当前位置:文档之家› 不等式有解和恒成立问题

不等式有解和恒成立问题

不等式有解和恒成立问题
不等式有解和恒成立问题

不等式有解和恒成立问题

知识点的罗列,文字不宜太多,简洁明了最好)

知识点一:不等式恒成立问题

知识点二:不等式有解问题

分析该知识点在中高考中的体现,包含但不仅限于:考察分值、考察题型(单选、填空、解答题)、考察方式:考场难度、和哪些知识点在一起考察,参考中高考真题)

含参不等式的恒成立与有解问题是高考与会考考察不等式的一个重点内容,也是常考的内容,难度中等偏上,考察综合性较强,该知识点在填空选择解答题里都有涉及,经常和函数的最值问题在一起考察,需要同学对典型函数的值域求法有熟悉的掌握。

注意题目的答案,不要展示给学生看,这里答案和解析是帮助老师自己分析的)

一、不等式有解问题

例题:当m 为何值时,2211223

x mx x x +-<-+对任意的x ∈R 都成立? 解法1:二次函数法:

移项、通分得:

22(2)40223

x m x x x -++>-+ 又22230x x -+>恒成立,故知:2(2)40x

m x -++>恒成立。 所以:2(2)160m ?=+-<,得到62m -<<

解法2:分离参数法:

注意到2(2)40x m x -++>恒成立,从而有:224mx x x <-+恒成立,那么:

0044min 24222,062442,0max 2426x x m x m x x x x m m x x m x x x >????????-<+-<>+---=-????????

注意到,在上式中我们用到了这样一个性质:

()()

()()max ()min ()x A x A m f x m f x x A m f x m f x ∈∈><∈??><对于任意成立R

总结:解决恒成立问题的方法:二次函数法和分离参数法

变式练习:(初三或者高三学生必须选取学生错题或者学生所在地区的中高考真题或者当地的统考题目)

【试题来源】(上海2016杨浦二模卷)

【题目】设函数x x g 3)(=,x x h 9)(=,若b

x g a x g x f +++=)()1()(是实数集上的奇函数,且0))(2()1)((>?-+-x g k f x h f 对任意实数x 恒成立,求实数k 的取值范围.

【答案】:因为b x g a x g x f +++=

)()1()(是实数集上的奇函数,所以1,3=-=b a . )1

321(3)(+-=x x f ,)(x f 在实数集上单调递增. 由0))(2()1)((>?-+-x g k f x h f 得))(2()1)((x g k f x h f ?-->-,又因为)(x f 是实数集上的奇函数,所以,)2)(()1)((-?>-x g k f x h f ,

又因为)(x f 在实数集上单调递增,所以2)(1)(-?>-x g k x h

即23132-?>-x x k 对任意的R x ∈都成立, 即x

x k 313+

<对任意的R x ∈都成立,2

R

二、不等式有解问题

例题:已知函数)(x f 在定义域(]1,∞-上是递减函数,是否存在实数k 使

)sin ()sin (22x k f x k f -≥-对R x ∈恒成立?并说明理由。

【答案】:由)(x f 递减以及)sin ()sin (22x k f x k f -≥-可知:

22sin sin k x k x -≤-对于R x ∈恒成立,也即:22sin sin x x k k -≤-对于R x ∈恒成立。

再考虑到函数)(x f 的定义域,我们容易知道:

2222sin sin 1sin 1sin k k x x k x k x ?-≥-?≤+??≤+?

对于R x ∈恒成立,而: ()()()22max min 22min sin sin 21sin 011sin 1k k x x k x k k x ?-≥-=??≤+=?=-??≤+=??

变式练习:

【试题来源】(上海2015年闸北一模)

【题目】存在实数a 使不等式12x a -+≤ 在[1,2]- 成立,则a 的范围为

【解析】有解问题,()1(1)1max 224x a -+--+≤==

课堂总结:

解决不等式有解和恒成立问题的方法

? 二次函数法。在之前的讲义中,我们在二次函数那一节已经适当讨论了一些一元二次不等式的恒

成立(有解)问题。事实上,在高考中,很多不等式可以通解变形为一元二次不等式。因此利用二次函数来求解不等式的恒成立(有解)问题是一个非常有用的方法。

? 分离参数法。所谓分离参数法就是将不等式同解变形为()a f x >或者()a f x <的形式,然后再利

用以下命题进行求解。

m min ax ()()(())a f x a x a f x f >?>>恒成立(有解);

m max in ()()(())a f x a x a f x f

1、若不等式1log (10)0x a a --<有解,则实数a 的范围是____ .

2、函数()f x )对一切实数,x y 均有()()(21)f x y f y x y x +-=++成立,且(1)0f = .

(1)求(0)f 的值;

(2)求()2log ,10,2a f x x x +

恒成立时,求a 的取值范围.

3、若不等式

对一切x 恒成立,求实数m 的范围。

4、已知2(1)()(0)2x p x p f x p x p

+++=>+ (1)若1p >时,解关于x 的不等式()0f x ≥;

(2)若()2f x >对24x ≤≤时恒成立,求p 的范围.

5、已知210,0,1x y x y

>>+= ,若222x y m m +>+恒成立,则实数m 的取值范围

不等式恒成立问题

不等式恒成立问题 一、 教学目标 1、 知识目标;掌握不等式恒成立问题求参数的范围的求解方法并会运用 2、 能力目标;培养学生分析问题解决问题的能力 3、 情感目标;优化学生的思维品质 二、 教学重难点 1、教学的重点;不等式恒成立问题求参数的范围的求解方法并会运用 2、教学的难点;不等式恒成立问题求参数的范围的求解方法的选择 三、 教学方法:高三复习探究课:学生研讨探究----学生归纳小结-----学生巩 固练习----学生变式探究---学生总结 四、 教学过程 1、 引人 高三数学复习中的不等式恒成立问题,涉及到函数的性质、图象, 渗透着换元、化归、数形结合、函数方程等思想方法,有利于考查学生的综合解题能力,因此备受命题者的青睐,也成为历年高考的一个热点。我们今天这堂课来研究不等式恒成立求参数的取值范围问题的求解方法。引入课题 2、新课 下面我们来看例1例1、对一切实数x ]1,1[-∈,不等式 a x a x 24)4(2-+-+>0恒成立,求实数a 的取值范围(由学生完成) 由一个基本题得到不等式恒成立问题求参数的范围的求解方法 解法一;分离参数 由原不等式可得:a(x-2) > -x 2+4x-4 , 又因为x ∈[-1,1] ,x-2∈[-3,-1] a<2-x 又因为x ∈[-1,1],所以 a<1. 解法二;分类讨论、解不等式

(x-2)[x-(2-a)]>0 当a=0时不等式恒成立 当a<0 时x>2-a 或x<2 不等式恒成立 当a>0时x>2 或x<2-a 所以2-a>1 即a<1 所以a<1时不等式恒成立 解法三;构造函数求最值 设f(x)=x2+(a-4)x+4-2a 当(4-a)/2∈[-1,1],即a∈[2,6]时 -a2<0 不成立,舍弃; 当a>6时,f(-1)=1-a+4+4-2a>0 a<3 不成立,舍弃; 当a<2时,f(1)=1+a-4+4-2a=1-a>0 a<1 综上得:a<1 解法四;构造方程用判别式韦达定理根的分布 设x2+(a-4)x+4-2a=0 方程无实根或有两实根两根小于-1或两根大于1 △=(a-4)2-4(4-2a)=a2≥0 所以1-(a-4)+4-2a>0且(4-a)/2<-1 或1+(a-4)+4-2a>0 且(4-a)/2>16且a<3 或a<1且a<2, 所以a<1 解法五;数形结合(用动画来演示 a(x-2)>-x2+4x-4 设y=a(x-2) 和y=-x2+4x-4 分别作两函数的图象

关于不等式恒成立问题的几种求解方法

关于不等式恒成立问题的几种求解方法 不等式恒成立问题,在高中数学中较为常见。这类问题的解决涉及到一次函数、二次函数、三角函数、指数与对数函数等函数的性质、图象,渗透着换元、化归、数形结合、函数与方程等思想方法,有利于考查学生的综合解题能力,在培养思维的灵活性、创造性等方面起到了积极的作用。 不等式恒成立问题在解题过程中有以下几种求解方法:①一次函数型;②二次函数型;③变量分离型;④数形结合型。 下面我们一起来探讨其中一些典型的问题 一、一次函数型——利用单调性求解 例1、若不等式对满足的所有实数m都成立,求x的取值范围。 若对该不等式移项变形,转化为含参数m的关于x的一元二次不等式,再根据对称轴和区间位置关系求对应的二次函数的最小值,利用最小值大于零求解。这样得分好几种情况讨论,这思路应该说从理论上是可行的,不过运算量不小。能不能找出不需要讨论的方法解决此问题呢?若将不等式右边移到左边,然后将新得到的不等式左边看做关于m的一次函数,借助一次函数的图像直线(其实是线段)在m轴上方只需要线段的两个端点在上方即可。 分析:在不等式中出现了两个字母:x及m,关键在于该把哪个字母看成是一个变量,另一个作为常数。显然可将m视作自变量,则上述问题即可转化为在[-2,2]内关于m的一次函数大于0恒成立的问题。 解:原不等式转化为(1-x2)m+2x-1>0在|m|2时恒成立, 设f(m)= (1-x2)m+2x-1,则f(m)在[-2,2]上恒大于0,故有: 此类题本质上是利用了一次函数在区间[a,b]上的图象是一线段,故只需保证该线段两端点均在m轴上方(或下方)即可。 给定一次函数y=f(x)=ax+b(a≠0),若y=f(x)在[m,n]内恒有f(x)>0,则根据函数的图象(线段)(如下图)可得上述结论等价于 ⅰ),或ⅱ) 可合并成 同理,若在[m,n]内恒有f(x)0恒成立;f(x)3;

含参数的一元二次不等式的解法以及含参不等式恒成立问题(专题复习)

含参数的一元二次不等式的解法 解含参数的一元二次不等式,通常情况下,均需分类讨论,那么如何讨论呢?对含参一元 二次不等式常用的分类方法有三种: 一、按 x 2项的系数 a 的符号分类,即 a 0,a 0,a 0; 例 1 解不等式: ax 2 a 2 x 1 0 分析: 本题二次项系数含有参数, a 2 2 4a a 2 4 0 ,故只需对二次项 系数进行分类讨论。 2 解 :∵ a 2 2 4a a 2 4 0 a 2 a 2 4 a 2 a 2 4 ∴当 a 0时,解集为 x|x a 2 a 4 或x a 2 a 4 2a 2a 当 a 0 时,不等式为 2x 1 0, 解集为 x| x 1 例 2 解不等式 ax 2 5ax 6a 0a 0 分析 因为 a 0, 0 ,所以我们只要讨论二次项系数的正负。 解 a(x 2 5x 6) a x 2 x 3 0 当 a 0时,解集为 x|x 2或x 3 ;当 a 0时,解集为 x|2 x 3 、按判别式 的符号分类,即 0, 0, 0 ; 例 3 解不等式 x 2 ax 4 0 分析 本题中由于 x 2 的系数大于 0, 故只需考虑 与根的情况。 解: ∵ a 2 16 ∴当 a 4,4 即 0 时,解集为 R ; 解得方程 2 ax 2 a 2 x 1 0 两根 x 1 a 2 a 2 4 2a , x 2 a 2 a 2 4 2a 当 a 0时 , 解集为 x| a 2 a 2 4 2a x a 2 a 2 4 2a

当 a 4即Δ=0时,解集为 x x R 且x a ; 当 a 4 或 a 4 即 0, 此时两根分别为 x 1 a a 16 , x 2 2 x 1 x 2 , a a 2 16 a a 2 16 x 或 x 〈 22 例 4 解不等式 m 2 1 x 2 4x 1 0 m R 2 2 2 2 解 因 m 2 1 0, ( 4)2 4 m 2 1 4 3 m 2 当 m 3或 m 3 ,即 0 时,解集为 R 。 2 三、按方程 ax bx c 0 的根 x 1 , x 2的大小来分类,即 x 1 x 2,x 1 x 2 ,x 1 x 2; 1 例 5 解不等式 x 2 (a )x 1 0 (a 0) a 1 分析: 此不等式可以分解为: x a (x ) 0 ,故对应的方程必有两解。本题 a 只需讨论两根的大小即可。 11 解: 原不等式可化为: x a (x ) 0 ,令 a ,可得: a 1 aa 11 ∴当 a 1或 0 a 1时, a ,故原不等式的解集为 x |a x ; a 1 当 a 1 或 a 1 时, a , 可得其解集为 ; a 11 当 1 a 0或a 1时, a ,解集为 x| x a a 例 6 解不等式 x 2 5ax 6a 2 0 , a 0 分析 此不等式 5a 2 24a 2 a 2 0 ,又不等式可分解为 x 2a (x 3a) 0 ,故 所以当 m 3 ,即 0 时,解集为 x| x 1 2 当 3 m 3 ,即 0 时,解集为 2 3 m 2 x 或 x m 2 1 2 m 2 1 3 m 2 ; ; a a 2 16 a a 16 ,显然 ∴不等式的解集为

不等式恒成立问题的基本类型及常用解法 - 副本

不等式恒成立问题基本类型及常用解法 类型1:设f(x)=ax+b f(x) >0在x ∈[]n m ,上恒成立? ???0 )(0)( n f m f f(x) <0在x ∈[]n m ,上恒成立??? ?0)(0)( n f m f . 例1. 设y=(log 2x)2+(t-2)log 2x-t+1,若t 在[-2,2]上变化,y 恒取正值,求实数x 的取值范围。 例2. 对于 -1≤a ≤1,求使不等式(21)ax x +2<(2 1)12-+a x 恒成立的x 的取值范围。 类型2:设f(x)=ax 2+bx+c (a ≠0) f(x) >0在x ∈R 上恒成立?a >0 且△<0; f(x) <0在x ∈R 上恒成立?a <0 且△<0. 说明:①.只适用于一元二次不等式 ②.若未指明二次项系数不等于0,注意分类讨论. 例3.不等式3 642222++++x x m mx x <1对一切实数x 恒成立,求实数m 的取值范围。

类型3:设f(x)=ax 2+bx+c (a ≠0) (1) 当a >0时 ① f(x) >0在x ∈[]n m ,上恒成立 ??????≤-0)(2 m f m a b 或??????-o n a b m 2或?????≥-0)(2 n f n a b ??????≤-0)(2 m f m a b 或△<0或?????≥-0 )(2 n f n a b . ② f(x) <0在x ∈[]n m ,上恒成立?? ??0)(0)( n f m f . (2) 当a <0时 ① f(x) >0在x ∈[]n m ,上恒成立? ? ? ?0)(0)( n f m f ② f(x) <0在x ∈[]n m ,上恒成立 ??????≤-0)(2 m f m a b 或??????-o n a b m 2或?????≥-0)(2 n f n a b ??????≤-0)(2 m f m a b 或△<0或?????≥-0 )(2 n f n a b . 说明:只适用于一元二次不等式. 类型4:a >f(x) 恒成立对x ∈D 恒成立?a >f(x)m ax , a <f(x)对x ∈D 恒成立? a <f(x)m in . 说明:①. f(x) 可以是任意函数 ②.这种思路是:首先是---分离变量,其次用---极端值原理。把问题转化为求函数的最值,若f(x)不存 在最值,可求出f(x)的范围,问题同样可以解出。 例4.(2000.上海)已知f(x)=x a x x ++22 >0在x ∈[)+∞,1上恒成立,求实数a 的取值范围。

不等式恒成立或有解问题的解决策略

不等式恒成立或有解问题的解决策略 恒成立与有解问题的解决策略大致分四类: ①构造函数,分类讨论; ②部分分离,化为切线; ③完全分离,函数最值; ④换元分离,简化运算; 在求解过程中,力求“脑中有‘形’,心中有‘数’”.依托端点效应,缩小范围,借助数形结合,寻找临界. 一般地,不等式恒成立、方程或不等式有解问题设计独特,试题形式多样、变化众多,涉及到函数、不等式、方程、导数、数列等知识,渗透着函数与方程、等价转换、分类讨论、换元等思想方法,有一定的综合性,属于能力题,在提升学生思维的灵活性、创造性等数学素养起到了积极的作用,成为高考的一个热点. 【考点突破】 【典例1】(2018届石家庄高中毕业班教学质量检测)已知函数()()()121x f x axe a x =-+-. (1)若1a =,求函数()f x 的图象在点()0,(0)f 处的切线方程; (2)当0x >时,函数()0f x ≥恒成立,求实数a 的取值范围. 【解析】(Ⅰ)若1a =,则)12(2)(--=x xe x f x ,4)('-+=x x e xe x f 当0=x 时,2)(=x f ,3)('-=x f , ………﹝导数的几何意义的应用﹞ 所以所求切线方程为23+-=x y 。 (Ⅱ)思路一:()()()121x f x axe a x =-+-,)1(2)1()('+-+=a e x a x f x , 由条件可得,首先0)1(≥f ,得01 1 >-≥ e a , 令()'()(1)2(1)x h x f x a x e a ==+-+,则 '()(2)0x h x a x e =+>恒为正数,所以()'()h x f x =单调递增,………﹝高阶导数的灵活应用﹞ 而02)0('<--=a f ,0222)1('≥--=a ea f ,所以)('x f 存在唯一根0(0,1]x ∈,使得函数)(x f 在),0(0x 上单调递减,在)(0∞+x 上单调递增, ………﹝极值点不可求,虚拟设根﹞

函数不等式恒成立问题经典总结

函数、不等式恒成立问题解法(老师用) 恒成立问题的基本类型: 类型1:设)0()(2 ≠++=a c bx ax x f ,(对于任意实数R 上恒成立) (1)R x x f ∈>在0)(上恒成立00?且a ; (2)R x x f ∈<在0)(上恒成立00a 时,],[0)(βα∈>x x f 在上恒成立?????>>-?????<- ?0 )(2020)(2βββαααf a b a b f a b 或或, ],[0)(βα∈x x f 在上恒成立?? ?>>?0 )(0 )(βαf f ],[0)(βα∈- ?????<-?0 )(2020)(2βββαααf a b a b f a b 或或 类型3: αα>?∈>min )()(x f I x x f 恒成立对一切 αα>?∈?∈>的图象的上方或的图象在恒成立对一切 恒成 一、用一次函数的性质 对于一次函数],[,)(n m x b kx x f ∈+=有: ?? ?<>?>0 )(0 )(0)(,0)(0)(0)(n f m f x f n f m f x f 恒成立恒成立 例1:若不等式)1(122 ->-x m x 对满足22≤≤-m 的所有m 都成立,求x 的范围。 解析:我们可以用改变主元的办法,将m 视为主变元,即将元不等式化为:0)12()1(2 <---x x m ,;令)12()1()(2 ---=x x m m f ,则22≤≤-m 时,0)(

含参数不等式恒成立问题的解题策略

解决“含参数不等式的恒成立”问题的基本方法 “含参数不等式的恒成立”的问题,是近几年高考的热点,它往往以函数、数列、三角函数、解析几何为载体具有一定的综合性,解决这类问题,主要是运用等价转化的数学思想: 即一般地,若函数()x f 的定义域为D ,则当x ∈D 时,有()M x f ≥恒成立()M x f ≥?min (()M x f ≥有解?M max )(x f ≤);()M x f ≤恒成立()M x f ≤?m a x (()M x f ≤有解?M x f ≤m i n )().因而,含参数不等式的恒成立问题常根据不等式的结构特征,恰当地构造函数,等价转化为含参数的函数的最值讨论. 例一 定义在R 上的函数()x f 既是奇函数,又是减函数,且当?? ? ??∈2,0πθ时,有 () ()022s in 2c o s 2 >--++m f m f θθ恒成立,求实数m 的取值范围. 分析: 利用函数的单调性和奇偶性去掉映射符号f ,将“抽象函数”问题转化为常见的含参的二次函数在区间(0,1)上恒为正的问题.而对于()≥x f 0在给定区间[a ,b]上恒成立问题可以转化成为()x f 在[a ,b]上的最小值问题,若()x f 中含有参数,则要求对参数进行讨论。 【解析】由()()022sin 2cos 2>--++m f m f θθ得到:()()22sin 2cos 2--->+m f m f θθ 因为()x f 为奇函数, 故有()()22sin 2cos 2+>+m f m f θθ恒成立, 又因为()x f 为R 减函数, 从而有22sin 2cos 2+<+m m θθ对?? ? ??∈2,0πθ 设t =θsin ,则01222>++-m mt t 对于( )1,0∈t 恒成立, 在设函数()1222 ++-=m mt t t g ,对称轴为m t =. ①当0<=m t 时,()0120≥+=m g , 即21-≥m ,又0

2020高考数学复习--专题05 导数与函数不等式恒成立、有解(存在性)-用思维导图突破导数压轴题

专题05 导数与函数不等式恒成立、有解(存在性)(训练篇B ) -用思维导图突破解导数压轴题 1. 已知函数. (1)讨论的单调性; (2)当时,证明. 解 (1)的定义域为,. 若,则当时,,故在单调递增. 若,则当时,; 当时,. 故在单调递增,在单调递减. (2)由(1)知,当时,在取得最大值,最大值为 . 所以等价于,即. 设,则, 当时,; 当时,. 所以在单调递增,在单调递减.故当时,取得最大值,最大值为.所以当时. 从而当时,,即. 2. 已知函数,设. (1)求的极小值; ()2(1)2lnx ax a x f x =+++()f x 0a <3()24f x a ≤--()f x (0,)+∞'1(1)(21)()221x ax f x ax a x x ++= +++=0a ≥(0,)x ∈+∞()0f x '>()f x (0,)+∞0a <1(0,)2x a ∈- ()0f x '>x ∈1(,)2a -+∞()0f x '<()f x 1(0,)2a -1(,)2a -+∞0a <()f x 12x a =- 11()214)21(ln f a a a =----3(4)2a f x ≤--13(12441)2a ln a a ---≤--1(02121)a ln a -++≤()ln 1 g x x x =-+1()1g x x '= -(0,1)x ∈()0g x '>(1,)x ∈+∞()0g x '<()g x (0,1)(1,)+∞1x =()g x (1)0g =0x >()0g x ≤0a <10,2a ->1(02121)a ln a -++≤3(4)2a f x ≤--()()e x f x x a x a =-++()() g x f x '=()g x

一元二次不等式恒成立问题专项练习

一元二次不等式恒成立问题专项练习 例题:设函数f (x )=mx 2-mx -1. (1)若对于一切实数x ,f (x )<0恒成立,求m 的取值范围; (2)对于x ∈[1,3],f (x )<-m +5恒成立,求m 的取值范围. (3)对于任意m ∈[1,3],f (x )<-m +5恒成立,求实数x 的取值范围. 解: (1)要使mx 2-mx -1<0恒成立, 若m =0,显然-1<0,满足题意; 若m ≠0,则??? m <0, Δ=m 2+4m <0,即-40时,g (x )在[1,3]上是增函数, ∴g (x )max =g (3)=7m -6<0,∴00, 又m (x 2-x +1)-6<0,∴m <6 x 2-x +1. ∵函数y =6x 2-x +1=6? ????x -122+34 在[1,3]上的最小值为67 ,∴只需 m <67即可.

含参数的一元二次不等式的解法以及含参不等式恒成立问题

含参数的一元二次不等式的解法 解含参数的一元二次不等式,通常情况下,均需分类讨论,那么如何讨论呢?对含参一元 二次不等式常用的分类方法有三种: 一、按2 x 项的系数a 的符号分类,即0,0,0<=>a a a ; 例1 解不等式:()0122 >+++x a ax 分析:本题二次项系数含有参数,()04422 2 >+=-+=?a a a ,故只需对二次项 系数进行分类讨论。 解:∵()04422 2 >+=-+=?a a a 解得方程 ()0122 =+++x a ax 两根,24221a a a x +---=a a a x 24 222++--= ∴当0>a 时,解集为?? ????????+---<++-->a a a x a a a x x 242242|22或 当0=a 时,不等式为012>+x ,解集为? ?????> 21|x x 当0?,所以我们只要讨论二次项系数的正负。 解 ()()032)65(2 >--=+-x x a x x a Θ ∴当0>a 时,解集为{}32|>?; 例3 解不等式042 >++ax x 分析 本题中由于2 x 的系数大于0,故只需考虑?与根的情况。 解:∵162 -=?a ∴当()4,4-∈a 即0

不等式恒成立问题的大全

不等式恒成立问题 “含参不等式恒成立问题”把不等式、函数、三角、几何等内容有机地结合起来,其以覆盖知识点多,综合性强,解法灵活等特点而倍受高考、竞赛命题者的青睐。另一方面,在解决这类问题的过程中涉及的“函数与方程”、“化归与转化”、“数形结合”、“分类讨论”等数学思想对锻炼学生的综合解题能力,培养其思维的灵活性、创造性都有着独到的作用。本文就结合实例谈谈这类问题的一般求解策略。 一、判别式法 若所求问题可转化为二次不等式,则可考虑应用判别式法解题。一般地,对于二次函数),0()(2R x a c bx ax x f ∈≠++=,有 1)0)(>x f 对R x ∈恒成立? ???00a ; 2)0)(+-+a x a x 对R x ∈恒成立,即有 04)1(22<--=?a a 解得3 11>-x F 显然成立; 当0≥?时,如图,0)(≥x F 恒成立的充要条件为: ??? ????-≤--≥-≥?1220)1(0m F 解得23-≤≤-m 。 综上可得实数m 的取值范围为)1,3[-。 二、最值法 将不等式恒成立问题转化为求函数最值问题的一种处理方法,其一般类型有: 1)a x f >)(恒成立min )(x f a ? 1.已知两个函数2()816f x x x k =+-, 32()254g x x x x =++,其中k 为实数. O x y x -1

不等式有解和恒成立问题

不等式有解和恒成立问题 Prepared on 24 November 2020

不等式有解和恒成立问题 知识点的罗列,文字不宜太多,简洁明了最好) ? 知识点一:不等式恒成立问题 ? 知识点二:不等式有解问题 分析该知识点在中高考中的体现,包含但不仅限于:考察分值、考察题型(单选、填空、解答题)、考察方式:考场难度、和哪些知识点在一起考察,参考中高考真题) 含参不等式的恒成立与有解问题是高考与会考考察不等式的一个重点内容,也是常考的内容,难度中等偏上,考察综合性较强,该知识点在填空选择解答题里都有涉及,经常和函数的最值问题在一起考察,需要同学对典型函数的值域求法有熟悉的掌握。 注意题目的答案,不要展示给学生看,这里答案和解析是帮助老师自己分析的) 一、不等式有解问题 例题:当m 为何值时,2211223 x mx x x +-<-+对任意的x ∈R 都成立 解法1:二次函数法: 移项、通分得: 又22230x x -+>恒成立,故知:2(2)40x m x -++>恒成立。 所以:2(2)160m ?=+-<,得到62m -<< 解法2:分离参数法: 注意到2(2)40x m x -++>恒成立,从而有:224mx x x <-+恒成立,那么: 注意到,在上式中我们用到了这样一个性质: 总结:解决恒成立问题的方法:二次函数法和分离参数法 变式练习:(初三或者高三学生必须选取学生错题或者学生所在地区的中高考真题或者当地的统考题目) 【试题来源】(上海2016杨浦二模卷) 【题目】设函数x x g 3)(=,x x h 9)(=,若b x g a x g x f +++=)()1()(是实数集R 上的奇函数,且0))(2()1)((>?-+-x g k f x h f 对任意实数x 恒成立,求实数k 的取值范围. 【答案】:因为b x g a x g x f +++= )()1()(是实数集上的奇函数,所以1,3=-=b a . )1 321(3)(+-=x x f ,)(x f 在实数集上单调递增.

含参数的一元二次不等式的解法与恒成立问题

} 11 |{1)5(1)4(} 1 1|{10)3(} 1|{0)2(}1,1 |{0)1(<<>Φ =<<<<>=>< a a a ; 例1 解不等式:()0122>+++x a ax 分析:本题二次项系数含有参数,()044222 >+=-+=?a a a ,故只需对二次项 系数进行分类讨论。 解:∵()044222 >+=-+=?a a a 解得方程 ()0122 =+++x a ax 两根,24221a a a x +---=a a a x 24 222++--= ∴当0>a 时,解集为?? ????????+---<++-->a a a x a a a x x 242242|22或 当0=a 时,不等式为012>+x ,解集为? ?????> 21|x x 当0+-a a ax ax 分析 因为0≠a ,0>?,所以我们只要讨论二次项系数的正负。 解 ()()032)65(2>--=+-x x a x x a ∴当0>a 时,解集为{}32|>--ax x ; 3、ax 2 -(a +1)x +1<0(a ∈R) }2,2 |{,1)5(}2|{,1)4(}2 ,2|{,10)3(} 2|{,0)2(} 22 |{,0)1(>< >≠=><<<<=<<?; 例3 解不等式042 >++ax x

不等式恒成立问题及能成立问题

例谈不等式恒成立问题和能成立问题的解题策略 ——谈2008年江苏高考数学试卷第14题 摘要:所有问题均可分成三类:恒成立问题、能成立问题和不成立问题。《例谈不等式恒成立问题和能成立问题》介绍了解决不等式恒成立问题和不等式能成立问题常用的直接法、分离参数法、分类讨论法、数形结合法等,采用了等价转化的处理策略。 关键词:分离参数、分类讨论、数形结合、等价转化,换元,求最值。 2008年江苏高考数学试卷第14题是一道很好的恒成立问题:设函数3()31()f x ax x x R =-+∈若对于任意[]1,1x ∈-都有()0f x ≥成立,则实数a 的值为 。解析如下: 析:将()0f x ≥中的,a x 分离,然后求函数的最值。 解:函数3()31()f x ax x x R =-+∈若对于任意[]1,1x ∈-都有()0f x ≥成立,函数3()31()f x ax x x R =-+∈对于任意[)(]1,0,0,10x x x ∈-∈=及其有()0f x ≥都成立。 若[)1,0x ∈-,33213()310f x ax x a x x =-+≥?≤- +,设1t x =则1t ≤- 3232133(1)t t t x x ∴-+=-+≤-,令323(1)y t t t =-+≤-,则'2360y t t =-+< 323(1)y t t t ∴=-+≤-单调递减,32min 1(1)3(1)4t y y =-==--+-=,4a ∴≤(1) 若(]0,1x ∈,33213()310f x ax x a x x =-+≥?≥- +,设1t x =,则1t ≥ 3232133(1)t t t x x ∴-+=-+≥,令323(1)y t t t =-+≥,则'2363(2)y t t t t =-+=--,当12t ≤≤时'0y ≥,323(1)y t t t =-+≥单调递增;当2t >时'0y <,323(1)y t t t =-+≥单调递减,32max 22324t y y ===-+?=,4a ∴≥(2) 若0x =则a R ∈,()0f x ≥成立(3) 由题意知(1)(2)(3)应同时成立4a ∴= 解题中采取了不等式恒成立问题的处理策略: 1、若f(x)≥a 对x ∈D 恒成立,只须f(x)min (x ∈D)≥a 即可。 2、若f(x)≤a 对x ∈D 恒成立,只须f(x)max (x ∈D)≤a 即可。

2021高三数学人教B版一轮学案:第二章第十二节第1课时不等式恒成立与有解问题含解析

第十二节导数破解疑难优质课 第1课时不等式恒成立与有解问题 1.“恒成立问题”与“有解问题”的区别 (1)两者在量词上的区别 恒成立问题中使用的量词是全称量词,如“任意、所有、全部、均、恒、总、都”等;而有解问题中使用的量词是特称量词,如“存在、至少一个、有解”等. (2)两者在等价转换上的区别 恒成立问题的转化: ①f(x)>0恒成立?f(x)min>0;f(x)<0恒成立?f(x)max<0. ②f(x)>a恒成立?f(x)min>a;f(x)g(x)恒成立?[f(x)-g(x)]min>0;f(x)0有解?f(x)max>0;f(x)<0有解?f(x)min<0. ②f(x)>a有解?f(x)max>a;f(x)g(x)有解?[f(x)-g(x)]max>0;f(x)

考向一 不等式恒成立问题 方法1 分离参数法 【例1】 (2020·石家庄质检)已知函数f (x )=ax e x -(a +1)(2x -1). (1)若a =1,求函数f (x )的图象在点(0,f (0))处的切线方程; (2)当x >0时,函数f (x )≥0恒成立,求实数a 的取值范围. 【解】 (1)若a =1,则f (x )=x e x -2(2x -1). 即f ′(x )=x e x +e x -4,则f ′(0)=-3,f (0)=2, 所以所求切线方程为3x +y -2=0. (2)由f (1)≥0,得a ≥1e -1 >0,则f (x )≥0对任意的x >0恒成立可转化为a a +1 ≥2x -1x e x 对任意的x >0恒成立. 设函数F (x )=2x -1x e x (x >0), 则F ′(x )=-(2x +1)(x -1)x 2e x . 当00; 当x >1时,F ′(x )<0. 所以函数F (x )在(0,1)上单调递增,在(1,+∞)上单调递减,所以 F (x )max =F (1)=1e . 于是a a +1≥1e ,解得a ≥1e -1 .

高中数学恒成立问题

高中数学不等式的恒成立问题不等式恒成立的问题既含参数又含变量,往往与函数、数列、方程、几何有机结合起来,具有形式灵活、思维性强、不同知识交汇等特点. 考题通常有两种设计方式:一是证明某个不等式恒成立,二是已知某个不等式恒成立,求其中的参数的取值范围.解决这类问题的方法关键是转化化归,通过等价转化可以把问题顺利解决,下面我就结合自己记得教学经验谈谈不等式的恒成立问题的处理方法。 一、构造函数法 在解决不等式恒成立问题时,一种最重要的思想方法就是构造适当的函数,即构造函数法,然后利用相关函数的图象和性质解决问题,同时注意在一个含多个变量的数学问题中,需要确定合适的变量和参数,从而揭示函数关系,使问题更加面目更加清晰明了,一般来说,已知存在范围的量视为变量,而待求范围的量视为参数. 例1 已知不等式对任意的都成立,求的取值范围. 解:由移项得:.不等式左侧与二次函数非常相似,于是我们可以设则不等式对满足的 一切实数恒成立对恒成立.当时, 即 解得故的取值范围是. 注:此类问题常因思维定势,学生易把它看成关于的不等式讨论,从而因计算繁琐出错或者中途夭折;若转换一下思路,把待求的x为参数,以为变量,令 则问题转化为求一次函数(或常数函数)的值在内恒为负的问题,再来求解参数应满足的条件这样问题就轻而易举的得到解决了。

二、分离参数法 在不等式中求含参数范围过程中,当不等式中的参数(或关于参数的代数式)能够与其它变量完全分离出来并,且分离后不等式其中一边的函数(或代数式)的最值或范围可求时,常用分离参数法. 例2已知函数(为常数)是实数集上的奇函数,函数 在区间上是减函数. (Ⅰ)若对(Ⅰ)中的任意实数都有在上恒成立,求实数的取值范围. 解:由题意知,函数在区间上是减函数. 在上恒成立 注:此类问题可把要求的参变量分离出来,单独放在不等式的一侧,将另一侧看成新函数,于是将问题转化成新函数的最值问题:若对于取值范围内的任一个数 都有恒成立,则;若对于取值范围内的任一个数都有 恒成立,则. 三、数形结合法 如果不等式中涉及的函数、代数式对应的图象、图形较易画出时,可通过图象、图形的位置关系建立不等式求得参数范围. 例 3 已知函数若不等式恒成立,则实数的取值范围是 .

证明含参数的不等式恒成立解题模板

如何证明含参数的不等式恒成立 题型:已知含参数的函数()f x ,证明在某区间上()()()(x)f x g x f x g ><或恒成立(()g x 不含参数) 解题步骤: 第一步:构造函数()()()F x f x g x =-,将问题转化为()0()0F x F x ><或恒成立的问题,如果这里的()g x 不明显,我们先对含参函数进行讨论,找到合适的()g x 。 第二步:求出'()F x ,令'()0F x =,求出()F x 在区间上的最小值或最大值。 第三步:证明最小值大于0,或最大值小于0。 【例题】 1、(浙江高考)已知a R ∈,函数3()42f x x ax a =-+. (1)求()f x 的单调区间. (2)证明:当01x ≤≤时,()20f x a +->. 思路分析:()20f x a +->中含有绝对值,不方便求导,因此可考虑寻找函数()g x ,使 ()2()0f x a g x +-≥>. 解(1)由题意的' 2 ()122f x x a =- ①当0a ≤时,' ()0f x ≥恒成立,此时()f x 的单调增区间为(,)-∞+∞. ②当0a >时,' ()12()()f x x x =,此时函数()f x 的单调递增区间为 (,)-∞+∞和,单调递减区间为???. (2)证明:由于01x ≤≤,当2a ≤时,33 ()2=4x 224x 42f x a ax x +--+≥-+. 当2a >时,333 ()2=4x 2(1)24x 4(1)24x 42f x a a x x x +-+--≥+--=-+.

设3()221,01g x x x x =-+≤≤,则()2()f x g x ≥,要证()20f x a +->,只要证明 ()0g x >即可。 '2()626(g x x x x =-=- +则有 所以min ()10g x g ==>, 当01x ≤≤时,32210x x -+>,故3 ()24420f x a x x +-≥-+>,即证。 【练习】 1、已知函数21()2 x f x ae x =- . (1)若()f x 在R 上为增,求a 的取值范围; (2)若1a =,求证0x >时,()1f x x >+。 2、已知函数()ln(1),()ln f x x x g x x x =+-= (1)求函数()f x 的最大值; (2)设0a b <<,证明:0()()2()()ln 22 a b g a g b g b a +<+-<-

学而思高中数学7恒成立与有解问题

【例1】 关于x 的不等式2121x x a a -+-++≤的解集为空集,则实数a 的取值范围是 _ . 【例2】 若不等式1 21x a x + -+≥对一切非零实数x 均成立,则实数a 的最大值是_________. 【例3】 设函数2()1f x x =-,对任意23x ?? ∈+∞???? ,,2 4()(1)4()x f m f x f x f m m ??--+ ??? ≤恒成立,则实数m 的取值范围是 . 典例分析 恒成立与有解问题

【例4】 若不等式220ax x ++>的解集为R ,则a 的范围是( ) A .0a > B .1 8 a >- C .18a > D .0a < 【例5】 已知不等式 ()11112log 1122123 a a n n n +++>-+++L 对于一切大于1的自然数n 都成立,试求实数a 的取值范围. 【例6】 若不等式2(2)2(2)40a x a x -+--<对x ∈R 恒成立,则a 的取值范围是______. 【例7】 2()1f x ax ax =+-在R 上恒满足()0f x <,则a 的取值范围是( ) A .0a ≤ B .4a <- C .40a -<< D .40a -<≤

【例8】 若对于x ∈R ,不等式2230mx mx ++>恒成立,求实数m 的取值范围. 【例9】 不等式210x ax ++≥对一切102x ?? ∈ ??? ,成立,则a 的最小值为( ) A .0 B .2- C .5 2 - D .3- 【例10】 不等式2|3||1|3x x a a +---≤对任意实数x 恒成立,则实数a 的取值范围为 ( ) A .(][)14-∞-+∞U ,, B .(][)25-∞-+∞U ,, C .[12], D .(][)12-∞∞U , , 【例11】 对任意[11]a ∈-,, 函数2()(4)42f x x a x a =+-+-的值恒大于零,则x 的取值范围为 .

不等式恒成立问题

不等式中恒成立问题的解法 一、判别式法 若所求问题可转化为二次不等式,则可考虑应用判别式法解题。一般地,对于二次函数 ),0()(2R x a c bx ax x f ∈≠++=,有 1)0)(>x f 对R x ∈恒成立? ???00 a ; 2)0)(+-+-x m x m 的解集是R ,求m 的范围。 解析:要想应用上面的结论,就得保证是二次的,才有判别式,但二次项系数含有参数m ,所以要讨论m-1是否是0。 (1)当m-1=0时,元不等式化为2>0恒成立,满足题意; (2)01≠-m 时,只需???<---=?>-0 )1(8)1(0 12 m m m ,所以,)9,1[∈m 二、最值法 将不等式恒成立问题转化为求函数最值问题的一种处理方法,其一般类型有: 1)a x f >)(恒成立min )(x f a ? 例2、若[]2,2x ∈-时,不等式23x ax a ++≥恒成立,求a 的取值范围。 解:设()2 3f x x ax a =++-,则问题转化为当[]2,2x ∈-时,()f x 的最小值非负。 (1) 当22a - <-即:4a >时,()()min 2730f x f a =-=-≥ 7 3 a ∴≤又4a >所以a 不存在; (2) 当222a -≤≤即:44a -≤≤时,()2min 3024a a f x f a ?? =-=--≥ ??? 62a ∴-≤≤ 又44a -≤≤ 42a ∴-≤≤ (3) 当22 a -> 即:4a <-时,()()min 270f x f a ==+≥ 7a ∴≥-又 4a <-74a ∴-≤<- 综上所得:72a -≤≤

高中数学不等式恒成立与有解问题

高中数学不等式恒成立与有解问题 不等式恒成立与有解问题一直是中学数学的重要内容. 它是函数、数列、不等式等内容交汇处的一个较为活跃的知识点,随着中学数学引进导数,它为我们更广泛、更深入地研究函数、不等式提供了强有力的工具. 在近几年的高考试题中,涉及不等式恒成立与有解的问题,有时在同一套试题中甚至有几道这方面的题目。 其中,特别是一些含自然对数和指数函数的不等式恒成立与有解问题,将新增内容与传统知识有机融合,用初等方法难以处理,而利用导数来解,思路明确,过程简捷流畅,淡化繁难的技巧,它不仅考查函数、不等式等有关的传统知识和方法,而且还考查极限、导数等新增内容的掌握和灵活运用. 它常与思想方法紧密结合,体现能力立意的原则,带有时代特征,突出了高考试题与时俱进的改革方向. 因此,越来越受到高考命题者的青睐. 下面通过一些典型实例作一剖析. 1.不等式恒成立与有解的区别 不等式恒成立和有解是有明显区别的,以下充要条件应细心思考,甄别差异,恰当使用,等价转化,切不可混为一团. (1)不等式f(x)k 在x ∈I 时恒成立? k ?x f ,)(min >?x ∈I. 或f(x)的下界大于或等于k ; (4)不等式f(x)>k 在x ∈I 时有解? k ?x f ,)(max >?x ∈I. 或f(x)的上界大于k ; 解决不等式恒成立和有解解问题的基本策略常常是构作辅助函数,利用函数的单调性、最值(或上、下界)、图象求解;基本方法包括:分类讨论,数形结合,参数分离,变换主元等等. 例1 已知两函数f(x)=8x 2+16x-k ,g(x)=2x 3+5x 2+4x ,其中k 为实数. (1)对任意x ∈[-3,3],都有f (x)≤g(x)成立,求k 的取值范围; (2)存在x ∈[-3,3],使f (x)≤g(x)成立,求k 的取值范围; (3)对任意x 1x 2∈[-3,3],都有f (x 1)≤g(x 2),求k 的取值范围. 解析 (1)设h(x)=g(x)-f(x)=2x 2-3x 2-12x+k ,问题转化为x ∈[-3,3]时,h(x)≥0恒成立,故h min (x)≥0.令h′ (x)=6x 2-6x-12=0,得x= -1或2. 由h(-1)=7+k ,h(2)=-20+k ,h(-3)=k-45,h(3)=k-9,故h min (x)=-45+k ,由k-45≥0,得k≥45. (2)据题意:存在x ∈[-3,3],使f (x)≤g(x)成立,即为:h(x)=g(x)-f(x)≥0在x ∈[-3,3]有解,故h max (x)≥0,由(1)知h max (x )=k+7,于是得k≥-7. (3)它与(1)问虽然都是不等式恒成立问题,但却有很大的区别,对任意x 1x 2∈[-3,3],都有f (x 1)≤g(x 2)成立,不等式的左右两端函数的自变量不同,x 1,x 2的取值在 [-3,3]上具有任意性,因而要使原不等式恒成立的充要条件是:

相关主题
文本预览
相关文档 最新文档