当前位置:文档之家› 化学发光、荧光、可见光成像系统的技术指标:汇总

化学发光、荧光、可见光成像系统的技术指标:汇总

化学发光、荧光、可见光成像系统的技术指标:汇总
化学发光、荧光、可见光成像系统的技术指标:汇总

中山大学竞争性谈判采购公告

项目编号:中大招(货)[2010]038号

项目名称:中山大学医学院多功能酶标仪采购项目

附件: 多功能酶标仪,1套,要求如下::

一.主要功能

1. 紫外和可见光吸收光(连续波长);

2. 荧光(FI);3.时间分辨荧光(TRF);4. 荧光偏振(FP);5. 化学发光(延时和瞬时)

二.主要技术参数

全波长吸收光、孔域扫描、荧光、时间分辨荧光、荧光偏振、荧光共振能量转移FRET、发光共振能量转移BRET、化学发光-闪光和辉光、双注射器;

1 吸收光模块:波长范围200-999nm,0-4.0 OD的检测范围;

2 发光模块: 液导光纤,低噪音PMT,动态范围不小于6个数量级;灵敏度≦30 amol of ATP/well (96孔板);

3 荧光模块:

3.1 荧光强度灵敏度≦1 pM fluorescein;3.2 时间分辨荧光灵敏度≦80 fM of Europium;3.3 可作荧光偏振FP,荧光偏振FP精确度3 mP at 1 nM fluorescein;3.4 荧光偏振FP使用二向色镜,光源可选择卤钨灯或高能DPR氙灯;3.5 具有顶部/底部探头:顶部探头位置可调,顶部探头荧光的灵敏度≦0.5fmol/孔;底部探头的灵敏度≦1.9fmol/孔。

4 通量≥384孔板;

5 读板速度:96孔板≦14 s,384孔板≦30 s,1536孔板≦47 s;

6具有光路径长度校正功能。;

7 双注射器:加样体积:5-1000ul,1nl递增,死体积≦40ul,分液速度可调;

8 软件:可以连接主要功能,最近使用的文件,并可直接进入预编好的程序和实验表中挑选,可对连接的仪器进行程序化操作步骤(读板, 分液, 震荡, 静置, 孵育等.),可在一块或多块板上进行多组数据, 多个动力学结果分析;

9有温度孵育(室温+4-50℃)和振板摇床功能;

三.配置

1.吸收光检测

1.1 光源:卤钨灯或高能DPR氙灯; 1.2 波长选择:单色器; 1.3 单色器带宽:

2.4nm; 1.4 连续波长,波长范围:200-999nm,1nm递增可调; 1.5 动态范围:0-4 OD; 1.6 分辨率:0.0001 OD1.7 单色器波长准确性:+/- 2 nm1.8 单色器波长可重复性:+/- 0.2 nm1.9 OD 准确性:< 1% at 2 OD typical,< 3%/

3.0

OD1.10 OD 线性:< 1%/0 至3.0 OD,典型值1.11 OD 可重复性:< 0.5%/2.0 OD,典型值1.12 散射光:0.03%/230 nm1.13读板速度:96孔板≦14 s,384孔板≦30 s,1536孔板≦47 s,具备光路径长度校正功能,无须标准曲线即可准确定量

2. 荧光检测

2.1 波长范围:激发300-650nm,发射300-700nm,4块激发光滤光片(360/40, 485/20, 540/25,680/30 nm default), 4 块发射光滤光片(460/40, 528/20, 570/100,620/40 nm ) 和4块二相色镜(50%, 400 nm half-size and 510 nm full-size default,635nm) 2.2动态范围:> 6个数量级2.3 带通:基于滤光片系统,发光及发射光滤光片带宽:10-50nm可选2.4 检测系统:PMT2.5 检测速度:96: 15秒,384: 25 秒,1536: 50 秒;2.6 荧光灵敏度:顶部1 pM 荧光素(96 孔板:0.2 fmol/孔;384 孔板:0.1 fmol/孔),底部5 pM 荧光素(96 孔板:1 fmol/孔;384 孔板:0.5 fmol/孔)

3. 荧光偏振检测3.1波长选择:深度阻挡滤光片/二向色镜3.2灵敏度:≦3 mP/well at 1 nM fluorescein (96孔板200ul反应体积)

4. 时间分辨荧光检测4.1灵敏度:≦80 fM/well europium(96孔板200ul反应体积)4.2波长选择:深度阻挡滤光片/二向色镜4.4 波长范围:200-700nm

5. 化学发光检测5.1灵敏度:12 amol ATP,典型值(闪光)5.2波长范围:300 - 700 nm 5.3动态范围:>

6 个数量级5.4 检测系统:低噪音PMT

6. 温控:室温以上4°C 至65°C 环境温度,温度均一性≦±0.5oC。振荡:线性振荡,振速可调。读板类型:6-, 12-, 24-, 48-, 96-, 384-, 1536孔板,PCR板,可兼容兼容超微量多体积检测板,可进行16个2ul样品的检测。读板方法:终点法,动力学法,光谱扫描法,空域扫描法

7.英文正版软件, 可以连接主要功能,最近使用的文件,并可直接进入预编好的程序和实验表中挑选,可对连接的仪器进行程序化操作步骤(读板, 分液, 震荡, 静置, 孵育等.),可在一块或多块板上进行多组数据, 多个动力学结果分析。

8可进于AlphaScreen / AlphaLISA

9.商用品牌机,奔腾双核2.7G,硬盘320G,2GBDDR2667MHz内存,独立显卡,中文正版Windows XP,20寸液晶显示器,8X DVD+/- RW光驱;13合1高速媒介卡读卡器.

四.其他要求:

A、售后服务:自验收合格之日起,由乙方提供不少于三年的免费保修服务(另有特别说明的,按其要求执行),该项为不可偏离条款。保修期有不同提供方的,需说明提供方的顺序和各自期限。保修提供方最多不得超过两个。

显微成像系统资料

品名型号数量供货单价备注 奥林巴斯生物成像系统显微镜CX31 1套30000元见配置清单奥林巴斯生物显微镜CX23 1套25000元见配置清单备注:以上为人民币含税报价单,含运费和包装培训费,壹年保修期。 生物显微镜CX31技术规格: 用途:可观察普通染色的切片观察。 1.工作条件 1.1 适于在气温为摄氏-40℃~+50℃的环境条件下运输和贮存,在电源220V ( 10%)/50Hz、气温摄氏-5℃~40℃和相对湿度85%的环境条件下运行。 1.2 配置符合中国有关标准要求的插头,或提供适当的转换插座。 2.主要技术指标 2.1 生物显微镜 *2.1.1 光学系统:无限远光学矫正系统,齐焦距离必须为国际标准45mm。 2.1.2 放大倍率:40-1000倍 *2.1.3 载物台:钢丝传动,无齿条结构,尺寸为188mm × 134mm,活动范围为 X轴向76mm × Y轴向50mm,双片标本夹 2.1.4 调焦机构:载物台垂直运动由滚柱(齿条—小齿轮)机构导向,采用粗 微同轴旋钮,粗调行程每一圈为36.8mm,总行程量为25mm,微调行程为每圈 0.2mm,具备粗调限位挡块和张力调整环 2.1.5 聚光镜:带有孔径光阑的阿贝聚光镜,N.A. 1.25,带有蓝色滤色片 *2.1.6 照明系统:内置6V30W卤素灯,内置透射光柯勒照明 *2.1.7 三目观察筒:视场数≥20,瞳距调节范围为48-75mm,铰链式 2.1.8 目镜:10X,带眼罩,视场数≥20带目镜测微尺 *2.1.9 物镜:平场消色差物镜4X(N.A.≥0.1)、10X(N.A.≥0.25)、40X(N.A.≥0.65)、 100X(N.A.≥1.25)

超灵敏凝胶及化学发光成像系统

超灵敏凝胶及化学发光成像系统 配置及技术参数 1.暗箱 1.1 尺寸:≤35×28×72cm 1.2 结构:箱体面板由高分子材料模具成型,机箱由不锈钢材料冲压成型,确保光密闭及抗干扰。1.3 抽屉式载样 1.4 电源220V/50HZ *1.5内置数据处理系统,10寸触摸屏 2.进口高灵敏度制冷CCD相机 2.1分辨率:605万像素,2750 x 2200 2.2像素大小:4.54X4.54um 2.3像素密度:16bit(真实65536灰阶) 2.4 量子效率:≥75% 2.5致冷:三级半导体热电式(TEC)致冷,常温以下65度 2.6 接口:单一USB线完成图像传输及控制,无需串口线,可靠性强。 3.自动反馈镜头: 3.1 F0.95大光圈快速镜头,识别不同样品台时实现自动聚焦,无需人为调节 4.滤镜系统: *4.1八位置自动滤镜系统,荧光光源与滤镜自动联动,无需人为切换,可自动根据不同样品自动识别,标配590nm滤镜 5.辅助光源: 5.1 LED反射灯*2; 6.样品台: 6.1化学发光样品台:双层特殊涂层暗背景化学发光样品载样台 6.2紫外样品台:UVSmart超薄紫外样品台, 6.3可见光样品台:高亮度LED白光透射 *6.4无损伤LED蓝光透照台 7.操控方式:

7.1触摸屏/外接电脑一键切换方案,大大提高仪器操作的扩展性 8.图像采集软件功能 8.1通过USB或1394等数字接口直接采集获取样品图像 8.2 高精度自动曝光功能,无需揣摩曝光时间,一键完成western成像 8.3软件有自动1-99帧图像累积功能,具备时间序列图像采集,连续集成等功能,从而避免反复曝光,可从中挑选最中意的图像保存。 *8.4一次拍摄无需任何操作即可将marker图像与化学发光图像自动叠加并且自动生成三种不同效果的化学发光图像; *8.5拍摄完成后自动生成专业CLX文件格式,富含原始数据信息(如:marker图、化学发光图、叠加图、曝光时间、拍摄时间等) 8.6采用先进的像素合并技术1X1,2X2,3X3,4X4,5X5等选项,提高灵敏度和信噪比。 9.图像分析软件功能 9.1具有支持16bit图像的旋转,裁切,等处理功能,确定最适的图像视野。 方便实用的图像导航浏览功能,通过调整窗宽,窗位,获取最佳图像显示效果。 9.2自动识别泳道条带,并且可以根据需要添加、删除,调整泳道,实现泳道的精确分离。 9.3自动计算泳道中各条带的密度积分和峰值,方便计算分子量大小及条带的迁移率。 9.4对指定区域进行光密度计算,适用于蛋白定量分析。 9.5去除背景模式,以获取优化的高清晰图像。 9.6 彩色图像合成:应能显示不同调色板图像;应能根据荧光发射光谱将多个通道荧光图像合成为彩色图像;应能进行序列图像的合成。 9.7分析结果可根据选择范围输出至Excel文件。 10. 应用范围: 10.1 印迹膜检测 10.2 蛋白检测 10.3 核酸检测 10.4 其他应用 各种杂交膜,蛋白转印膜,培养皿菌落计数,酶标板,点杂交,蛋白芯片,TLC

超分辨荧光显微技术原理

2014年的诺贝尔理综奖颁发给了“超分辨荧光显微技术”。也许接下来的几天,媒体会关注StefanHell、EricBetzig二人的传奇经历,或者另一名华人女科学家与该奖项失之交臂的遗憾。但是八卦之外,这项成果背后的科学本身也非常有意思。 这里面有三个关键词:“超分辨”、“荧光”和“显微技术”,我希望能够解释清楚以下几个问题,尤其是后两个问题: 1.为什么需要(光学)显微技术? 2.为什么光学显微镜的分辨率存在理论极限? 3.用怎样的方法可以突破这个理论极限以达到“超分辨”?为什么这个理论极限可以被突破? 5.为什么非得是荧光显微技术,而非普通的明场(透射光)显微技术? 1.采样定理与显微镜 我们用肉眼观察或者用相机拍摄一个物体时,物体上的每一个细微的点都会在眼睛的视网膜或是相机的感光芯片上成像。那么我们为什么不能看到细菌等微小的东西,为什么不能把照片无限放大以看清远处树木上面的每一片叶子呢? 这个问题的答案比较简单:因为组成视网膜的每一个感光细胞(视杆细胞和视锥细胞)、相机芯片上的每一个感光元件(CCD、CMOS等)都是有大小的。比如视网膜中央凹区域的视锥细胞直径平均约为5微米。而由于奈奎斯特-香农采样定理的限制,视网膜上能分清的两个相邻像点的距离是视锥细胞直径的两倍,即10微米。再结合眼球的构造,大致可以推断出,在距离眼睛25厘米的位置,我们能分辨物体上相距为80微米的两个点,换算成点阵密度就是大约320ppi,这也是苹果所谓“视网膜屏”分辨率的来历。

如果要观察小于80微米的物体,比如细菌,就需要先将物体放大,再用眼睛或者相机观察。现代光学显微镜的构造其实非常简单,样品放置在物镜的焦点处,从样品上发射或散射的光经过物镜变成平行(准直)光,再经过一个结像透镜,然后会聚到相机的感光芯片上成像。 按照前面的方法来推算,要区分物体上相距为200纳米的两个点,如果使用科研级相机,比如最近火起来的sCMOS相机(每个感光像素尺寸为6.5微米),只需要使用放大倍率为65倍的物镜就足够了。 那么是否可以通过提高物镜的放大倍率来观察低于200纳米的物体,比如细胞里面微管呢? 答案是不可以。 2.光学衍射极限 由于光是一种电磁波,具有衍射和干涉的特性。 图1.光学显微镜简化示意图 如上面的简图所示,紫色箭头表示的物体PQ经过物镜等之后在相机上成像为 P'Q'。由于光的衍射,物体上的点如P、Q,在相机上并不是单独的点,而是一个个有一定大小的斑,被称为夫琅禾费衍射斑(或称艾里斑),如右侧的同心圆所示。那么,当P'、Q'相距太近的时候,两个斑会叠加导致难以分辨。这就要求物体上的P、Q要相距一定的距离。 1873年,德国物理学家、卡尔蔡司公司的恩斯特·阿贝(ErnstAbbe)首次推算出衍射导致的分辨率极限。根据瑞利判据——“当一个像斑的中心落到另一个像斑的边缘时,就算这两个像刚好能被分辨”,显微镜能分辨的物体上两点P、Q 的最小距离h为:

显微镜测量使用说明

WT-1000GM操作手册 上海微图仪器科技发展有限公司上海巍途光电技术有限公司

相机及操作软件介绍 上海微图仪器科技发展有限公司上海巍途光电技术有限公司专业开发显微镜数字相机CMOS系列(TCA-1.3C,TCA-1.3B/W,TCA-3.0C,TCA-5.0)及CCD 系列(TCC3.3MP、TCC-1.4HICE)广泛应用于显微镜成像、凝胶成像、化学发光成像等众多科研质检生产领域。 WT-1000GM 为通用相机操作、图像处理、图像测量软件,该软件操作方便,功能专业,性能稳定,界面友好,是您工作科研的得力助手。

相机安装及软件操作介绍 1.1 操作系统要求 本公司相机及软件支持windows XP, vista, 2000, 操作系统,但要求系统安装Directshow 9.0 components. 1.2Hardware requirement 1.2.1电脑要求配置 CPU: Intel Pentium 4-2.6G; 内存RAM: 512 MB 硬盘HDD: 10GB USB: USB2.0 interface 安装相机驱动 2.1安装相机 2.1.1. 自动安装 1.打开光盘内TCA-1.3驱动Driver文件夹,运行安装程序 。 2.出现下面窗口,选择下一步。

3.出现该窗口选择,仍然继续4.TCA-1.3已经成功安装到计算机内

5. 安装完毕右下角任务栏会提示硬件安装完成,选择设备管理器可以看到如下 位置有该相机的属性显示。 2.1. 3. 安装软件 直接运行WT-1000GM文件夹里的Sutup.exe文件就可以将软件安装到指定的位置了 1. 双击“setup.exe”

光学显微镜的原理及构造

光学显微镜的原理及构造显微镜是人类认识物质微观世界的重要工具,是现代科学研究工作不可缺少的仪器之一。显微镜自1666年问世以来已有300多年的历史了,其间随着科学技术不断发展,显微镜的品种不断增加,结构和性能逐步得到完善和提高。 根据不同的使用用途,光学显微镜可分为普通光学显微镜、暗视野显微镜、相差显微镜、荧光显微镜、倒置显微镜、体视显微镜、偏光显微镜等10多种。目前,世界上许多国家都可以生产光学显微镜,牌名、种类繁杂,其中德国、日本等国制造的显微镜品质、数量占优势,但价格昂贵。 对于现代的光学显微镜,包括各种简单的常规检验用显微镜、万能研究以及万能照相显微镜等,首先要认识其构造及各部件的功能,同时要掌握正确的调试、使用和保养方法,才能在实际应用中面对各种要求时以不同的显微镜检方法,充分发挥显微镜应有的功能,提高常规检验工作效率. 光学显微镜的原理和构造 随着科学技术的发展,显微镜检方法由最传统的明视野、暗视野发展出了相差法、偏光方法;荧光方法也由透射光激发进展为落射光激发,使荧光效率大为提高;微分干涉相衬方法基于偏光方法,而巧妙地利用了微分干涉棱镜,使之能应用于医学与生物学的样品,又能应用于金相样品的分析与检验。 下面以德国ZEISS公司生产的Axioplan万能研究用显微镜,简单介绍万能显微镜的基本组成部件。 1. 显微镜主机体(stand) 显微镜的主机体设计成金字塔形,而底座的截面呈T字形,使显微镜的整体相当稳固。显微镜的光学部件和机构调节部件、光源的灯室、显微照相装置、电源变压稳压器等,都可安装在主机体上或主机体内。 2. 显微镜的底座(base) 底座和主机体通常组成一个稳固的整体。底座内通常装有透射光照明光路系统(聚光、集光和反光)部件,光源的滤光片组,粗/微调焦机构,光源的视场光阑也安装在底座上。 3. 透射光光源(tranilluminator) 透射光光源由灯室(lamp housing)、灯座(lamp socket)、卤素灯(halogen lamp)、集光与聚光系统(lamp collector and lamp condenser)及其调整装置组成。 4. 透射光光源与反射光光源的转换开关(toggle switch) 这是新一代AXIO系列显微镜特有的装置,透射光和反射光可通用。当具有透/反两用的配置时,利用这一转换开关能方便而又迅速的使透射光 和反射光互相转换。在纯透射光的配置中,这一开关就改为电源开关。

凝胶成像系统

凝胶成像系统 凝胶成像即对dna/rna/蛋白质等凝胶电泳不同染色(如eb、考马氏亮蓝、银染、sybr green)及微孔板、平皿等非化学发光成像检测分析。 凝胶成像系统可以应用于分子量计算,密度扫描,密度定量, PCR定量等生物工程常规研究。 总体上来说凝胶成像可应用于:凝胶成像系统可以用于:蛋白质、核酸、多肽、氨基酸、多聚氨基酸等其他生物分子的分离纯化结果作定性分析 (1)分子量定量 对于一般常用的DNA胶片,利用分子量定量功能,通过对胶上DNA Marker条带的已知分子量注释,自动生成拟合曲线,并以它衡量得到未知条带的分子量。通过这种方法所得到的结果较肉眼观察估计要准确很多。 (2)密度定量 一般常用的测定DNA(脱氧核糖核酸)和RNA(核糖核酸)浓度的方法是紫外吸收法,但它只能测定样品中的总核苷酸浓度,而不能区分各个长度片段的浓度。利用凝胶成像系统和软件,先将DNA胶片上某一已知其DNA含量的标准条带进行密度标定以后,可以方便的单击其他未知条带,根据与已知条带的密度做比较,可以得到未知DNA的含量。此方法也适用于对PA GE蛋白胶条带的浓度测定。 (3)密度扫描 在分子生物学和生物工程研究中,最常用到的是对蛋白表达产物占整个菌体蛋白的百分含量的计算。传统的方法是利用专用的密度扫描,但利用生物分析软件结合现在实验室常规配备的扫描仪或者直接用白光照射的凝胶成像就能完成此项工作。 (4)PCR定量 PCR定量主要是指,如果PCR实验扩增出来的条带不是一条,那么可以利用软件计算出各个条带占总体条带的相对百分数。就此功能而言,与密度扫描类似,但实际在原理上并不相同。PCR定量是对选定的几条带进行相对密度定量并计算其占总和的百分数,密度扫描时并对选择区域生成纵向扫描曲线图并积分。 凝胶成像种类 (1)普通凝胶成像分析系统:可以对蛋白电泳凝胶,DNA凝胶样品进行图象采集并进行定性和定量分析,样品包括:EB、SYBR Green、SYBR Gold、Texas Red、GelStar、Fluoroscecin、 Radiant Red等染色的核酸监测;以及Coomassie Blue、SYPRO Orange、各种染色的蛋白质凝胶如考染等。(或UV,EB和有色及可见样品成像); (2)化学发光成像分析系统:成像范围涵盖UV,EB,化学发光、紫外-荧光、有色及可见样品成像; (3)多色荧光成像分析系统:成像范围涵盖UV,EB,化学发光、多色荧光荧光、有色及可见样品成像; (4)多功能活体成像分析系统:UV,EB,化学发光、多色荧光荧光、有色及可见样品成像和离体组织和小型动物,及大型型动物。

声光调制型可见光高光谱成像技术研究

声光调制型可见光高光谱成像技术研究 基于布拉格调制的声光可调谐滤波器(Acousto-optic tunable filter,AOTF)是一种超声波与光波可以在各向异性介质中发生声光相互作用的新型分光元件,因其既可以被看作是分光元件又可以被看作是偏振元件,而且其具有大孔径角、衍射效率高、调谐速度快等突出优点,以至于这种滤波器被广泛应用于高光谱成像技术中。目前,国外对基于声光可调谐滤波器的高光谱成像技术的相关研究较为成熟,而国内对该研究起步较晚,基本上都处于基础理论和探索性实验阶段,虽然已经有实际应用,但其诸如光谱分辨率、衍射效率等关键性能与国外相比较仍有一定差距,还可以进一步提升,所以仍需要大量深入的理论与实验研究。鉴于此,本文以布拉格调制的声光可调谐滤波技术为基础,开展了相关的理论分析和实验研究工作,旨在将声光可调谐滤波技术完美应用于高光谱成像领域中,进而对我 国高光谱成像技术的发展起到积极的促进作用。在理论上,从TeO2 单晶的光学性质和声学性质出发,首先推导了参量互作用基本方程,并以此为依 据得到了声光调制下的耦合波方程的一般形式。 接着根据耦合波方程和动量匹配条件推导出了两种偏振方向相互垂直的入 射光的基本调谐模式,并给出了选取合适入射角和超声切变波的入射方向的依据。最后针对实验需求计算出了两个声光可调谐滤波器的其它性能指标。在此过程中,解决了介质外+1级衍射光与0级透射光的分离、由色差引起的衍射光漂移以及 降低射频驱动功率等关键问题。分析了锥形光束对声光可调谐滤波器内部分离角、外部分离角、光谱带宽以及衍射效率等性能参数的影响,以此为依据给设计前置光学系统提出了严格的要求。 在实验中利用宽带光源对设计的非共线声光可调谐滤波器的入射光波长与 超声驱动频率、入射光极角与超声驱动频率等基本调谐关系以及衍射光光谱带宽、衍射效率、空间分辨率和介质外衍射光漂移量等性能进行了详细的测量,并根据测量结果对设计的声光可调谐滤波器参数进行优化,直到满足高光谱成像要求。基于设计的声光可调谐滤波器搭建了高光谱成像实验系统,首先利用宽带光源研究了波长调谐范围内色差对衍射光漂移量的影响,并给出了图像漂移量与入射光波长的函数关系式,为设计后置光学接收系统提供了可靠依据。接着在 419.48865.07 nm的光谱范围、100200 m的探测距离内

倒置荧光显微镜CCD成像系统

中国医科大学实验技术中心 主要实验仪器及相关技术 倒置荧光显微镜CCD 成像系统仪 器 名 称 Inverted Fluorescence Microscope with Digital CCD Imaging System 型 号 IX71/DP70 生 产 厂 OLYMPUS 国 别 日本 所在科室 实验技术中心三部 综合楼10F 负 责 人 赵蕾 薛晓霞 联系电话 23256666转5104,5100 起用日期 2002.09 主要技术指标及配置: IX71倒置荧光显微镜 调焦:粗调/微调机制,最小微调刻度1μm ,一圈100μm 三目镜筒,目镜:10×/FN22.0;通用长工作距离聚光镜NA0.55 WD27mm ; 配置DIC 相差(10×、20×、40×)、相差(4×、10×、20×、40×、60×)装置 物镜: 4×、10×、20×、40×、60×,适于荧光、DIC 相差、相差观察 透射光照明:12V100W 卤素灯,带TTL 触发控制、光标指示 落射荧光:IX-RFA/U-LH100HGAPO 100W 汞灯;装有视场光阑调节机制 激发/发射滤光片组件:UV (U-MWU2, BP330-385)、IB(U-MWIB2 BP460-490,BA515IF)、IG(U-MWIG2 BP520-550,BA580IF)、BV(U-MWBV2 BP400-440, BA455)、IY(U-MWIY2 BP545-580, BA610IF)、IB GFP/FITC(U-MWIBA/GFP BP460-490, BA510-550); 需用BV 、IY 激发/发射滤光片组件的实验者要提前说明,以便进行实验配置。 DP70数字CCD 成像 2/3”彩色CCD ,有效像素:1.5MP ,经像素转移技术为4080×3072(12.5MP 像素) 最大图像采集速度:3fps (36bit ,最高分辨率),图像预览:1360×1024,15fps 测光/曝光方式:30%平均测光,1%、0.1%点测光;自动、手动和自动超级荧光(SFL)曝光时间控制:1/44,000秒~60秒 灵敏度:相当于胶片ISO200~ISO1600,分档可选;BINNING :最高4×4 动态范围:36-bit ,文件存储格式48-bit Peltier 半导体制冷:低于环境温度10℃ 图像采集分析软件:图像融合、加校准标尺、测量,序列图像记录和回放、基本的图像处理功能等。图像还可在荧光图像工作站做反卷积去模糊等处理。 可连接35mm 胶片自动显微照像装置(30%平均测光,1%、0.1%点测光;自动、手动和自动超级荧光SFL)。 主要技术功能及适用领域: 1. 细胞静态或动态荧光观察、图像采集;DIC 相差观察、图像采集。 2. 其它在培养器皿内荧光标本或需倒置观察的有关标本的观察、图像采集。 申请实验技术有关事项及自备条件: 1.提前4个工作时预约;使用60×物镜、DIC 观察和35mm 自动显微照像要事先说明。 2.自带纱布或纸,观察前,要擦拭净培养器皿表面水迹。 3.完成实验后,带走样品,不得随意丢弃,并清理实验台面。

全能型化学发光荧光成像系统序号技术要求

全能型化学发光荧光成像系统 序号技术要求 11工作条件 1.1工作电压:0.5A,100–240V AC,50/60Hz 1.2湿度:≤75%相对湿度 2技术规格 2.1检测模式:生物、化学发光; 2.2板型:不少于96孔微孔板; 2.3可实现辉光,闪光读数; *2.4检测器:光子计数和模拟式双模式,光电倍增管(PMT); 2.5光谱应答范围:350nm-700nm; 2.6灵敏度(以萤光素酶摩尔数计算):≤1.5×10-21; 2.7线性范围:≥9数量级; 2.8交叉干扰:小于3×10-5; *2.9控制:外接平板电脑(标配),已预置ATP发光检测操 作程序,双萤光素酶报告基因检测程序等,可免费升级; 2.10进样器:不少于2个,可视化;处理体积:5-200ul, 不大于1ul增量; 2.11数据输出:USB存储设备直接输出或无线网络输出; 2.12平板电脑:屏幕不小于7寸,7.93in.x11.5in.x0.36 in,Windows?8操作系统,RAM不小于2GB,主存储容量不小 于64GB

组织芯片仪 序号技术参数 1.简体中文操作系统,界面简洁,操作方便 2.全自动组织芯片系统,钻孔、取样、注芯等操作在计算机上设定程序 后系统全部自动完成,全程无需人为手动干预。 3.蜡块耗材:标准普通蜡块(28mm x34mm),开放式耗材,且配备专用 模具自制受体蜡块,无需向厂家单独购买。 *4.数据安全:项目数据自动备份保存,即使完全断电,系统重新启动后也可自动重新 5.核芯和孔径尺寸:不少于0.6mm、1mm、1.5mm、2mm4种规格。 6.受体蜡块设计: 6.1钻孔行数和列数可选; 6.2钻孔之间距离可选; 6.3钻孔位置可选(水平和竖直); 6.4受体蜡块尺寸可选(长宽高); 6.5可保存、加载、修改受体蜡块微阵列数据。 7.供体蜡块识别: 7.1内置高清数码摄像头可实时显示供体蜡块组织表面图像; 7.2内置高清数码摄像头可自动对包埋盒标签拍照; 7.3可自动读取一维和二维码标签; 7.4可导入事先编辑好的XLS数据。 8.供体蜡块取样点定位: 8.1常规定位:系统内置高清数码摄像头,自动对HE切片或供体蜡块 拍 照后在JPG图像上标记取样点; 8.2精确定位:将供体蜡块预切的HE切片用同品牌病理切片扫描仪扫 描后,在HE高清数字切片上精确标记出取样点并将数据导入到全自动组织芯片仪中,系统自动到供体蜡块对应位置进行精确取样注芯。(提供证明文件) 9.数据保存内容: 9.1针对每个TMA核芯唯一对应的ID; 9.2供体蜡块信息; 9.3受体蜡块信息;

超分辨荧光显微技术原理

2014 年的诺贝尔理综奖颁发给了“超分辨荧光显微技术”。也许接下来的几天,媒体会关注 Stefan Hell、Eric Betzig 二人的传奇经历,或者另一名华人女科学家与该奖项失之交臂的遗憾。但是八卦之外,这项成果背后的科学本身也非常有意思。 这里面有三个关键词:“超分辨”、“荧光”和“显微技术”,我希望能够解释清楚以下几个问题,尤其是后两个问题: 1. 为什么需要(光学)显微技术? 2. 为什么光学显微镜的分辨率存在理论极限? 3. 用怎样的方法可以突破这个理论极限以达到“超分辨”?为什么这个理论极限可以被突破? 5. 为什么非得是荧光显微技术,而非普通的明场(透射光)显微技术? 1. 采样定理与显微镜 我们用肉眼观察或者用相机拍摄一个物体时,物体上的每一个细微的点都会在眼睛的视网膜或是相机的感光芯片上成像。那么我们为什么不能看到细菌等微小的东西,为什么不能把照片无限放大以看清远处树木上面的每一片叶子呢? 这个问题的答案比较简单:因为组成视网膜的每一个感光细胞(视杆细胞和视锥细胞)、相机芯片上的每一个感光元件(CCD、CMOS等)都是有大小的。比如视网膜中央凹区域的视锥细胞直径平均约为 5 微米。而由于奈奎斯特-香农采样定理的限制,视网膜上能分清的两个相邻像点的距离是视锥细胞直径的两倍,即 10 微米。再结合眼球的构造,大致可以推断出,在距离眼睛 25 厘米的位置,我们能分辨物体上相距为 80 微米的两个点,换算成点阵密度就是大约 320 ppi,这也是苹果所谓“视网膜屏”分辨率的来历。 如果要观察小于 80 微米的物体,比如细菌,就需要先将物体放大,再用眼睛或者相机观察。现代光学显微镜的构造其实非常简单,样品放置在物镜的焦点处,从样品上发射或散射的光经过物镜变成平行(准直)光,再经过一个结像透镜,然后会聚到相机的感光芯片上成像。 按照前面的方法来推算,要区分物体上相距为 200 纳米的两个点,如果使用科研级相机,比如最近火起来的 sCMOS 相机(每个感光像素尺寸为 6.5 微米),只需要使用放大倍率为 65 倍的物镜就足够了。 那么是否可以通过提高物镜的放大倍率来观察低于 200 纳米的物体,比如细胞里面微管呢? 答案是不可以。 2. 光学衍射极限 由于光是一种电磁波,具有衍射和干涉的特性。

KODAK Gel Logic 2200成像系统

KODAK Gel Logic 2200成像系统 最新推出的KODAK Gel Logic 2200成像系统具有高灵敏制冷CCD,整合了紫外和白光光源,应用于多方面成像如凝胶,杂交,平板样品等等。现在只要购买一个成像系统就可以满足您所有成像需要。 高灵敏度高精确度成像 ?制冷CCD(绝对–29 °C)保证了低噪音高灵敏度的成像 ? 220万像数、f1.2镜头、六倍变焦比其它相同价位CCD提供更高的精确度和灵敏度 可进行多功能实验 ?可进行化学发光,荧光,显色 ?可选照射与透射光源能够进行更多方面成像,凝胶,点杂交,微孔板,克隆平板等等 图像定量功能 ?检测荧光信号到Pmol- fmol水平,化学化光与胶片一样灵敏 ?单帧16位以及多帧累积的功能提供的优秀的线性范围,能够清楚准确的定量条带 Kodak Mi分子成像软件为GL2200提供强大的分析功能 ?导航式操作界面方便用户的使用,自动找到条带生成分子量,OD值,光密度等数据 ?图像注解,直接输出功能图象,分析结果的搜索和比较功能,快速衡量出表达比率。 ? DNA/RNA、蛋白胶自动1D分析、分子量、Rf值、柱形图、3D柱形图、定量PCR、W标准曲线、2D斑点密度分析、4到1225孔ARRAY及杂交分析、自动/手动彩色菌落计数、显微照片、放射自显影照片、Slot 杂交分析、TLC培养板、组织切片、PCR定量、胶评分及物体距离测量标尺等 荧光、化学发光样品分析(包括Western,Northern,Southern)。 ?自动条带匹配、检测,遗传树分析,类比矩阵分析,微笑条带校正;存储/加载质量标准文件等

化学发光菌落计数96孔板Gel Logic 2200参数

化学发光成像系统技术参数

化学发光成像系统 配置及技术参数 1.暗箱 1.1 尺寸:30×24×46cm 1.2 结构:双层结构,微处理器控制暗箱,确保完全密闭。 1.3 抽屉式载样 1.4 电源220V/50HZ 2.美国原装进口高灵敏度制冷CCD相机 2.1 CCD芯片尺寸:12.49X9.99mm 2.2分辨率:605万像素,2750 x 2200 2.3像素大小:4.54X4.54um 2.4像素密度:16bit(真实65536灰阶) 2.5 量子效率:≥75% 2.6 暗电流: <0.001 e-/pixel/sec. @ -30oC 2.7 读出燥声: 5.5e- RMS at 12 MHz 2.8致冷:三级半导体热电式致冷,常温以下60度 2.9 接口:单一USB线完成图像传输及控制,无需串口线,可靠性强。 3.镜头: 3.1 F0.95大光圈快速镜头,4/3英寸靶面 4.辅助光源: 4.1 LED反射灯*2; 5.样品台: 5.1轨道式化学发光样品台 6.图像采集软件功能 6.1通过USB或1394等数字接口直接采集获取样品图像。 *6.2 高精度自动曝光功能,无需揣摩曝光时间,一键完成western成像 6.3软件有自动1-99帧图像累积功能,具备时间序列图像采集,连续集成等功能,从而避免反复曝光,可从中挑选最中意的图像保存。 *6.4拍摄完成后自动生成专业16bit文件格式,富含原始数据信息,(如:曝光时间、拍摄日期、时间等),且不可修改 *6.5拍摄完成的图像提供三种不同灰阶范围的显示效果并可手动调整 *6.6拍摄完成的所有图像在图像采集界面以小窗口显示,方便查找、浏览及将marker图像与化学发光图像叠加功能 6.7采用先进的像素合并技术1X1,2X2,3X3,4X4等选项,提高灵敏度和信噪比。 6.8方便实用的图像导航浏览功能,通过调整窗宽,窗位,获取最佳图像显示效果。 6.8具有支持16bit图像的旋转,裁切,反色等处理功能,进行图像优化处理。 7.图像分析软件功能 7.1具有支持16bit图像的旋转,裁切,等处理功能,确定最适的图像视野。 方便实用的图像导航浏览功能,通过调整窗宽,窗位,获取最佳图像显示效果。 7.2自动识别泳道条带,并且可以根据需要添加、删除,调整泳道,实现泳道的精确分离。 7.3自动计算泳道中各条带的密度积分和峰值,方便计算分子量大小及条带的迁移率。

小型可见光双视场光学系统的研制_魏群

第20卷 第4期 2012年4月 光学精密工程  Optics and Precision Engineering Vol.20 No.4   Ap r.2012 收稿日期:2011-02-16;修订日期:2011-04- 19. 基金项目: 总装装备预研基金资助项目(No.51301060207)文章编号 1004-924X(2012)04-0739- 06小型可见光双视场光学系统的研制 魏 群*,艾兴乔,贾宏光 (中国科学院长春光学精密机械与物理研究所,吉林长春130033) 摘要:基于光学设计基本理论,设计了一种体积小,跟踪范围可以达到整个前半球的可见光双视场光学系统。系统由前部集束系统,中间光路转折系统及后部成像系统3部分组成。集束系统采用望远镜式结构,用于改变光束的口径;光路转折系统采用库德光路, 由4片反射镜组成,用于转折光路及扫描;成像系统由长焦成像系统和短焦成像系统组成,分别形成两个视场的像,用于目标识别与跟踪。光学系统焦距分别为60mm和120mm,设计传递函数在58lp/mm处均大于0.5。加工装调后进行了成像试验验证,结果表明,该系统能够同时完成大视场及小视场的图像获取,在可视范围内成像质量满足系统总体要求。 关 键 词:双视场光学系统;可见光镜头;库德光路;光学设计 中图分类号:TH703 文献标识码:A doi:10.3788/OPE.20122004.0739 Development of small-scale and dual-field visible light optical sy stemWEI Qun* ,AI Xing-qiao,JIA Hong -guang(Changchun Institute of Optics,Fine Machanics and Phy sics,Chinese Academy  of Sciences,Changchun130033,China)*Corresponding  author,E-mail:wei.q@hotmail.comAbstract:On the basis of optical design theory,this paper designs a small-scale and dual-field opticalsystem with a half sphere tracking  field.This optical system takes a Code optical path as the main sys-tem and consists of three parts:tele-system at front,ray tuning system in the middle,and imagingsystem in the back.The first part is a telescope compound for adjusting  the diameter of the lightbeam;the middle part is Code optical path made up four mirrors,which is used to turn the direction ofthe light beam;and the last part is an imaging system for long focal and short focal imaging and fortracking and recognizing  targets.The focal lengths of the system are 60mm and 120mm and theirModulation Transfer Functions(MTFs)are all above 0.5at 5.8lp/mm.By imaging tests,this opticalsystem has better imaging quality and can capture the images form the large field and small one at thesame  time.Key  words:dual-field optical system;visible light lens;Code system;optical design

超微型显微成像系统(中英文版)

一、超微型显微成像系统产品介绍如下所示: 1.功能和用途 1.1功能 1.1.1系统组件包括显微镜镜体、固定板、GRIN透镜、CMOS、图像采集卡及采集软件等。 1.1.2在单细胞分辨水平,记录一群神经元的钙信号。 1.1.3适用于自由活动动物的在体实验。 1.1.4通过植入GRIN透镜,可以实现深脑成像。 1.1.5系统体积小、重量轻,不影响小鼠自由运动和行为实验。 2.1用途: 2.1.1用于行为动物在体钙成像的超微型显微成像系统。 2.1.2检测新型可遗传编码的乙酰胆碱和多巴胺等探针的荧光变化,即可实时监测乙酰胆碱、多巴胺等浓度的动态变化情况。 二、产品彩图:

Miniature Fluorescent Microscope 1.1 function 1.1.1 System Components include Miniscope body、Base Plate、GRIN Lens、CMOS、DAQ card and software; 1.1.2 Record the calcium signal of a group of neurons at the single cell resolution level; 1.1.3 experiments for freely moving animals; 1.1.4 Deep brain imaging can be achieved by implanting a GRIN lens; 1.1.5 The system is small in size and light in weight, and does not affect the free movement and behavioral experiments of mice. 2.1 Uses: 2.1.1 Ultra-microscopic microscopic imaging system for in vivo calcium imaging of behavioral animals. 2.1.2 To detect the changes in the fluorescence of new genetically-encoded probes such as acetylcholine and dopamine, the dynamic changes of concentrations of acetylcholine and dopamine can be monitored in real time.

凝胶成像仪(使用方法)

凝胶成像系统 操作规程: 1. 打开成像仪器电源,将样品放入工作台。 2. 双击桌面上图标,打开Quantity One 软件,或从开始-程序-The Discovery Series/Quantity One进入。 3. 从File下拉菜单中选择ChemiDox XRS,打开图像采集窗口。 4. Select Application 选择相关应用: a UV Transillumination 透射UV:针对DNA EB胶或其他荧光; b White Transillumination 透射白光:针对透光样品如蛋白凝胶,X-光片; c White Epillumination 侧面白光:针对不透光样品或蛋白凝胶; d Chemiluminescnec e 化学发光,不打开任何光源。 5. 单击Live/Focus按钮,激活实时调节功能,此功能有三个上下键按钮:IRIS(光圈),ZOOM (缩放),FOCUS(聚焦),可在软件上直接调节或在仪器面板上手工调节,调节步骤:a调节IRIS 至适合大小;b点ZOOM将胶适当放大;c调节FOCUS至图像最清晰。 6. 如是DNA EB胶或其他荧光,单击Auto Expose,系统将自动选择曝光时间成像,如不满意,单击Manual Expose,并输入曝光时间(秒),图像满意后保存。 如是蛋白凝胶,接第5步骤直接将清晰的图像保存即可;如是化学发光样品,将滤光片位置换到Chemi位(仪器上方右侧),将光圈开到最大,输入Manual Expose时间,可对化学发光的弱信号进行长时间累积如30min,或单击Live Acquire 进行多帧图像实时采集,在对话框内定义曝光时间长短,采集几帧图像,在采集的多帧图像中选取满意的保存。

光学显微镜的发展历史

杨拓拓 (苏州大学现代光学技术研究所,江苏苏州215000) 1基本原理 显微镜成像原理及视角放大率 显微镜由物镜和目镜组成。物体AB 在物镜前焦面稍前处,经物镜成放大、倒立的实像A'B',它位于目镜前焦面或稍后处,经目镜成放大的虚像,该像位于无穷远或明视距离处。 图1-1显微镜系统光路图 牛顿放大率公式: f f x x ''= 'x 是像点到像方焦点的距离,x 是物点到物方焦点的距离。 根据牛顿放大率公式可得物镜的垂轴放大率为 '1'1'11--f f x ?== β 目镜的视觉放大率为: '22250 f =Γ 组合系统的放大率为 '2'121250f f ? -=Γ=Γβ 显微镜系统的像方焦距 ?-=/'2'1'f f f '250 f = Γ 显微镜系统成倒像轴向放大率 ' 1 f

'2'1'2'1/f f x x =β 若物点A 沿光轴移动很小的距离,则通过显微镜系统的像点'2A 将移动很大的距离,且移动 方向相同。 显微系统的角放大率 '2'1'2'1/x x f f =γ 即入射于物镜为大孔径光束,而由目镜射出为小孔径光束。 显微镜的孔径光阑 单组低倍显微物镜,镜框是孔径光阑。 复杂物镜一般以最后一组透镜的镜框作为孔径光阑。 对于测量显微镜,孔阑在物镜的象方焦面上,构成物方远心光路。 显微镜的视场光阑和视场 在显微物镜的象平面上设置了视场光阑来限制视场。由于显微物镜的视场很小,而且要求象面上有均匀的照度,故不设渐晕光阑。 显微镜是小视场大孔径成像,为获得大孔径并保证轴上点成像质量,显微镜线视场不超过物镜的1/20,线视场要求: 1 '120202β?=≤f y 显微镜的分辨率和有效放大率 光学仪器分辨率 瑞利判据:两个相邻的“点”光源所成的像是两个衍射斑,若两个等光强的非相干点像之间的间隔等于艾里圆的半径,即一个像斑的中心恰好落在另一个像斑的第一暗环处,则这两个点就是可分辨的点。当物面在无穷远时,以两点对光学系统的张角可表示两分辨点的距离,其值为:

荧光显微镜介绍及使用

荧光显微镜 一.荧光显微镜(Fluorescence microscope) : 荧光显微镜是利用一个高发光效率的点光源,经过滤色系统发出一定波长的光作为激发光、激发标本内的荧光物质发射出各种不同颜色的荧光后,再通过物镜和目镜的放大进行观察。 在强烈的对衬背景下,即使荧光很微弱也易辨认,敏感性高,主要用于细胞结构和功能以及化学成分等的研究。 荧光显微镜是以紫外线为光源,用以照射被检物体,使之发出荧光,然后在显微镜下观察物体的形状及其所在位置。荧光显微镜用于研究细胞内物质的吸收、运输、化学物质的分布及定位等。细胞中有些物质,如叶绿素等,受紫外线照射后可发荧光;另有一些物质本身虽不能发荧光,但如果用荧光染料或荧光抗体染色后,经紫外线照射亦可发荧光,荧光显微镜就是对这类物质进行定性和定量研究的工具之一。

荧光显微镜的光源所起的作用不是直接照明,而是作为一种激发标本的内荧光物质的能源。我们之所以能观察标本,不是由于光源的照明,而是标本内荧光物质吸收激发的光能后所呈现的荧光现象。 荧光显微镜和普通显微镜有以下的区别: 1.照明方式通常为落射式,即光源通过物镜投射于样品上; 2.光源为紫外光,波长较短,分辨力高于普通显微镜; 3.有两个特殊的滤光片,光源前的用以滤除可见光,目镜和物镜之间的用于滤除紫外线,用以保护人眼。 荧光显微镜也是光学显微镜的一种,主要的区别是二者的激发波长不同。由此决定了荧光显微镜与普通光学显微镜结构和使用方法上的不同。 荧光显微镜是免疫荧光细胞化学的基本工具。它是由光源、滤板系统和光学系统等主要部件组成。是利用一定波长的

光激发标本发射荧光,通过物镜和目镜系统放大以观察标本的荧光图像。 二.工作原理 光源 多采用200W的超高压汞灯作光源,它是用石英玻璃制作,中间呈球形,内充一定数量的汞,工作时由两个电极间放电,引起水银蒸发,球内气压迅速升高,当水银完全蒸发时,可达50~70个标准大气压力,这一过程一般约需5~15m i n。超高压汞灯的发光是电极间放电使水银分子不断解离和还原过程中发射光量子的结果。它发射很强的紫外和蓝紫光,足以激发各类荧光物质,因此,为荧光显微镜普遍采用。 超高压汞灯也散发大量热能。因此,灯室必须有良好的散热条件,工作环境温度不宜太高。 新型超高压汞灯在使用初期不需高电压即可引燃,使用一

荧光与化学发光成像系统chemiscope 3400

ChemiScope 3600 快速使用指南 一、先接通电源开关,然后打开ChemiCapture软件,预冷CCD 约5-10分钟,CCD制冷温度到-20o C以下(设置值为-30o C)。 二、化学发光样品拍摄(WB) 1. 检查镜头光圈值是否在最大(转动调整镜头光圈环到F值0.95 位置) 2. 检查聚焦是否清晰 1) 选择打开光源RW; 2) Camera setting栏选择,(曝光时间约50ms); 3) 选取预览preview,若聚焦不清晰,转动调整镜头聚焦环到最清楚位置; 3. 拍摄样品化学发光图片 1) 将加完发光液的样品放置托盘中央。 2) Camera setting栏选择,设置曝光时间(一般30Sec- 1Min,当样品信号较弱时,可适当延长曝光时间),分辨率为696*520(2*2)模式。 3) 点击拍摄Capture 进行图像采集(可设置连续拍摄张数和累计曝光) 4) Image Display 栏调整图片显示,勾选自动调整Auto fit,也可手动调整 (合适的高度灰阶High值一般为2000--5000)。 4 拍摄样品Marker图片:在Camera setting栏选中, 选择光源RW,设置合适的曝光时间(20-100ms),分辨率为696*520(2*2)模式。点击拍摄Capture进行Marker图片采集。 5 Marker图片与化学发光图片叠加显示: 采集结束后,选中作为背 景的Marker图片(未反色显色),右击鼠标并选择Add frame to background,再点击需要叠加的化学发光图片(反色显色),软件自动显示叠加之后的图像。 若不需要叠加显色,选择Remove background image。

相关主题
文本预览
相关文档 最新文档