动,因而称之为梭阀。 图3一25(a)为或门型梭阀的结构图。其工作原理是当P1进气时,将阀芯推向右边,P2被关闭,于是气流从P1进人A腔,如图3-25(b)所示;反之,从P2进气时,将阀芯推向左边,于是气流从几进人P2腔,如图3-25(c)所示;当P1,P2同时进气时,哪端压力高,A就与哪端相通,另一端就自动关闭。可见该阀两输人口中只要有一个输人,输出口就有输出,输人和输出呈现逻辑“或”的关系。 或门型梭阀在逻辑回路中和程序控制回路中被广泛采用,图3-26是梭阀在手动一自动回路中的应用。通过梭阀的作用,使得电磁阀和手动阀均可单独操纵汽缸的动作。 气动调节阀:https://www.doczj.com/doc/8719088376.html,/ 3)双压阀(与门阀)图3-27是双压阀的工作原理图。当P1进气时,将阀芯推向右端,A 无输出,如图3-27(a)所示;当P2进气时,将阀芯推向左端,A无输出,如图3一27(b)所示;只有当P1,P2同时进气时,A才有输出,如图3-27(c)所示;当P1和P2气体压力不等时,则气压低的通过A输出。由此可见,该阀只有两输人口中同时进气时A才有输出,输人和输出呈现逻辑“与”的关系。 自力式压力调节阀:https://www.doczj.com/doc/8719088376.html,/

调节阀的故障保位

调节阀的故障保位 前言:为满足现代化生产装置对自控系统提出的安全控制、精细控制的高性能要求,结合工作实践中的工程实例,对特殊控制要求的控制系统的执行机构调节阀的故障形式:断电、断气、断信号进行三断保位,以保障整个装置生产的稳定性和连续性,减少不必要的停产和相应的经济损失。就化工生产中常见的气动调节阀门,分别从调节阀的断电、断气、断信号三个方面阐述了各自保位的工作原理、相应的硬件配置及工作原理,并列举调节阀的故障保位方案进行佐证 1 控制阀保位的必要性 不同工艺系统的控制需求决定了执行机构不同的失效安全工作模式。失效安全模式的选择原则首先是安全生产,其次是连续性。 在工程实践中,当遇到自控系统的气源、电源及输出信号故障时,不同的场合对阀门的状态有不同的要求,这些要求往往是出于安全和尽量减少故障损失方面的考虑,另外在安全的情况下,尽量保持装置生产的连续性也是需要考虑的一个重要方面。这就要求自控系统采取一些必要的安全保护措施。例如:在用蒸汽对罐内的物料进行加热时,如果遇到气、电故障,应将蒸汽的入口阀门关闭,切断蒸汽,即故障关(Fail to close),以防罐内物料过热结焦;再如在水冷却物料系统中,遇故障时,则希望冷却水不要被切断,此时要求水入口调节阀故障开(Fail to open);而有些特殊的场合则希望故障出现时,阀位保持在原来的位置不变,以保持流体的稳定流量,如高温高分子中间聚合物的夹套管的蒸汽温度控制阀,一旦故障,全开会导致主管道内物料的结焦,全关则可能会导致熔体输送管线内的高分子聚合物冷却凝结,堵塞管线,此种情况下故障阀门需要保位(Fail to lock),以确保物料输入的稳定连续性。这就要求控制阀在设计中实现故障时安全的三断(断气、断电、断信号)保护措施。工程中常见的三种安全失效模式如图1所示。

调节阀的基本知识

气动调节阀工作原理 已有76 次阅读2011-01-27 09:04标签: 气动调节阀电磁阀转换器动力源 气动调节阀 气动调节阀是石油、化工、电力、冶金等工业企业广泛使用的工业过程控制仪表之一。通常由气动执行机构、阀门、**等连接安装调试后形成气动调节阀。 气动调节阀工作原理气动调节阀就是以压缩空气为动力源,以气缸为执行器,并借助于电气阀门**、转换器、电磁阀、保位阀等附件去驱动阀门,实现开关量或比例式调节,接收工业自动化控制系统的控制信号来完成调节管道介质的流量、压力、温度等各种工艺参数。气动调节阀的特点就是控制简单,反应快速,且本质安全,不需另外再采取防爆措施。 结构分类根据阀门动作方式可基本分为:直行程(薄膜调节阀、直行程气缸)和角行程(拨叉式、齿轮齿条式)两种方式。 维修检查气动调节阀准确正常地工作对保证工艺装置的正常运行和安全生产有着十分重要的意义。因此加强气动调节阀的维修是必要的。 一、检修时的重点检查部位 检查间体内壁:在高压差和有腐蚀性介质的场合,阀体内壁、隔膜阀的隔膜经常受到介质的冲击和腐蚀,必须重点检查耐压耐腐情况; 检查阀座:因工作时介质渗入,固定阀座用的螺纹内表面易受腐蚀而使阀座松弛; 检查阀芯:阀芯是调节阀的可动部件之一,受介质的冲蚀较为严重,检修时要认真检查阀芯各部是否被腐蚀、磨损,特别是在高压差的情况下,阀芯的磨损因空化引起的汽蚀现象更为严重。损坏严重的阀芯应予更换;检查密封填料:检查盘根石棉绳是否干燥,如采用聚四氟乙烯填料,应注意检查是否老化和其配合面是否损坏; 检查执行机构中的橡胶薄膜是否老化,是否有龟裂现象。 二、气动用调节阀的日常维护 当调节阀采用石墨一石棉为填料时,大约三个月应在填料上添加一次润滑油,以保证调节阀灵活好用。如发现填料压帽压得很低,则应补充填料,如发现聚四氟乙燥填料硬化,则应及时更换;应在巡回检查中注意调节阀的运行情况,检查阀位指示器和调节器输出是否吻合;对有**的调节阀要经常检查气源,发现问题及时处理;应经常保持调节阀的卫生以及各部件完整好用。 三、常见故障及产生的原因 (一)调节阀不动作。故障现象及原因如下: 1.无信号、无气源。①气源未开,②由于气源含水在冬季结冰,导致风管堵塞或过滤器减压阀堵塞失灵,③压缩机故障;④气源总管泄漏。 2.有气源,无信号。①调节器故障;③**波纹管漏气;④调节网膜片损坏。 3.**无气源。①过滤器堵塞;②减压阀故障I③管道泄漏或堵塞。 4.**有气源,无输出。**的节流孔堵塞。

电磁阀电动阀和气动阀的区别

电磁阀和电动阀的区别 1.开关形式: 电磁阀通过线圈驱动,只能开或关,开关时动作时间短。 电动阀的驱动一般是用电机,开或关动作完成需要一定的时间模拟量的,可以做调节。 2.工作性质: 电磁阀一般流通系数很小,而且工作压力差很小。比如一般25口径的电磁阀流通系数比15口径的电动球阀小很多。电磁阀的驱动是通过电磁线圈,比较容易被电压冲击损坏。相当于开关的作用,就是开和关2个作用。 电动阀的驱动一般是用电机,比较耐电压冲击。电磁阀是快开和快关的,一般用在小流量和小压力,要求开关频率大的地方电动阀反之。电动阀阀的开度可以控制,状态有开、关、半开半关,可以

控制管道中介质的流量而电磁阀达不到这个要求。 电磁阀一般断电可以复位,电动阀要这样的功能需要加复位装置。 3.适用工艺: 电磁阀适合一些特殊地工艺要求,比如泄漏、流体介质特殊等,价格较贵。 电动阀一般用于调节,也有开关量的,比如:风机盘管末端。 气动阀和电动阀的区别, 各有什么优、缺点,都适合用在什么场合? 一电动阀使用电机做动力,气动阀使用压缩空气作动力。 (1)电动阀优点:对液体介质和大管径气体效果好,不受气候影

响。不受空压气的压力影响。缺点:成本高、在潮湿环境不好。 (2)气动阀优点:对气体介质和小管径液体效果好,成本低,维护方便。缺点:受空压气压力波动的影响, 在北方冬季易受空压气含水影响,造成传动部分冻结、不动作。二一般气动要比电动快,电动的都是手电两用的。而气动要手、气两用的价格比较高。 三电动阀门用于一些大管径的地方 因为气动很难做到但是电动阀门的稳定性不如气动开关速度慢执行机构长时间会出现卡齿现象气动阀门开关速度快精度高但是需要稳定的气源。 四电动阀动作慢电动阀能做到防爆的品牌不是很多;气动阀动作迅速,防爆相对来说价格比电动底(关键气动阀配什么附件,配大品牌附件就会比电动阀贵)。 涉及到连锁的阀门也用电动的,为什么? (1)根据当地天气气候,如果气候潮湿气动阀就不能使用,因为气源带水。 (2)电动阀也可以实现联锁功能不会额外增加费用,气动实现联锁就会增加

气动调节阀的故障分析与解决方案

气动调节阀的故障分析与解决方案 随着自动化技术地飞速发展,调节阀用于控制各种介质流量和压力,在稳定生产、优化控制等方面起着举足轻重的作用。从调节阀的结构、执行器的形式、流量特性、维护等多方面进行综合比较,针对不同工况对调节阀进行相应分析和应用,真正发挥调节阀在自动化控制中“执行单元”的作用,为管道输送介质、达到控制指标和科学管理提供有力保障。本文重点对气动调节阀的使用、故障现象和原因分析加以介绍。 调节阀是石油化工行业用来调节各种介质流量和压力的装置,它的工作正常与否直接关系整个装置的生产能否正常。生产现场的工作环境常处于高温高压、潮湿、粉尘、振动、易燃易爆等恶劣条件,故障率较高,气动调节阀在惠州炼化运行一部使用最为广泛,所以保证其使用正常是十分重要的。 1调节阀简介 根据国际电工委员会IEC对调节阀(国外称CONTROLVALVE控制阀)的定义:调节阀是由执行机构和阀体部件两部分组成,即调节阀=执行机构+阀体部件执行机构是调节阀的推动装置,它按信号压力的大小产生相应的推力,使推杆产生相应的位移,从而带动调节阀的阀芯动作;阀体部件是调节阀的调节部分,它直接与介质接触,通过执行机构推杆的位移,改变调节阀的节流面积,达到调节的目的。 2调节阀常见故障现象及原因分析

2.1 气源故障 1)现场气源未开。 2)气源含水,天气寒冷结冰。 3)净化风停止供应。 4)气源总管泄露或风线堵塞导致风压过低,调节阀不能全开或全关,甚至不动作。 5)空气过滤减压器长时间使用,脏物太多,减压阀下黑色旋钮打开漏风,使输出风压小于规定的压力,导致调节阀不能全开全关,甚至不动作。 6)现场风线漏风,接头松动,导致风压不足,调节阀不能全开全关,甚至不动作。 7)过滤减压阀故障,导致风压不稳,造成调节阀振荡。 2.2 线路故障 1)电源线接线端松动、脱落、短路、断路,电路板灰尘积得太多导致接触不良,信号波动,调节阀产生振动。 2)大雨或台风过后,设备进水受潮使接线短路,造成调节阀不能全开或全关。 3)极性接反会导致调节阀不动作。

调节阀手册

调节阀手册第一章概述 O.P.小洛维特 在现代化工厂的自动控制中,调节阀起着十分重要的作用,这些工厂的生产取决于流动着的液体和气体的正确分配和控制。这些控制无论是能量的交换、压力的降低或者是简单的容器加料,都需要靠某些最终控制元件去完成。最终控制元件可以认为是自动控制的“体力”。在调节器的低能量级和执行流动流体控制所需的高能级功能之间,最终控制元件完成了必要的功率放大作用。 调节阀是最终控制元件的最广泛使用的型式。其他的最终控制元件包括计量泵、调节挡板和百叶窗式挡板(一种蝶阀的变型)、可变斜度的风扇叶片、电流调节装置以及不同 于阀门的电动机定位装置。 尽管调节阀得到广泛的使用,调节系统中的其它单元大概都没有像它那样少的维护工作量。在许多系统中,调节阀经受的工作条件如温度、压力、腐蚀和污染都要比其它部件更为严重,然而,当它控制工艺流体的流动时,它必须令人满意地运行及最少的维修量。 调节阀在管道中起可变阻力的作用。它改变工艺流体的紊流度或者在层流情况下提供一个压力降,压力降是由改变阀门阻力或"摩擦"所引起的。这一压力降低过程通常称为“节流”。对于气体,它接近于等温绝热状态,偏差取决于气体的非理想程度(焦耳一汤姆逊效应)。在液体的情况下,压力则为紊流或粘滞摩擦所消耗,这两种情况都把压力转 化为热能,导致温度略为升高。 常见的控制回路包括三个主要部分,第一部分是敏感元件,它通常是一个变送器。它是一个能够用来测量被调工艺参数的装置,这类参数如压力、液位或温度。变送器的输出被送到调节仪表一一调节器,它确定并测量给定值或期望值与工艺参数的实际值之间的偏差,一个接一个地把校正信号送出给最终控制元件一一调节阀。阀门改奕了流体的流量,使工艺参数达到了期望值。 在气动调节系统中,调节器输出的气动信号可以直接驱动弹簧-薄膜式执行机构或者活塞式执行机构,使阀门动作、在这种情况下,确定阀位所需的能量是由压缩空气提供的,压缩空气应当在室外的设备中加以干燥,以防止冻结,并应净化和过滤。 当一个气动调节阀和电动调节器配套使用时,可采用电-气阀门定位器或电-气转换器。压缩空气的供气系统可以和用于全气动的调节系统一样来考虑。 在调节理论的术语中,调节阀既有静态特性,又有动态特性,因而它影响整个控制回路成败。静态特性或增益项是阀的流量特性,它取决于阀门的尺寸、阀芯和阀座的组合结构、执行机构的类型、阀门定位器、阀前和阀后的压力以及流体的性质。第5章中将详细地介绍这些内容。 动态特性是由执行机构或阀门定位器-执行机构组合决定的。对于较慢的生产过程,如温度控制或液位控制,阀的动态特性在可控性方面一般不是限制因素。对于较快的系统,

气动调节阀气开气关选择

气动调节阀气开、气关方式的选择 上海沪贡阀门制造有限公司 气动调节阀气开、气关方式的选择主要是从生产安全角度出发来考虑的。当调节阀上信号或气源中断时,应避免损坏设备和伤害人员。如事故情况下,调节阀处于关闭位置危害小,则应选用气开式调节阀;反之,应选用气关式调节阀。举例来说,如加热炉的燃料气或燃料油调节阀,应选用气开式,以保证事故时能切断燃料,以免烧坏炉子。对于塔、储罐等设备,它们的压力控制若是通过排出物料来操纵,则调节阀应选用气关式;若是通过进入物料来进行操纵,则调节阀应选用气开式,以防事故时设备超压损坏。 对供气安全系数特别高的大型石油化工厂,因为它们除有足够容量的储气罐以外,还设有备用压缩机、外接气源等,而且工厂的供电等级也很高,所以供气系统的不安全度极小。在这种情况下,一般用途的调节阀可以根据操作习惯与方便、统一的原则来选择调节阀的气开、气关方式。对于少数极重要的调节阀,则不仅需要合理选择气开、气关方式,还需要考虑设置保位阀、事故用储气罐等专有的附属装置,以确保其在任何清况下的安全、可靠,并有利于事故后恢复生产。 气动调节阀的气开、气关方式,可以通过气动执行机构的正、反作用与阀芯正、反装的组合来实现。 确定调节阀的一些参数 一.调节阀 ⑴确定计算流量:根据生产能力,设备负荷及介质状况,确定Qmax和Qmin. ⑵确定计算压差:根据系数特点选定S值,然后确定计算压差。 ⑶计算流量系数:选择合适的计算公式或图表,求取最大和最小流量时的Cmax和Cmin。 ⑷C值的选取:根据Cmax,在所选产品型式的标准系列中,选取大于Cmax并最接近的那 一级C值。 ⑸调节阀开度验算:要求最大流量时,阀开度不大于90%,最小流量时开度不小于10%,(根据《自动化选型规定》HG/T20507-92). 对于直线特性阀,最大开度≦80%,最小开度应≧10%; 等百分比特性阀,最大开度≦90%,最小开度应≧30%. ⑹实际可调比的验算:一般要求,实际可调比不小于10.(一般选取30左右自认为) ⑺口径的确定:验证合适后,根据C值决定。 二 S值的定义 S值是调节阀全开时,阀上的压差△P v与系统中压力损失总和(在最大流量时)之比, 简称阀阻比(压降比)。 对于液体:常选S=0.3~0.5,对于高压系统,考虑到节约动力消耗允许S值到0.15,若 S<0.15,只能选用新型低S值调节阀。 对于气体:阻力损失小,S值都大于0.5,但在低压以及真空系统中,由于允许压损较小,仍在0.3~0.5之间为宜。 三.气开/气关的选择 ㈠①设备安全②减少原料和动力消耗③考虑介质特性 举例如下: ⑴加热炉的进料系统:气关式

气动调节阀知识

气动调节阀知识 气动调节阀就是以压缩空气为动力源,以气缸为执行器,并借助于电气阀门定位器、转换器、电磁阀、保位阀等附件去驱动阀门,实现开关量或比例式调节,接收工业自动化控制系统的控制信号来完成调节管道介质的:流量、压力、温度等各种工艺参数。气动调节阀的特点就是控制简单,反应快速,且本质安全,不需另外再采取防爆措施。 ◆◆◆ 气动调节阀工作原理(图)

气动调节阀通常由气动执行机构和调节阀连接安装调试组成,气动执行机构可分为单作用式和双作用式两种,单作用执行器内有复位弹簧,而双作用执行器内没有复位弹簧。其中单作用执行器,可在失去起源或突然故障时,自动归位到阀门初始所设置的开启或关闭状态。 气动调节阀根据动作形式分气开型和气关型两种,即所谓的常开型和常闭型,气动调节阀的气开或气关,通常是通过执行机构的正反作用和阀态结构的不同组装方式实现。 ◆◆◆ 气动调节阀作用方式: 气开型(常闭型)是当膜头上空气压力增加时,阀门向增加开度方向动作,当达到输入气压上限时,阀门处于全开状态。反过来,当空气压力减小时,阀门向关闭方向动作,在没有输入空气时,阀门全闭。顾通常我们称气开型调节阀为故障关闭型阀门。 气关型(常开型)动作方向正好与气开型相反。当空气压力增加时,阀门向关闭方向动作;空气压力减小或没有时,阀门向开启方向或全开为止。顾通常我们称气关型调节阀为故障开启型阀门。

气开气关的选择是根据工艺生产的安全角度出发来考虑。当气源切断时,调节阀是处于关闭位置安全还是开启位置安全。 举例来说,一个加热炉的燃烧控制,调节阀安装在燃料气管道上,根据炉膛的温度或被加热物料在加热炉出口的温度来控制燃料的供应。这时,宜选用气开阀更安全些,因为一旦气源停止供给,阀门处于关闭比阀门处于全开更合适。如果气源中断,燃料阀全开,会使加热过量发生危险。又如一个用冷却水冷却的的换热设备,热物料在换热器内与冷却水进行热交换被冷却,调节阀安装在冷却水管上,用换热后的物料温度来控制冷却水量,在气源中断时,调节阀应处于开启位置更安全些,宜选用气关式(即FO)调节阀。 ◆◆◆ 阀门定位器 阀门定位器是调节阀的主要附件,与气动调节阀大大配套使用,它接受调节器的输出信号,然后以它的输出信号去控制气动调节阀,当调节阀动作后,阀杆的位移又通过机械装置反馈到阀门定位器,阀位状况通过电信号传给上位系统。阀门定位器按其结构形式和工作原理可以分成气动阀门定位器、电-气阀门定位器和智能式阀门定位器。

阀门使用说明书

阀门安装使用说明书 1、阀门的安装及拆卸的注意事项 1.1维护保养和安装使用注意要点 一).阀门应放在干燥通风的室内,通径两端须密封防尘; 二).长期存放应定期检查,并在加工表面上涂油,防止锈蚀; 三).阀门安装前应仔细核对标志是否与使用要求相符; 四).安装时应清洁内腔和密封面,检查填料是否压紧,连接螺栓是否均匀拧紧; 五).阀门应按照允许的工作位置安装,但须注意检修和操作的方便; 1.2其他注意事项: 1)阀门一般应在管路安装之前定位。配管要自然,位置不对不能硬扳,以免留下预应力; 2)低温阀门在定位之前应尽量在冷态下(如在液氮中)做启闭试验,要求灵活无卡壳现象; 3)液体阀应配置成阀杆与水平成10°倾斜角,避免液体顺着阀杆流出,冷损增加;更主要的是要避免液体触及填料密封面,使之冷硬而失去密封作用,产生泄漏; 4)安全阀的连接处应有弯头,避免直接冲击阀门;另外要保证安全阀不结霜,以免工作时失效; 5)截止阀的安装应使介质流向与阀体上标示的箭头一致,使阀门关闭时压力加在阀顶的锥体上,而填料不受负荷。但对不经常启闭而又需要严格保证在关闭状态下不漏的阀门(如加温阀),可有意识地反装,以借助介质压力使之紧闭; 6)大规格的闸阀、气动调节阀应该竖装,以免因阀芯的自重较大而偏向一方,增加阀芯与衬套之间的机械磨损,造成泄漏; 7)在拧紧压紧螺钉时,阀门应处于微开状态,以免压坏阀顶密封面; 8)所有阀门就位后,应再作一次启闭,灵活无卡住现象为合格;

9)天气寒冷时,水阀长期闭停,应将阀后积水排除。汽阀停汽后,也要排除凝结水。阀底有如丝堵,可将它打开排水。 10)非金属阀门,有的硬脆,有的强度较低,操作时,开闭力不能太大,尤其不能使猛劲。还要注意辟免对象磕碰。 11)新阀门使用时,填料不要压得太紧,以不漏为度,以免阀杆受压太大,加快磨损,而又启闭费劲。 确认管道上的盲板是否拆掉,以及施工时操作过的阀门要恢复施工前的启闭状态。 1.3阀门安装的注意事项 1.3.1阀门安装之前,要确认阀门符合设计要求和有关标准。 1.3.2在搬运和安装阀门时,要谨防磕碰划伤的事故 1.3.3安装阀门前,管道内部要清洗,除去铁屑等杂质,防止阀门密封座夹杂异物。另外,安装时的阀门应是关闭状态。 1.3.5在安装阀门时,要确认介质流向、安装形式及手轮位置是否符合规定。

气动调节阀在自控系统中的故障分析

气动调节阀在自控系统中的故障分析 气动调节阀是石油、化工、电力、冶金等工业企业广泛使用的工业过程控制仪表之一。化工生产中气动调节阀在调节系统中是必不可少的,它是组成工业自动化系统的重要环节,它如生产过程自动化的手脚。 标签:调节阀;故障分析;气动;结构原理 气动调节阀又称气动控制阀,是工业生产过程中实现自动控制、自动调节的重要设备。气动调节阀可以连续和精确的调节流体的流量、温度、压力、液位等参数,以满足生产工艺的需要。 一、气动调节阀在化工领域的概述 調节阀是现在工业控制中的重要控制执行机构,调节阀的选型、控制精度直接影响到生产线制造产品的质量的控制效果。在工业生产过程中,生产线上的调节阀控制机构出现故障,影响工艺生产稳定,甚至有可能引起生产线的事故的发生及人员的伤亡等,造成不必要的安全隐患,后果是难以估计的。在现代工业生产过程中,工业自动化程度较高,气动阀的应用范围较广,它是一种相对来说比较稳定的控制执行机构,内部结构相对简单,维修与故障处理通俗易懂,同时生产线上应用这种调节阀对生产线的稳定运行及生产线的自动化控制都是较为通用。 二、气动调节阀结构及工作原理 气动调节阀主要由气动执行机构、阀体、附件三部分组成。执行机构以洁净压缩空气为动力,接收4至20毫安电信号或20至100KPa气信号,驱动阀体运动,改变阀芯与阀座间的流通面积,从而达到调节流量的作用。为了改善阀门的线性度,克服阀杆的摩擦力和被调介质工况(温度、压力、流量、液位)变化引起的影响,使用阀门定位器与调节阀配套,从而使阀门位置能按调节信号精确定位;其工作原理为力矩平衡原理。 气动装执行机构主要由上、下膜盖、橡胶隔膜、气动杆、支架、弹簧、弹簧座、调节套筒、连接螺母、行程指示器、操纵手轮等部件组成。橡胶隔膜为气动执行装置的关键部件,一般由具有较好的耐油及耐高、低温性能的丁腈橡胶加锦纶丝织物制成。为了保护其有效面积基本上保持不变,提高气动装置工作的线性度,膜片常制作成波纹状。为了保证作用于膜片上的压力能有效准确地传递给气动杆,除薄膜的四周夹装于上、下膜盖之间以外,其中间部分压装在下护板的盘形件上。回位弹簧也是一个关键部件,它能使气动阀在气动头失气后迅速回到阀门的安全位置,对它的要求是在全行程范围内弹簧的刚度应不发生变化,这样可以提高气动装置的线性度。上、下膜盖一般用灰铸铁铸成,也可用钢板冲制。它们与膜片构成隔膜气室.形成操作阀门的动力。调节套筒用来调整弹簧的预紧力,这样可以根据实际工作需要改变进气压力的起始值和压座预紧力。气动杆一

“SD”调节阀使用说明书

COPES-VULCAN 带快速更换 内部部件的单座“SD”调节阀 安装、运行、维护使用说明书 SINGLE WEB “SD” TYPE CONTROL VALVE WITH QUICK CHANGE TRIM

目录 引言 (4) 第一部分安装 (6) 1.1 验收 (6) 1.2 储存 (6) 1.3 安装 (6) 1.4 调试前复检 (9) 1.5 执行机构及配件 (10) 1.6 运行要求 (10) 第二部分维护 (11) 2.1 注意事项 (11) 2.2 例行检查 (11) 2.3 从调节阀上拆卸执行机构 (14) 2.4 解体调节阀 (15) 2.5 装配调节阀 (20)

2.6 装配执行机构 (28) 2.7 研磨阀塞及套筒 (31) 图1 调节阀剖面图 (33) 图2 螺栓紧固顺序 (36) 表1 紧固力矩 (37) 表2 阀塞和阀杆组件紧固力矩 (38)

引言 SD型调节阀是用于高温高压工况下的调节阀,其尺寸范围为3/4”、1”、1.5”、2”、3”、6”、8”、10”、12”、14”和16”(20mm、25 mm、40 mm、50 mm、80 mm、150 mm、200 mm、250 mm和300 mm、350 mm、400 mm),ANSI压力磅级由150磅级到2500磅级。每个阀门由几个分项组件组成。例如在图一中,阀体组件包含阀体〔1〕、阀盖螺栓〔13〕及阀盖螺母〔14〕和阀盖/阀体密封垫圈〔15〕。 阀盖组件包含阀盖〔2〕、盘根螺栓及螺母〔11〕和〔12〕,及根据阀门与执行机构的几种不同连接方式所需要配备的零件:压块连接包含压块〔22〕及内六角螺栓〔23〕;螺杆连接包含螺纹环〔32〕;螺栓连接包含螺栓〔33〕和螺母〔34〕。 盘根组件包含支撑环〔7〕、盘根〔8〕、盘根压盖或盖圈〔9〕及盘根紧固件〔10〕组成。如果采用双盘根自然就包含两套盘根〔8〕及一个隔离套环〔24〕。 阀塞组件的构成取决于种类及尺寸,阀塞有平衡及非平衡式之分,尺寸有全尺寸及变径之分。 非平衡单座阀塞包含阀塞〔3〕、阀座〔5〕、套筒〔4〕、阀杆〔6〕、阀杆固定销〔17〕、和阀塞密封垫圈〔16〕。 平衡单阀座阀塞包含阀塞〔3〕、阀座〔5〕、套筒〔4〕、阀杆〔6〕、阀杆固定销〔17〕、和阀塞密封垫圈〔16〕及阀塞密封,也就是通常所称的”U”杯型密封圈〔18a〕其耐温范

气动调节阀动作分气开型和气关型

气动调节阀动作分气开型和气关型 气动调节阀动作分气开型和气关型两种。气开型(Air to Open)是当膜头上空气压力增加时,阀门向增加开度方向动作,当达到输入气压上限时,阀门处于全开状态。反过来,当空气压力减小时,阀门向关闭方向动作,在没有输入空气时,阀门全闭。故有时气开型阀门又称故障关闭型(Fail to Cl ose FC)。气关型(Air to Cl ose)动作方向正好与气开型相反。当空气压力增加时,阀门向关闭方向动作;空气压力减小或没有时,阀门向开启方向或全开为止。故有时又称为故障开启型(Fail to Open FO)。气动调节阀的气开或气关,通常是通过执行机构的正反作用和阀态结构的不同组装方式 实现。 气开气关的选择是根据工艺生产的安全角度出发来考虑。当气源切断时,调节阀是处于关闭位置安全还是开启位置安全?举例来说,一个加热炉的燃烧控制,调节阀安装在燃料气管道上,根据炉膛的温度或被加热物料在加热炉出口的温度来控制燃料的供应。这时,宜选用气开阀更安全些,因为一旦气源停止供给,阀门处于关闭比阀门处于全开更合适。如果气源中断,燃料阀全开,会使加热过量发生危险。又如一个用冷却水冷却的的换热设备,热物料在换热器内与冷却水进行热交换被冷却,调节阀安装在冷却水管上,用换热后的物料温度来控制冷却水量,在气源中断时,调节阀应处于

开启位置更安全些,宜选用气关式(即FO)调节阀。气开式改变为气关式或气关式改变为气开式,如调节阀安装有智能式阀门定位器,在现场可以很容易进行互相切换。 但也有一些场合,故障时不希望阀门处于全开或全关位置,操作不允许,而是希望故障时保持在断气前的原有位置处。这时,可采取一些其它措施,如采用保位阀或设置事故 专用空气储缸等设施来确保。 阀门定位器 阀门定位器是调节阀的主要附件,与气动调节阀大大配套使用,它接受调节器的输出信号,然后以它的输出信号去控制气动调节阀,当调节阀动作后,阀杆的位移又通过机械装置反馈到阀门定位器,阀位状况通过电信号传给上位系统。阀门定位器按其结构形式和工作原理可以分成气动阀门定位器、电-气阀门定位器和智能式阀门定位器。 阀门定位器能够增大调节阀的输出功率,减少调节信号的传递滞后,加快阀杆的移动速度,能够提高阀门的线性度,克服阀杆的磨擦力并消除不平衡力的影响,从而保证调节阀的 正确定位。 常用执行机构分气动执行机构,电动执行机构,有直行程、角行程之分。用以自动、手动开闭各类伐门、风板等。下地址是气动阀动作效果,模拟了气动薄膜调节阀工作原理

气动调节阀维护检修规程

气动调节阀维护检修规 程 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

气动调节阀维护检修规程 1总则 主题内容及适用范围本规程规定了气动调节阀的维护、检修、投运及安全注意事项的实施要示和实施程序。 基本工作原理调节阀是按照控制信号的方向和大小,通过改变阀芯行程(即阀芯、阀座所造成的流通面积的大小)来改变阀的阻力系数,达到调节被控介质流量的目的。 种类调节阀按其结构形式可分为直通双座阀、直通单阀、三通阀、小流量阀、套筒型单座阀、套筒型双座阀、低温调节阀、角阀、隔膜阀、偏心旋转阀(挠曲阀)、蝶阀、球阀等十余种。 构成及其功能调节阀主要由气动执行机构、手轮、上阀盖、阀体、阀座、阀笼、阀芯、阀杆和压板等零部件组成。 a.气动执行机构:气动执行机构分气动薄膜执行机构和气动活塞执行机构两种。气动执行机构是调节阀的推动装置,根据控制信号的大小,产生相应推力,推动阀门动作。 b.上阀盖:对于不同的工作温度和密封要求,上阀盖分普通型(-20-+250)、散(吸)热型(-60-+450)、长颈型(-60-+250)、波纹管密封型(强毒、易挥发、渗透或贵重介质)。 c.阀座:阀座与阀芯间的面积构成了流通截面。 d.阀笼:起导向作用,不会引起阀芯振动。并且可以通过改变阀笼窗口的形状和大小来改变流量特性和流通能力。 e.阀芯:它不但与阀座构成流通截面,而且可以通过改变阀芯形状和大小来改变流量特性和流通能力。 f.填料:起密封和导向功能。

主要技术性能调节阀的主要性能有始点偏差、终点偏差、全行程偏差、非线性偏差、正反行程变差、灵敏限、薄膜气室(或气缸)的气密性、调节阀密封性、阀座关闭时的允许泄漏量、流量系数及流量特性等项目,下面列表着重介绍几项主要技术性能。(见表一:气动薄膜调节阀主要技术性能表)。 对维护检修人员的基本要求。维护人员应具备中下条件: a.熟悉本规程及相应的产品说明书等有关技术资料; b.了解工艺流程及调节阀在其中的作用; c.掌握数学基础、机械基础、钳工基础、钳工工艺、化工检修安全知识、仪表常识、调节阀维修等方面的基础理论知识; d.掌握调节阀的维护、检修、投运及常见故障处理的基本技能; e.掌握常用机械加工设备和有关的标准仪器、工卡量具的使用方法。 2 完好条件 零部件完整,符合技术要求,即: a.防雨帽、行程指示牌等零件完好无损,调节阀铭牌清晰、整洁、无空缺; b.各紧固件不松动,(手轮完好),使用灵活; c.无锈蚀变形损伤,无泄漏; d过滤减压阀无泄漏损伤,调压正常;e.定位器无锈蚀损伤变形,密封严密。 运行正常符合使用要求,即: a.动作灵活,行程正确,弹簧范围正确; b.泄漏量符合要求; c.无振动,无燥音; d.阀位稳定; e.无外漏现象。

风量调节阀使用说明书

风量调节阀CVD 安装指导手册

风量调节阀CVD安装指导手册 1.CVD风量调节阀简介 CVD型风量调节阀是妥思公司为中国市场推出的空调通风系统中风量调节和压力控制的阀门。 CVD型调节阀为用户提供方形和圆形阀门,可选配手动机构、电动弹簧复位、电动双位、电动连续调节执行器等,形式多样能满足用户不同要求。 CVD型风量调节阀根据用户要求,叶片可做成平行叶片、对开叶片形式。圆形阀门也可做成碟阀。 (1)手动风量调节阀示意图 (2)电动风量调节阀示意图

2. 风量调节阀安装指导说明 风量调节阀的选用与安装依据下列国家规范与标准以及建筑标准设计图集执行《采暖通风与空气调设计规范》GB50019-2003 《通风与空调工程施工质量验收规范》GB50423-2002 《洁净室施工及验收规范》JGJ71-90 《风量调节阀》JB/77228-94 《通风管道技术规程》JGJ141-2004 《薄钢板法兰风管制作及安装》07K133 《风管支吊架》03K132 《管道与设备保温》98R418 《管道与设备保冷》98R419

风量调节阀安装,依据国家建筑标准设计图集07K120《风阀选用与安装》进行。说明如下: 1.运到施工现场的风阀产品,安装单位应报监理验收,根据装箱清单开箱查验合格证、检测报告和安装指导说明文件等,逐个校验产品的型号、规格、材质、标识及控制方式是否符合设计文件的规定,并应做好记录和各方签字确认。 2.风阀在就位安装之前应逐个检测其结构是否牢固、严密,进行开关操作试验,检查是否灵活可靠;对电动风阀要逐个通电试验并检测,做好试验记录。3.风阀就位前必须检查其适用范围、安装位置、气流方向和操作面是否正确。4.风阀的开闭方向、开启角度应在可视面有准确的标识。 5.安装在高处的风阀,其手动操纵装置宜距露面或操作平台1.5-1.8m。 6.风阀的操作面距墙、顶和其他设备、管道的有效距离不得小于200mm,且风阀不应安装于结构层或孔洞内。阀周边缝宽度宜大于150mm。 7.检查连接风管预留的法兰尺寸、配钻孔径与孔距、法兰面的平整度和平行度、垫片材质和厚度、非金属风管的连接方式等是否符合要求。 8.检查支、吊架位置及做法是否符合规范或设计文件要求。单件风阀重量大于50kg的应设单独的支、吊架;电动风阀一般宜设单独支、吊架;用于软质非金属风管系统的风阀一般也宜设单独支、吊架。 9.用于洁净通风系统的风阀安装前必须按要求清洁阀体内表面,达到相应的洁净标准后封闭两端,封装板在就位后方可去除。擦洗净化空调系统风阀内表面应采用不掉纤维的材料,擦洗干净后的风阀不得在没有做好墙面、地面、门窗的房间内存放,临时存放场所必须保持清洁。 10. 输送介质温度超过80℃的风阀,除按设计要求做好保温隔热外,还应仔细核 对伸缩补偿措施和防护措施。 11. 设于净化系统中效过滤器后的调节风阀叶片轴如有外露,则应对其与阀间的缝隙进行密封处理,确保不泄露。 12. 连接风阀与风管法兰、薄钢板法兰或无法兰连接的紧固件均应采用镀锌件。除镀锌板材料的风阀外,不锈钢、铝合金材料的风阀连接件均应同材质,且其支、吊架如是钢质,还应采用厚度不小于60mm的防腐木垫或5mm橡胶板垫,使之与阀体绝缘。 13. 法兰垫片厚度设计无规定时,一般不小于3mm;垫片不应凸入阀内,不宜突出法兰外,净化系统的法兰垫片应选用弹性好、不透气、不产尘的材料,如橡胶板或硅胶板等,严禁采用泡沫塑料、厚纸板、石棉绳、铅油麻丝及油毡纸等含开孔孔隙和易产尘的材料。密封垫厚度根据材料弹性大小决定,一般为4-6mm,一对法兰的密封垫规格、性能及垫层厚度应相同。严禁在密封垫上涂刷涂料,法兰密封尽量减少接头,做接头时要采用阶梯形或企口形,并涂密封胶,如下图所示:14. 风阀安装的水平度误差不大于3%,垂直度误差不大于2%,不单独设支、吊架的风阀安装公差随风管一起控制精度。采用薄钢板法兰风管连接应符合下列规定: 14.1 连接完整无缺损,表面应平整,无明显扭曲。 14.2 弹簧夹或紧固螺栓的间隔不应大于150mm,且分布均匀,无松动现象。 15. 风阀安装后一般与风管系统一同进行严密性检测与试验,但为了减少风阀的调整试验次数,应对电动风阀和洁净系统、实验室风系统的风阀单独进行安装完

相关主题
文本预览
相关文档 最新文档