当前位置:文档之家› 同轴电缆中电磁波的传输与金属中超声波的传输

同轴电缆中电磁波的传输与金属中超声波的传输

同轴电缆中电磁波的传输与金属中超声波的传输
同轴电缆中电磁波的传输与金属中超声波的传输

同轴电缆中电磁波的传输与金属中超声波的传输

一.同轴电缆中电磁波的传输

1.实验目的

通过脉冲信号的测量,理解波在传输路径上遇到界面时的反射和投射特性,理解入射波和反射波的相位关系,掌握阻抗匹配概念。

我觉得其实就是搞懂不同阻抗对应什么波形,并且算出长度。

2.实验原理

传输线的等效电路

一对相隔均匀距离的平行导线或同轴电缆线就是这种定向传送电磁场能量和信号的载体,称为传输线。

用传输线传送瞬态或高频信号时,传输线的长度已可与波长相比拟,因此在传输线上的电信号存在随长度变化的空间分布,负载不匹配时还有驻波分布。

在负载端电压反射波与入射波振幅之比,称为负载Z ll的电压反射系数。对于无损线Z0=R0,若负载Z ll也为纯电阻性负载,分三种情况讨论:

1、开路 Z ll= R ll= ∞,Γ=1

电压反射系数最大,在 z = l 处,电压为最大,是驻波波腹;电流为最小,是驻波波节2、路Z ll=R ll= 0,Γ= ?1,电压反射系数为负值,表示反射波为反相。电压、电流驻波分布与开路情况

相反。

3、负载匹配 Z l=R l =R0,Γ = 0,电压反射系数为零。没有反射波,线路中只有沿+z

方向的行波。负载不同时,传输线上 z = 0 和 z = l 处信号波形示意图见图。

实验中要依靠这几个很重要的图来判断观察到波形是否正确,并区分匹配负载、短路负载。但实验中观察到波形并不是规则的凸起,而是有阶跃响应一样的缓坡。

3.实验仪器

1)数字示波器

2)信号发生器

3)电阻盒(source入cable出)

4)待测长同轴电缆(很容易出问题,换了3条才好使)

5)短同轴电缆连接线(最好把两个同样粗细的线接到示波器上,否则本身衰减不同会有干扰)

6)阻抗元件

4.实验内容

测量同轴电缆的长度和衰减常数,分析传输线终端反射波和入射波的相位关系。

已知:u=2.0×108m/s,电缆的特性阻抗Z0=R0=75Ω

将信号发生器输出信号通过电阻盒接到传输线输入端,信号选择40kHz左右的连续脉冲,信号幅度在2-5V之间,占空比约为0.5%。输出端分别接开路、短路和匹配电阻。利用示波器分别测出传输线输入端、输出端之间的信号波形和相对延时τ1、τ2和电压幅值。

测量时,一定要分开测量时间、电压。方法为:先把一条光标标在第一个波形上,再移动另一条光标分别至形成的驻波波形,然后读出差值;若为电压,先把横线光标对准第一个波形前平线,再测量后面波形电压差并记录。

五、数据处理

1.计算线长度

短路负载和匹配负载下,延时ττ均为144ns,电缆长度为:μμ×ττ=28.8mm

(1)对于短路负载:

每两项做差,得到延时为:147.5、155

ΔΔtt2=ττ6?ττ2+ττ4?0=151.25nnnn

则标准偏差为5.303

ΔΔττAA=10nnnnΔΔττBB=tt pp(2)×SS√2=16.124nnnn

所以不确定度ΔΔττ=?ΔΔττBB2+ΔΔττAA2=18.97

得到ΔΔll=μμ×ΔΔττ=3.79mm

所以线长为:ll=(28.8±3.79)mm

(2)对于匹配负载:ΔΔtt1=144nnnn

ΔΔττAA=10nnnnΔΔττBB=0

所以不确定度ΔΔττ=?ΔΔττBB2+ΔΔττAA2=10

得到ΔΔll=μμ×ΔΔττ=2.0mm

所以线长为:ll=?28.8±2。?mm0

2.计算吸收系数

先利用传播速度乘以时间得到传播距离l,再对应电压幅值进行拟合如图:

得到吸收系数为0.006。

二.金属中超声波的传输

一、实验目的

掌握超声波波速测量方法,观察声波转换及表面波,了解超声波探测原理

二、实验原理

脉冲波在传播路径上遇到介质界面、畸变等不均匀界面,部分声波会沿路径反射回去并被晶片接收而转变为电信号,经电路放大后在示波器上显示出波形实验中仪器的射频输出每次反射波与脉冲波包对应,信号有正有负。检波输出只有正向信号。

超声波在介质中传播可以有不同的形式,通常有纵波、横波、表面波三种形式。

1、纵波,即介质中质点振动方向与超声波传播方向一致。

2、横波,即介质中质点振动方向与超声波传播方向垂直。横波只能在固体介质中传播。

3、表面波,可以看成是由平行于表面的纵波和垂直于表面的横波合成,振动质点轨迹为一椭圆。

在超声波分析测试中,利用超声波探头产生脉冲超声波。直探头产生纵波,斜探头产生横波或表面波,及可变角探头。实验采用单探头工作方式,即一个探头既发出也接受超声。此时必须用连通器把实验仪

发射、接受接口连接起来。

对探头而言,波长越小,频率越高,指向性越好;尺寸越大,指向性越好。

在进行缺陷定位时,必须找到缺陷反射回波最大的位置,使得被测缺陷处于探头的中心轴线上,然后利用时间、声速计算距离。

具体测量距离原理即为声速乘以时间。

三、实验仪器

1)超声波试验仪,不许接到示波器,发射、接受接口已并联。

2)超声实验仪衰减器,衰减倍数为:10xx20?,x为示数(分贝)。

3)不同模式衰减选择范围不同

四、实验内容

1.声速测量

分别测量横波、纵波,并计算试样块杨氏模量、泊松比。

2.表面波实验

移动65°可变角度探头,并记录移动距离和表面波位移的关系。

3.超声波探伤

分别用直探头、斜探头确定不同类型的损伤。

五、数据处理

1.纵波声速:

Δtt=19us

μμ=2HH tt=120×10?3

19×10?6=6.315×103mm/nn

不确定度估计:

标准偏差为:0.23094

Δtt AA=tt pp(2)SS tt/√nn=0.424uunn

Δt BB=1us

Δt=?Δtt AA2+Δtt BB2=?0.4242+12=1.08us

Δμ=μ?Δt/t2+ΔH/H2=6.315×103×?(1.08\19)2+(0.02\60.1)2=0.359×103mm/nn

∴μμ=(6.315±0.359)×103mm/nn

2.横波声速:

Δtt=19.2us

μμ=2(RR2?RR1)tt=60.1×10?3

19.2×10?6=3.125×103mm/nn

不确定度估计:

nn tt=0us

Δtt AA=tt pp(2)SS tt/√3=0uunn

Δt BB=1us

Δt=?Δtt AA2+Δtt BB2=?02+12=1us

Δμ=μ?Δt/t2+ΔR2/R22+ΔΔRR1/RR12=3.125×103×?(1\19.2)2+(0.02\60.1)2+(0.02\30)2

=0.163×103mm/nn∴μμ=(3.109±0.163)×103mm/nn

3.表面波波速计算

数据完全为线性,每移动距离10mm,延时7.2微秒

t=7.2us

μμ=2LL=2×10×10?3?6=2.778×103mm/nn

4.杨氏模量与泊松系数计算

T=c l/c s=6.315/3.125=2.0208

E=ρc s2(3T2?4)

2=2700×(3.125×103)2(3×2.02082?4)

2.02082?1=70.55Gpa

σσ=TT2?2

2(2.02082?1)=0.3378

2(TT2?1)=2.02082?2

这个数据和网上查到的铝的数据差不多,符合的较好。

5.直探头探测缺陷深度

已知纵波声速

μμ=(6.315±0.359)×103mm/nn

tt HH???=19.1us

tt qq?=16.2us

深度h=μ(t H?t1)/2=6315×(19.1?16.2)/2000000=9.16×10?3m 不确定度估计

SS ttHH=0.1414213

Δtt AAHH=tt pp(1)SS ttHH/√2=1.27uunn

nn ttqq=0.2828427us

Δtt AAqq=tt pp(1)SS ttqq/√2=0.63uunn

Δt H=?Δtt AAHH2+Δtt BB2=?0.52+1.272=1.365us

Δt q=?Δtt AAqq2+Δtt BB2=?0.52+0.632=0.804us

Δh=h?Δt H/t H2+Δt q/t q2+ΔΔμ/μ2=9.16×10?3×?(1.27\19.1)2+(0.63\16.2)2+(0.359\6.315)2 =0.877×10?3mm∴?=(9.16±0.88)×10?3mm

6.斜探头测量缺陷深度

由附录可得AA'=25BB'

所以由图中对应关系应有:μμ(tt AA?tt0)2=25×μμ(tt BB?tt0)2,计算的到延迟tt0=8.67μμnn

对于入射点,假设都比前缘侧的距离偏离ΔΔΔΔ,则同样由几何关系可得:xx AA+ΔΔxx20=xx AA+ΔΔxx50,得到ΔΔΔΔ= 8.7mmmm所以可以计算在铝块中折射角为:ββ=arctan(

88+8.7?5050)=43.02°

则依旧按照比例关系,得到入射点距离D的距离DDDD′=34?8.67

26?8.67×?202+(30+8.7?20)2=39.98mmmm 则D点深度为?DD=DDDD′×cosββ=29.23mmmm,到边缘距离为LL DD=ΔΔDD+ΔΔΔΔ?DDDD′×sinββ=90.39mmmm 三、总结

这个实验做得不太顺利,因为总是遇到电缆质量问题,而耽误了很多时间。

最后总结出来对实验有帮助的几点:

1.示波器多按autoset,横轴比例一定要调好,避免错过第一个峰

2.电缆最好把两个同样粗细的接到示波器上,否则本身衰减不同会有干扰

3.同轴电缆总不好使,要多换几条试一试才行,避免接头处线发生较大的弯曲。

4.要多涂水,有的探头不好使,配合不同的线会有不同的神奇效果

5.接口接触不良,经常出问题,可以拧一拧牢固一些

音频线视频线屏蔽线和同轴电缆的关系

音频线、视频线、屏蔽线与同轴电缆的关系 我们经常接触到的信号按频率分为音频(几十K以下)、视频(百兆以下)、和射频(就是无线电发射频率的简称),严格地讲,中波广播用的540K及以上频率都可称为射频,电视发射用的射频频率为50M以上。视频在生活中应用最多,影碟、电视、电脑显示器这些都要用,视频频率是从0到某一个值的范围,我们把它换为“带宽”,带宽与“分辨率”和“清晰度”相关,例如VCD机清晰度低,它的视频带宽只有5M;CRT显示器可以支持1280x1024的高清晰度(注意该清晰度与LCD显示器相比还差得远!),它的带宽可以达到上百兆。 音响设备之间连接的信号线,一般要求是:不能受噪音信号干扰,传输尽量无衰减,传输过程对信号不能产生大的频率失真和相位失真(也就是尽量保持信号不变形,这一点对彩色电视信号影响非常大,尤其是NTSC格式的彩色视频信号,少量的相位失真就会导致颜色异常!)。为此,传输不同的信号就要用到不同的信号线,下面分别从屏蔽线与同轴线说起。 对音频信号而言,频率只有几十KHz,那么几米长的传输线都可以等效为长度为“零”,导线的分布参数、特征阻抗都可以忽略,最主要的性能要求是屏蔽电磁干扰,防止在线路上感应到电磁噪声。在一条芯线的外围,连续用细铜线缠绕或套上金属编织网作为屏蔽层(屏蔽层与信号设备的地线相连),这种信号线就是“屏蔽线”,如下图所示: 屏蔽线并不要求芯线与屏蔽层是同轴关系,甚至圆的扁的都没关系,核心要点是芯线被屏蔽层完全“封闭”。市面上有些伪劣音频线并没有使用“屏蔽线”,其实就是两根线封装在一起,这种线对电磁干扰完全没有屏蔽作用,试验方法是:将信号输出设备(例如CD机)连接音频左或音频右的那一端悬空,接收信号的一端如功放机保持连接,这时音响功放机或电视机的AV输入口(注:AV输入口通常是一组三根线,一个视频和两个音频)的音频口由于插上这样一条悬空状态的线,就可能从该线引入了噪音,噪音明显的话,这条线就是伪劣产品。如果插上的是一条正规的信号线,并不会引入明显的噪音,就像没插时几乎无变化。 上述试验强调要把CD机那一端音频输出口悬空,只保留电视机这一端然后听噪音,还要注意电视机AV接口上的视频线不要拔,虽然我们只用听噪音的办法来试验,但是如果视频信号没了大多电视会自动静音,什么都听不到了! 上述试验中,为什么CD机上音频口插上后,不论是否播放影碟,电视里听到的噪音都很小(与CD端悬空状态对比)?这是因为CD机输出口的“内阻”也能抑制信号线上感应的噪音,如果CD机够好的话,音频线的真假,影响反而并不大! 上面讲过,视频信号比音频信号的频率范围(即带宽)要大很多,传输用的信号线长度在半米以上就可能对信号质量产生明显的影响。症状一般是三种:图像清晰度下降变模糊(高频衰减引起);颜色异常(相位失真引起),噪点(干扰噪声引起),电磁干扰可以用屏蔽线的办法解决,但频率和相位失真就只能靠同轴电缆了。

电磁波在信号中的传输

《电磁场电磁波》课程论文电磁波在信号传输中的应用 姓名段一凡 班级 BG1208 学号 121001260807 2015年 10月 9日 电磁波在信号中的应用 摘要本文主要介绍了电磁波的光谱和特性及作为载波在信号传

输的应用,分别有光纤通信,微波通信和波导通信等,介绍了电磁波的频段,电磁波与介质的相互作用,电磁波在不同介质中的传播特性。 关键词电磁波1;光谱2;光纤3;通信4 Application of electromagnetic wave in signal Abstract the spectrum and characteristics of electromagnetic wave and its application in signal transmission are introduced. The optical fiber communication, microwave communication and waveguide communication are introduced. Keywords electromagnetic wave 1; spectrum 2; optical fiber 3; communication 4 目录 一背景1 二定义1 三电磁波概述1 四电磁波普2 1电磁波普的定义2 2波普分类:2 五电磁波特性5 1电磁波特性5 2划分 :5

六光纤通信5 1光纤通信5 2光波特性6 3光纤原理及应用6 七微波通信6 1微波通信6 2微波波长7 3频带的划分7 4微波特征7 1)穿透性7 2)选择性加热7 3)热惯性小8 5微波原理8 八波导通信8 1波导历史8 2波导定义9 3毫米波9 4调制方式9 九电磁波在信号中传输的应用9 1背景 电磁波首先由詹姆斯·麦克斯韦于1865年预测出来,而后由德国物理学家海因里希·赫兹于1887年至1888年间在实验中证实存在。麦克斯

学习RFID必须知道的电磁波原理

学习RFID必须知道的电磁波原理、天线知识 一、电磁波产生的基本原理 按照麦克斯韦电磁场理论,变化的电场在其周围空间要产生变化的磁场,而变化的磁场又要产生变化的电场。这样,变化的电场和变化的磁场之间相互依赖,相互激发,交替产生,并以一定速度由近及远地在空间传播出去。 周期性变化的磁场激发周期性变化的电场,周期性变化的电场激发周期性变化的磁场。 电磁波不同于机械波,它的传播不需要依赖任何弹性介质,它只靠“变化电场产生变化磁场,变化磁场产生变化电场”的机理来传播。 当电磁波频率较低时,主要籍由有形的导电体才能传递;当频率逐渐提高时,电磁波就会外溢到导体之外,不需要介质也能向外传递能量,这就是一种辐射。在低频的电振荡中,磁电之间的相互变化比较缓慢,其能量几乎全部反回原电路而没有能量辐射出去。然而,在高频率的电振荡中,磁电互变甚快,能量不可能反回原振荡电路,于是电能、磁能随着电场与磁场的周期变化以电磁波的形式向空间传播出去。 根据以上的理论,每一段流过高频电流的导线都会有电磁辐射。有的导线用作传输,就不希望有太多的电磁辐射损耗能量;有的导线用作天线,就希望能尽可能地将能量转化为电磁波发射出去。于是就有了传输线和天线。无论是天线还是传输线,都是电磁波理论或麦克斯韦方程在不同情况下的应用。 对于传输线,这种导线的结构应该能传递电磁能量,而不会向外辐射;对于天线,这种导线的结构应该能尽可能将电磁能量传递出去。不同形状、尺寸的导线在发射和接收某一频率的无线电信号时,效率相差很多,因此要取得理想的通信效果,必须采用适当的天线才行!研究什么样结构的导线能够实现高效的发射和接收,也就形成了天线这门学问。 高频电磁波在空中传播,如遇着导体,就会发生感应作用,在导体内产生高频电流,使我们可以用导线接收来自远处的无线电信号。 二、天线 在无线通信系统中,需要将来自发射机的导波能量转变为无线电波,或者将无线电波转换为导波能量,用来辐射和接收无线电波的装置称为天线。发射机所产生的已调制的高频电流能量(或导波能量)经馈线传输到发射天线,通过天线将转换为某种极化的电磁波能量,并向所需方向出去。到达接收点后,接收天线将来自空间特定方向的某种极化的电磁波能量又转换为已调制的高频电流能量,经馈线输送到接收机输入端。 综上所述,天线应有以下功能: 1.天线应能将导波能量尽可能多地转变为电磁波能量。这首先要求天线是一个良好的电磁开放系统,其次要求天线与发射机或接收机匹配。 2.天线应使电磁波尽可能集中于确定的方向上,或对确定方向的来波最大限度的接受,即方向具有方向性。

国产同轴电缆的型号和含义

国产同轴电缆的型号和含义 视频信号传输一般采用直接调制技术、以基带频率(约8MHz 带宽)的形式,最常用的传输介质是同轴电缆。同轴电缆是专门设计用来传输视频信号的,其频率损失、图像失真、图像衰减的幅度都比较小,能很好的完成传送视频信号的任务。 视频信号传输线有同轴电缆(不平衡电缆)、平衡对称电缆(电话电缆)、光缆。平衡对称电缆和光缆一般用于长距离传输,对于宾馆酒店等建筑一般采用同轴电缆传输视频基带信号的传输方式。当采用75-5同轴电缆时,一般传输距离在300m 时,应考虑使用电缆补偿器。如采用75-9同轴电缆时,摄像机和监视器间的距离在500m 以内可不加电缆补偿器。 国产通信电缆的型号采用拼音字母和阿拉伯数字组成,他的排列次序和含义如下: 选用同轴电缆时,要选用频率特性好、电缆衰减小、传输稳定、防水性能好的电缆。 国内生产的同轴电缆可分为实芯和藕芯两种。芯线一般用铜线,外导体有铝管和铜网加铝箔。绝缘外套分为单护套和双护套两种。国产同轴电缆型号统一标准的格式如下: 特性阻抗 例如:SYV-75-3-1型电缆表示同轴射频电缆,用聚乙烯绝缘,用聚氯乙烯做护套,特性阻抗为75Ω,芯线绝缘外经为3mm ,结构序号为1。

常用同轴电缆型号的规格和主要参数 电缆型号绝缘形式芯线外经 mm 绝缘外经 mm 电缆外经 mm 特性阻抗 Ω 衰减常数(dB/100m) 30(MHz) 200(MHz) 800(MHz) SYKV-75-5 藕芯式 1.10 4.7 7.3 75±3 4.1 11 22 SYKV-75-12 藕芯式 2.60 11.5 15.0 75±2.5 1.6 4.5 10 SSYKV-75-9 藕芯式 1.90 9.0 13.0 75±3 2.1 5.1 11 SIOV-75-5 藕芯式 1.13 5.0 7.4 75±3 3.5 8.5 17 SIZV-75-5 竹节式 1.20 5.0 7.3 75±3 4.5 11 22 SYDV-75-9 竹节式 2.20 9.0 11.4 75±3 1.7 4.5 9.2 SYDV-75-12 竹节式 3.00 11.5 14.4 75±2 1.2 3.4 7.1 SDVC-75-7 藕芯式 1.60 7.3 10.0 75±2.5 2.6 7.1 15.2 SDVC-75-12 藕芯式 2.60 11.5 14.4 75±2.5 1.7 4.5 10

第十七章电磁波与现代通信---知识点总结

第十七章:电磁波与现代通信 知识点总结: 一、信息与信息传播 1.信息:各种事物发出的有意义的消息。 (1)人类特有的三种信息:语言、符号和图像。 (2)人类历史上,信息和信息传播活动经历了五次巨大的变革:①语言的诞生;②文字的诞生;③印刷术的诞生;④电磁波的应用;⑤计算机与网络技术的应用。 2.早期的信息传播工具:烽火台、驿马、电报机和早期电话等。 记住:莫尔斯发明了电报机;贝尔发明了电话;爱迪生发明了电灯。 3.人类储存信息的工具有:(1)牛骨﹑竹简、木牍;(2)书;(3)磁盘﹑光盘。 二、电磁波及其传播 1.波 (1)波的概念:波是能传播周期性变化的运动形态,还能传递能量以及信息。 (2)波的基本特征: 振幅A:振动的幅度,单位是m,它反映了振动的强弱。 周期T:振动一次所需要的时间,单位是s。 频率f:其数值等于每秒内振动的次数,单位是Hz,频率与周期反映了振动的快慢,f=1/T。 波长λ:波在一个周期内传播的距离,单位是m。 波速V:波传播的速度,单位是m/s,它反映波传播的快慢。 (3)波的传播速度V与波长λ、频率f的关系是:V=λf=λ/T 2.电磁波 (1)电磁波是在空间传播的周期性变化的电磁场。 记住:麦克斯韦建立了电磁场理论并预言了电磁波的存在;赫兹第一次用实验证实了电磁波的存在。(2)特性:①电磁波的传播不需要介质,可以在真空中传播,但金属可以屏蔽电磁波;②一切电磁波都具有能量,可以传递信息。 (3)电磁波在真空中传播的速度为3×108m/s,与光速相同,光波属于电磁波。 3.电磁波谱(按波长由小到大或频率由高到低排列):γ射线、X射线、紫外线、可见光(红橙黄绿蓝靛紫)、红外线﹑微波﹑无线电波(要了解它们各自应用)。 记住:微波技术主要应用在通信方面,如雷达、导航、电视等领域。 4.人类应用电磁波传播信息的历史经历了以下变化: (1)传播的信息形式从文字→声音→图像; (2)传播的信息量由小到大; (3)传播的距离由近到远; (4)传播的速度由慢到快。 三、现代通信---走进信息时代 1.卫星通信 (1)电视广播、移动通信等主要是利用微波传递信号的。 (2)优点:①覆盖面大;②通信距离长;③不受地理环境限制。 缺点:①造价较高;②信号有零点几秒的时间延迟;③保密性差。 (3)应用:电话、电报、电视广播、全球定位、导航。 2.光纤通信 (1)光纤通信是利用光波在光导纤维中传输信息的一种通信方式。 (2)优点:①容量极大;②不会受外界电磁场的干扰;③不怕潮湿、耐腐蚀、能量损耗低。 缺点:①架设线路受地理条件限制;②光缆易被拉断。

认识同轴电缆与同轴视频传输技术

认识同轴电缆与同轴视频传输技术 本文以科学实验研究为依据,给出了监控工程常用同轴电缆的视频传输特性,指出了应用中的一些误解和误区.对干扰产生原理提出了更加切合实际的解释.归纳分析了实用的抗干扰措施,介绍了同轴抗干扰技术新进展——抗干扰同轴电缆原理和应用前景。 同轴电缆仍然是目前监控系统中应用最广泛的视频传输线。同轴视频传输技术,也是监控系统中的一种最基本传输方式。“同轴电缆到底能传多远”?同轴视频传输技术、抗干扰技术到底现在发展到了什么水平?深入了解同轴电缆的传输特性,掌握同轴视频传输技术的现状与发展,对提高监控系统图像质量,改进系统设计,有效降低系统造价,仍然是有现实意义和积极意义的。 一、工程常用同轴电缆类型及性能: 1) SYV75-3、5、7、9…,75欧姆,聚乙烯绝缘实心同轴电缆。近些年有人把它称为“视频电缆”; 2) SYWV75-3、5、7、9…75欧姆,物理发泡聚乙烯绝缘同轴电缆。有人把它称为“射频电缆”; 3)基本性能: l SYV物理结构是100%聚乙烯绝缘;SYWV 是发泡率占 70-80%的物理发泡聚乙烯绝缘电缆; l 由于介电损耗原因,SYV实心电缆衰减明显要大于SYWV 物理发泡电缆;在常用工程电缆中,目前物理发泡电缆仍然是传输性能最好价格最低的电缆,在视频、射频、微波各个波段都是这样的。

厂家给出的测试数据也说明了这一点; l 同轴电缆都可以在直流、射频、微波波段应用。按照“射频”/“视频”来区分电缆,不仅依据不足,还容易产生误导:似乎视频传输必须或只能选择实心电缆(选择衰减大的,价格高的?);从工程应用角度看,还是按“实芯”和“发泡”电缆来区分类型更实用一些; l 高编(128)与低编(64)电缆特性的区别:eie实验室实验研究表明,在200KHz以下频段,高编电缆屏蔽层的“低电阻”起主要作用,所以低频传输衰减小于低编电缆。但在200-300KHz以上的视频、射频、微波波段,由于“高频趋肤效应”起主要作用,高编电缆已失去“低电阻”优势,所以高频衰减两种电缆基本是相同的。 二、了解同轴电缆的视频传输特性——“衰减频率特性” 同轴电缆厂家,一般只给出几十到几百兆赫的几个射频点的衰减数据,都还没有提供视频频段的详细数据和特性;eie实验室对典型的SYWV75-5、7/64编电缆进行了研究测试,结果如下图一: 同轴传输特性基本特点: 1. 电缆越细,衰减越大:如75-7电缆1000米的衰减,与75-5电缆600多米衰减大致相当,或者说1000米的75-7电缆传

电磁场和电磁波的应用

本科生学年论文(课程设计)题目:电磁场与电磁波的应用 学院物理科学与技术学院 学科门类理学 专业应用物理 学号2012437019 姓名郭天凯 指导教师闫正 2015年11月18日

电磁场与电磁波的应用 摘要 随着社会的不断进步与发展,科学技术的不断改革创新,电磁场与电磁波已经应用于社会生活的方方面面,受到了越来越多人的高度重视和关注。电子通信产品的随处可见,手机通信,微波通讯以及无线电视等;电磁波极化在雷达信号滤波、检测、增强、抗干扰和目标鉴别/识别等方面的应用;电磁场在金属材料加工、合成与制备中的应用;电磁波随钻遥测技术在钻井中的应用;电磁场的生物效应在电磁治疗方面的应用等都离不开电磁成与电磁波。本文将进一步对电磁场与电磁波在通讯、科技开发、工业生产、生物科学、材料科学等方面的应用展开分析和探讨。 关键词:电磁场;电磁波;极化;电子通信技术;电磁波的应用

目录 1 电磁场与电磁波的概况 (1) 2 电磁场与电磁波在通讯方面的应用 (2) 2.1 在无线电广播中的应用 (2) 2.2 在电视广播中的应用 (2) 2.3 在移动通信中的应用 (2) 2.4 在卫星通信中的应用 (2) 3 电磁波极化的应用 (3) 3.1 利用极化实现最佳发射和接收 (3) 3.2 利用极化技术提高通信容量 (3) 3.3 极化在雷达目标识别、检测和成像中的应用 (3) 3.4 极化在抗干扰中的应用 (4) 4 电磁波随钻遥测技术在钻井中的应用 (5) 4.1 采用数据融合技术,优化产品性能,提高传输深度 (5) 4.2 采用广播芯片技术,提高信息传输能力 (5) 5 在生物医学中的应用 (6) 5.1 电磁场的生物效应及其发展 (6) 5.2 电磁场作用的机理 (6) 6 电磁场在材料科学中的应用 (7) 7 结束语 (7) 参考文献 (8)

实验室测量电磁波在导线中传播速度的一种方法

实验室测量电磁波在导线中传播速度的一种方法 刘德力(lx760506@https://www.doczj.com/doc/864781770.html,) 电磁波在导线中的传播速度可以在实验室里测出。做这个实验需要的仪器设备要求比较高,但还是可以找到。电磁波在导线中的传播速度实际早已有定论,就是不超过自由空间里的光速。这个结论不管是在理论上还是实践中都早已证明了。但现在还是有很多人想通过这类实验来发现电磁波信号在导线中的传输会有超光速的现象。他们设计了所谓的实验,采取了错误的方法和手段,当然不可能得出正确的结论。 本文介绍一个有理论根据的,有说服力的实验方法来再次证明电磁波在导线中的传播速度不会超过光速。如果你手头有仪器的话,马上就可能验证一下导线中电磁波的传播速度不会超过光速。 1.实验方法 首先我们需要两台仪器,就目前一般实验室的水平最好选择一台宽带数字示波器和一台有短脉冲(单脉冲)输出功能的信号发生器。前者比较好找,后者有点困难。有条件的话可以自己动手做一个。也能用高频连续波信号发生器来代替一下,但在最终对结果分析计算会有点麻烦。 有了两台仪器再找一根铜导线,比如一根100米长,直径为1~2毫米的漆包线就可以做实验了。下面的分析可见导线长度越短对仪器要求越高,导线越长越容易测量,测量精度也越高。 1)把导线拉直并两端固定好,一端靠近测量仪器,一端远离仪器对地开路,如图1 所示连接。 图1 实验装置 2)设置信号发生器输出短脉冲方波,脉宽100ns,幅度大于200mV,重复周期1000ns, 即1μs ,输出信号波形如图2 。短脉冲信号经过功率分配器(三通)一路连接导 线一端,同时也是接示波器1通道,另一路直接接示波器2通道。

图2 信号发生器输出波形 3)设置示波器为正脉冲上升沿触发方式,触发源采用2通道信号,触发电平选50% 即可。正确选择示波器的扫描时基,选100ns/div ,两个通道的测量幅度选择 50mV/div 。 一切正确的话,我们可以在示波器上看到:通道1有两个脉冲信号,通道2只有一个脉冲信号。精确读出通道1的两个脉冲间隔时间,即两个脉冲的上升沿之间的时间间隔Δt 。 设导线长度为L ,那么我们可以计算出电磁波在导线中的传播速度为V=2×L/Δt 。如果L是75m,Δt在500ns左右。 2.实验原理描述 电磁波的传输必须要花一定的时间,在导线中传输也是一样,假定这个传输速度为V,从信号源输出的信号在导线上传输,信号到达导线末端因能量没有消耗会反向传回起始端,我们一般说这个现象是电磁波的反射。所以我们在示波器的1通道就看到了两个脉冲信号。两个脉冲的时间间隔是脉冲信号在导线上来回传输所花的时间,这样速度计算公式就应该为V=2×L/Δt 。 3.影响实验精度的因素 要精确得到电磁波在导线中传输的速度,必须精确测量Δt 。Δt的测量当然需要有高精度的计时仪器,所以要求这里的示波器性能很好。当Δt数值不够大,测量值精度不够高时,我们可以适当增加实验导线的长度。导线越长,Δt数值越大,越好测量。但是受示波器特性和显示范围的限制,导线继续加长,Δt数值虽然增大了但最小分辨率并不会得到提高。所以,实验导线的长度和计时精度要综合考虑,我们事先可以用2L/c来估计Δt的数量级,c就是自由空间的光速。 如果我们没有实验要求的脉冲信号发生器,那么只能用高频正弦波信号发生器,反射波和入射波在导线输入端会产生叠加,叠加的结果以至我们发现不了反射波的存在。这时,我们可以在功率分配器的两个输出端都串上一个50~100欧的电阻。示波器1,2通道都是显示一个连续正弦波,但它们会有一个较小的相位差。不难理解这个相位差就是经反射信号叠加造成的。除了产生相位差外,正弦信号幅度也会变大许多(近一倍)。测出这个相位时间差,反算出反射波的真实延时值,就得到了前面的Δt ,我们一样可以计算出电磁波在导线中的传输速度。考虑到入射和反射信号叠加结果的信号其相位延迟为ΔΦ,是纯反射波信号相位延迟的1/2,所以时间延时是Δt=ΔΦ/πf。

【开题报告】电磁波在左手材料中的传输特性

开题报告 应用物理 电磁波在左手材料中的传输特性 一、选题的背景与意义 近几十年来,物理学在先进材料领域的研究发展取得了巨大的不可思议的令人欢庆鼓舞的成就,如果在几十年前你很难想象哈利波特里才有的隐形衣材料在理论上已经发展成熟并且实验室里已经能初步有了实物雏形。这就是在近十年间横空出世掀起研究狂潮的一种具有不可思议性能的人工复合材料,俗称左手材料。 左手材料的研究要追溯到上世纪60年代前苏联科学家的假想。 物理学中,介电常数ε和磁导率μ是描述均匀媒质中电磁场性质的最基本的两个物理量。在已知的物质世界中,对于电介质而言,介电常数ε和磁导率μ都为正值,电场、磁场和波矢三者构成右手关系,这样的物质被称为右手材料(right-handed materials,RHM)。这种右手规则一直以来被认为是物质世界的常规,但这一常规却在上世纪60年代开始遭遇颠覆性的挑战。1967年,前苏联物理学家Veselago在前苏联一个学术刊物上发表了一篇论文,首次报道了他在理论研究中对物质电磁学性质的新发现,即:当ε和μ都为负值时,电场、磁场和波矢之间构成左手关系。他称这种假想的物质为左手材料(left-handed materials,LHM),同时指出,电磁波在左手材料中的行为与在右手材料中相反,比如光的负折射、负的切连科夫效应、反多普勒效应等等。 然而左手材料的研究发展并不一帆风顺。在这一具有颠覆性的概念被提出后的三十年里,尽管它有很多新奇的性质,但由于只是停留在理论上,而在自然界中并未发现实际的左手材料,所以,这一怪诞的假设并没有立刻被人接受,而是处于几乎无人理睬的境地,直到时光将近本世纪时才开始出现转机。直至 1998~1999年英国科学家Pendry等人提出了一种巧妙的设计结构可以实现负的介电系数与负的磁导率,从此以后,人们开始对这种材料投入了越来越多的兴趣。2001年的突破,使左手材料的研究在世界上渐渐呈现旋风之势。 2001年,美国加州大学San Diego分校的David Smith等物理学家根据Pendry等人的建议,利用以铜为主的复合材料首次制造出在微波波段具有负介电常数、负磁导率的物质,他们使一束微波射入铜环和铜线构成的人工介质,微波

浅析视频同轴电缆

浅析视频同轴电缆 视频同轴电缆也称视频线或视频监控线,因为其主要是用来传输影像信号的一种电缆,多用于连接安防监控摄视频同轴电缆 像头和现实终端(电脑或显示器等)的电线电缆。 视频同轴电缆标准及结构 视频同轴电缆采用GB/T14864-1993国家标准。视频同轴电缆先由两根同轴心、相互绝缘的圆柱形金属导体构成基本单元(同轴对),再由单个或多个同轴对组成的电缆。同轴电缆由里到外分为四层:中心铜线,塑料绝缘体,网状导电层和电线外皮。中心铜线和网状导电层形成电流回路。因为中心铜线和网状导电层为同轴关系而得名。 视频同轴电缆产品特性: 视频同轴电缆传输性能及机械性能的稳定;阻抗均匀;抗干扰能力强。视频同轴电缆部分产品结构一览表:SYWV(物理发泡)SYV(聚乙烯绝缘)SYF SYFF(氟塑料绝缘及护套) 视频同轴电缆的主要规格型号 视频同轴电缆规格型号内导体mm 绝缘外径mm 成品外径mm 视频同轴电缆 SYwV50-21x0.68 2.2 4 SYwV50-31x0.9 2.95 5.8 SYwV50-51x1.4 4.8 7.9 SYwV50-77x0.75 7.25 11 SYwV50-97x0.95 9 12.2 SYV50-127x1.15 11.5 15 SYV50-157X1.54 15 19 SYV50-1719X1.04 17.3 22 SYV75-37X0.17 3 5 SYV75-41X0.59 4.8 6 SYV75-51X0.75 5.7 7.9 SYV75-71X1.15 7.25 10.3 SYV75-91X1.37 9 12.2 SYV75-12 7X0.6311.5 15

电磁波的发射和接收 每课一练

4.3 电磁波的发射和接收作业 1.关于无线电波的发射过程,下列说法正确的是(). A.必须对信号进行调制 B.必须使信号产生电谐振 C.必须把传输信号加到高频电流上 D.必须使用调幅的方法 解析电磁波的发射过程中,为了将低频信号发射出去,一定要对发射的电磁信号进行调制,调制的方法有两种,一是调幅、二是调频,故A、C正确.答案AC 2.下列关于无线电广播的叙述中,不正确的是(). A.发射无线电广播信号必须采用调频方式 B.发射无线电广播信号必须进行调制 C.接收无线电广播信号必须进行调谐 D.接收到无线电广播信号必须进行解调才能由扬声器播放 解析发射无线电广播信号必须经过调制,可以采用调频,也可以采用调幅,所以A错误,B正确;接收无线电信号必须经过调谐也就是选台,C正确; 由于无线电波中有高频信号,所以要经过解调将低频信号检出,才能由扬声器播放,D正确.答案 A 3.下列对无线电广播要对电磁波进行调制的原因的说法正确的是().A.经过调制后的高频电磁波向外辐射能量的本领更强 B.经过调制后的电磁波在空间传播得更快 C.经过调制后的电磁波在空间传播波长才能不变 D.经过调制后的高频电磁波才能把我们要告知对方的信号有效地传递出去解析要将电磁波有效地发射出去,必须有足够高的频率,而需要传递的声音信号通常频率较低,无法直接发射,必须借助于载波携带,因此必须通过调制将信号加到载波上才能有效地向远处传递,从而把我们要告知对方的信

号有效地传递出去.故D选项正确.答案 D 4.一台最简单的收音机,除了接收天线和扬声器外,至少还必须具备下列哪几个单元电路(). A.调谐电路B.调制电路 C.振荡电路D.检波电路 解析最简单的收音机具有调谐电路和检波电路.答案AD 5.关于电视信号的发射,下列说法正确的是(). A.摄像管输出的电信号可以直接通过天线向外发射 B.摄像管输出的电信号必须“加”在高频等幅振荡电流上,才能向外发射C.伴音信号和图像信号是同步向外发射的 D.摄像管摄取景物并将景物反射的光转化为电信号,实现光电转换 解析摄像管输出的电信号频率低,不易直接发射出去,必须“加”在高频等幅振荡电流上才能发射出去;伴音信号和图像信号是同步发射的;摄像过程实现的是光电转换.故正确答案为B、C、D.答案BCD 6.下列关于信息传递的说法中,正确的是(). A.声、光和电磁波中,只有电磁波能够传递信息 B.固定电话、移动电话、广播和电视都是利用导线中的电流传递信息的C.摄像机拍得的物体图像,直接通过发射天线发射传播信息 D.微波通信、卫星通信、光纤通信、网络通信都可以用传递信息 解析声音可以传递信息,人们非常的熟悉,光也可以传递信息,所以A项错;移动电话、无线电广播和电视都是无线传递的,所以B项错;摄像机拍得的物体图像,通过调制高频的无线电波到发射天线发射传播信息,C项错; 只有D项对.答案 D 7.一位观众在某剧场观看演出,他的座位离扬声器有20 m远;另一位观众在家里的电视机旁收看实况转播,他的家离剧场20 k m远,那么,他们两人谁先听到演员的歌声?(声速约为340 m/s)

无线电波的传播特性

无线电波的传播特性 1、无线电波的传播特性及信号分析 甚低频VLF 3-30KHz 超长波1KKm-100Km 空间波为主海岸潜艇通信;远距离通信;超远距离导航低频LF 30-300KHz 长波10Km-1Km 地波为主越洋通信;中距离通信;地下岩层通信;远距离导航中频MF 0.3-3MHz 中波1Km-100m 地波与天波船用通信;业余无线电通信;移动通信;中距离导航高频HF 3-30MHz 短波100m-10m 天波与地波远距离短波通信;国际定点通信 甚高频VHF 30-300MHz 米波10m-1m 空间波电离层散射(30-60MHz);流星余迹通信;人造电离层通信(30-144MHz);对空间飞行体通信;移动通信 超高频UHF 0.3-3GHz 分米波1m-0.1m 空间波小容量微波中继通信;(352-420MHz);对流层散射通信(700-10000MHz);中容量微波通信(1700-2400MHz) 特高频SHF 3-30GHz 厘米波10cm-1cm 空间波大容量微波中继通信(3600-4200MHz);大容量微波中继通信(5850-8500MHz);数字通信;卫星通信;国际海事卫星通信(1500-1600MHz) ELF 极低频3~30Hz SLF 超低频30~300Hz ULF 特低频 300~3000Hz VLF 甚低频3~30kHz LF 低频30~300kHz 中波,长波 MF 中频300~3000kHz 100m~1000m 中波 AM广播 HF 高频 3~30MHz 10~100m 短波短波广播 VHF 甚高频 30~300MHz 1~10m 米波FM广播 UHF 特高频 300~3000MHz 0.1~1m 分米波 SHF 超高频3~30GHz 1cm~10cm 厘米波 EHF 极高频30~300GHz 1mm~1cm 毫米波 无线电波按传播途径可分为以下四种:天波—由空间电离层反射而传播;地波—沿地球表面传播;直射波—由发射台到接收台直线传播;地面反射波—经地面反射而传播。无线电波离开天线后,既在媒介质中传播,也沿各种媒介质的交界面(如地面)传播,具有一定的规律性,但对它产生影响的因素却很多。 无线电波在传播中的主要特性如下: (1)直线传播均匀媒介质(如空气)中,电波沿直线传播。 (2)反射与折射电波由一种媒介质传导另一种媒介质时,在两种介质的分界面上,传播方向要发生变化。由第一种介质射向第二中介质,在分界面上出现两种现象。一种是射线返回第一种介质,叫做反射; 另一种现象是射线进入第二种介质,但方向发生了偏折,叫做折射。一般情况下反射和折射是同时发生的。 入射角等于反射角,但不一定等于折射角。反射和折射给测向准确性带来很大的不良影响;反射严重是,测向设备误指反射体,给干扰查找造成极大困难。 (3)绕射电波在传播途中,有力图绕过难以穿透的障碍物的能力。绕射能力的强弱与电波的频率有关,又和障碍物大小有关。频率越低的电波,绕射能力越弱;障碍物越大,绕射越困难。工作于80米(375MHZ)波段的电波,绕射能力是较强的,除陡峭高山(相对高度在200米以上)外,一般丘陵均可逾越。2米波段的电波绕射能力就很差了,一座楼房,或一个小山丘,都可能使信号难以绕过去。 (4)干涉直射波与地面反射波或其它物体的反射波在某处相遇时,测向收到的信号为两个电波合成后的信号,其信号强度有可能增强(两个信号跌叠加)也可能减弱(两个信号相互抵消)。这种现象称为波的干涉。产生干涉的结果,使得测向机在某些接收点收到的信号强,而某些接收点收到的信号弱,甚至收不到信号,给判断干扰信号距离造成错觉。天线发射到空间的电波的能量是一定的,随着传播距离的增大,不仅在传播途中能量要损耗,而且能量的分布也越来越广,单位面积上获得的能量越来越小。反之,

射频同轴电缆的技术参数

射频同轴电缆的技术参数 一、工程常用同轴电缆类型及性能: 1)SYV75-3、5、7、9…,75欧姆,聚乙烯绝缘实心同轴电缆。近些年有人把它称为“视频电缆”; 2)SYWV75-3、5、7、9…75欧姆,物理发泡聚乙烯绝缘同轴电缆。有人把它称为“射频电缆”; 3)基本性能: l SYV物理结构是100%聚乙烯绝缘;SYWV 是发泡率占70-80%的物理发泡聚乙烯绝缘电缆; l 由于介电损耗原因,SYV实心电缆衰减明显要大于SYWV物理发泡电缆;在常用工程电缆中,目前物理发泡电缆仍然是传输性能最好价格最低的电缆,在视频、射频、微波各个波段都是这样的。厂家给出的测试数据也说明了这一点; l 同轴电缆都可以在直流、射频、微波波段应用。按照“射频”/“视频”来区分电缆,不仅依据不足,还容易产生误导:似乎视频传输必须或只能选择实心电缆(选择衰减大的,价格高的?);从工程应用角度看,还是按“实芯”和“发泡”电缆来区分类型更实用一些; l 高编(128)与低编(64)电缆特性的区别:eie实验室实验研究表明,在200KHz以下频段,高编电缆屏蔽层的“低电阻”起主要作用,所以低频传输衰减小于低编电缆。但在200-300KHz以上的视频、射频、微波波段,由于“高频趋肤效应”起主要作用,高编电缆已失去“低电阻”优势,所以高频衰减两种电缆基本是相同的。 二、了解同轴电缆的视频传输特性——“衰减频率特性” 同轴电缆厂家,一般只给出几十到几百兆赫的几个射频点的衰减数据,都还没有提供视频频段的详细数据和特性;eie实验室对典型的SYWV75-5、7/64编电缆进行了研究测试,结果如下图一: 同轴传输特性基本特点: 1. 电缆越细,衰减越大:如75-7电缆1000米的衰减,与75-5电缆600多米衰减大致相当,或者说1000米的75-7电缆传输效果与75-5电缆600多米电缆传输效果大致相当; 2. 电缆越长,衰减越大:如75-5电缆750米,6M频率衰减的“分贝数”,为1000米衰减“分贝数”的75%,即15db;2000米(1000+1000)衰减为20+20=40db,其他各频率点的计算方法一样。依照上面1000米电缆测试数据,计算不同长度电缆衰减时,请记住“分贝数是加碱关系”或“衰减分贝数可以按照长度变化的百分比关系计算”,就可以灵活运用了; 3. 频率失真特性:低频衰减少,高频衰减大。高/低边频衰减量之差,可叫做“边频差值”,这是一个十分重要参数。电缆越长,“边频差值”越大;充分认识和掌握同轴电缆的这种“频率失真特性”,这在工程上具有十分重要的意义;这是影响图像质量最关键的特性,也是工程中最容易被忽视的问题; 三、工程应用设计要点 网上技术论坛里经常有人问:75-5电缆能传多远?回答有300米,500米,600米,还有说1000多米也可以的。为什么会有这么多答案呢?原因是没有一个统一的标准。既然工程中同轴电缆是用来传输视频信号的,而视频传输最后又体现为图像,所以谈同轴电缆和同轴视频传输技术应用,就离不开图像质量,离不开决定图像质量的“视频传输质量”和标准。 1. 视频传输标准的参数很多,这里仅举一个十分重要的“频率特性”例子来理解。视频图像信号是由0-6M不同频率分量组成的。低频成分主要影响亮度和对比度,高频分量主要影响色度、清晰度和分辨率。显然,对视频传输的基本要求,不是只恢复摄像机原信号亮度、对比度就行了,而且还必须恢复摄像机原信号中各种频率份量的相对比例关系。“恢复”不可能

电磁波传输损耗

电磁波传输损耗及远场区的场强预测 广播电视无线电波的频段较高,电磁波信号传输时以直射波为主,但是也存在反射、绕射和散射等。电磁波在空间传播时,向外传输的电磁波以球面波的形式向外发射,距离越大,球面半径就越大,单点的电磁信号就越小,空间损耗也就越大。另外,电磁波在空间传播的过程中会受到空气中的尘埃、水滴、水汽等物质的影响,造成反射和散射;电磁波在接近地表传输时,会由于地表不是绝对光滑,而是存在高低起伏、树木遮挡、建筑物遮挡、大型水面或湖面的影响,而产生反射、绕射等情况,这样,电磁波信号到达接收天线时就会由各种传播方式传播到的所有信号叠加而成。因为各个地区的地形存在很大差异,同一地区各个方向上的建筑物、树木、河流湖泊等情况也不尽相同,因此这种不是由于空间球面扩散而产生的损耗就是很难预测的;同时,由于各个区域的电磁覆盖情况都不一样,随之带来的电磁干扰情况也不一样,这就更为场强覆盖预测带来难度。 一、球面传播的电磁波的空间损耗

Pr :接收信号功率 Pt :发射信号功率 Gt :发射天线增益 Gr :接收天线增益 d :接收和发射天线之间的距离 λ:射频信号波长 有球面面积可计算得 自由空间传播路径损耗(发射天线和接收天线都为点源天线)可写为: 可以看出,传输距离越大,空间损耗越大,频率越高,传输损耗越大。 二、 实际电磁波的传播损耗 电磁波在空间传播时,都会受到空气中的粒子、地面建筑物、地面植被等其他物体的影响,而产生反射、折射、绕射、散射等。电磁波通常不会按照球面波的传输损耗到达接收天线。这样,实际电磁波的传播损耗,在自由空间传播路径损耗的基础上还要加上一些修正值。传播损耗按照性质分类可分为:经验模型、半经验模型、确定性模型。 MHZ mi MHZ Km r t fs f d f d d d P P dB L 1010222log 20log 2058.36log 20log 2045.324log 20)4(log 10log 10)(1010++=++=??????=??????-==λππλ()/24t r r t G G P P d πλ=

11.5 电磁波传播特性

实验11.5 电磁波传播特性 Part 1 电磁波参量的测量 一、实验目的 1. 研究电磁波在良导体表面的反射。 2. 利用相干波原理,测定自由空间内电磁波波长λ,确定电磁波的相位常数K 和波速v 。 二、实验仪器 (1)三厘米固态信号发生器1台; (2)电磁波综合测试仪1套; (3)反射板(金属板)2块; (4)半透射板(玻璃板)1块。 三、实验原理和方法 1. 自由空间电磁波参量的测量 当两束等幅,同频率的均匀平面电磁波,在自由空间内沿相同或相反方向传播时,由于相位不同发生干涉现象,在传播路程上可形成驻波场分布。本实验正是利用相干波原理,通过测定驻波场节点的分布,求得自由空间中电磁波波长λ值,再由 2K v f K πλλω=?? ==? 得到电磁波的主要参数K 和v 等。 电磁波参量测试原理如图1所示,P T 和P R 分别表示发射和接收喇叭天线,A 和B 分别表示固定和可移动的金属反射板,C 表示半透射板(有机玻璃板)。由P T 发射平面电磁波,在平面波前进的方向上放置成45°角的半透射板,由于该板的作用,将入射波分成两束波,一束向A 板方向传播,另一束向B 板方向传播。由于A 和B 为金属全反射板,两列波就再次返回到半透射板并达到接收喇叭天线P R 处。于是P R 收到两束同频率,振动方向一致的两个波。如果这两个波的相位差为π的偶数倍,则干涉加强;如果相位差为π的奇数倍,则干涉减弱。

移动反射板B ,当P R 的表头指示从一次极小变到又一次极小时,则反射板B 就移动了λ/2的距离,由这个距离就可以求得平面波的波长。 设入射波为垂直极化波 0j i E E e φ-= 当入射波以入射角θ1向介质板C 斜入射时,在分界面上产生反射波r E 和折射波t E 。设C 板的反射系数为R ,T 0为由空气进入介质板的折射系数,T c 为由介质板进入空气的折射系数。固定板A 和可移动板B 都是金属板,反射系数均为-1。在一次近似的条件下,接收喇叭天线P R 处的相干波分别为 12100200j r c j r c E RT T E e E RT T E e φφ--=-=- 这里 ()()()1131 223132 K l l KL K l l K l l L KL φφ=+==+=++?= 其中,ΔL =|L 2-L 1|为B 板移动距离,而1r E 与2r E 传播的路程差为2ΔL 。 由于1r E 与2r E 的相位差为21=2K L φφφ?-=?,因此,当2ΔL 满足 ()20,1,2, L n n λ?== 1r E 与2r E 同相相加,接收指示为最大。 当2ΔL 时满足 图1 电磁波参量测试原理图

同轴线传输网络信号的方法

以太网以太网信号的转换延长信号的转换延长信号的转换延长 1.1.概述概述概述 局域网的网络信号的局域网的网络信号的传输一直是受网线的100米距离限制,光纤传输又超过这种距离,目前一种利用EOC 传输技术的转换器可很好的解决这种问题。该设备可通过单根同轴电缆传输实时数字高清IP 视频和低压电源,最远距离可达250米(RG11),支持全双工100Mbps。一台作为发送端(从主机-摄像机远端),一台作为接收端(主机-NVR 本地端)。产品产品产品可以广泛应用在铁路可以广泛应用在铁路可以广泛应用在铁路、、城市交通等安防监控众多领域城市交通等安防监控众多领域和系统升级改造的项目中和系统升级改造的项目中和系统升级改造的项目中。。有助于实现视频监控系统从模拟CCTV 到网络IP 监控的无缝过渡监控的无缝过渡。。该产品该产品支持支持P o E 和P o C 技术,前端的IP 摄像机和设备也无需单独布电源电缆。 2.2.特性特性特性 利用一根同轴线传输及延长网络数字信号。支持网络高清摄像机的信号延长。 支持PoE 供电的设备使用。如PoE 摄像机。 一对一配合使用,最大信号传输距离250米(RG11线缆) 支持完全透明的100BaseT 全双工网络速率,设备自适应; 产品各端口内置静电保护,过电压保护功能。 电源从末端往前端输送,只需在末端加装外置电源变压器或PoE 供电设备即可实现发射器和PoE 设备的同时取电。 内置ESD 保护电路,能有效防止静电损坏; CE 及FCC 认证产品。 独有特性独有特性 电源是从接收接收接收主机端主机端 主机端输入,通过同轴电缆使用PoC(power on cable)技术对发送端从机及摄像机进行供电;电源输入和输出支持PoE 供电。 3.3.使用环境使用环境使用环境 接收端(主机-NVR 端) 通过PoE 交换机提供电源,发送端(从机-摄像机远端)不需额外的电源;前端摄像机可选择转换器的PoE 端口供电,无PoE 功能的摄像机必须使用单独的电源。 接收端(主机-NVR 端) 通过PoE 供电模块提供电源,发送端(从机-摄像机远端)不需额外的电源;前端摄像机

相关主题
文本预览
相关文档 最新文档