当前位置:文档之家› 图像火焰检测及燃烧分析系统的应用分析

图像火焰检测及燃烧分析系统的应用分析

图像火焰检测及燃烧分析系统的应用分析
图像火焰检测及燃烧分析系统的应用分析

图像火焰检测及燃烧分析系统的应用分析

摘要:针对电站锅炉常规火检系统存在的“偷看”、“漏看”问题,从锅炉燃烧特性和图像火检工作原理进行了分析,探讨了图像火检的实用性和应用情况。

关键词:图像火检;火焰检测;探头

目前,我国电站锅炉采用的火焰检测器是以可见光、红外光为主的光敏元件检测器,这两种光敏原件检测器都是借助火焰着火区辐射能量的交流分量、火焰的脉动幅值和脉动频率,进行火焰着火与熄火的检测。然而在锅炉运行过程中,由于锅炉负荷及配风的变化,煤火检过程中,“偷看”、“漏看”的问题一直比较严重,而且长期存在,导致对燃烧器的检测准确性大大降低,以至于灭火保护也不得不解除,影响机组运行安全。

图像火焰检测及燃烧分析系统,其原理是利用火焰图像,来对火焰燃烧情况进行全程监控,能够直观地判断火焰的存在状态,煤种和负荷变化对其影响极小。这是一种新型的火焰检测装置。本文主要分析了图像火检的工作原理,以及燃烧器在燃烧方面的特性,以此论证在锅炉火焰检测中,图像火检所独有的优势。

1 图像火检系统概述

图像火焰检测及燃烧分析系统的核心,是基于煤粉在燃烧过程中的火焰图像分析,主要是对火焰图像视频信号进行处理,整个处理过程包括火焰图像视频信号的采集、传输、放大、录制、显示、分析等几部分。图像火焰检测及燃烧分析系统的组成主要有如下几部分:

●火焰图像传感器

●视频信号分配器

●火焰图像检测器(下位机)

●火焰图像监视管理系统

●火焰图像录放系统

●通讯系统

火检探头采用视频信号传输,不配备光纤。

2 图像火检工作原理

图像火焰检测及燃烧分析系统,其原理是借助广角长焦距工作镜头对整个燃烧器状况进行判断,并利用彩色CCD 摄像机对燃烧器喷口的火焰图像进行直观拍摄。由于燃烧火焰图像中含有大量的信息,再采用传像技术、计算机数字图像处理技术、模式识别技术等对图像进行分析,以便对单个燃烧器火焰的ON/OFF信号进行准确判断。

3 火焰检测不稳定性分析

电站锅炉运行过程中常规煤火检一直存在“偷看”、“漏看”和稳定性差的问题,为了解决这个问题,就需要对电站

锅炉不断地进行调整,否则,就会因为火检信号失去而造成磨煤机跳闸或锅炉MFT问题。

影响因素如下:

(1)存在“偷看”对角、邻角等其它燃烧器火焰;

(2)负荷及配风变化影响火焰未然区、燃烧区迁移;

(3)炉膛内热辐射;

(4)常规煤火检检测频率较低,强度较弱;

(5)燃烧器刚灭火时,煤火检检测强度增加,发出有火信号。

4 锅炉燃烧特性分析

(1)喷入炉膛的风粉混合物,经过加热、气化、着火、燃烧等过程,会产生黑龙区(预燃区)、着火区和燃尽区。黑龙区是燃料加热的环节,没辐射强度不高,主要表现为煤粉本色;着火区的火焰燃烧一般比较稳定,闪烁频率也不高,因此,火焰表现明亮,且辐射强度通常会很强;燃尽区由于其燃烧基本殆尽,无论闪烁频率,还是辐射强度都已经降到很低。所以,常规火检检测的角度,必须要在着火区位置,才能对燃烧器的火焰状态进行有效检测。

(2)如果火焰检测中存在不稳定的因素,就影响到着火需要的时间,以及着火的距离,也就是会使火焰各区域分布不稳定,与黑龙区的分界点产生频繁变化。如果着火区发生外移,黑龙区没有燃烧尽的煤粉,就会在靠近燃烧器出口

处,形成遮盖区,影响到常规火焰检测的准确性。如果因为煤质、负荷等因素,着火点的距离不断变化,黑龙区形成的遮盖区也会随之变化。特别是近年来煤炭供应紧张,煤质得不到有效保证,导致着火点变化剧烈,进而也使得遮盖区域变化频繁、剧烈。因为常规火检的视角范围比较小,火检检测的火焰信号就会不稳定,发生“漏看”现象。而图像火检的大视角可覆盖火焰的黑龙区、着火区和燃尽区,有效解决了火焰检测不稳定性因素的影响。

(3)常规火检检测范围,约5°视角,主要检测着火区;图像火检检测范围,约90°视角,可以检测预燃区(黑龙区)、着火区和燃尽区。

5 图像火检检测效果与结论

在常规火检中,常常因为受到煤种、负荷变化而导致燃烧器喷口火焰漂移,使得火检产生“误判”,另外,因为受到各种因素的干扰,火检中还常存在“偷看”等问题。数字图像处理技术能对单个燃烧喷口火焰有火/无火的情况,进行准确判断,就很好地解决了这个问题。图像检测技术和模式识别技术,可以对有效区域进行选择,并把偷看到的邻角图像进行有效遮蔽,降低了误动的几率。而且,该系统只在检测到煤火焰的特征区,才会产生反应,发出有火信号。

由于CCD摄像机视角较大(可达900左右),能够直接观测燃烧器的整体燃烧状态。即使工况发生了变化,或者着

火区的位置发生了改变,也仍然能够观测得到,实用性非常强。同时,对燃烧的情况,能够做到准确反映,工作人员对各燃烧器在燃烧过程中的状态,能较为直观地进行观测,并根据燃烧情况进行相关调整。

6 结束语

图像火焰检测及燃烧分析系统的成功应用,有效的避免了常规火检的“偷看”和“漏看”问题,提高了火焰检测的可靠性,保证了锅炉的安全运行。并且锅炉运行人员通过主控室大屏幕可以实时观测燃烧器喷口火焰,方便进行锅炉燃烧调整。特有的图像存储和回放功能,为事故分析提供了有力的佐证。

该系统已在国内200多台50MW~1000MW机组锅炉的直流和旋流燃烧器上成功应用,对锅炉的安全、稳定和经济运行都起到了非常积极的作用。图像火检探头还是等离子点火装置和少油点火装置的配套火检,对等离子拉弧、点火和少油点火过程实时监视,可以及时调整燃烧工况。

参考文献:

[1]杨晋萍,白建云.大型火检机组控制技术丛书-安全检测保护系统[M].北京:中国电力出版社,2005.

[2]周怀春炉内火焰可视化检测原理与技术[M].北京:科学出版社,2005.

作者简介:蔡飞(1974―),男,本科,工程师。

遥感图像裁剪与拼接

遥感图像拼接(镶嵌)与裁剪 一、实验目的与要求 图像镶嵌指在一定数学基础控制下,把多景相邻遥感图像拼接成一个大范围、无缝的图像的过程,在ENVI中提供了透明处理、匀色、羽化等功能。实验要求可以用ENVI解决镶嵌颜色不一致、接边以及重叠区等问题。 图像裁剪的目的是将研究之外的区域去除。常用的方法是按照行政区划边界或者自然区域边界进行图像裁剪;在基础数据生产中,经常还要进行标准分幅裁剪。ENVI的图像裁剪过程,可分为规则裁剪和不规则裁剪。实验要求学生们学会通过ENVI软件对下载的地区图像进行裁剪和拼接,将南京区域裁剪出来。通过本次实验,初步熟悉ENVI和ARCGIS软件,为今后环境遥感学习奠定基础。 二、实验内容与方法 1 实验内容 1)图像拼接:ENVI的图像拼接功能提供交互式的方式将没有地理坐标或者有地理坐标的多幅图像合并,生成一幅单一的合成图像。 2)图像裁剪:通常按照行政区划边界或自然区划边界进行图像剪裁,在基础数据生产中,还经常要进行标准分幅裁剪。

2 实验方法 1)图像拼接 最新ENVI提供了全新的影像无缝镶嵌工具Seamless Mosaic,所有功能集成在一个流程化的界面,它可以: ?控制图层的叠放顺序 ?设置忽略值、显示或隐藏图层或轮廓线、重新计算有效的轮廓线、选择重采样方法和输出范围、可指定输出波段和背景值 ?可进行颜色校正、羽化/调和 ?提供高级的自动生成接边线功能、也可手动编辑接边线 ?提供镶嵌结果的预览 使用该工具可以对影像的镶嵌做到更精细的控制,包括镶嵌匀色、接边线功能和镶嵌预览等功能。 2)图像裁剪 (1)规则分幅裁剪,是指裁剪图像的边界范围是一个矩形,这个矩形的范围获取途径包括行列号、左上角和右下角两点坐标、图像文件、ROI/矢量文件; (2)不规则分幅裁剪,是指裁剪图像的边界范围是一个任意多边形。任意多边形可以是事先生成的一个完整的闭合多边形区域,可以是一个手工绘制的ROI(感兴趣区)多边形,也可以是ENVI支持的矢量文件。

图像分析仪

图像分析仪在金相分析中的应用 近年来,随着计算机技术和体视学的发展,图像分析仪被广泛地应用于金相分析中,使传统的金相分析技术从定性或半定量的工作状态逐步向定量金相分析方向发展。 金相工作者多年来一直从金相试样抛光表面上通过显微镜观察来定性地描述金属材料的显微组织特征或采用与各种标准图片比较的方法评定显微组织、晶粒度、非金属夹杂物及第二相质点等,这种方法精确性不高,评定时带有很大的主观性,其结果的重现性也不能令人满意,而且均是在金相试样抛光表面的二维平面上测定,其测量的结果与三维空间真实组织形貌相比有一定差距。现代体视学的出现为人们提供了一种由二维图像外推到三维空间的科学,即将二维平面上所测定的数据与金属材料的三维空间的实际显微组织形状、大小、数量及分布联系起来的一门科学,并可使材料的三维空间组织形状、大小、数量及分布与其机械性能建立内在联系,为科学地评价材料提供了可靠的分析数据。 由于金属材料中的显徽组织和非金属夹杂物等并非均匀分布,因此任何一个参数的测定都不能只靠人眼在显微镜下测定一个或几个视场来确定,需用统计的方法对足够多的视场进行大量的统计工作,才能保证测量结果的可靠性。如果仅靠人的眼睛在显微镜上进行目视评定,其准确性、一致性和重现性都很差,而且测定速度很慢,有些甚至因工作量过大而无法进行。图像分析仪以先进的电子光学和电子计算机技术代替人眼观察及统计计算,可以迅速而准确地进行有统计意义的测定及数据处理,同时具有精度高、重现性好,避免了人为因素对金相评定结果的影响等特点,而且操作简便,可直接打印测量报告,目前已成为定量金相分析中不可缺少的手段。 图像分析仪是对材料进行定量金相研究的强有力工具,也是日常金相检验的好帮手,可以避免人工评定带来的主观误差,从而也避免了扯皮现象。虽然在日常金相检验中,不可能也不必每次都使用图像分析仪,但当产品质量出现异常或金相组织级别处于合格与不合格之间而无法判别时,则可以借助图像分析仪对其进行定量分析,得出准确结果,确保产品质量。图像分析仪在金相分析中的应用,拓展了金相检验的检测项目,促进了检测水平的提高,对于提高检测人员的素质也是十分有益的。 图像分析仪的系统由金相显徽镜和宏观摄像台组成的光学成像系统,其用途是使金相试样或照片形成图像。金相显微镜可直接对金相试样进行定量金相分析;宏观摄像台适用于分析金相照片、底片及实物等。 为了能用计算机存贮、处理和分析图像,首先需将图像数字化。一帧图像是由不同灰度的一种分布所组成,用数学符号表示为j=j(x,y),x、y为图像上像素点的坐标,j则表示其灰度值。所以,一帧图像可以用一个m×n阶矩表示,矩中每个元素对应于图像中一像素点,aij的值即表示图像中属于第i行第j列的像素点的灰度值。CCD摄像机(电荷耦合器件摄像机)就是一种图像数字化设备。 金相试样上的显微特征经过光学系统后在CCD上成像并由CCD实现光电转换和扫描,然后作为图像信号取出,由放大器进行放大,并量化成灰度级以后贮存起来,从而得到数字图像。计算机根据数字图像中需测量特征的灰度值范围,设定灰度值阈值T。 对于数字图像中任何一个像素点,若其灰度大于或等于T,则用白色(灰度值255)来代替它原来的灰度;若小于T则用黑色(灰度值0)来代替原来的灰度,可以把灰度图像转化为只有黑、白两种灰度的二值图像,然后再对图像进行必要的处理,使计算机能方便对二值图像进行粒子计数、面积、周长测量等

遥感数字图像处理教程复习分析

第一章. 遥感概念 遥感(Remote Sensing,简称RS),就是“遥远的感知”,遥感技术是利用一定的技术设备和系统,远距离获取目标物的电磁波信息,并根据电磁波的特征进行分析和应用的技术。 遥感技术的原理 地物在不断地吸收、发射(辐射)和反射电磁波,并且不同物体的电磁波特性不同。 遥感就是根据这个原理,利用一定的技术设备和装置,来探测地表物体对电磁波的反射和地物发射的电磁波,从而提取这些物体的信息,完成远距离识别物体。 图像 人对视觉感知的物质再现。图像可以由光学设备获取,如照相机、镜子、望远镜、显微镜等;也可以人为创作,如手工绘画。图像可以记录、保存在纸质媒介、胶片等等对光信号敏感的介质上。随着数字采集技术和信号处理理论的发展,越来越多的图像以数字形式存储。因而,有些情况下“图像”一词实际上是指数字图像。 物理图像:图像是人对视觉感知的物质再现 数字图像:图像以数字形式存储。 图像处理 运用光学、电子光学、数字处理方法,对图像进行复原、校正、增强、统计分析、分类和识别等的加工技术过程。 光学图像处理 应用光学器件或暗室技术对光学图像或模拟图像(胶片或图片)进行加工的方法技术 数字图像处理 是通过计算机对图像进行去除噪声、增强、复原、分割、提取特征等处理的方法和技术。图像处理能做什么?(简答) 是通过计算机对图像进行去除噪声、增强、复原、分割、提取特征等处理的方法和技术。数字图像处理主要目的:提高图像的视感质量,提取图像中所包含的某些特征或特殊信息,进行图像的重建,更好地进行图像分析,图像数据的变换、编码和压缩,更好图像的存储和传输。数字图像处理在很多领域都有应用。 遥感图像处理(processing of remote sensing image data )是对遥感图像进行辐射校正和几何纠正、图像整饰、投影变换、镶嵌、特征提取、分类以及各种专题处理的方法。常用的遥感图像处理方法有光学的和数字的两种。

智能图像分析系统

智能图像分析系统 解 决 方 案

北京恒泰同兴科技有限公司北京恒泰同兴科技有限公司是注册在中关村科技园区的高科技企业,成立于2004年,具有稳定的研发、生产、销售、服务队伍。恒泰同兴坚持自主开发之路,以“创造最大核心价值”为目标,以数字化、网络化、智能化为发展方向,专业从事图像智能识别、分析判断及自动处理产业化研究;公司研发的智能图像处理系统,与传统监控系统配合,为视频监控系统提供具有智能图像识别分析和告警的功能。可实现周界警戒与入侵检测、警戒线穿越检测、重要物品看护、遗留/遗弃物品检测、人体行为识别、道路交通检测等功能,可在各种恶劣气候、环境条件下进行目标识别和检测,避免了人工监控存在的易疲劳、易疏忽、反应速度慢、人工费用高等诸多不足,为客户提供了最佳安全监控系统解决方案。同时公司成功地开发大型行业联网解决方案,并有大量的实际案例,在视频监控行业积累了丰富的经验,智能监控和联网平台为用户提供了全方位的解决方案。公司本着诚实守信的经营之道,整合各种先进的技术资源,为客户定制最先进的行业解决方案,与各界用户一道,共同推进图像视频监控数字化、智能化和网络化进程。 恒泰同兴:持之以恒、稳如泰山 诚实、守信、专业、共赢

一、智能产品简介 智能视频分析系统是由位于前端或后端视频分析服务器,对监控摄像机所拍摄的视频图像进行分析,能将影像中的人、车或者物体的状态从任何背景中分离出来,加以辨认、分析与追踪。比对出所追踪对象的行为模式与预设的诸项安全规则,若发现违规之处,立刻进行报警通知,同时由使用平台进行信息记录或显示。 二、智能分析的功能 目前,智能视频分析系统在视频监控方向的应用主要在对运动目标的识别、分类和追踪。可以设置的规则、功能为以下几种:1、绊线检测 针对人、车通过特定运动方向绊线的监控;其应用如:警戒线、单向闸门流向、 栅栏攀爬…等;支持警戒区内多个目标同时告警、显示、报警图片抓拍、而且有 声音提示

简述遥感技术系统的组成

简述遥感技术系统的组成-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

1、简述遥感技术系统的组成。 2、目标地物的电磁波,信息获取,信息接受,信息处理,信息应用。 3、 2 。遥感影像变形的主要原因是什么? 4、a) 遥感平台位置和运动状态变化的影响 5、b) 地形起伏的影响 6、c) 地球表面曲率的影响 7、d) 大气折射的影响 8、e) 地球自转的影响 9、3、遥感影像地图的主要特点是什么? 10、a)丰富的信息量 11、b)直观性强 12、c)具有一定的数学基础 13、d)现实性强 14、4、遥感图像计算机分类中存在的主要问题是什么? 15、a)未充分利用遥感图像提供的多种信息 16、b)提高图像分类精度受到限制 17、(1)大气状况的影响 18、(2)下垫面的影响 19、(3)其他因素的影响 20、5、简要回答计算机辅助遥感制图的基本过程 21、a)遥感影像信息选取与数字化 22、b)地理基础底图的选取与数字化 23、c)遥感影像几何纠正与图像处理 24、d)遥感影像镶嵌与地理基础底图拼接 25、e)地理地图与遥感影像的复合 26、f)符号注记层的生成 27、g)影像地图图面配置 28、h)影像地图的制作与印刷 29、1、微波遥感的特点有哪些(5分) 30、(1)全天候、全天时工作 31、(2)对某些地物有特殊的波谱特征 32、(3)对冰、雪、森林、土壤等有一定的穿透能力 33、(4)对海洋遥感有特殊意义 34、(5)分辨率较低,但特性明显 35、2、遥感影像地图的主要特点是什么( 36、6分) 37、丰富的信息量;直观性强;具有一定的数学基础;现实性强 38、3、遥感影像解译的主要标志是什么( 39、6分) 40、直接解译标志:形状、颜色、图形、纹理、大小、阴影;间接解译标 志:相关关系。 41、4、遥感图像计算机分类中存在的主要问题是什么( 42、6分)

智能视频分析系统

智能视频分析系统

目录 一、项目背景及建设目标 (3) 1.1 项目背景 (3) 1.2 技术优势 (4) 二、厂区智能视频分析整体设计方案 (5) 2.1传统对射系统与智能视频分析系统比较 (5) 2.2厂房周界入侵报警系统 (6) 2.2.1 周界入侵检测 (7) 2.2.2 周界警戒线警戒区预警 (8) 2.3厂房仓库物资看护 (8) 2.3.1 可疑人员接近仓库提醒 (8) 2.3.2 仓库物品看护 (9) 2.3.3 夜间停车场、厂区内部、附近可疑逗留检测 (9) 2.4夜间厂区办公楼内可疑人员检测 (10) 2.5生产车间危险区域或者夜间下班后人员检测 (10) 2.6系统拓扑结构 (11)

一、项目背景及建设目标 1.1 项目背景 慧视科技智能视频分析系统是以软件的形式实现智能视频分析功能,拥有自主的软件知识产权,可满足各行业的需要,也满足各厂家设备的接入,同时可以与各种监控平台进行二次对接。传统报警设备的误报多漏报多操作复杂不直观已经成为行业共识,且传统的视频监控系统数量庞大画面单一,工作人员很难从视频中发现问题,往往更多用于事后取证,智能图像分析通过图像中目标的识别和规则运用来进行预警,报警速度快且精确度高,可辅助工作人员从繁琐重复的工作中解放出来,真正体现科技为人服务的理念。 国内现有厂房的视频监控系统主要由摄像机、光缆、矩阵、硬盘录像机和电视墙等组成。由于视频监控图像数量大,内容枯燥,现有系统即使配备值班人员,在大多数情况下仍处于无人观看的状态下。当犯罪事件发生时,从硬盘录像机中调取录像回放、取证变成系统主要的价值之一。即使值班人员在岗,由于人的生理特点,不可能长时间有效观察多路图像,很可能造成遗漏可疑事件,对安全形式产生错误判断。 智能视频监控技术可以理解为用计算机来帮助值班人员"看"监控录像。现代计算机的高可靠性可以提供24小时不间断地保护。从根本上杜绝由于人员疲劳造成的遗漏问题。同时也可以防止出现监控人员内外勾结的可能性。

流行的遥感图像处理软件比较

遥感软件 PCI遥感图像处理软件简介 PCI GEOMATICA是PCI公司将其旗下的四个主要产品系列,也就是PCI EASI/PACE、(PCI SPANS,PAMAPS)、ACE、ORTHOENGINE,集成到一个具有同一界面、同一使用规则、同一代码库、同一开发环境的一个新产品系列,该产品系列被称之为 PCI GEOMATICA。对于20多年来一直致力于向地学界提供全方位解决方案的PCI公司来说,始终坚持领先一步的原则,地理咨讯永远在变迁,而地理咨讯软件更处于变迁的前沿。在今天,随着用户需求广度与深度的不断拓宽与加深,越来越多的人希望软件是一个可以满足用户所有需求的良好的工具。由于对这一点的正确把握,经过4年努力,PCI公司将原有的四个产品系列整合在一起,产生了一个使用简单、灵巧的工作平台----PCI GEOMAITCA。该系列产品在每一级深度层次上,尽可能多的满足该层次用户对遥感影像处理、摄影测量、GIS空间分析、专业制图功能的需要,而且使用户可以方便地在同一个应用界面下,完成他们的工作。在这之前,用户需用多个软件来实现,并且需要面对多个软件经销商、多个软件技术支持、多次的培训、对多个软件的维护,以及不得不投入相当大的精力来在多种数据格式间,进行数据转换。产品模块功能介绍 PCI Geomatica FreeView ( PCI地理咨讯通用视窗) FreeView是PCI公司为用户提供的一个免费的影像浏览工具,用户可以从PCI的网址上直接下载。用于浏览、显示各种数据,如矢量、位图、卫星影像(如LANDSAT, SPOT, RADARSAT, ERS-1/2, NOAA A VHRR等)、航片以及与GIS矢量数据叠加显示、进行属性查询等。FreeView 还具有影像增强,任意漫游、缩放、影像灰度值矩阵显示等功能 PCI Geomatica GeoGateway (PCI通用数据转换工具)PCI Geomatica GeoGateway包含PCI Geomatica FreeView的所有功能。 PCI Geomatica Fundamentals (PCI 地理咨讯基础版) PCI Geomatica Fundamentals包含PCI Geomatica GeoGateway的所有功能。主要包括以下部件: Focus 浏览环境 OrthoEngine FLY!(演示模式)软件许可管理器 PCI Geomatica Prime (PCI地理咨讯专业版) PCI Geomatica Prime包含PCI Geomatica Fundamentals(见上一节)的所有功能。此外,增加了PCI Modeler、EASI、FLY!、算法库等模块。 Geomatica Prime 是强大的、低成本解决方案,提供的工具可用于影像几何校正、数据可视化与分析以及专业标准地图生产。 PCI Productivity Tools (PCI地理咨讯生产工具)该软件是PCI公司为了提高PCI软件的生产能力和效率而专门设计的,其主要功能是为用户提供一系列自动或批处理操作的导向功能。该软件是PCI GEOMATICA PRIME或FUNDAMENTALS功能的扩展。主要提供影像自动镶嵌功能及针对ORTHOENGINE 系列产品的航片,光学卫星影像,雷达卫星的自动同名点收集功能。同时提供影像控制点库及库管理功能。 PCI AIRPHOTO MODEL (PCI地理咨讯系统航空正射影像处理器)是一个与PCI Geomatica Fundamentals或Geomatica Prime模块一起使用的功能强大的航空照片正射校正工具。该模块运用了特殊的算法模型将已经扫描的或由数字摄像机得到的照片制作成精确的正射影像图。所生成的图像可以转化为多种文件形式,作为许多GIS/CAD/MAP软件的数据源。同时用户可选择附加的DEM自动提取、3DVIEW 和三维特征提取模块(OrthoEngine Airphoto DEM)来构造自己的数字摄影测量软件包。该软件具有如下功能:项目工程文件建立(含

ERDAS IMAGINE遥感图像处理教程.

《ERDAS IMAGINE遥感图像处理教程》根据作者多年遥感应用研究和ERDAS IMAGINE软件应用经验编著而成,系统地介绍了ERDAS IMAGINE 9.3的软件功能及遥感图像处理方法。全书分基础篇和扩展篇两部分,共25章。基础篇涵盖了视窗操作、数据转换、几何校正、图像拼接、图像增强、图像解译、图像分类、子像元分类、矢量功能、雷达图像、虚拟GIS、空间建模、命令工具、批处理工具、图像库管理、专题制图等ERDAS IMAGINE Professional级的所有功能,以及扩展模块Subpixel、Vector、OrthoRadar、VirtualGIS等;扩展篇则主要针对ERDAS IMAGINE 9.3的新增扩展模块进行介绍,包括图像大气校正(ATCOR)、图像自动配准(AutoSync)、高级图像镶嵌(MosaicPro)、数字摄影测量(LPS)、三维立体分析(Stereo Analyst)、自动地形提取(Automatic Terrain Extraction)、面向对象信息提取(Objective)、智能变化检测(DeltaCue)、智能矢量化(Easytrace)、二次开发(EML)等十个扩展模块的功能。 《ERDAS IMAGINE遥感图像处理教程》将遥感图像处理的理论和方法与ERDAS IMAGINE软件功能融为一体,可以作为ERDAS IMAGINE软件用户的使用教程,对其他从事遥感技术应用研究的科技人员和高校师生也有参考价值。 目录 基础篇 第1章概述2 1.1 遥感技术基础2

1.1.1 遥感的基本概念2 1.1.2 遥感的主要特点2 1.1.3 遥感的常用分类3 1.1.4 遥感的物理基础3 1.2 ERDAS IMAGINE软件系统6 1. 2.1 ERDAS IMAGINE概述6 1.2.2 ERDAS IMAGINE安装7 1.3 ERDAS IMAGINE图标面板11 1. 3.1 菜单命令及其功能11 1.3.2 工具图标及其功能14 1.4 ERDAS IMAGINE功能体系14 第2章视窗操作16 2.1 视窗功能概述16 2.1.1 视窗菜单功能17 2.1.2 视窗工具功能17 2.1.3 快捷菜单功能18 2.1.4 常用热键功能18 2.2 文件菜单操作19 2.2.1 图像显示操作20 2.2.2 图形显示操作22 2.3 实用菜单操作23

2---遥感图像拼接

ERDAS 遥感图像拼接 **** 2010-10

目录 培训目的: (1) 培训内容: (1) 1无剪切线图像拼接 (1) 1.1启动图像拼接工具 (1) 1.2加载拼接图像 (2) 1.3图像叠置组合 (4) 1.4图像匹配设置 (5) 1.5运行M OSAIC工具 (7) 1.6退出M OSAIC工具 (8) 2 有剪切线图像拼接 (9) 2.1拼接准备工作,设置输入图像范围 (9) 2.2启动图像拼接工具 (11) 2.3加载拼接图像 (11) 2.4确定相交区域 (13) 2.5绘制剪切线 (14) 2.6定义输出图像 (16) 2.7运行拼接功能 (17) 2.8退出图像拼接工具 (18)

培训目的: 通过本次培训,掌握遥感图像拼接的基本方法和步骤,理解遥感图像拼接的意义。 培训内容: 将具有地理参考的若干幅互为邻接的遥感图像合并成一幅统一的新图像。首先选择其中的一幅作为标准图像;其次,以此图像为基准,确定拼接方案和重叠区;接着,进行色调调整;最后,对相邻图像进行拼接。 我们分两种情况,进行具体操作: 无剪切线的图像拼接; 有剪切线的图像拼接。 1无剪切线图像拼接 下面以彩色卫星图像为例,经过色调调整后,进行无剪切线的图像拼接。具体操作步骤如下: 1.1 启动图像拼接工具 在ERDAS图标面板菜单条选择Main | Data Preparation | Mosaic Images | Mosaic Tool命令,打开Mosaic Tool对话框(图1)。或者在ERDAS图标面板工具条选择Data Prep图标| Mosaic Images | Mosaic Tool命令,打开Mosaic Tool对话框(图1)。 1

图像分析操作步骤

一.通用部分 1.1 标定标尺 (只做一次就可以,目录为软件下的scale文件夹)打开软件—打开标尺图象 点击工具栏上的测量—标定标尺 显示标定标尺窗口如下:选择任意向线段

在图象上用鼠标画出一段标尺的长度 通常选择公制 视长度:电脑自动计算(鼠标所画出的线经过的像素点的个数); 物理长度:鼠标所画出的线的实际长度(一般情况,一小格为10um) 放大倍数:当前标尺图象的倍数 点保存标尺,输入当前的倍数并保存。同样的方法标出其他的倍数。(有几组放大倍数就要标定几次)

1.2 加载系统标尺(默认路径为软件下的SCALE文件夹) 在进行测量分析之前,必须选定正确的系统标尺,如果没有选定正确的标尺,不能得出实际物理长度。 方法一(推荐):打开图象后,点(自动打开SCALE文件夹下的标尺列表),从列表中选取当前图象的标尺,点“加载”即可(或者双击) 方法二:测量—选定标尺 调入标尺:可以从硬盘中其他位置调入标尺 单位制式 将选中的标尺加载到系统中 卸载当前的标尺 加载特殊倍数的标尺,如80X 选定后,在软件的状态栏中有显示,。 软件会自动记录上一次的系统标尺,所以分析相同倍数的照片时,不必每次都加载系统标尺, 只要核对一下当前的系统标尺是否与图象倍数一致即可。 若图象命名时,结尾的标号与标尺名称相同时,软件会自动加载正确的系统标尺(只适合新打开的图象)。例如:图象的名称为:轴承钢—心部001—200X ,打开此图象时,软件会自动加载200X的系统标尺文件。

1.3 图象亮度对比度的调整 如果对采集的图象的亮度不满意,可以用此功能进行调节。点工具栏上的。 处理前 处理前处理后 这三个调钮分辨调整图象的亮度、对比度和r值。 应用:执行当前操作 恢复:恢复到图象的原始形态 保存:保存当前的对比度参数(默认路径为软件下LUT文件夹) 调入:调用已保存的对比度参数

图像分析仪的使用

显微图像分析仪的使用 一、实验目的 二、显微图像分析仪的基本结构和工作原理 图像分析仪是一种图像法粒度分布测试以及颗粒型貌分析等多功能颗粒分析系统,其拥有完美的粒度分析软件及精准的硬件设备,该系统包括光学显微镜、数字CCD摄像机、电脑、打印机等部分组成。它是传统的显微镜法与现代的图像处理技术的完美结合。 (1)图像分辨率 分辨率是指能区分图像上两个像元的最小距离。点距是指像素点与点之间的距离,像素数越多,其分辨率就越高。因此,分辨率通常是以象素数来计量的,如:640×480,表示该图像共有480条水平线线,每一条水平线上包含有640个像素点,(即640为水平象素数,480为垂直象素数)总共像素点数为307200。 (2)像素 2.1 DS-5M 显微图像分析仪 【基本原理】通过CCD将图像信号转换并输入到图像分析仪,利用图像分析,利用图像分析仪中心计算机对图像进行处理,并测量同级图像中颗粒个数、面积、周长、直径、长短轴、形状因子等参数。 【主要用途】 1、粉体颗粒粒径分布及颗粒形态参数定量测定:针状长径比、片状颗粒的径厚比测定; 2、微孔的大小、分布和形状测量; 3、多成分百分比测量; 4、定量金相:晶粒度测量、灰铸铁、球墨铸铁的石墨含量等含量分析。 2.2 Mastersizer 2000型粒度分析仪 【简介】英国马尔文公司全新Mastersizer 2000型激光粒度分析仪,是当今科技发展的结晶。它博采众长,有效地保证了0.5微米以下颗粒检测的分辨率,是目前各种激光粒度仪中对分辨率难题最有效地解决方案,已成为行业内最受欢迎的分析仪器之一。应用理论:全量程完全的米氏理论,考虑了反射光、投射光及介质的折射率影响。因此,可在水相、有机相、气相介质中进行颗粒分布测定,包括透明或不透明的,带色或无色的固体、油珠或乳化液。适用于陶瓷、水泥、粉体、涂料、石化、制药、军工等各个领域。 【基本原理】有代表性的样品,以适当的浓度在合适的液体或气体中分散后,让一束单色光束(通常是激光)通过其间。光被颗粒散射后,分布在不同的角度上,有规律的多元探测器在许多角度上接收到的有关散射图的数值,并记录这些数值供以后分析。使用适当的光学模型和数学程序,对散射数值进行计算,得到各粒度级别的颗粒体积占总体积的比值,从而得到粒度的体积分布。 【主要用途】粒度分布、累计体积百分数;比表面分布;长度分布;原始信号数据图;直方图;线形化数据报告;与其它粒度分析相关结果的对比曲线;参数设置报告;结果统计报告。 三、样品制备方法

智能视频分析系统解决方案

智能视频分析系统解决方案 1.1 系统概述 智能视频(Intelligent Video)技术源自计算机视觉(Computer Vision)与人工智能(Artificial Intelligent)的研究,其发展目标是在图像与事件描述之间建立一种映射关系,使计算机从纷繁的视频图像中分辩、识别出关键目标物体。这一研究应用于安防视频监控系统,将能借助计算机强大的数据处理能力过滤掉图像中无用的或干扰信息,自动分析、抽取视频源中的关键有用信息,从而使传统监控系统中的摄像机成为人的眼睛,使“智能视频分析”计算机成为人的大脑,并具有更为“聪明”的学习思考方式。这一根本性的改变,可极大地发挥与拓展视频监控系统的作用与能力,使监控系统具有更高的智能化,大幅度节省资源与人员配置,同时必将全面提升安全防范工作的效率。因此,智能视频监控不仅仅是一种图像数字化监控分析技术,而是代表着一种更为高端的数字视频网络监控应用。 智能视频分析包含视频诊断、视频分析和视频增强等,它们各自又包含了大量的功能算法,比如清晰度检测、视频干扰检测、亮度色度检测、PTZ(云台)控制功能检测,以及视频丢失、镜头遮挡、镜头喷涂、非正常抖动等检测都属于视频诊断内容,而视频分析算法则包含区域入侵、绊线检测、遗留遗失检测、方向检测、人群计数、徘徊检测、流量统计、区域稠密度统计、人脸识别、车牌识别、烟火烟雾检测、自动 PTZ 跟踪等功能,视频图像增强则包括稳像、去雾、去噪、全景拼接等算法。由此组合衍生出的算法种类又有很多,应用方式也千变万化,所以智能视频分析的应用范围很广。 在以往的视频监控系统中,操作人员盯着屏幕电视墙超过 10 分钟后将漏掉90%的视频信息,而使视频监控工作失去意义。随着社会发展,视频监控被越来越广泛地应用到各行各业中,摄像机数量越来越庞大,这给传统的视频监控带来严峻的挑战。针对行业发展推出智能视频分析系统,主要解决以下问题:一个是将安防操作人员从繁杂而枯燥的“盯屏幕”任务解脱出来,由机器来完成分析识别工作;另外一个是为在海量的视频数据中快速搜索到想要找的的图象。 1.2 系统组成 智能视频分析系统以数字化、网络化视频监控为基础,用户可以设置某些特定的规则,系统识别不同的物体,同时识别目标行为是否符合这些规则,一旦发现监控画面中的异常情况,系统能够以最快和最佳的方式发出警报并提供有用信息,从而能够更加有效的协助安全人员处理危机,最大限度的降低误报和漏报现象。智能视频分析是在传统的监控系统中,加入智能视频技术,在整个系统中,系统分布图如下:

(完整word版)常用的遥感图像处理软件大全,推荐文档

常用的遥感图像处理软件大全 eCognition eCognition是由德国Definiens Imaging公司开发的智能化影像分析软件。eCognition 是目前所有商用遥感软件中第一个基于目标信息的遥感信息提取软件,它采用决策专家系统支持的模糊分类算法,突破了传统商业遥感软件单纯基于光谱信息进行影像分类的局限性,提出了革命性的分类技术——面向对象的分类方法,大大提高了高空间分辨率数据的自动识别精度,有效地满足了科研和工程应用的需求。 ENVI ENVI是一个完整的遥感图像处理平台,其软件处理技术覆盖了图像数据的输入/输出、图像定标、图像增强、纠正、正射校正、镶嵌、数据融合以及各种变换、信息提取、图像分类、基于知识的决策树分类、与GIS的整合、DEM及地形信息提取、雷达数据处理、三维立体显示分析。 ERDAS ERDAS IMAGINE 是美国ERDAS 公司开发的遥感图像处理系统。它以其先进的图像处理技术,友好、灵活的用户界面和操作方式,面向广阔应用领域的产品模块,服务于不同层次用户的模型开发工具以及高度的RS/GIS(遥感图像处理和地理信息系统)集成功能,为遥感及相关应用领域的用户提供了内容丰富而功能强大的图像处理工具,代表了遥感图像处理系统未来的发展趋势。 Fragstats 计算景观格局指数的软件 Fragstats是最新的景观分析软件,可以在Arcgis10.x上运行的畅通无阻 专业的遥感影像处理软件免费下载网站:遥感集市应用汇集 Geomatica Geomatica 软件是地理空间信息领域世界级的专业公司加拿大PCI公司的旗帜产品,Geomatica集成了遥感影像处理、专业雷达数据分析、GIS/空间分析、制图和桌面数

智能视频行为分析平台建设方案

基于智能视频分析的监控平台建设方案 随着国家经济的提高,城市和城市化进程在不断的发展,各种社会矛盾和暴力事件逐渐增多,政府和相关部分对加强城市各地联网型监控系统越来越重视,当前城市和小区监控系统建设使用监控录像存储,事件发生后调取查阅的方式,这种方式在一定程度上满足了社会的需求,但是无法避免事态趋于恶化,在此背景下,具有智能视频行为分析的监控平台建设就显得尤为重要。 智能视频技术让安全警卫部门能通过摄像机实时自动“发现警情”并主动“分析”视野中的监视目标,同时判断出这些被监视目标的行为是否存在安全威胁,对已经出现或将要出现的安全威胁,及时向安全防卫人员通过文字信息、声音、快照等发出警报,极大地避免工作人员因倦怠、脱岗等因素造成情况误报和不报,切实提高监控区域的安全防范能力。 现有各大监控系统厂商和信息化科技公司都研发出大量的智能视频分析软件,可以分为两大类,基于嵌入式DSP 智能分析系统和基于计算机末端处理的智能分析系统。 一.基于嵌入式DSP的处理优点

1、DSP方式可以使得视觉分析技术采用分布式的架构方式。在此方式下,视觉分析单元一般位于视觉采集设备附近(摄像机或编码器),这样,可以有选择的设置系统,让系统只有当报警发生的时候才传输视觉到控制中心或存储中心,相对于计算机末端处理方式,大大节省的网络负担及存储空间。 2、DSP方式下视觉分析单元一般位于视觉采集设备附近(摄像机或编码器),此方式可以使得视觉分析单元直接对原始或最接近原始的图象进行分析,而后端计算机方式,计算机器得到的图象经过网络编码传输后已经丢失了部分信息,因此精确度难免下降。 3、视觉分析是复杂的过程,需要占用大量的系统计算资源,因此计算机方式可以同时进行分析的视觉路数非常有限,而DSP方式没有此限制。 二.在对比上述两种处理模式的优缺点基础上,提出基于DSP嵌入式处理和末端计算机处理两种系统结构.

利用MATLAB仿真软件系统进行图像的数据分析

课程设计任务书 学生姓名:叶枫专业班级:通信zy1201班指导教师:姜宁工作单位:信息工程学院 题目: 利用MATLAB仿真软件系统进行图像的数据分析初始条件: 1.MATLAB软件。 2.数字信号处理与图像处理基础知识。 要求完成的主要任务: 读取图像并求出图像的最大值、最小值、均值、中值、和、标准差、两图像的协方差、相关系数等。 课程设计的目的: 1.理论目的 课程设计的目的之一是为了巩固课堂理论学习,并能用所学理论知识正确分析信号处理的基本问题和解释信号处理的基本现象。 2.实践目的 课程设计的目的之二是通过设计具体的图像信号变换掌握图像和信号处理的方法和步骤。 时间安排: 指导教师签名:年月日 系主任(或责任教师)签名:年月日

目录 摘要 (3) Abstract (4) 1.Matlab及课程设计所用函数简介 (5) 1.1Matlab简介 (5) 1.2课程设计所用函数简介 (6) 2.数据采集 (9) 2.1 MATLAB的读取方法 (9) 3图像数据统计处理 (13) 3.1 图像数据处理原理 (13) 3.2各像素点中最大值的获取 (14) 3.3各像素点中最小值的获取 (14) 3.4各像素点值的均值的获取 (15) 3.5各像素点值的中值的获取 (16) 3.6各像素点值的和的获取 (17) 3.7各像素点值的标准差的获取 (18) 3.8各像素点值的方差的获取 (19) 3.9两图中各像素点值的协方差的获取 (20) 3.10两图的相对系数的获取 (20) 4.心得体会 (22) 参考文献 (23)

摘要 MATLAB软件是矩阵实验室的简称,是美国MathWorks公司出品的商业数学软件,可用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境,广泛用于数字信号分析,系统识别,时序分析与建模,神经网络、动态仿真等方面有着广泛的应用。 MATLAB因具有强大的图形处理功能、符号运算功能和数值计算功能,而被广泛应用。而且随着信息时代和数字世界的到来,数字信号处理也已成为当今一门极其重要的学科和技术领域。目前数字信号处理在通信、语音、图像、自动控制、雷达、军事、航空航天、医疗和家用电器等众多领域得到了广泛的应用。 本次课程设计利用MATLAB软件进行图像的数据分析,包括读取图像并求出图像的最大值、最小值、均值、中值、和、标准差、两图像的协方差、相关系数等。 关键词:MATLAB,数字信号处理,图像数据分析

《遥感数字图像处理》习题与答案

《遥感数字图像处理》习题与答案 第一部分 1.什么是图像?并说明遥感图像与遥感数字图像的区别。 答:图像(image)是对客观对象的一种相似性的描述或写真。图像包含了这个客观对象的信息。是人们最主要的信息源。 按图像的明暗程度和空间坐标的连续性划分,图像可分为模拟图像和数字图像。模拟图像(又称光学图像)是指空间坐标和明暗程度都连续变化的、计算机无法直接处理的图像,它属于可见图像。数字图像是指被计算机储存,处理和使用的图像,是一种空间坐标和灰度都不连续的、用离散数字表示的图像,它属于不可见图像。 2.怎样获取遥感图像? 答:遥感图像的获取是通过遥感平台搭载的传感器成像来获取的。根据传感器基本构造和成像原理不同。大致可分为摄影成像、扫描成像和雷达成像三类。 m= 3.说明遥感模拟图像数字化的过程。灰度等级一般都取2m(m是正整数),说明8时的灰度情况。 答:遥感模拟图像数字化包括采样和量化两个过程。 ①采样:将空间上连续的图像变换成离散点的操作称为采样。空间采样可以将模拟图像具有的连续灰度(或色彩)信息转换成为每行有N个像元、每列有M个像元的数字图像。 ②量化:遥感模拟图像经离散采样后,可得到有M×N个像元点组合表示的图像,但其灰度(或色彩)仍是连续的,不能用计算机处理。应进一步离散、归并到各个区间,分别用有限个整数来表示,称为量化。 m=时,则得256个灰度级。若一幅遥感数字图像的量化灰度级数g=256级,则灰当8 度级别有256个。用0—255的整数表示。这里0表示黑,255表示白,其他值居中渐变。由于8bit就能表示灰度图像像元的灰度值,因此称8bit量化。彩色图像可采用24bit量化,分别给红,绿,蓝三原色8bit,每个颜色层面数据为0—255级。 4.什么是遥感数字图像处理?它包括那些内容? 答:利用计算机对遥感数字图像进行一系列的操作,以求达到预期结果的技术,称作遥感数字图像处理。 其内容有: ①图像转换。包括模数(A/D)转换和数模(D/A)转换。图像转换的另一种含义是为使图像处理问题简化或有利于图像特征提取等目的而实施的图像变换工作,如二维傅里叶变换、沃尔什-哈达玛变换、哈尔变换、离散余弦变换和小波变换等。 ②数字图像校正。主要包括辐射校正和几何校正两种。 ③数字图像增强。采用一系列技术改善图像的视觉效果,提高图像的清晰度、对比度,突出所需信息的工作称为图像增强。图像增强处理不是以图像保真度为原则,而是设法有选择地突出便于人或机器分析某些感兴趣的信息,抑制一些无用的信息,以提高图像的使用价值。 ④多源信息复合(融合)。 ⑤遥感数字图像计算机解译处理。

视频图像智能检测分析系统

视频图像智能检测分析系统 一、系统概述 智能视频监控系统具有图像内容智能识别与智能分析处理管理功能,并可通过联网实现。智能视频监控系统是一种先进的智能视频分析系统。摄像头信号通过视频服务器(视频采集卡)进行采集,基于我们的智能分析与管理平台,对采集的数据进行实时分析,及时报告可疑事件(如闯入禁区、逆行、滞留等)的发生,并对提出来的事件信息和视频数据一起记录,从而达到实时报警和事后视频有效检索的目的;能有效检测、分类、跟踪和记录非法过往行人、车辆及其它可疑物体,能够判断是否有行人及车辆在指定区域内长时间徘徊、停留或逆行;还可通过控制台摄像机放大并抓拍移动目标等。 二、系统主要功能介绍 1、物品的移动或失窃检测 自动识别出监控区域内的物品被盗等行为并发出报警信号(也可发送至用户手机或小灵通等通讯设备),自动录下相关信息。 ◆对办公室(重要人物或物品放置的地点)实行监控 ◆对博物馆、展览馆等珍贵物品的公共场所 ◆高档小区或别墅 上图中红框区域中的画为重点监控点,如该区内的画有移动迹象,即显示警示信息。多用于博物馆、展览馆等珍贵资料的保护。 2、人体行为识别

◆对视频图像进行分析,能检测警戒区域范围内以下各类人体行为并报警 ◆徘徊、滞留:在禁区或监控场景内停留超过设定时长 ◆突然加速、突然减速:由静止或匀速运动变为高速运动 ◆突然倒地或卧倒;人体直立姿势突然改变为卧地姿势 ◆车辆行为分析,识别车辆的逆行、跃线、违章乱停车并产生报警信号 3、遗留物识别 ◆可在监控区域内,一旦出现遗留物(包裹、碎块、行李等)或被蓄意放置物 体(如危险爆炸物品)立即发出告警,并自动弹出画报告遗留物的位置。 ◆在要塞地区进行可疑物品的侦测(反恐行为) ◆于机场或铁路等环境底下寻找被遗留的行李 ◆在繁忙的公路或隧道里监控故障的车辆 ◆超市或机场的地方侦测到空置的手推车以便清理 4、周界闯入、离开检测

视频监控智能分析技术应用分析

视频监控智能分析技术应用分析 一、概述 在视频监控飞速发展的今天,海量视频画面已经大大超过了人力有效处理的范围。而智能视频分析技术极大地发挥与拓展了视频监控系统的作用与能力,使监控系统具有更高的智能化,大幅度降低资源与人员配置,全面提升安全防范工作的效率。目前已广泛应用于平安城市、智能交通、金融行业、政法监管、商业等领域。 智能视频分析技术是计算机视觉技术在安防领域应用的一个分支,是一种基于目标行为的智能监控技术。它能够在图像或图像序列与事件描述之间建立映射关系,从而使计算机从纷繁的视频图像中分辩、识别出关键目标的行为,过滤用户不关心的信息,其实质是自动分析和抽取视频源中的关键信息。 按照智能分析算法实现的方式进行区分,可以概括为以下几种类型的智能分析: 识别类分析:该项技术偏向于对静态场景的分析处理,通过图像识别、图像比对及模式匹配等核心技术,实现对人、车、物等相关特征信息的提取与分析。如人脸识别技术、车牌识别技术及照片比对技术等。 行为类分析:该项技术侧重于对动态场景的分析处理,典型的功能有车辆逆行及相关交通违章检测、防区入侵检测、围墙翻越检测、绊线穿越检测、物品偷盗检测、客流统计等。 图像检索类分析:该技术能按照所定义的规则或要求,对历史存储视频数据进行快速比对,把符合规则或要求的视频浓缩、集中或剪切到一起,这样就能快速检索到目标视频。 图像处理类分析:主要是对图像整体进行分析判断及优化处理以达到更好的效果或者将不清楚的内容通过算法计算处理达到看得清的效果。如目前的视频增强技术(去噪、去雾、锐化、加亮等)、视频复原技术(去模糊、畸变矫正等)。 诊断类分析:该项分析主要是针对视频图像出现的雪花、滚屏、模糊、偏色、增益失衡、云台PTZ失控、画面冻结等常见的摄像头故障进行准确分析、判断和报警,如视频质量诊断技术。 二、智能分析核心算法介绍 1. 运动检测算法 帧差法

无人机遥感图像自动拼接方法的研究

目录 摘要 ................................................................................................................................................................................................ I Abstract......................................................................................................................................................................................... I I 目录......................................................................................................................................................................................... IV 第1章绪论 . (1) 1.1 研究的背景和意义 (1) 1.2 国内外研究现状 (2) 1.3 本文的研究工作 (3) 1.4 本文的组织结构 (4) 第2章图像拼接的基础理论和相关技术 (5) 2.1图像拼接的特点 (5) 2.1.1 图像拼接的针对性 (5) 2.1.2 图像拼接的多样性 (5) 2.1.3 图像拼接的复杂性 (6) 2.2图像拼接的常用方法 (6) 2.3图像拼接的一般流程 (7) 2.4 图像配准 (7) 2.4.1 图像配准的分类 (7) 2.4.2 图像配准的常用方法 (9) 2.5 OpenCV技术简介 (10) 2.5.1 OpenCV模块 (10) 2.5.2 OpenCV的功能 (11) 2.6本章小结 (11) 第3章特征点检测算法 (12) 3.1 SIFT算法 (12) 3.1.1 尺度空间和极值检测 (12) 3.1.2 精确确定特征点 (14) 3.1.3 确定特征点的主方向 (16) 3.1.4 特征向量的生成 (16) 3.2 SURF 算法 (18) 3.2.1构建尺度空间 (19)

相关主题
文本预览
相关文档 最新文档