当前位置:文档之家› 改进的均值—半方差模型

改进的均值—半方差模型

改进的均值—半方差模型
改进的均值—半方差模型

马科维茨的均值一方差组合模型简介.

马科维茨的均值一方差组合模型简介 证券及其它风险资产的投资首先需要解决的是两个核心问题:即预期收益与风险。那么如何测定组合投资的风险与收益和如何平衡这两项指标进行资产分配是市场投资者迫切需要解决的问题。正是在这样的背景下,在50年代和60年代初,马可维兹理论应运而生。 [编辑] 马科维茨模型的假设条件 该理论依据以下几个假设: 1、投资者在考虑每一次投资选择时,其依据是某一持仓时间内的证券收益的概率分布。 2、投资者是根据证券的期望收益率估测证券组合的风险。 3、投资者的决定仅仅是依据证券的风险和收益。 4、在一定的风险水平上,投资者期望收益最大;相对应的是在一定的收益水平上,投资者希望风险最小。 根据以上假设,马可维兹确立了证券组合预期收益、风险的计算方法和有效边界理论,建立了资产优化配置的均值-方差模型: 目标函数:minб2(rp)=∑ ∑xixjCov(ri-rj) rp= ∑ xiri 限制条件:1=∑Xi (允许卖空) 或1=∑Xi xi>≥0(不允许卖空) 其中rp为组合收益,ri为第i只股票的收益,xi、xj为证券i、j的投资比例,б2(rp)为组合投资方差(组合总风险),Cov (ri 、rj ) 为两个证券之间的协方差。该模型为现代证券投资理论奠定了基础。上式表明,在限制条件下求解Xi 证券收益率使组合风险б2(rp )最小,可通过朗格朗日目标函数求得。其经济学意义是,投资者可预先确定一个期望收益,通过上式可确定投资者在每个投资项目(如股票)上的投资比例(项目资金分配),使其总投资风险最小。不同的期望收益就有不同的最小方差组合,这就构成了最小方差集合。 [编辑] 马科维茨模型的意义

三种函数增长比较

§6 三种函数增长比较 一、教学目标: 1. 知识与技能 结合实例体会直线上升、指数爆炸、对数增长等不同增长的函数模型意义, 理解它们的增长差异性. 2. 过程与方法 能够借助信息技术, 利用函数图象及数据表格, 对几种常见增长类型的函数的增长状况进行比较, 初步体会它们的增长差异性; 收集一些社会生活中普遍使用的函数模型(指数函数、对数函数、幂函数、分段函数等), 了解函数模型的广泛应用. 3. 情感、态度、价值观 体验函数是描述宏观世界变化规律的基本数学模型,体验指数函数、对数函数等函数与现实世界的密切联系及其在刻画现实问题中的作用. 二、 教学重点、难点: 1. 教学重点 将实际问题转化为函数模型,比较常数函数、一次函数、指数函数、对数函数模型的增长差异,结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义. 2.教学难点 选择合适的数学模型分析解决实际问题. 三、 学法与教学用具: 1. 学法:学生通过阅读教材,动手画图,自主学习、思考,并相互讨论,进行探索. 2.教学用具:多媒体. 四、教学设想: (一)引入实例,创设情景. 教师引导学生阅读例1,分析其中的数量关系,思考应当选择怎样的函数模型来描述;由学生自己根据数量关系,归纳概括出相应的函数模型,写出每个方案的函数解析式,教师在数量关系的分析、函数模型的选择上作指导. (二)互动交流,探求新知. 1. 观察数据,体会模型. 教师引导学生观察例1表格中三种方案的数量变化情况,体会三种函数的增长差异,说出自己的发现,并进行交流. 2. 作出图象,描述特点. 教师引导学生借助计算器作出三个方案的函数图象,分析三种方案的不同变化趋势,并进行描述,为方案选择提供依据. (三)实例运用,巩固提高. 1. 教师引导学生分析影响方案选择的因素,使学生认识到要做出正确选择除了考虑每天的收益,还要考虑一段时间内的总收益. 学生通过自主活动,分析整理数据,并根据其中的信息做出推理判断,获得累计收益并给出本例的完整解答,然后全班进行交流. 2. 教师引导学生分析例2中三种函数的不同增长情况对于奖励模型的影响,使学生明确问题的实质就是比较三个函数的增长情况,进一步体会三种基本函数模型在实际中广泛应用,体会它们的增长差异. 3.教师引导学生分析得出:要对每一个奖励模型的奖金总额是否超出5万元,以及奖励比例是否超过25%进行分析,才能做出正确选择,学会对数据的特点与作用进行分析、判断。 4.教师引导学生利用解析式,结合图象,对例2的三个模型的增长情况进行分析比较,写出完整的解答过程. 进一步认识三个函数模型的增长差异,并掌握解答的规范要求. 5.教师引导学生通过以上具体函数进行比较分析,探究幂函数n y x =(n >0)、指数函数n y a =(a >1)、对数函数log a y x =(a >1)在区间(0,+∞)上的增长差异,并

几种不同类型的函数模型知 识点

几种不同类型的函数模型 一 函数模型及数学建模 函数模型是解决实际问题的重要数学模型,将实际问题中的变量关系用函数表现出来,然后对函数进行研究得出相关数学结论,并依此解决实际问题. 那么如何建立数学模型呢?可按以下步骤完成. (1)审题:弄清题意,分清条件和结论,理顺数量关系,初步选择模型; (2)建模:将自然语言转化为数学语言,将文字语言转化为符号语言,利用数学知识,建立相应的数学模型; (3)求模:求解数学模型,得出数学结论; (4)还原:将数学结论还原为实际问题. 建模过程示意图: 二 几种常见的函数模型 1.一次函数模型:f(x)=kx+b(k、b为常数,k≠0); 2.反比例函数模型:f(x)=+b(k、b为常数,k≠0); 3.二次函数模型:f(x)=ax2+bx+c(a、b、c为常数,a≠0); 4.指数函数模型:f(x)=ab x+c(a、b、c为常数,a≠0,b>0, b≠1); 5.对数函数模型:f(x)=mlog a x+n(m、n、a为常数,a>0, a≠1); 6.幂函数模型:f(x)=ax n+b(a、b、n为常数,a≠0,n≠1);

7.分段函数模型:这个函数模型实则是以上两种或多种模型的综合,因此应用也十分广泛. 三 指、对、幂三种函数模型增长速度的比较 正确认识“直线上升”、“指数爆炸”、“对数增长”和幂函数的增长差异. 直线上升反映了一次函数(一次项系数大于零)的增长趋势,其增长速度均匀(恒为常数);在区间(0,+∞)上,尽管函数y=a x(a>1),y=log a x(a>1)和y=x n(n>0)都是增函数,但它们的增长速度不在同一 个“档次”上. 随着x的增大,y=a x(a>1)的增长速度越来越快,会超过并远远大于y=x n(n>0)的增长速度,而y=log a x(a>1)的增长速度则会越来越慢,因此总会存在一个x0,当x>x0时,就有log a x1),y=log a x(a>1)和 y=x n(n>0)都是增函数,但它们的增长速度不同,而且不在同一个“档次”上;(2)随着x的增大,y=a x(a>1)的增长速度越来越快,会超过并远远大于y=x n(n>0)的增长速度,表现为指数爆炸;(3)随着x的增大,y=log a x(a>1)的增长速度会越来越慢;(4)随着x的增大, y=a x(a>1)的图象逐渐表现为与y轴平行一样,而y=log a x(a>1)的图象逐渐表现为与x轴平行一样;(5)当a>1,n>0时,总会存在一个x0,当x>x0时,有a x>x n>log a x;(6)当0x0时,有log a x<x n<a x 一次函数模型 例1 为了发展电信事业方便用户,电信公司对移动电话采用不同的收费方式,其中所使用的“如意卡”和“便民卡”在某市范围内每月(30天)的通话时间x(分)与通话费y1(元)、y2(元)的关系分别如图(1)、图(2)所示.

马柯维茨均值方差模型

马柯维茨均值-方差模型 在丰富的金融投资理论中,组合投资理论占有非常重要的地位,金融产品本质上各种金融工具的组合。现代投资组合理论试图解释获得最大投资收益与避免过分风险之间的基本权衡关系,也就是说投资者将不同的投资品种按一定的比例组合在一起作为投资对象,以达到在保证预定收益率的前提下把风险降到最小或者在一定风险的前提下使收益率最大。 从历史发展看,投资者很早就认识到了分散地将资金进行投资可以降低投资风险,扩大投资收益。但是第一个对此问题做出实质性分析的是美国经济学家马柯维茨(Markowitz)以及他所创立的马柯维茨的资产组合理论。1952年马柯维茨发表了《证券组合选择》,标志着证券组合理论的正式诞生。马柯维茨根据每一种证券的预期收益率、方差和所有证券间的协方差矩阵,得到证券组合的有效边界,再根据投资者的效用无差异曲线,确定最佳投资组合。马柯维茨的证券组合理论在计算投资组合的收益和方差时十分精确,但是在处理含有较多证券的组合时,计算量很大。 马柯维茨的后继者致力于简化投资组合模型。在一系列的假设条件下,威廉·夏普(William F. Sharp)等学者推导出了资本资产定价模型,并以此简化了马柯维茨的资产组合模型。由于夏普简化模型的计算量相对于马柯维茨资产组合模型大大减少,并且有效程度并没有降低,所以得到了广泛应用。 1 模型理论 经典马柯维茨均值-方差模型为: 21min max ()..1p T p n i i X X E r X R s t x σ=? ?=∑??=???=?? ∑T 其中, 12(,,...,)T n R R R R =;()i i R E r =是第i 种资产的预期收益率;12(,,...,)T n X x x x =是投资组合的权重向量; ()ij n n σ?=∑是n 种资产间的协方差矩阵;()p p R E r =和2 p σ分别 是投资组合的期望回报率和回报率的方差。 点睛:马柯维茨模型以预期收益率期望度量收益;以收益率方差度量风险。在教课书中通常以资产的历史收益率的均值作为未来期望收益率,可能会造成“追涨的效果”,在实际中这些收益率可能是由研究员给出;在计算组合风险值时协方差对结果影响较大,在教课书中通常以资产的历史收益率的协方差度量资产风险与相关性,这种计算方法存在预期误差,即未来实际协方差矩阵与历史协方差矩阵间的存在偏差。 例1.以华北制药、中国石化、上海机场三只股票,如何构使用马柯维茨模型构建投资

苏教版必修1《8.2.1 几个函数模型的比较》练习卷

苏教版必修1《8.2.1 几个函数模型的比较》练习卷 一、选择题(本大题共7小题,共35.0分) 1.已知命题p:?x∈R,ln(2x+1)≥0,则() A. p是假命题,?p:?x0∈R,ln(2x+1)≥0 B. p是假命题,?p:?x0∈R,ln(2x+1)<0 C. p是真命题,?p:?x0∈R,ln(2x+1)<0 D. p是真命题,?p:?x0∈R,ln(2x+1)>0 2.函数y=1 x?ln(x+1) 的图象大致为() A. B. C. D. 3.某地区植被被破坏后,土地沙漠化越来越严重,据测,最近三年该地区的沙漠增加面积分别为0.2 万公顷,0.4万公顷和0.76万公顷,若沙漠增加面积y万公顷是关于年数x的函数关系,则此关系用下列哪个函数模拟比较好() A. y=x 5B. y=1 10 (x2+2x) C. y=1 10 ?2x D. y=0.2+log16x 4.在某个物理实验中,测量得变量x和变量y的几组数据,如下表: 则对x,y最适合的拟合函数是() A. y=2x B. y=x2?1 C. y=2x?2 D. y=log2x

5.一根蜡烛长20cm,点燃后每小时燃烧5cm,燃烧时剩下的高度?(cm)与燃烧时间t(小时)的函 数关系用图象表示为图中的() A. B. C. D. 6.函数y=2x?x2的图象大致是() A. B. C. D. 7.某林区的森林蓄积量每年比上一年平均增长,要增长到原来的y倍,需经过x年,则函 数y=f(x)的图象大致为() A. B. C. D. 二、填空题(本大题共5小题,共25.0分) 8.函数f(x)=log2(x2?5x+4)的单调递减区间是______ . 9.函数y=x2与函数y=lnx在区间(1,+∞)上增长较快的一个是__________.

均值-方差分析方法和投资组合有效边界模型。

该理论包含两个重要内容:均值-方差分析方法和投资组合有效边界模型。在发达的证券市场中,马科维茨投资组合理论早已在实践中被证明是行之有效的,并且被广泛应用于组合选择和资产配置。但是,我国的证券理论界和实务界对于该理论是否适合于我国股票市场一直存有较大争议。从狭义的角度来说,投资组合是规定了投资比例的一揽子有价证券,当然,单只证券也可以当作特殊的投资组合。本文讨论的投资组合限于由股票和无风险资产构成的投资组合。人们进行投资,本质上是在不确定性的收益和风险中进行选择。投资组合理论用均值—方差来刻画这两个关键因素。所谓均值,是指投资组合的期望收益率,它是单只证券的期望收益率的加权平均,权重为相应的投资比例。当然,股票的收益包括分红派息和资本增值两部分。所谓方差,是指投资组合的收益率的方差。我们把收益率的标准差称为波动率,它刻画了投资组合的风险。人们在证券投资决策中应该怎样选择收益和风险的组合呢?这正是投资组合理论研究的中心问题。投资组合理论研究“理性投资者”如何选择优化投资组合。所谓理性投资者,是指这样的投资者:他们在给定期望风险水平下对期望收益进行最大化,或者在给定期望收益水平下对期望风险进行最小化。因此把上述优化投资组合在以波动率为横坐标,收益率为纵坐标的二维平面中描绘出来,形成一条曲线。这条曲线上有一个点,其波动率最低,称之为最小方差点(英文缩写是MVP)。这条曲线在最小方差点以上的部分就是著名的(马考维茨)投资组合有效边界,对应的投资组合称为有效投资组合。投资组合有

效边界一条单调递增的凹曲线。如果投资范围中不包含无风险资产(无风险资产的波动率为零),曲线AMB是一条典型的有效边界。A点对应于投资范围中收益率最高的证券。如果在投资范围中加入无风险资产,那么投资组合有效边界是曲线AMC。C点表示无风险资产,线段CM是曲线AMB的切线,M是切点。M点对应的投资组合被称为“市场组合”。如果市场允许卖空,那么AMB 是二次曲线;如果限制卖空,那么AMB是分段二次曲线。在实际应用中,限制卖空的投资组合有效边界要比允许卖空的情形复杂得多,计算量也要大得多。在波动率-收益率二维平面上,任意一个投资组合要么落在有效边界上,要么处于有效边界之下。因此,有效边界包含了全部(帕雷托)最优投资组合,理性投资者只需在有效边界上选择投资组合。 [编辑本段]现代投资理论的产生与发展 现代投资组合理论主要由投资组合理论、资本资产定价模型、APT模型、有效市场理论以及行为金融理论等部分组成。它们的发展极大地改变了过去主要依赖基本分析的传统投资管理实践,使现代投资管理日益朝着系统化、科学化、组合化的方向发展。1952年3月,美国经济学哈里·马考威茨发表了《证券组合选择》的论文,作为现代证券组合管理理论的开端。马克威茨对风险和收益进行了量化,建立的是均值方差模型,提出了确定最佳资产组合的基本模型。由于这一方法要求计算所有资产的协方差矩阵,严重制约了其在实践中的应用。1963年,威廉·夏普提出了可以对协方差矩阵加以

3.2.1几类不同增长的函数模型(二)——几种函数增长快慢的比较

3.2.1几类不同增长的函数模型(二)——几种函数增长快慢的 比较 学习目标: ①结合实例体会直线上升,指数爆炸,对数增长等不同增长的函数模型的意义. ②学会借助信息技术,利用函数图象及数据表格,比较指数函数、对数函数以及幂函数的增长差异. ③能恰当运用函数的三种表示法(解析式、图象、表格)并借助信息技术解决一些实际问题. ④通过收集一些社会生活中普遍使用的函数模型(指数函数、对数函数、幂函数、分段函数等),了解函数模型的广泛应用. 教学重点:将实际问题转化为函数模型,比较常数函数、一次函数、指数函数、对数函数 模型的增长差异,结合实例体会直线上升、指数爆炸、对数增长等不同函数类 型增长的含义. 教学难点:怎样选择数学模型分析解决实际问题 一、合作交流与知识讲授相结合,通过学习熟悉的几种常见函数增长快慢的比较,体会比较方法,掌握基本结论,从而培养应用基本方法比较函数增长快慢的能力. 观察函数4x y y ==与在 [0,+∞)上的图象,说明在不同区间内,函数增长的快慢情况. 在同一坐标中函数图象如下 师生合作观察研究函数4x y y ==与的增长快慢. ①x ∈(0,16) 时,y =的图象在4x y = 4x 可知y =增长 ②(16,)x ∈+∞ 时,y 的图在4x y = 4x 可知4x y =增长 二、幂函数、指数函数、对函数增长快慢形成比较方法. 1.实例探究:比较函数y =2x ,y = x 2,y = log 2x 的增长快慢. 方法:①作图,列表比较、验证. ②应用二分法求2x = x 2的根,即y = 2x 与y = x 2的交点横坐标为 . 观察: 2 22log x x x <<成立的x 的取值: x x 2log 22<<成立的x 的取值 : 2.规律总结 ①对于指数函数y =a x (a >1)和幂函数y =x n (n >0),在区间(0,)+∞上,无论n 比a 大多少,尽管在x 的一定变化范围内,a x 会小于x n ,但由于a x 的增长快于x n 的增长, 因此总存在一个x 0,当x >x 0时,就会有a x >x n . ②对于对数函数y =log a x (a >1)和幂函数y = x n (n >0)在区间(0,)+∞上,随着x 的增大,log a x 增长得越来越慢.在x 的一定变化范围内,log a x 可能会大于x n ,但由于log a x 的增长慢于x n 的增长,

马科维茨的均值一方差组合模型

马科维茨的均值一方差组合模型 马科维茨的均值一方差组合模型(Markowitz Mean-Variance Model,Markowitz Model 简称MM) 马科维茨的均值一方差组合模型简介 证券及其它风险资产的投资首先需要解决的是两个核心问题:即预期收益与风险。那么如何测定组合投资的风险与收益和如何平衡这两项指标进行资产分配是市场投资者迫切需要解决的问题。正是在这样的背景下,在50年代和60年代初,马可维兹理论应运而生。 马科维茨模型的假设条件 该理论依据以下几个假设: 1、投资者在考虑每一次投资选择时,其依据是某一持仓时间内的证券收益的概率分布。 2、投资者是根据证券的期望收益率估测证券组合的风险。 3、投资者的决定仅仅是依据证券的风险和收益。 4、在一定的风险水平上,投资者期望收益最大;相对应的是在一定的收益水平上,投资者希望风险最小。 根据以上假设,马可维兹确立了证券组合预期收益、风险的计算方法和有效边界理论,建立了资产优化配置的均值-方差模型: 目标函数:minб2(rp)=∑ ∑xixjCov(ri-rj) rp= ∑ xiri 限制条件:1=∑Xi (允许卖空) 或1=∑Xi xi>≥0(不允许卖空) 其中rp为组合收益,ri为第i只股票的收益,xi、xj为证券i、j的投资比例,б2(rp)为组合投资方差(组合总风险),Cov (ri、rj ) 为两个证券之间的协方差。该模型为现代证券投资理论奠定了基础。上式表明,在限制条件下求解Xi 证券收益率使组合风险б2(rp )最小,可通过朗格朗日目标函数求得。其经济学意义是,投资者可预先确定一个期望收益,通过上式可确定投资者在每个投资项目(如股票)上的投资比例(项目资金分配),使其总投资风险最小。不同的期望收益就有不同的最小方差组合,这就构成了最小方差集合。 马科维茨模型的意义

第十四章_马克维茨均值方差模型

第十四章马克维茨均值方差模型 第一节可行域和合法的证券组合 以期望收益率E P为纵坐标、以标准差σP为横坐标建立坐标系。确定了每个证券的投资比例(权数),就确定了证券组合,并可以计 算组合的E P和σP,因此,证券组合对应于E P―σP中的一个点。反过来,E P―σP中的某个点有可能对应某个证券组合。 如果选择了全部的可以选择的投资比例,那么,众多的证券组合 在E P―σP中的点将组成一个E P―σP中的区域,这就是可行域(f e a s i b l e s e t)。只有可行域中的点所对应的组合才是"有可能实现"的证券组合。 设有n种证券,记作A1,A2,…,A n,证券组合P=(x1,x2,…,x n)表示将资金分别以权数x1,x2,…,x n,投资到证券A1,A2,…,A n。假设证券A i的期望收益率为E r i则,组合P的期望收益率和方差的计算公式为:

第十四章马克维茨均值方差模型 第二节有效边界和有效组合 马克维茨假设:投资者以期望收益率衡量未来收益率,以收益率 方差来衡量收益率的风险;投资者总是希望期望收益率越高越好,而 方差越小越好。 共同偏好认为:如果两种证券组合的收益率标准差(风险)相同,期望收益率不同,选择期望收益率高的;如果两种证券组合的期望收 益率相同,风险不同,选择风险小的组合;如某证券组合比另一证券 组合的风险小,而期望收益率高,选择前一种组合。如果从图形看, 任何一个点都一定比这一点"西北方(左上方)"或"正北方"的点"坏"。 选择最优的证券组合相当于在可行域中选择一个最满意的点,在这一点上均值和方差这两个目标达到最佳的平衡。首先可以排除很多 的点,余下的是共同偏好不能区分好坏的组合,也就是有效证券组合。有效组合组成的曲线叫有效边界。 可行域的左上方边界就有效边界。可行域中的任意组合,均可以在有效边界上找到一个有效组合比它好。但是,按共同偏好规则,有 效边界上的两个不同组合,比如B和C,不能区分好坏。 有效边界一定是向外凸的,但允许是线性的。图中的粗线部分为 典型的有效边界。

马克维茨的均值方差模型

马科维茨的均值一方差组合模型 (重定向自均值方差模型) 马科维茨的均值一方差组合模型(Markowitz Mean-Variance Model,Markowitz Model简称MM) [编辑] 马科维茨的均值一方差组合模型简介 证券及其它风险资产的投资首先需要解决的是两个核心问题:即预期收益与风险。那么如何测定组合投资的风险与收益和如何平衡这两项指标进行资产分配是市场投资者迫切需要解决的问题。正是在这样的背景下,在50年代和60年代初,马可维兹理论应运而生。 [编辑] 马科维茨模型的假设条件 该理论依据以下几个假设: 1、投资者在考虑每一次投资选择时,其依据是某一持仓时间内的证券收益的概率分布。 2、投资者是根据证券的期望收益率估测证券组合的风险。 3、投资者的决定仅仅是依据证券的风险和收益。 4、在一定的风险水平上,投资者期望收益最大;相对应的是在一定的收益水平上,投资者希望风险最小。

根据以上假设,马可维兹确立了证券组合预期收益、风险的计算方法和有效边界理论,建立了资产优化配置的均值-方差模型: 目标函数:minб2(rp)=∑ ∑xixjCov(ri-rj) rp= ∑ xiri 限制条件:1=∑Xi (允许卖空) 或1=∑Xi xi>≥0(不允许卖空) 其中rp为组合收益,ri为第i只股票的收益,xi、xj为证券i、j的投资比例,б2(rp)为组合投资方差(组合总风险),Cov (ri 、rj ) 为两个证券之间的协方差。该模型为现代证券投资理论奠定了基础。上式表明,在限制条件下求解Xi 证券收益率使组合风险б2(rp )最小,可通过朗格朗日目标函数求得。其经济学意义是,投资者可预先确定一个期望收益,通过上式可确定投资者在每个投资项目(如股票)上的投资比例(项目资金分配),使其总投资风险最小。不同的期望收益就有不同的最小方差组合,这就构成了最小方差集合。 [编辑] 马科维茨模型的意义 马科维茨的投资组合理论不仅揭示了组合资产风险的决定因素,而且更为重要的是还揭示了“资产的期望收益由其自身的风险的大小来决定”这一重要结论,即资产(单个资产和组合资产)由其风险大小来定价,单个资产价格由其方差或标准差来决定,组合资产价格由其协方差来决定。马可维茨的风险定价思想在他创建的“均值-方差”或“均值-标准差”二维空间中投资机会集的有效边界上表现得最清楚。下文在“均值-标准差”二维空间中给出投资机会集的有效边界,图形如下:

几类不同增长的函数模型(1)

几类不同增长的函数模型(1) 一、教学目标 (一)知识目标: 1.借助信息技术,利用函数图象及数据表格,比较指数函数、对数函数以及幂函数的增长差异. 2.结合实例体会直线上升、指数爆炸、对数增长等几类不同增长的函数模型的意义. 3.恰当运用函数的三种表示法(解析式、表格、图象)并借助信息技术解决一些实际问题. (二)能力目标:初步培养学生应用数学知识解决实际问题的意识与能力。(三)情感目标:培养学生数学应用意识以及比较分析的数学思想,激发学生的学习热情. 二、教学重难点 (一)重点:将实际问题转化为函数模型,比较常数函数、一次函数、指数函数、对数函数模型的增长差异,结合实例体会直线上升、指数爆炸、对数增长等不同类型的函数增长的含义. (二)难点:怎样选择数学模型分析解决实际问题. 三、活动设计 1.自主学习,从实际问题出发能构建出相应的数学模型. 2.探究与活动,在教师的指引下通过列表、描点,画出相应函数模型的图形,并能比较发现它们的增长趋势. 四、教学过程 一、创设情景,引入新课 我们知道,函数是描述客观世界变化规律的基本数学模型,不同的变化规律需要用不同的函数模型来描述,能否举出一些函数模型的具体例子? 指数函数、对数函数、幂函数等等. 当我们面临一个实际问题时,应如何选择恰当的函数模型来刻画它呢?如果我们能够找出相应的数学模型,又是如何去研究它的性质呢?本节课先通过具体实例来比较几类不同增长的函数模型的增长趋势.(板书几类不同增长的函数模型)二、讲解新课 例题剖析 【例1】假设你有一笔资金用于投资,现有三种投资方案供你选择,这三种方案的回报如下: 方案一:每天回报40元; 方案二:第一天回报10元,以后每天比前一天多回报10元; 方案三:第一天回报0.4元,以后每天的回报比前一天翻一番. 请问,你会选择哪种投资方案?

《几类不同增长的函数模型》教案

《几类不同增长的函数模型》教案 教学目标 使学生通过投资回报实例,对直线上升和指数爆炸有感性认识. 通过阅读理解题目中文字叙述所反映的实际背景,领悟其中的数学本质,弄清题中出现的量及起数学含义. 体验由具体到抽象及数形结合的思维方法. 教学重难点 重点:将实际问题转化为函数模型,比教常数函数、一次函数、指数函数模型的增长差异;结合实例让学生体会直线上升,指数爆炸等不同函数型增长的函义. 难点:怎样选择数学模型分析解决实际问题. 教学过程 背景:(1)圆的周长随着圆的半径的增大而增大: L=2πR (一次函数) (2)圆的面积随着圆的半径的增大而增大: S=πR2(二次函数) (3)某种细胞分裂时,由1个分裂成两个,两个分裂成4个……,一个这样的细 胞分裂x次后,得到的细胞个数y与x的函数关系是y = 2x(指数型函数) . 2、例题 例1、假设你有一笔资金用于投资,现有三种投资方案供你选择,这三种方案的回报如下:方案一:每天回报40元; 方案二:第一天回报10元,以后每天比前一天多回报10元; 方案三:第一天回报0.4元,以后每天的回报比前一天翻一番. 请问,你会选择哪种投资方案呢? 投资方案选择原则: 投入资金相同,回报量多者为优 (1)比较三种方案每天回报量 (2) 比较三种方案一段时间内的总回报量 哪个方案在某段时间内的总回报量最多,我们就在那段时间选择该方案. x/天方案一方案二方案三 y/ 元 增长量/ 元 y/ 元 增长量/ 元 y/元增长量/元 1 40 0 10 0.4

2 40 0 20 10 0.8 0.4 3 40 0 30 10 1.6 0.8 4 40 0 40 10 3.2 1.6 5 40 0 50 10 6.4 3.2 6 40 0 60 10 12.8 6.4 7 40 0 70 10 25.6 12. 8 8 40 0 80 10 51.2 25.6 9 40 0 90 10 102.4 51.2 … … … … … … … 30 40 300 10 214748364.8 107374182.4 根据上表我们可以先建立三种投资方案所对应的函数模型,再通过比较它们的增长情况,为选择投资方案提供依据. 解:设第x 天所得回报为y 元,则 方案一:每天回报40元; y=40 (x ∈N*) 方案二:第一天回报10元,以后每天比前一天多回 报10元; y=10x (x ∈N*) 方案三:第一天回报0.4元,以后每天的回报比前一天翻一番. Y=0.4×2x-1(x * N ) 图112-1

高考中常用函数模型归纳及应用

高考中常用函数模型.... 归纳及应用 一. 常数函数y=a 判断函数奇偶性最常用的模型,a=0时,既是奇函数,又是偶函数,a ≠0时只是偶函数。关于方程解的个数问题时常用。 例1.已知x ∈(0, π],关于方程2sin(x+ 3 π )=a 有两个不同的实数解,则实数a 的取植范围是( )A .[-2,2] B.[ 3,2] C.( 3,2] D.( 3,2) 解析;令y=2sin(x+3π ), y=a 画出函数y=2sin(x+3 π ),y=a 图象如图所示,若方程有两个不同的解,则两个函数图象有两个不同的交点, 由图象知( 3,2),选D 二. 一次函数y=kx+b (k ≠0) 函数图象是一条直线,易画易分析性质变化。常用于数形结合解决问题,及利用“变元”或“换元”化归 为一次函数问题。有定义域限制时,要考虑区间的端点值。 例2.不等式2x 2 +1≤m(x-1)对一切│m │≤2恒成立,则x 的范围是( ) A .-2≤x ≤2 B. 4 31- ≤x ≤0 C.0≤x ≤ 4 71+ D. 4 71-≤x ≤ 4 1 3- 解析:不等式可化为m(x-1)- 2x 2+1≥0 设f(m)= m(x-1)- 2x 2 +1 若x=1, f(m)=-3<0 (舍) 则x ≠1则f(m)是关于m 的一次函数,要使不等式在│m │≤2条件下恒成立,只需? ? ?≥-≥0)2(0 )2(f f ,解之可得答案D 三. 二次函数y=ax 2 +bx+c (a ≠0) 二次函数是应用最广泛的的函数,是连接一元二次不等式和一元二次方程的纽带。很多问题都可以化归和转化成二次函数问题。比如有关三次函数的最值问题,因其导数是二次函数,最后的落脚点仍是二次函数问题。 例3.(1).若关于x 的方程x 2 +ax+a 2 -1=0有一个正根和一个负根,则a 的取值范围是( ) 解析:令f(x)= x 2 +ax+a 2 -1由题意得f(0)= a 2 -1 <0,即-1<a <1即可。 一元二次方程的根分布问题可借助二次函数图象解决,通常考虑二次函数的开口方向,判别式对称轴与根的位置关系,端点函数值四个方面。也可借助韦达定理。

均值-方差模型优化

均值-方差模型优化 目录 1.均值-方差模型原理 (1) 2.均值方差模型改进方向 (5) 2.1分层筛选 (5) 2.2控制最大回撤 (5) 2.3控制VaR (6) 3.实验结果比较 (6) 3.1控制回撤和VaR (6) 3.1.1实验1 (6) 3.1.2实验二 (7) 3.2基于指标等权进行配置 (8) 3.3加牛熊市分解线 (8) 3.3.1实验一 (8) 3.3.2 (9) 4.结果与讨论 (10) 本研究基于最大回撤和VaR在险价值对马科维茨进行优化,并讨论了基于牛市后期更精准的风险控制策略。 研究结果表明,最大回撤和VaR的使用,可以确保投资者在面临风险的过程中,相对于原始马科维茨,获得更加的收益。本研究应对存在高风险资产的情况时,效果更加。 1.均值-方差模型原理 美国经济学家马柯维茨于1952年3月在《金融杂志》上发表了一篇题为《证券组合选择》的论文,并于1959年出版了同名专著,详细论述了证券收益和风险的主要原理和分析方法,建立了均值-方差证券组合模型的基本框架。马柯维茨的投资组合理论认为,投资者是风险回避的,他们的投资愿望是追求高的预期收益,他们不愿承担没有相应的预期收益加以补偿的额外风险。马柯维茨根据风险分散原理,应用二维规划的数学方法,揭示了如何建立投资组合的有效边界,使边界上的每一个组合在给定的风险水平下获得最大的收益,或者在收益一定的情况下风险最小。同时马柯维茨认为,投资组合的风险不仅与构成组合的各种证券的个别风险有关,而且受各证券之间的相互关系的影响。 (一)马柯维茨理论是建立在下面几个前提假设上的: 1、呈现在投资者面前的每一项投资是在一段时期上的预期收益的概率分布,即投资者用预期收益的概率分布来描述一项投资; 2、投资者为理性的个体,服从不满足和风险厌恶假设,投资者的目标是单

几种不同类型的函数模型题型及解析

几种不同类型的函数模型题型及解析 1.在定义域(0,+∞)内随着x的增大,增长速度最快的是()A.y=100 B.y=10x C.y=lgx D.y=e x 分析:本题考察对数函数、指数函数与幂函数的增长差异,直接根据常数函数、正比例函数、指数函数、对数函数的增长差异,得出结论 解:由于函数y=100是常数函数,函数y=2x是正比咧函数,函数y=e x是指数函数,函数y=lgx是对数函数, 由于指数函数的增长速度最快,所以选D 2.在区间(3,+∞)上,随着x的增大,增长速度最快的函数()A y=x2 B y=2x C y=2x D y=log2x 分析:本题考察对数函数、指数函数与幂函数的增长差异,在同一坐标系画出四个函数的图象,比较图象上升的平缓程度,可得答案. 解:在区间(3,+∞)上,①y=x2,②y=2x,③y=2x,④y=log2x的 图象如右图所示,由图可知y=2x的函数值随着x的增大增长速度最 快,所以选B 3.当x越来越大时,下列函数中,增长速度最快的应该是() A.y=100x B.y=log100x C.y=x100D.y=100x 分析:由于指数函数的增长是爆炸式增长,则当x越来越大时,底 数大于1的指数函数增长最快. 解:由于指数函数的增长是爆炸式增长,则当x越来越大时,函数 y=100x增长速度最快.所以选D 4.某地区植被被破坏,土地沙化越来越严重,最近三年测得沙漠增加值分别为0.2万公顷、0.4万公顷和0.76万公顷,则沙漠增加数y(万公顷)关于年数x的函数关系较为近似的是() A.y=0.2x B.C.D.y=0.2+log16x 分析:利用所给函数,分别令x=1,2,3,计算相应的函数值,即可求得结论. 解:对于A,x=1,2时,符合题意,x=3时,y=0.6,与0.76相差0.16;对于B,x=1时,y=0.3;x=2时,y=0.8;x=3时,y=1.5,相差较大,不符合题意;对于C,x=1,2时,符合题意,x=3时,y=0.8,与0.76相差0.04,与A比较,符合题意;对于D,x=1时,y=0.2;x=2时,y=0.45;x=3时,y<0.7,相差较大,不符合题意;故选C 5.假设你有一笔资金用于投资,现在有三种投资方案供你选择,这三种方案的回报如下:方案一:每天回报40元;方案二:第一天回报10元,以后每天比前一天多回报10元;方案三:第一天回报0.4元,以后每天的回报比前一天翻一番.请问,你会选择哪种投资方案? 解:设第x天所得回报是y元,则方案一可以用函数y=40(x∈N*)进行描述;方案二可以用函数y=10x (x∈N*)进行描述;方案三可以用函数y=0.4×2x-1(x∈N*)进行描述. 三个函数,第一个是常数函数,后两个都是递增函数模型.要对三个方案作出选择,就要对它们的增长情况进行分析.作出三个函数的图象如图所示.由图可以看出,从每天回报看,在第一天到第三天,方案一最多,在第四

几种不同类型的函数模型知识点

几种不同类型的函数模型 一 函数模型及数学建模 函数模型是解决实际问题的重要数学模型,将实际问题中的变量关系用函数表现出来,然后对函数进行研究得出相关数学结论,并依此解决实际问题. 那么如何建立数学模型呢?可按以下步骤完成. (1)审题:弄清题意,分清条件和结论,理顺数量关系,初步选择模型; (2)建模:将自然语言转化为数学语言,将文字语言转化为符号语言,利用数学知识,建立相应的数学模型; (3)求模:求解数学模型,得出数学结论; (4)还原:将数学结论还原为实际问题. 建模过程示意图: 二 几种常见的函数模型 1.一次函数模型:f(x)=kx +b(k 、b 为常数,k ≠0); 2.反比例函数模型:f(x)=k x +b(k 、b 为常数,k ≠0); 3.二次函数模型:f(x)=ax 2+bx +c(a 、b 、c 为常数,a ≠0); 4.指数函数模型:f(x)=ab x +c(a 、b 、c 为常数,a ≠0,b>0,b ≠1); 5.对数函数模型:f(x)=mlog a x +n(m 、n 、a 为常数,a>0,a ≠1); 6.幂函数模型:f(x)=ax n +b(a 、b 、n 为常数,a ≠0,n ≠1); 7.分段函数模型:这个函数模型实则是以上两种或多种模型的综合,因此应用也十分广泛. 三 指、对、幂三种函数模型增长速度的比较 正确认识“直线上升”、“指数爆炸”、“对数增长”和幂函数的增长差异. 直线上升反映了一次函数(一次项系数大于零)的增长趋势,其增长速度均匀(恒为常数);在区间(0,+∞) 上,尽管函数y =a x (a>1),y =log a x(a>1)和y =x n (n>0)都是增函数,但它们的增长速度不在同一个“档次”上. 随着x 的增大,y =a x (a>1)的增长速度越来越快,会超过并远远大于y =x n (n>0)的增长速度,而y =log a x(a>1) 的增长速度则会越来越慢,因此总会存在一个x 0,当x>x 0时,就有log a x1),y=log a x(a>1)和y=x n (n>0)都是增函数,但它们的增长速度不 同,而且不在同一个“档次”上;(2)随着x 的增大,y=a x (a>1)的增长速度越来越快,会超过并远远大于y=x n (n>0) 的增长速度,表现为指数爆炸;(3)随着x 的增大,y=log a x(a>1)的增长速度会越来越慢;(4)随着x 的增大,y=a x (a>1)的图象逐渐表现为与y 轴平行一样,而y=log a x(a>1)的图象逐渐表现为与x 轴平行一样;(5)当a>1,n>0 时,总会存在一个x 0,当x>x 0时,有a x >x n >log a x ;(6)当0x 0时,有log a x <x n <a x 一次函数模型 例1 为了发展电信事业方便用户,电信公司对移动电话采用不同的收费方式,其中所使用的“如意卡”和“便民卡”在某市范围内每月(30天)的通话时间x(分)与通话费y 1(元)、y 2(元)的关系分别如图(1)、图(2)所示. 图(1) 图(2) (1)分别求出通话费y 1,y 2与通话时间x 之间的函数关系式; (2)请帮助用户计算,在一个月(30天)内使用哪种卡便宜. 思路点拨:由题目可知函数模型为直线型,可先用待定系数法求出解析式,然后再进行函数值大小的比较.

8.2.1+几个函数模型的比较+教学设计-苏教版高中数学必修第一册(wd无答案)

8.2.1+几个函数模型的比较+教学设计-苏教版高中数学必修第一册 一、单选题 (★) 1. 下列函数中,随 x的增大,增长速度最快的是() A.B. C.D. (★) 2. 函数 y=2 x- x 2的大致图象为() A.B.C.D. (★★) 3. 高为、满缸水量为的鱼缸的轴截面如图所示,现底部有一个小洞,满缸水从洞中流出,若鱼缸水深为时水的体积为,则函数的大致图像是() A.B. C.D. (★★) 4. 某大型超市为了满足顾客对商品的购物需求,对超市的商品种类做了一定的调整,结果调整初期利润增长迅速,随着时间的推移,增长速度越来越慢,如果建立恰当的函数模型来反映该超市调整后利润 y与售出商品的数量 x的关系,则可选用() A.一次函数B.二次函数 C.指数型函数D.对数型函数

(★★) 5. 四人赛跑,假设他们跑过的路程 f i( x)(其中i∈{1,2,3,4})和时间 x( x>1)的函数关系分别是 f 1( x)= x 2, f 2( x)=4 x, f 3( x)=log 2 x, f 4( x)=2 x,如果他们一直跑下去,最终跑在最前面的人具有的函数关系是( ) A.f1(x)=x2B.f2(x)=4x C.f3(x)=log2x D.f4(x)=2x 二、解答题 (★★) 6. 某公司拟投资100万元,有两种投资方案可供选择:一种是年利率为10%,按单利计算,5年后收回本金和利息;另一种是年利率为9%,按每年复利一次计算,5年后收回本金和利息.哪一种投资更有利?这种投资比另一种投资5年可多得利息多少元?(结果精确到0.01万元) (★★★) 7. 一家庭(父亲、母亲和孩子们)去某地旅游,甲旅行社说:“如果父亲买全票一张,其余人可享受半票优惠.”乙旅行社说:“家庭旅行为集体票,按原价优惠.”这两家旅行社的原价 是一样的.试就家庭里不同的孩子数,分别建立表达式,计算两家旅行社的收费,并讨论哪家旅行社更优惠.

风险评估技术-均值—方差模型

均值—方差模型 1 概述 均值—方差模型(Mean-Variance Model)是组合投资理论研究和实际应用的基础。证券及其它风险资产的投资者们面对着两个核心问题:即预期收益与风险,他们期望尽可能高的收益率和尽可能低的不确定性风险。如何测定组合投资的风险与收益并平衡这两项指标进行资产分配,是市场投资者迫切需要解决的问题。均值—方差模型即可用于这一场合。从所有可能的证券组合中选择一个最优的组合,使收益和风险这两个相互制约的目标达到最佳平衡。对于给定的收益水平,利用该模型可以求出方差意义下最小风险的组合。 均值—方差模型揭示了“资产的期望收益由其自身的风险的大小来决定”这一重要结论,即资产(单个资产和组合资产)由其风险大小来定价,单个资产价格由其方差或标准差来决定,组合资产价格由其协方差来决定。 2 用途 该方法常用于实际的证券投资和资产组合决策。 3 输入 预期收益率及各项目的风险概率信息。 4 过程 均值-方差模型如下所示。 目标函数:Min б2(Rp)=∑∑X i X j Cov(R i ,R j ) 其中Rp= ∑ X i R i 限制条件: 1=∑Xi (允许卖空) 或 1=∑X i X j >≥0(不允许卖空) 其中Rp为组合收益,R i 为第i只股票的收益,X i 、X j 为证券 i、j的投资比 例,б2(Rp)为组合投资方差(组合总风险),Cov (ri,rj ) 为两个证券之间的协方差。

上式表明,在限制条件下如何使组合风险б2(rp )最小,可通过朗格朗日目标函数求得。其经济学意义是,投资者可预先确定一个期望收益,通过上式可确定投资者在每个投资项目(如股票)上的投资比例(项目资金分配),使其总投资风险最小。不同的期望收益就有不同的最小方差组合,这就构成了最小方差集合。 5 输出 在给定收益率下的最小风险组合或预定风险下的最大收益组合。 6 优点及局限 均值—方差模型通过数理方法描绘出了资产组合选择的最基本、最完整的框架,具有开创性,是目前投资理论和投资实践的主流方法。 但该模型的局限在于没有考虑到收益的非正态分布,而多数实证研究表明证券收益率不一定服从正态分布;另一方面该方法计算复杂,特别是运用于多个项目的投资组合问题时,这种计算量更为庞大。

相关主题
文本预览
相关文档 最新文档