当前位置:文档之家› 带电粒子在复合场中运动的17个经典例题

带电粒子在复合场中运动的17个经典例题

带电粒子在复合场中运动的17个经典例题
带电粒子在复合场中运动的17个经典例题

带电粒子在复合场中运动的17个经典例题1.如图所示,MN、PQ是平行金属板,板长为L,两板间距离为d,在PQ板的上方有垂直纸面向里的匀强磁场。一个电荷量为q、质量为m的带负电粒子以速度v0从MN板边缘沿平行于板的方向射入两板间,结果粒子恰好从PQ板左边缘飞进磁场,然后又恰好从PQ板的右边缘飞进电场。不计粒子重力。试求:

(1)两金属板间所加电压U的大小;

(2)匀强磁场的磁感应强度B的大小;

(3)在图中画出粒子再次进入电场的运动轨迹,并标出粒子再次从电场中飞出的位置与速度方向。

2.如图,在xoy平面内,MN和x轴之间有平行于y轴的匀强电场和垂直于xoy平面的匀强磁场,y轴上离坐标原点4 L的A点处有一电子枪,可以沿+x方向射出速度为v0的电子(质量为m,电量为e)。如果电场和磁场同时存在,电子将做匀速直线运动.如果撤去电场,只保留磁场,电子将从x轴上距坐标原点3L的C点离开磁场.不计重力的影响,求:

(1)磁感应强度B和电场强度E的大小和方向;

(2)如果撤去磁场,只保留电场,电子将从D点(图中未标出)离开电场,求D点的坐标;(3)电子通过D点时的动能。

3.如图所示,在y>0的空间中,存在沿y轴正方向的匀强电场E;在y<0的空间中,存在沿y 轴负方向的匀强电场,场强大小也为E,一电子(电量为-e,质量为m)在y轴上的P(0,d)点以沿x轴正方向的初速度v0开始运动,不计电子重力,求:

(1)电子第一次经过x轴的坐标值

(2)电子在y方向上运动的周期

(3)电子运动的轨迹与x轴的各个交点中,任意两个相邻交点间

的距离

(4)在图上画出电子在一个周期内的大致运动轨迹

4.如图所示,一个质量为m=2.0×10-11kg ,电荷量q=+1.0×10-5C 的带电微粒(重力忽略不计),从静止开始经U=100V 电压加速后,水平进入两平行金属板间的偏转电场中。金属板长L=20cm ,两板间距d=103cm 。求:⑴微粒进入偏转电场时的速度v 是多大?⑵若微粒射出电场过程的偏转角为θ=30°,并接着进入一个方向垂直与纸面向里的匀强磁场区,则两金属板间的电压U2是多大?⑶若该匀强磁场的宽度为D=103cm ,为使微粒不会由磁场右边射出,该匀强磁场的磁感应强度B 至少多大?

5、如图所示,两个共轴的圆筒形金属电极,外电极接地,其上均匀分布着平行于轴线的四条狭缝a 、b 、c 和d ,外筒的外半径为r ,在圆筒之外的足够大区域中有平行于轴线方向的均匀磁场,磁感强度的大小为B 。在两极间加上电压,使两圆筒之间的区域内有沿半径向外的电场。一质量为m、带电量为+q 的粒子,从紧靠内筒且正对狭缝a 的S 点出发,初速为零。如果该粒子经过一段时间的运动之后恰好又回到出发点S ,则两电极之间的电压U 应是多少?(不计重力,整个装置在真空中)

6、核聚变反应需几百万摄氏度高温,为了把高温条件下高速运动粒子约束在小范围内(否则不可能发生核聚变),可采用磁约束的方法.如所示,环状匀强磁场围成中空区域,中空区域内的带电粒子只要速度不是很大,都不会穿出磁场的外边缘,设环形磁场的内半径R1=0. 5 m ,外半径R2=1m ,磁场的磁感应强度B =0. 1T ,若被约束的带电粒子的比荷q/m=4×107C/kg,中空区域内的带电粒子具有各个方向大小不同的速度,问(1)粒子沿环状半径方向射入磁场,不能穿越磁场的最大速度;(2)所有粒子不能穿越磁场的最大速度.

7、如图所示,在直角坐标系的第Ⅱ象限和第Ⅳ象限中的直角三角形区域内,分布着磁感应强度均为B =5.0×10-3T 的匀强磁场,方向分别垂直纸面向外和向里。质量为m =6.64×10-27㎏、电荷量为q =+3.2×10-19C 的α粒子(不计α粒子重力),由静止开始经加速电压为U =1205V 的电场(图中未画出)加速后,从坐标点M (-4,2)处平行于x 轴向右运动,并先后通过两个匀强磁场区域。

(1)请你求出α粒子在磁场中的运动半径;

(2)你在图中画出α粒子从直线x =-4到直线x =4之间的运动轨迹,并在图中标明轨迹与直线x =4交点的坐标;

(3)求出α粒子在两个磁场区域偏转所用的总时间。

8、真空中有一半径为r的圆柱形匀

强磁场区域,磁场方向垂直于纸面向里,Ox为过边界上O点的切线,如图所示。从O点在纸面内

v的电子,设电子重力不计且相互间的作用也忽略,且电子在磁场中的向各个方向发射速率均为0

偏转半径也为r。已知电子的电量为e,质量为m。

(1)速度方向分别与Ox方向夹角成60°和90°的电子,在磁场中的运动时间分别为多少?

(2)所有从磁场边界出射的电子,速度方向有何特征?

(3)设在某一平面内有M、N两点,由M点向平面内各个方向发射速率均为0v的电子。请设计一种匀强磁场分布(需作图说明),使得由M点发出的所有电子都能够汇集到N点。

9、如图所示,一质量为m,带电荷量为+q的粒子以速度v0从O点沿y轴正方向射入磁感应强度为B的圆形匀强磁场区域,磁场方向垂直纸面向外,粒子飞出磁场区域后,从点b处穿过x轴,速度方向与x轴正方向的夹角为30°,同时进入场强为E、方向沿x轴负方向成60°角斜向下的匀强电场中,通过了b点正下方的c点,如图所示。粒子的重力不计,试求:

(1)圆形匀强磁场的最小面积。

(2)c点到b点的距离s。

10、如图所示的区域中,第二象限为垂直纸面向外的匀强磁场,磁

感应强度为B,第一、第四象限是一个电场强度大小未知的匀强电

场,其方向如图。一个质量为m,电荷量为+q的带电粒子从P孔以

初速度v0沿垂直于磁场方向进入匀强磁场中,初速度方向与边界线

的夹角θ=30°,粒子恰好从y轴上的C孔垂直于匀强电场射入匀强

电场,经过x轴的Q点,已知OQ=OP,不计粒子的重力,求:

(1)粒子从P运动到C所用的时间t;

(2)电场强度E的大小;

(3)粒子到达Q点的动能Ek。

11、如图所示,半径分别为a、b的两同心虚线圆所围空间分别存在电场和磁场,中心O处固定一个半径很小(可忽略)的金属球,在小圆空间内存在沿半径向内的辐向电场,小圆周与金属球间电势差为U,两圆之间的空间存在垂直于纸面向里的匀强磁场,设有一个带负电的粒子从金属球表面沿+x轴方向以很小的初速度逸出,粒子质量为m,电量为q,(不计粒子重力,忽略粒子初速度)求:

(1)粒子到达小圆周上时的速度为多大?

(2)粒子以(1)中的速度进入两圆间的磁场中,当磁感应强度超过某一临界值时,粒子将不能到达大圆周,求此最小值B。

(3)若磁感应强度取(2)中最小值,且b=(2+1)a,要粒子恰好第一次沿逸出方向的反方向回到原出发点,粒子需经过多少次回旋?并求粒子在磁场中运动的时间。(设粒子与金属球正碰后

电量不变且能以原速率原路返回)

12、在图所示的坐标系中,x轴水平,y轴垂直,x轴上方空间只存在重力场,第Ⅲ象限存在沿y 轴正方向的匀强电场和垂直xy平面向里的匀强磁场,在第Ⅳ象限由沿x轴负方向的匀强电场,场强大小与第Ⅲ象限存在的电场的场强大小相等。一质量为m,带电荷量大小为q的质点a,从y轴上y=h处的p1点以一定的水平速度沿x轴负方向抛出,它经过x=-2h处的p2点进入第Ⅲ象限,恰好做匀速圆周运动,又经过y轴上方y=-2h的p3点进入第Ⅳ象限,试求:

(1)质点a到达p2点时速度的大小和方向;

(2)第Ⅲ象限中匀强电场的电场强度和匀强磁场的磁感应强度的大小;

13.如图所示,在x>0的空间中,存在沿x轴方向的匀强电场,电场强度E=10N/C;在x<0的空间中,存在垂直xy平面方向的匀强磁场,磁感应强度B=0.5T。一带负电的粒子(比荷160C/Kg,在x=0.06m处的d点以8m/s的初速度沿y轴正方向开始运动,不计带电粒子的重力。求

(1)带电粒子开始运动后第一次通过y轴时距O点的距离;

(2)带电粒子进入磁场后经多长时间返回电场;

(3)带电粒子运动的周期。

14、如图所示,空间存在着彼此垂直并作周期性变化的匀强电场和匀强磁场,电场和磁场随时间变化分别如图乙、丙所示(电场方向竖直向上为正,磁场方向垂直纸面向里为正)。某时刻有一微粒从A点以初速v开始向右运动,图甲中虚线是微粒的运动轨迹(直线和半圆相切于A、B、C、D 四点,图中v、E0和0B都未知)。

(1)此微粒带正电还是带负电?可能是什么时刻从A点开始运动的?

(2)求微粒的运动速度和BC之间的距离。

15.如图所示,坐标系xoy在竖直平面内,空间有沿水平方向垂直于纸面向外的匀强磁场,磁感应强度大小为B,在x>0的空间里有沿x轴正方向的匀强电场,场强的大小为E,一个带正电的小球经过图中x轴上的A点,沿着与水平方向成θ=300角的斜向下直线做匀速运动,经过y轴上的B 点进入x<0的区域,要使小球进入x<0区域后能在竖直面内做匀速圆周运动,需在x<0区域内另加一匀强电场。若带电小球做圆周运动通过x轴上的C点,且OA=OC,设重力加速度为g,求:(1)小球运动速率的大小。

(2)在x<0的区域所加电场大小和方向。

(3)小球从B点运动C点所用时间及OA的长度。

16、如图7所示,X轴上方有匀强磁场B,下方有竖直向下匀强电场E。电量为q、质量为m(重力不计),粒子静止在y轴上。X轴上有一点N(L.0),要使粒子在y轴上由静止释放而能到达N点,问:(1)粒子应带何种电荷? 释放点M应满足什么条件? (2)粒子从M点运动到N点经历多长的时间?0

17.如图所示,在xoy 坐标平面的第一象限内有一沿y 轴正方向的匀强电场,在第四象限内有一垂直于平面向内的匀强磁场,现有一质量为m 带电量为q的负粒子(重力不计)从电场中坐标为(3L,L)的P 点与x轴负方向相同的速度V射入,从O点与y轴正方向成45°夹角射出,求:

(1)粒子在O点的速度大小.

(2)匀强电场的场强E.

(3)粒子从P点运动到O点所用的时间.

自由落体运动例题及习题

自由落体运动 典型例题: 2 例 1 从离地500m 的空中自由落下一个小球,取g= 10m/s ,求:(1)经过多少时间落到地面; (2)从开始落下的时刻起,在第1s 内的位移、最后1s 内的位移; 解析由h=500m 和运动时间,根据位移公式可直接算出落地时间、第1s 内位移和落下一半时间的位移.最后1s 内的位移是下落总位移和前(n—1)s 下落位移之差. 1 [ 解](1)由h = gt2,得落地时间: 2h 2× 500 t s 10s g 10 (2)第1s 内的位移: 1 2 1 2 h1gt12× 10× 12 5m 1 2 1 2 因为从开始运动起前9s 内的位移为: 1 2 1 2 h9 2gt29 2×10×92m 405m 所以最后1s 内的位移为: h10=h-h 9=500m-405m=95m (3)落下一半时间即t'=5s ,其位移为 121 h5 2gt' 2× 10×25m 125m 说明根据初速为零的匀加速运动位移的特点,由第1s 内的位移h1=5m,可直接用比例关系求出最后1s 内的位移,即 h1∶h10=1∶19 ∴ h 10=19h1=19× 5m=95m 同理,若把下落全程的时间分成相等的两段,则每一段内通过的位移之比:

22 ht/2 ∶ht =1 ∶2 =1∶ 4

11 h t/2 h t ×500m 125m 44 例 2 一个物体从H 高处自由落下,经过最后196m所用的时间是4s,求物体下落所用的总时间T 和高度H是多少取g=9.8m/s2,空气阻力不计. 解析根据题意画出小球的运动示意图(图1)其中t=4s ,h=196m . 解方法 1 根据自由落体公式 式(1)减去式(2),得 h gTt 21gt2, h 1 gt 2 2 gt 1 196 × 9.8×16 2 2 7s, 9.8×4 H 1 gT2 1×9.8×72 m 2401. m. 22 方法 2 利用匀变速运动平均速度的性质由题意得最后4s 内的平均速度为h 196 v m /s 49m / s. t4 因为在匀变速运动中,某段时间中的平均速度等于中点时刻的速度,所以下落至最后时的瞬时速度为 v't v 49m /s. 由速度公式得下落至最后2s 的时间H高 2s

曲线运动经典例题

《曲线运动》经典例题 1、关于曲线运动,下列说法中正确的是(AC) A. 曲线运动一定是变速运动 B. 变速运动一定是曲线运动 C. 曲线运动可能是匀变速运动 D. 变加速运动一定是曲线运动 【解析】曲线运动的速度方向沿曲线的切线方向,一定是变化的,所以曲线运动一定是变速运动。变速运动可能是速度的方向不变而大小变化,则可能是直线运动。当物体受到的合力是大小、方向不变的恒力时,物体做匀变速运动,但力的方向可能与速度方向不在一条直线上,这时物体做匀变速曲线运动。做变加速运动的物体受到的合力可能大小不变,但方向始终与速度方向在一条直线上,这时物体做变速直线运动。 2、质点在三个恒力F1、F2、F3的共同作用下保持平衡状态,若突然撤去F1,而保持F2、F3不变,则质点(A) A.一定做匀变速运动B.一定做直线运动 C.一定做非匀变速运动D.一定做曲线运动 【解析】质点在恒力作用下产生恒定的加速度,加速度恒定的运动一定是匀变速运动。由题意可知,当突然撤去F1而保持F2、F3不变时,质点受到的合力大小为F1,方向与F1相反,故一定做匀变速运动。在撤去F1之前,质点保持平衡,有两种可能:一是质点处于静止状态,则撤去F1后,它一定做匀变速直线运动;其二是质点处于匀速直线运动状态,则撤去F1后,质点可能做直线运动(条件是F1的方向和速度方向在一条直线上),也可能做曲线运动(条件是F1的方向和速度方向不在一条直线上)。 3、关于运动的合成,下列说法中正确的是(C) A. 合运动的速度一定比分运动的速度大 B. 两个匀速直线运动的合运动不一定是匀速直线运动 C. 两个匀变速直线运动的合运动不一定是匀变速直线运动 D. 合运动的两个分运动的时间不一定相等 【解析】根据速度合成的平行四边形定则可知,合速度的大小是在两分速度的和与两分速度的差之间,故合速度不一定比分速度大。两个匀速直线运动的合运动一定是匀速直线运动。两个匀变速直线运动的合运动是否是匀变速直线运动,决定于两初速度的合速度方向是否与合加速度方向在一直线上。如果在一直线上,合运动是匀变速直线运动;反之,是匀变速曲线运动。根据运动的同时性,合运动的两个分运动是同时的。 4、质量m=0.2kg的物体在光滑水平面上运动,其分速度v x和v y随时间变化的图线如图所示,求: (1)物体所受的合力。 (2)物体的初速度。 (3)判断物体运动的性质。 (4)4s末物体的速度和位移。 【解析】根据分速度v x和v y随时间变化的图线可知,物体在x 轴上的分运动是匀加速直线运动,在y轴上的分运动是匀速直线 运动。从两图线中求出物体的加速度与速度的分量,然后再合成。 (1) 由图象可知,物体在x轴上分运动的加速度大小a x=1m/s2,在y轴上分运动的加速度为0,故物体的合加速度大小为a=1m/s2,方向沿x轴的正方向。则物体所受的合力 F=ma=0.2×1N=0.2N,方向沿x轴的正方向。 (2) 由图象知,可得两分运动的初速度大小为 v x0=0,v y0=4m/s,故物体的初速度

历年板块运动部分高考题组 题

(2012上海卷地理(四))板块运动造就了地球表面高低起伏的基本形 态。 1. 洋脊的形成主要是由于 A. 地震使海底抬升 B. 地震导致海底中间凹陷 C. 海底扩张处岩浆涌出 D. 海底扩张处沉积物大量堆积 2. 大洋板块与大陆板块碰撞,可能形成 A. 岛弧和海沟 B. 海岭和海沟 C. 海岭和裂谷 D. 岛弧和裂谷 3. (2009年高考上海地理单科卷)图示的板块边界是 A. 大陆板块与大陆板块的碰撞边界 B. 大洋板块内部的生长边界 C. 大洋板块向大陆板块的俯冲边界 D. 大陆板块内部的生长边界 4. (2009年高考上海地理单科卷)以下地貌单元中,成因与图示机理相 关的是 A. 东非大裂谷 B. 日本列岛 C.阿尔卑斯山脉 D. 落基山脉 5.(2001年普通高等学校夏季招生考试地理上海卷,32)读“大洋板块俯冲 示意图”回答: (1)图中:海底地形A处为( ),P处为( );B处是( ) 物质上升处。 (2) 下列各类岩石中,在H处常见的是( ) A.玄武岩 B.页岩 C.花岗岩 D.石英岩 (3) 据勘探,C、D、E三处海底地层岩石年龄按自老到新依次排列是( )。 (4)如M板块为太平洋板块,则N板块的名称是( )板块,当M 板块俯冲到N板块下面,N板块受挤压上拱,形成高大山系的名称是 ( )山系。 (2014上海卷)(四)形态各异,丰富多彩的坚硬岩石是地球固体表 层的重要组成部分。

6. 不同大陆板块的碰撞挤压会产生高压环境,能够形成某些种类的变质岩。下列能够广泛出露这类变质岩的区域是 A. 喜马拉雅山区 B. 日本太平洋岩区 C. 新西兰南北岛屿 D. 冰岛火山带 7.(2013高考题海南卷)图1为某半岛地形图。读图1,完成7题。 该半岛火山活动频繁,是因为受到( ) A.太平洋板块张裂的影响 B.印度洋板块张裂的影响 C.印度洋板块挤压的影响 D.太平洋板块挤压的影响

万有引力与航天 典型例题

万有引力与航天--例题 考点一 天体质量与密度的计算 1.解决天体(卫星)运动问题的基本思路 (1)天体运动的向心力来源于天体之间的万有引力,即 G Mm r 2=ma n =m v 2r =m ω2r =m 4π2r T 2 (2)在中心天体表面或附近运动时,万有引力近似等于重力,即G Mm R 2=mg (g 表示天体表面的重力加速度). 2.天体质量与密度的计算 (1)利用天体表面的重力加速度g 与天体半径R 、 由于G Mm R 2=mg ,故天体质量M =gR 2G , 天体密度ρ=M V =M 43 πR 3=3g 4πGR 、 (2)通过观察卫星绕天体做匀速圆周运动的周期T 与轨道半径r 、 ①由万有引力等于向心力,即G Mm r 2=m 4π2T 2r ,得出中心天体质量M =4π2r 3 GT 2; ②若已知天体半径R ,则天体的平均密度 ρ=M V =M 43 πR 3=3πr 3GT 2R 3; ③若天体的卫星在天体表面附近环绕天体运动,可认为其轨道半径r 等于天体半径R ,则天体密 度ρ=3πGT 2、可见,只要测出卫星环绕天体表面运动的周期T ,就可估算出中心天体的密度.

例 1 1798年,英国物理学家卡文迪许测出万有引力常量G ,因此卡文迪许被人们称为能称出地球质量的人.若已知万有引力常量G ,地球表面处的重力加速度g ,地球半径R ,地球上一个昼夜的时间T 1(地球自转周期),一年的时间T 2(地球公转周期),地球中心到月球中心的距离L 1,地球中心到太阳中心的距离L 2、您能计算出( ) A.地球的质量m 地=gR 2G B.太阳的质量m 太=4π2L 32GT 22 C.月球的质量m 月=4π2L 31GT 21 D.可求月球、地球及太阳的密度 1.[天体质量的估算]“嫦娥一号”就是我国首次发射的探月卫星,它在距月球表面高度为200

高一物理自由落体运动同步练习题及答案

高一物理自由落体运动同步练习题及答案 题号一、选择 题 二、填空 题 三、实验, 探究题 四、计算 题 总分 得分 一、选择题 11、取一根长2 m 左右的细线,5个铁垫圈和一个金属盘.在线的一端系上第一个垫圈,隔12 cm 再系一个,以后每两个垫圈之间的距离分别为36 cm、60 cm、84 cm,如图所示,站在椅子上,向上提起线的另一端,让线自由垂下,且第一个垫圈紧靠放在地面上的金属盘内.松手 后开始计时,若不计空气阻力,则第2、3、4、5各垫 圈 ( ) A.落到盘上的声音时间间隔越来越大 B.落到盘上的声音时间间隔相等 C.依次落到盘上的速率关系为1∶2∶3∶4 D.依次落到盘上的时间关系为1∶(-1)∶(-)∶(2-) 12、在一高度处同时释放一片羽毛和一个玻璃球,玻璃球先于羽毛到达地面,其最根本的原因是因为 A.它们的重量不等 B.它们的密度不等 C.它们的材料不同 D.它们所受空气阻力的影响不同 13、近年来测重力加速度g值的一种方法叫“对称自由下落法”。具体做法是:将真空长直管沿竖直方向放置,自其中O点向上抛小球又落至原处所用时间为t2,在小球运动过程中经过比O点高h 的B点,小球离开B点至又回到B点所用时间为t1,测得t1、t2、h,则重力加速度的表达式为() A. B. C. D. 14、伽利略为了研究自由落体的规律,将落体实验转化为著名的“斜面实验”,从而创造了一种科学研究的方法.利用斜面实验主要是考虑到() A.实验时便于测量小球运动的速度 B. 实验时便于测量小球运动的时间 C. 实验时便于测量小球运动的路程 D. 斜面实验可以通过观察与计算直接得到落体的运动规律 二、填空题22、自由下落的物体,从H 高处自由下落,当物体的运动速度是着地速度的一半时,距地面的高度 为。 23、物体自由下落的总时间是6s,若取g= 10m /s2,则下落的高度是_________m,它在0~2s内下 落的高度是_________m,在2~4s内下落的高度是________m,在4~6s内下落的高度是_________m。 24、用20m/s的初速度竖直上抛一个小球后,又以25m/s的初速度再向上抛出第二个小球,结果两 球在抛出点以上15m处相遇,那么两球抛出的时间相差______________s。 三、实验,探究题 27、某同学用如图甲所示装置测量重力加速度g,所用交流电频率为50 Hz。在所选纸带上取某点为0号计数点,然后每3个点取一个计数点,所以测量数据及其标记符号如题图乙所示。该同学用两种方法处理数据(T为相邻两计数点的时间间隔): 方法A:由……,取平均值g=8.667 m/s2; 方法B:由取平均值g=8.673m/s2 甲 (1)从实验装置看,操作步骤中释放纸带和接通电源的先后顺序应该 是 _____________________________。 (2)从数据处理方法看,选择方法___________(A或B)更合理,这样可以减少实验的 __________(填“系统”或“偶然”)误差。 (3)本实验误差的主要来源有_________________________________(试举出两条)。 28、(1)小球作直线运动时的频闪照片如图所示.

高中物理曲线运动经典题型总结-(1)word版本

专题 曲线运动 一、运动的合成和分解 【题型总结】 1.合力与轨迹的关系 如图所示为一个做匀变速曲线运动质点的轨迹示意图,已知在B 点的速度与加速度相互垂直,且质点的运动方向是从A 到E ,则下列说法中正确的是( ) A .D 点的速率比C 点的速率大 B .A 点的加速度与速度的夹角小于90° C .A 点的加速度比D 点的加速度大 D .从A 到D 加速度与速度的夹角先增大后减小 2.运动的合成和分解 例:一人骑自行车向东行驶,当车速为4m /s 时,他感到风从正南方向吹来,当车速增加到7m /s 时。他感到风从东南方向(东偏南45o)吹来,则风对地的速度大小为( ) A. 7m/s B. 6m /s C. 5m /s D. 4 m /s 3.绳(杆)拉物类问题 例:如图所示,重物M 沿竖直杆下滑,并通过绳带动小车m 沿斜面升高.问:当滑轮右侧的绳与竖直方向成θ角,且重物下滑的速率为v 时,小车的速度为多少? 练习1:一根绕过定滑轮的长绳吊起一重物B ,如图所示,设汽车和重物的速度的大小分别为B A v v ,,则( ) A 、 B A v v = B 、B A v v ? C 、B A v v ? D 、重物B 的速度逐渐增大 4.渡河问题 例1:在抗洪抢险中,战士驾驶摩托艇救人,假设江岸是平直的,洪水沿江向下游流去,水流速度为v 1,摩托艇在静水中的航速为v 2,战士救人的地点A 离岸边最近处O 的距离为d ,如战士想在最短时间内将人送上岸,则摩托艇登陆的地点离O 点的距离为( ) 例2:某人横渡一河流,船划行速度和水流动速度一定,此人过河最短时间为了T 1;若此船用最短的位移过河,则需时间为T 2,若船速大于水速,则船速与水速之比为( ) (A) (B) (C) (D) 【巩固练习】 1、 一个劈形物体M ,各面都光滑,放在固定的斜面上,上表面水平,在上表面放一个 光滑小球m ,劈形物体由静止开始释放,则小球在碰到斜面前的运动轨迹是( ) m

(完整版)板块类运动问题专题练习汇总

板块类运动问题专题练习 1.(8分)如图13所示,有一定厚度的长木板AB在水平面上滑行,木板的质量m1=4.0kg.木板与水平面间的动摩擦因数μ=0.20,木板上表面距水平面的高度h=0.050m.当木板滑行速度v0=3.0m/s时,将一小物块C轻放在木板右端B点处.C可视为质点,它的质量m2=1.0kg.经过一段时间,小物块C从木板的左端A点滑出,它落地时的动能E KC=1.0J.小物块落地后,木板又滑行了一段距离停在水平面上,这时,木板左端A点距小物块的落地点的水平距离S1=0.90m.求: (1)小物块C从木板的A点滑出时,木板速度的大小v A; (2)木板AB的长度L. 图13 2.(8分)如图11所示,将工件P(可视为质点)无初速地轻放在以速率v匀速运行的水平传送带的最左端A,工件P在传送带的作用下开始运动,然后从传送带最右端B飞出,落在水平地面上. 已知AB的长度L=7.5m,B距地面的高度h=0.80m. 当v=3.0m/s时,工件P从A端运动到落地点所用的时间t0=4.4s. 求: (1)工件P与传送带之间的动摩擦因数μ; (2)当传送带分别以不同的速率v(运行方向不变)匀速运行时,工件P均以v0=5.0m/s 的初速度从A端水平向右滑上传送带. 试分析当v的取值在什么范围内变化时,工件P从A端运动到落地点所用的时间t保持不变,并求出对应的时间t(结果保留两位有效数字) . 3.(8分)如图11所示,水平地面上一个质量M=4.0 kg、长度L=2.0 m的木板,在F=8.0 N的水平拉力作用下,以v0=2.0 m/s的速度向右做匀速直线运动.某时刻将质量m=l.0 kg

天体运动经典题型分类

万有引力和航天知识的归类分析 一.开普勒行星运动定律 1、开普勒第一定律(轨道定律):所有行星绕太阳运动的轨道都是椭圆,太阳处在所有椭圆的一个焦点上。 2、开普勒第二定律(面积定律):对任意一个行星来说,它与太阳的连线在相等的时间内扫过相等的面积。 3、开普勒第三定律(周期定律):所有行星的轨道的半长轴的三次方跟它的公转周期的二次方的比值都相等。 实例、飞船沿半径为r 的圆周绕地球运动,其周期为T ,如图所示。若飞船要返回地面,可在轨道上某点处将速率降到适当的数值,从而使飞船沿着以地心为焦点的椭圆轨道运行,椭圆与地球表面在某点相切,已知地球半径为R ,求飞船由远地点运动到近地点所需要的时间。 二.万有引力定律 实例2、设想把质量为m 的物体放到地球的中心,地球的质量为M ,半径为R ,则物体与地球间的万有引力是 ( ) A 、零 B 、无穷大 C 、 2 R GMm D 、无法确定 小结:F= 2 2 1r m Gm 的适用条件是什么 三.万有引力与航天 (一)核心知识 万有引力定律和航天知识的应用离不开两个核心 1、 一条主线 ,本质上是牛顿第二定律,即万有引力提供天体做圆周运动所需要的向心力。 2、 黄金代换式 GM =g R 2 此式往往在未知中心天体的质量的情况下和一条主线结合使用 (二)具体应用 应用一、卫星的四个轨道参量v 、ω、T 、a 向与轨道半径r 的关系及应用 1、理论依据:一条主线 2、实例分析 如图所示,a 、b 是两颗绕地球做匀速圆周运动的人造卫星,它们距地面 的高度 分别是R 和2R(R 为地球半径).下列说法中正确的是( ) A.a 、b 的线速度大小之比是 2∶1 B.a 、b 的周期之比是1∶2 C.a 、b 的角速度大小之比是3 ∶4 D.a 、b 的向心加速度大小之比是9∶4 小结: 轨道模型: 在中心天体相同的情况下卫星的r 越大v 、ω、a 越小,T 越大,r 相同,则卫星的v 、ω、a 、T 也相同,r 、 v 、ω、a 、T 中任一发生变化其它各量也会变化。 应用二、测量中心天体的质量和密度 1、方法介绍 方法一、“T 、r ”计算法 在知道“T 、r ”或“v 、r ”或“ω、r ”的情况下,根据一条主线均可计算出中心天体的质量,这种方法统称为“T 、r ”计算法。在知道中心天体半径的情况下利用密度公式还可以计算出中心天体的密度。 方法二、“g 、R ”计算法 利用天体表面的重力加速度g 和天体半径R. 2、实例分析 例4:已知万有引力常量G,地球半径R,月球和地球之间的距离r,同步卫星距地面的高度h,月球:绕地球的运转周期T 1,地球的自转周期T 2 , 天体密度故天体质量由于,,2 2G gR M mg R Mm G ==.π43π3 43 GR g R M V M = ==

高一物理自由落体运动典型例题

自由落体运动典型例题 [例1]从离地500m的空中自由落下一个小球,取g= 10m/s2,求: (1)经过多少时间落到地面; (2)从开始落下的时刻起,在第1s内的位移、最后1s内的位移; (3)落下一半时间的位移. [分析]由h=500m和运动时间,根据位移公式可直接算出落地时间、第1s内位移和落下一半时间的位移.最后1s内的位移是下落总位移和前(n—1)s下落位移之差. (2)第1s内的位移: 因为从开始运动起前9s内的位移为: 所以最后1s内的位移为: h10=h-h9=500m-405m=95m

(3)落下一半时间即t'=5s,其位移为 [说明]根据初速为零的匀加速运动位移的特点,由第1s内的位移h1=5m,可直接用比例关系求出最后1s内的位移,即 h1∶h10=1∶19 ∴ h10=19h1=19×5m=95m 同理,若把下落全程的时间分成相等的两段,则每一段内通过的位移之比: h t/2∶h t=12∶22=1∶4 [例2]一个物体从H高处自由落下,经过最后196m所用的时间是4s,求物体下落H高所用的总时间T和高度H是多少?取g=9.8m/s2,空气阻力不计. [分析]根据题意画出小球的运动示意图(图1)其中t=4s, h=196m. [解]方法 1 根据自由落体公式 式(1)减去式(2),得

方法2 利用匀变速运动平均速度的性质由题意得最后4s内的平均速度为 因为在匀变速运动中,某段时间中的平均速度等于中点时刻的速度,所以下落至最 后2s时的瞬时速度为 由速度公式得下落至最后2s的时间 方法3 利用v-t图象 画出这个物体自由下落的v-t 图,如图2所示.开始下落后经时间(T—t)和T后的速度分别为g(T-t)、 gT. 图线的AB段与t轴间的面积表示在时间t内下落的高度h.。由

曲线运动典型例题

一、选择题 1、一石英钟的分针和时针的长度之比为 3:2,均可看作是匀速转动,则()A.分针和时针转一圈的时间之比为 1:60 B.分针和时针的针尖转动的线速度之比为 40:1 C.分针和时针转动的角速度之比为 12:1 D.分针和时针转动的周期之比为 1:6 2、有一种杂技表演叫“飞车走壁”,由杂技演员驾驶摩托车沿圆台形表演台的内侧壁高速行驶,做匀速圆周运动.如图所示中虚线圆表示摩托车的行驶轨迹,轨迹离地面的高度为h.下列说法中正确的是() A.h越高,摩托车对侧壁的压力将越大 B.h越高,摩托车做圆周运动的线速度将越大 C.h越高,摩托车做圆周运动的周期将越大 D.h越高,摩托车做圆周运动的向心力将越大 3、A、B两小球都在水平面上做匀速圆周运动,A球的轨道半径是B球的轨道半径的2倍,A的转速为30 r/min,B的转速为 r/min,则两球的向心加速度之比为:()

A.1:1 B.6:1 C.4:1 D.2:1 4、两个质量相同的小球a、b用长度不等的细线拴在天花板上的同一点并在空中同一水平面内做匀速圆周运动,如图所示,则a、b两小球具有相同的 A.角速度 B.线速度 C.向心力 D.向心加速度 5、关于平抛运动和匀速圆周运动,下列说法中正确的是() A.平抛运动是匀变速曲线运动 B.平抛运动速度随时间的变化是不均匀的 C.匀速圆周运动是线速度不变的圆周运动 D.做匀速圆周运动的物体所受外力的合力做功不为零 6、在水平面上转弯的摩托车,如图所示,提供向心力是 A.重力和支持力的合力 B.静摩擦力C.滑动摩擦力 D.重力、支持力、牵引力的合力

7、如图所示,在粗糙水平板上放一个物体,使水平板和物体一起在竖直平面内沿逆时针方向做匀速圆周运动,ab为水平直径,cd为竖直直径,在运动过程中木板始终保持水平,物块相对木板始终静止,则() A.物块始终受到三个力作用B.只有在a、b、c、d 四点,物块受到合外力才指向圆心 C.从a到b,物体所受的摩擦力先减小后增大D.从b到a,物块处于失重状态 8、如图所示,拖拉机后轮的半径是前轮半径的两倍,A和B是前轮和后轮边缘上的点,若车行进时轮与路面没有滑动,则) A. A点和B点的线速度大小之比为1:2 B.前轮和后轮的角速度之比为2:1 C.两轮转动的周期相等 D. A点和B点的向心加速度相等 9、用一根细线一端系一可视为质点的小球,另一端固定在一光滑锥顶上,如图所示,设小球在水平面内作匀速圆周运动的角速度为ω,线的张力为T,则T随ω2变化的图象是( )

板块类运动问题

板块类运动问题 1.两个物体之间相对运动的问题 问题的提出:两个物体叠加起来,在外力F作用下的运动状态是需要讨论的。如果外力F过小,那么两物体是相对静止的,如果外力F过大,那么两物体是相对运动的。 两个物体间要发生相对运动的条件:两个物体间的静摩擦力必须达到最大值 此类问题的处理方法: (1)假设两个物体相对静止,对两个物体分别写牛顿第二定律 (2)根据加速度相等,得出静摩擦力的表达式, (3)根据静摩擦力小于最大静摩擦力,据此可以求出临界的外力F0 (4)讨论:当F>F0,两物体之间是相对运动的。对两个物体分别写牛顿第二定律,不受外力F的物体的加 速度是恒定不变的。当F

高中天体运动必备基础知识及例题讲解

授课主题 万有引力与重力的关系 教学目的 理解万有引力与重力之间的关系及会运用知识解此类问题 授课日期及时段 2013.04.06 ;3课时 教学内容 一, 本周错题讲解 二, 知识归纳 .考点梳理 (1).基本方法:把天体运动近似看作圆周运动,它所需要的向心力由万有引力提供, 即: Gr v m r Mm 22==mω2 r=mr T 224π (2).估算天体的质量和密度 由G 2r Mm =mr T 224π得:M=2 3 24Gt r π.即只要测出环绕星体M 运转的一颗卫星运转的半径和周期,就可以计算出中心天体的质量. 由ρ=V M ,V=34πR3 得: ρ=3 233R GT r π.R 为中心天体的星体半径 特殊:当r=R时,即卫星绕天体M 表面运行时,ρ=2 3GT π (2003年高考),由此可以测量天体的密度. (3)行星表面重力加速度、轨道重力加速度问题

表面重力加速度g 0,由02GMm mg R = 得:02GM g R = 轨道重力加速度g ,由 2()GMm mg R h =+ 得:2 2 0()()GM R g g R h R h ==++ (4)卫星的绕行速度、角速度、周期与半径的关系 (1)由Gr v m r Mm 22=得:v=r GM . 即轨道半径越大,绕行速度越小 (2)由G 2 r Mm =mω2 r得:ω=3r GM 即轨道半径越大,绕行角速度越小 (3)由2 224Mm G m r r T π=得:3 2r T GM π = 即轨道半径越大,绕行周期越大. (5)地球同步卫星 所谓地球同步卫星是指相对于地面静止的人造卫星,它的周期T =24h .要使卫星同步,同步卫星只能位于赤道正上方某一确定高度h . 由: G 2 224()Mm m R h T π=+(R+h) 得: 2 3 2 4h R GMT π=-=3.6×104km=5.6R R表示地球半径 三.热身训练 1.把火星和地球绕太阳运行的轨道视为圆周。由火星和地球绕太阳运动的周期之比可求得 A .火星和地球的质量之比 B .火星和太阳的质量之比 C .火星和地球到太阳的距离之比 D .火星和地球绕太阳运动速度之比 2.宇航员在探测某星球时,发现该星球均匀带电,且电性为负,电荷量为Q .在一次实验时,宇航员将一带负电q (q <

自由落体运动练习题

2.5 自由落体运动(同步测试) 张成进 江苏徐州睢宁魏集中学 1、在忽略空气阻力情况下,让一轻一重的两块石块从同一高度同时自由下 落,则关于两块石块的运动,下列说法正确的是( ) A. 重的石块落得快,先着地 B. 轻的石块落得快,先着地 C. 在着地前的任一时刻,两块石块具有相同的速度,相同的位移和相同的 加速度 D. 两块石块在下落段时间内的平均速度相等。 2、一个物体做自由落体运动,速度—时间图象正确的是( ) 3、甲乙两球从同一高度相隔1秒先后自由落下,在下落过程中( ) A. 两球的距离始终不变 B. 两球的距离越来越大。 C. 两球的速度差始终不变 D. 两球的速度差越来越在 B D

4、自由下落的物体,在任何相邻的单位时间内下落的距离之差h ?和平均速?在数值上分别等于() 度之差v A.g/2 2g B.g/2 g/4 C.g g D.g 2g 5、一个自由落体落至地面前最后一秒钟内通过的路程是全程的一半,求它落到地面所需的时间。 6、有一直升机停在200m高的空中静止不动,有一乘客从窗口由静止每隔1秒释放一个钢球,则钢球在空中的排列情况说法正确的是() A.相邻钢球间距离相等 B.越靠近地面,相邻钢球的距离越大 C.在落地前,早释放的钢球速度总是比晚释放的钢球的速度大 D.早释放的钢球落地时的速度大 7、为了测出井口到水面的距离,让一个小石块从井口自由落下,经过2.5S 后听到石块击水的声音,估算井口到水面的距离。考虑到声音在空气中传播需用一定的时间,估算结果偏大还是偏小? 8、一个自由下落的物体,它在最后1秒的位移是35m,则物体落地速度是多大?下落时间是多少?

板块模型经典题目和答案

板块模型经典题目和答案

板块模型经典习题 1.如图,在光滑水平面上有一质量为m 1 的足够长的木板, 其上叠放一质量为m 2 的木块。假 定木块和木板之间的最大静摩擦 力和滑动摩擦力相等。现给木块 施加一随时间t增大的水平力F=kt(k是常数),木板和 木块加速度的大小分别为a 1和a 2 ,下列反映a 1 和a 2 变化 的图线中正确的是() 2.如图所示,A、B两物块叠放在一起,在 粗糙的水平面上保持相对静止地向右做匀 减速直线运动,运动过程中B受到的摩擦力 A.方向向左,大小不变 B.方向向左,逐渐减小C.方向向右,大小不变 D.方向向右,逐渐减小

3.一小圆盘静止在桌布上,位于一方桌的水平桌面的中央.桌布的一边与桌的AB 边重合,如图.已知盘与桌布间的动摩擦因数为μ1,盘与桌面间的动摩擦因数为μ2.现突然以恒定加速度a 将桌布抽离桌面,加速度方向是水平的且垂直于AB 边.若圆盘最后未从桌面掉下,则加速度 a 满足的条件是什么?(以g 表示重力加速度) 4.如图所示,一足够长的木板静止在光滑水平面上,一物块静止在木板上,木板和物块间有摩擦。现用水平力向右拉木板,当物块相对木板滑动了一段距离但仍有相对运动时,撤掉拉力,此后木板和物块相对于水平面的运动情况为( ) A .物块先向左运动,再向右运动 B .物块向右运动,速度逐渐增大,直到做匀速运动 C .木板向右运动,速度逐渐变小,直到做匀速运动 D .木板和物块的速度都逐渐变小,直到为零 木板 物块 拉力

5.质量为m=1.0 kg的小滑块(可视为质点)放在质量为m=3.0 kg的长木板的右端,木板上表面光滑,木板与地面之间的动摩擦因数为μ=0.2,木板长L=1.0 m开始时两者都处于静止状态,现对木板施加水平向右的恒力F=12 N,如图3-12所示,为使小滑块不掉下木板,试求:(g取10 m/s2) (1)水平恒力F作用的最长时间; (2)水平恒力F做功的最大值. 6.如图所示,木板长L=1.6m,质量M=4.0kg,上表面光滑,下表面与地面间的动摩擦因数为μ=0.4.质量m =1.0kg的小滑块(视为质点)放在木板的右端,开始时木板与物块均处于静止状态,现给木板以向右的初速度,取g=10m/s2,求: (1)木板所受摩擦力的大小; (2)使小滑块不从木板上掉下来,木板初速度的最大值.

万有引力与航天重点知识归纳及经典例题练习

第五讲 万有引力定律重点归纳讲练 知识梳理 考点一、万有引力定律 1. 开普勒行星运动定律 (1) 第一定律(轨道定律):所有的行星围绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上。 (2) 第二定律(面积定律):对任意一个行星来说,它与太阳的连线在相等时间内扫过相等的面积。 (3) 第三定律(周期定律):所有行星的轨道的半长轴的三次方跟公转周期二次方的比值都相等,表达式: k T a =23 。其中k 值与太阳有关,与行星无关。 (4) 推广:开普勒行星运动定律不仅适用于行星绕太阳运转,也适用于卫星绕地球运转。当卫星绕行星旋转时,k T a =2 3 ,但k 值不同,k 与行星有关,与卫星无关。 (5) 中学阶段对天体运动的处理办法: ①把椭圆近似为园,太阳在圆心;②认为v 与ω不变,行星或卫星做匀速圆周运动; ③k T R =2 3 ,R ——轨道半径。 2. 万有引力定律 (1) 内容:万有引力F 与m 1m 2成正比,与r 2 成反比。 (2) 公式:2 21r m m G F =,G 叫万有引力常量,2211 /10 67.6kg m N G ??=-。 (3) 适用条件:①严格条件为两个质点;②两个质量分布均匀的球体,r 指两球心间的距离;③一个均匀球体和球外一个质点,r 指质点到球心间的距离。 (4) 两个物体间的万有引力也遵循牛顿第三定律。 3. 万有引力与重力的关系 (1) 万有引力对物体的作用效果可以等效为两个力的作用,一个是重力mg ,另一个是物体随地球自转所需的向心力f ,如图所示。 ①在赤道上,F=F 向+mg ,即R m R Mm G mg 22 ω-=; ②在两极F=mg ,即mg R Mm G =2 ;故纬度越大,重力加速度越大。 由以上分析可知,重力和重力加速度都随纬度的增加而增大。 (2) 物体受到的重力随地面高度的变化而变化。在地面上,2 2 R GM g mg R Mm G =?=;在地球表面高度为h 处: 22)()(h R GM g mg h R Mm G h h +=?=+,所以g h R R g h 2 2 ) (+=,随高度的增加,重力加速度减小。 考点二、万有引力定律的应用——求天体质量及密度 1.T 、r 法:2 3 2224)2(GT r M T mr r Mm G ππ=?=,再根据3 23 33,34R GT r V M R V πρρπ=?== ,当r=R 时,2 3GT πρ= 2.g 、R 法:G g R M mg R Mm G 22 = ?=,再根据GR g V M R V πρρπ43,3 43=?== 3.v 、r 法:G rv M r v m r Mm G 2 22 =?=

高一物理自由落体运动练习题完美

自由落体运动练习题 一、 自由落体运功 1、 定义:只在重力作用下,从静止开始下落的运动 注意(1)只在重力作用下 (2)从静止下落 二、 重力加速度 1、 定义:自由落体运动的加速度,“g ”; 方向: 竖直向下 2、大小:g=9.8 m/2 s 注意:(1)在同一地点,重力加速度g 的大小是相同的;在不同的地点,g 的值略有不同 a.同一海拔高度,纬度越高的地方,g 越大. b.同一纬度,海拔高度越高的地方,g 越小 . (2)一般取g =9.8 m/s 2 ,以题目要求为主。 (3)在不同的星球表面,重力加速度g 的大小一般不相同. 3 方向:竖直向下 4 实质:是一个初速为零,加速度为g 的匀加速直线运动。 三 自由落体运动的速度 (1)大小 : t v gt (2)方向 : 竖直向下 四 自由落体运动速度-时间和位移-时间图像 [例1]从离地500m 的空中自由落下一个小球,取g= 10m/s 2 ,求: (1)经过多少时间落到地面; (2)从开始落下的时刻起,在第1s 内的位移、最后1s 内的位移; (3)落下一半时间的位移.

[例2]气球下挂一重物,以v0=10m/s匀速上升,当到达离地高h=175m处时,悬挂重物的绳子突然断裂,那么重物经多少时间落到地面?落地的速度多大?空气阻力不计,取g=10m/s2. 【练习】 一、选择题 1.甲物体的重力是乙物体的3倍,它们在同一高度处同时自由下落,则下列说法中正确的是[ ] A.甲比乙先着地 B.甲比乙的加速度大 C.甲、乙同时着地 D.无法确定谁先着地 2.关于自由落体运动,下列说法正确的是 [ ] A.某段时间的平均速度等于初速度与末速度和的一半 B.某段位移的平均速度等于初速度与末速度和的一半 C.在任何相等时间内速度变化相同 D.在任何相等时间内位移变化相同 3.自由落体运动在任何两个相邻的1s内,位移的增量为 [ ] A.1m B.5m C.10m D.不能确定 4.甲物体的重量比乙物体大5倍,甲从H高处自由落下,乙从2H高处与甲物体同时自由落下,在它们落地之前,下列说法中正确的是 [ ] A.两物体下落过程中,在同一时刻甲的速度比乙的速度大 B.下落1s末,它们的速度相同 C.各自下落1m时,它们的速度相同 D.下落过程中甲的加速度比乙的加速度大 5.从某高处释放一粒小石子,经过1s从同一地点再释放另一粒小石子,则在它们落地之前,两粒石子间的距离将 [ ] A.保持不变 B.不断增大 C.不断减小 D.有时增大,有时减小

物理必修2第五章曲线运动经典分类例题

第五章曲线运动经典分类例题 §5.1 曲线运动基础 一、知识讲解 二、【典型例题】 知识点1、力和运动的关系 1、曲线运动的定义: 2、合外力决定运动的速度: 】 3、合外力和速度是否共线决定运动的轨迹: 4、物体做曲线运动的条件: 习题 1、关于曲线运动的速度,下列说法正确的是:() A、速度的大小与方向都在时刻变化 ) B、速度的大小不断发生变化,速度的方向不一定发生变化 C、速度的方向不断发生变化,速度的大小不一定发生变化 D、质点在某一点的速度方向是在曲线的这一点的切线方向 2、下列叙述正确的是:() A、物体在恒力作用下不可能作曲线运动 B、物体在变力作用下不可能作直线运动 C、物体在变力或恒力作用下都有可能作曲线运动 D、物体在变力或恒力作用下都可能作直线运动 ^ 3、下列关于力和运动关系的说法中,正确的上:() A.物体做曲线运动,一定受到了力的作用 B.物体做匀速运动,一定没有力作用在物体上 C.物体运动状态变化,一定受到了力的作用 D.物体受到摩擦力作用,运动状态一定会发生改变 4、下列曲线运动的说法中正确的是:() A、速率不变的曲线运动是没有加速度的 B、曲线运动一定是变速运动 C、变速运动一定是曲线运动 D、曲线运动一定有加速度,且一定是匀加速曲线运动; 5、物体受到的合外力方向与运动方向关系,正确说法是:() A、相同时物体做加速直线运动 B、成锐角时物体做加速曲线运动 C、成钝角时物体做加速曲线运动 D、如果一垂直,物体则做速率不变的曲线运动6.某质点作曲线运动时:() A.在某一点的速度方向是该点曲线的切线方向 B.在任意时间内位移的大小总是大于路程

板块模型经典题目和答案

板块模型经典习 题 1.如图,在光滑水平面上有一质量为m 1的足够长的木板,其上叠放一质量为m 2的木块。假定木块和木板之间的最大静摩擦力和滑动摩擦力相等。现给木块施加一随时间t 增大的水平力F=kt (k 是常数),木板和木块加速度的大小分别 为a 1和a 2,下列反映a 1和a 2变化的图线中正确的是( ) 2.如图所示,A 、B 两物块叠放在一起,在粗糙的水平面上保持相对静止地向右做匀减速直线运动,运动过程中B 受到的摩擦力 A .方向向左,大小不变 B .方向向左,逐渐减小 C .方向向右,大小不变 D .方向向右,逐渐减小 3.一小圆盘静止在桌布上,位于一方桌的水平桌面的中央.桌布的一边与桌的AB 边重合,如图.已知盘与桌布间的动摩擦因数为μ1,盘与桌面间的动摩擦因数为μ2. 现突然以恒定加速度a 将桌布抽离桌面,加速度方向是水平的且垂直于AB 边.若圆盘最后未从桌面掉下,则加速度a 满足的条件是什么?(以g 表示重力加速度) 4.如图所示,一足够长的木板静止在光滑水平面上,一物块静止在木板上,木板和物块间有摩擦。现用水平力向右拉木板,当物块相对木板滑动了一段距离但仍有相对运动时,撤掉拉力,此后木板和物块相对于水平面的运动情况为( ) A .物块先向左运动,再向右运动 B .物块向右运动,速度逐渐增大,直到做匀速运动 C .木板向右运动,速度逐渐变小,直到做匀速运动 D .木板和物块的速度都逐渐变小,直到为零 5.质量为m =1.0 kg 的小滑块(可视为质点)放在质量为m =3.0 kg 的长木板的右端, 木板 物块 拉

木板上表面光滑,木板与地面之间的动摩擦因数为μ=0.2,木板长L=1.0 m开始时两者都处于静止状态,现对木板施加水平向右的恒力F=12 N,如图3-12所示,为使小滑块不掉下木板,试求:(g取10 m/s2) (1)水平恒力F作用的最长时间; (2)水平恒力F做功的最大值. 6.如图所示,木板长L=1.6m,质量M=4.0kg,上表面光滑,下表面与地面间的动摩擦因数为μ=0.4.质量m=1.0kg的小滑块(视为质点)放在木板的右端,开始时木板与物块均处于静止状态,现给木板以向右的初速度,取g=10m/s2,求: (1)木板所受摩擦力的大小; (2)使小滑块不从木板上掉下来,木板初速度的最大值. 7. 如图3所示,质量M=8kg的小车放在光滑的水平面上,在小车右端加一水平恒力F,F=8N,当小车速度达到1.5m/s时,在小车的前端轻轻放上一大小不计、质量m=2kg的物体,物体与小车间的动摩擦因数μ=0.2,小车足够长,求物体从放在小车上开始经t=1.5s通过的位移大小。(g取10m/s2) 练习1如图5所示,质量M=1kg的木板静止在粗糙的水平地面上,木板与地面间的动摩擦因数,在木板的左端放置一个质量m=1kg、大小可以忽略的铁块,铁块与木板间的动摩擦因数,取g=10m/s2,试求: (1)若木板长L=1m,在铁块上加一个水平向右的恒力F=8N,经过多长时间铁块运动到木板的右端? (2)若在铁块上施加一个大小从零开始连续增加的水平向右的力F,通过分析和计算后,请在图6中画出铁块受到木板的摩擦力f2随拉力F大小变化的图象。(设木板足够长) 练习2如图4所示,在水平面上静止着两个质量均为m=1kg、长度均为L=1.5m的木板A和B,A、B间距s=6m,在A的最左端静止着一个质量为M=2kg的小滑块C,

相关主题
文本预览
相关文档 最新文档