当前位置:文档之家› linux下常用系统函数

linux下常用系统函数

linux下常用系统函数
linux下常用系统函数

linux下常用系统函数一、进程控制:

fork 创建一个新进程

clone 按指定条件创建子进程

execve 运行可执行文件

exit 中止进程

_exit 立即中止当前进程

getdtablesize 进程所能打开的最大文件数

getpgid 获取指定进程组标识号

setpgid 设置指定进程组标志号

getpgrp 获取当前进程组标识号

setpgrp 设置当前进程组标志号

getpid 获取进程标识号

getppid 获取父进程标识号

getpriority 获取调度优先级

setpriority 设置调度优先级

modify_ldt 读写进程的本地描述表

nanosleep 使进程睡眠指定的时间

nice 改变分时进程的优先级

pause 挂起进程,等待信号

personality 设置进程运行域

prctl 对进程进行特定操作

ptrace 进程跟踪

sched_get_priority_max 取得静态优先级的上限

sched_get_priority_min 取得静态优先级的下限

sched_getparam 取得进程的调度参数

sched_getscheduler 取得指定进程的调度策略

sched_rr_get_interval 取得按RR算法调度的实时进程的时间片长度sched_setparam 设置进程的调度参数

sched_setscheduler 设置指定进程的调度策略和参数

sched_yield 进程主动让出处理器,并将自己等候调度队列队尾

vfork 创建一个子进程,以供执行新程序,常与execve等同时使用wait 等待子进程终止

wait3 参见wait

waitpid 等待指定子进程终止

wait4 参见waitpid

capget 获取进程权限

capset 设置进程权限

getsid 获取会晤标识号

setsid 设置会晤标识号

二、文件系统控制

1、文件读写操作

fcntl 文件控制

open 打开文件

creat 创建新文件

close 关闭文件描述字

read 读文件

write 写文件

readv 从文件读入数据到缓冲数组中writev 将缓冲数组里的数据写入文件pread 对文件随机读

pwrite 对文件随机写

lseek 移动文件指针

_llseek 在64位地址空间里移动文件指针dup 复制已打开的文件描述字

dup2 按指定条件复制文件描述字

flock 文件加/解锁

poll I/O多路转换

truncate 截断文件

ftruncate 参见truncate

umask 设置文件权限掩码

fsync 把文件在内存中的部分写回磁盘2、文件系统操作

access 确定文件的可存取性

chdir 改变当前工作目录

fchdir 参见chdir

chmod 改变文件方式

fchmod 参见chmod

chown 改变文件的属主或用户组fchown 参见chown

lchown 参见chown

chroot 改变根目录

stat 取文件状态信息

lstat 参见stat

fstat 参见stat

statfs 取文件系统信息

fstatfs 参见statfs

readdir 读取目录项

getdents 读取目录项

mkdir 创建目录

mknod 创建索引节点

rmdir 删除目录

rename 文件改名

link 创建链接

symlink 创建符号链接

unlink 删除链接

readlink 读符号链接的值

mount 安装文件系统

umount 卸下文件系统

ustat 取文件系统信息

utime 改变文件的访问修改时间utimes 参见utime

quotactl 控制磁盘配额

三、系统控制

ioctl I/O总控制函数

_sysctl 读/写系统参数

acct 启用或禁止进程记账getrlimit 获取系统资源上限setrlimit 设置系统资源上限getrusage 获取系统资源使用情况uselib 选择要使用的二进制函数库ioperm 设置端口I/O权限

iopl 改变进程I/O权限级别

outb 低级端口操作

reboot 重新启动

swapon 打开交换文件和设备swapoff 关闭交换文件和设备bdflush 控制bdflush守护进程sysfs 取核心支持的文件系统类型

sysinfo 取得系统信息

adjtimex 调整系统时钟

alarm 设置进程的闹钟

getitimer 获取计时器值

setitimer 设置计时器值

gettimeofday 取时间和时区

settimeofday 设置时间和时区

stime 设置系统日期和时间

time 取得系统时间

times 取进程运行时间

uname 获取当前UNIX系统的名称、版本和主机等信息vhangup 挂起当前终端

nfsservctl 对NFS守护进程进行控制

vm86 进入模拟8086模式

create_module 创建可装载的模块项

delete_module 删除可装载的模块项

init_module 初始化模块

query_module 查询模块信息

*get_kernel_syms 取得核心符号,已被query_module代替四、内存管理

brk 改变数据段空间的分配

sbrk 参见brk

mlock 内存页面加锁

munlock 内存页面解锁

mlockall 调用进程所有内存页面加锁munlockall 调用进程所有内存页面解锁mmap 映射虚拟内存页

munmap 去除内存页映射

mremap 重新映射虚拟内存地址

msync 将映射内存中的数据写回磁盘mprotect 设置内存映像保护

getpagesize 获取页面大小

sync 将内存缓冲区数据写回硬盘cacheflush 将指定缓冲区中的内容写回磁盘五、网络管理

getdomainname 取域名

setdomainname 设置域名

gethostid 获取主机标识号

sethostid 设置主机标识号

gethostname 获取本主机名称sethostname 设置主机名称

六、socket控制

socketcall socket系统调用

socket 建立socket

bind 绑定socket到端口

connect 连接远程主机

accept 响应socket连接请求

send 通过socket发送信息

sendto 发送UDP信息

sendmsg 参见send

recv 通过socket接收信息

recvfrom 接收UDP信息

recvmsg 参见recv

listen 监听socket端口

select 对多路同步I/O进行轮询shutdown 关闭socket上的连接getsockname 取得本地socket名字getpeername 获取通信对方的socket名字getsockopt 取端口设置

setsockopt 设置端口参数

sendfile 在文件或端口间传输数据socketpair 创建一对已联接的无名socket 七、用户管理

getuid 获取用户标识号

setuid 设置用户标志号

getgid 获取组标识号

setgid 设置组标志号

getegid 获取有效组标识号

setegid 设置有效组标识号

geteuid 获取有效用户标识号

seteuid 设置有效用户标识号

setregid 分别设置真实和有效的的组标识号

setreuid 分别设置真实和有效的用户标识号

getresgid 分别获取真实的,有效的和保存过的组标识号

setresgid 分别设置真实的,有效的和保存过的组标识号

getresuid 分别获取真实的,有效的和保存过的用户标识号setresuid 分别设置真实的,有效的和保存过的用户标识号

setfsgid 设置文件系统检查时使用的组标识号

setfsuid 设置文件系统检查时使用的用户标识号

getgroups 获取后补组标志清单

setgroups 设置后补组标志清单

八、进程间通信

ipc 进程间通信总控制调用

1、信号

sigaction 设置对指定信号的处理方法

sigprocmask 根据参数对信号集中的信号执行阻塞/解除阻塞等操作

sigpending 为指定的被阻塞信号设置队列

sigsuspend 挂起进程等待特定信号

signal 参见signal

kill 向进程或进程组发信号

*sigblock 向被阻塞信号掩码中添加信号,已被sigprocmask代替

*siggetmask 取得现有阻塞信号掩码,已被sigprocmask代替

*sigsetmask 用给定信号掩码替换现有阻塞信号掩码,已被sigprocmask代替*sigmask 将给定的信号转化为掩码,已被sigprocmask代替

*sigpause 作用同sigsuspend,已被sigsuspend代替

sigvec 为兼容BSD而设的信号处理函数,作用类似sigaction

ssetmask ANSI C的信号处理函数,作用类似sigaction

2、消息

msgctl 消息控制操作

msgget 获取消息队列

msgsnd 发消息

msgrcv 取消息

3、管道

pipe 创建管道

4、信号量

semctl 信号量控制semget 获取一组信号量semop 信号量操作

5、共享内存

shmctl 控制共享内存shmget 获取共享内存shmat 连接共享内存shmdt 拆卸共享内存

linux 内存相关操作函数

Linux内核中内存相关的操作函数 1、kmalloc()/kfree() static __always_inline void *kmalloc(size_t size, gfp_t flags) 内核空间申请指定大小的内存区域,返回内核空间虚拟地址。在函数实现中,如果申请的内存空间较大的话,会从buddy系统申请若干内存页面,如果申请的内存空间大小较小的话,会从slab系统中申请内存空间。 gfp_t flags 的选项较多。参考内核文件gfp.h. 在函数kmalloc()实现中,如果申请的空间较小,会根据申请空间的大小从slab中获取;如果申请的空间较大,如超过一个页面,会直接从buddy系统中获取。 2、vmalloc()/vfree() void *vmalloc(unsigned long size) 函数作用:从高端(如果存在,优先从高端)申请内存页面,并把申请的内存页面映射到内核的动态映射空间。vmalloc()函数的功能和alloc_pages(_GFP_HIGHMEM)+kmap() 的功能相似,只所以说是相似而不是相同,原因在于用vmalloc()申请的物理内存页面映射到内核的动态映射区(见下图),并且,用vmalloc()申请的页面的物理地址可能是不连续的。而alloc_pages(_GFP_HIGHMEM)+kmap()申请的页面的物理地址是连续的,被映射到内核的KMAP区。 vmalloc分配的地址则限于vmalloc_start与vmalloc_end之间。每一块vmalloc分配的内核虚拟内存都对应一个vm_struct结构体(可别和vm_area_struct搞混,那可是进程虚拟内存区域的结构),不同的内核虚拟地址被4k大小的空闲区间隔,以防止越界--见下图)。与进程虚拟地址的特性一样,这些虚拟地址与物理内存没有简单的位移关系,必须通过内核页表才可转换为物理地址或物理页。它们有可能尚未被映射,在发生缺页时才真正分配物理页面。 如果内存紧张,连续区域无法满足,调用vmalloc分配是必须的,因为它可以将物理不连续的空间组合后分配,所以更能满足分配要求。vmalloc可以映射高端页框,也可以映射底端页框。vmalloc的作用只是为了提供逻辑上连续的地址… 注意:在申请页面时,如果注明_GFP_HIGHMEM,即从高端申请。则实际是优先从高端内存申请,顺序为(分配顺序是HIGH, NORMAL, DMA )。 3、alloc_pages()/free_pages() 内核空间申请指定个数的内存页,内存页数必须是2^order个页。 alloc_pages(gfp_mask, order) 中,gfp_mask 是flag标志,其中可以为_ _GFP_DMA、_GFP_HIGHMEM 分别对应DMA和高端内存。

linux的system () 函数详解

linux的system () 函数详解 system(执行shell 命令) 相关函数 fork,execve,waitpid,popen 表头文件 #i nclude 定义函数 int system(const char * string)? 函数说明 system()会调用fork()产生子进程,由子进程来调用/bin/sh-c string来执行参数string字符串所代表的命令,此命>令执行完后随即返回原调用的进程。在调用system()期间SIGCHLD 信号会被暂时搁置,SIGINT和SIGQUIT 信号则会被忽略。 返回值 =-1:出现错误 =0:调用成功但是没有出现子进程 >0:成功退出的子进程的id 如果system()在调用/bin/sh时失败则返回127,其他失败原因返回-1。若参数string为空指针(NULL),则返回非零值>。如果system()调用成功则最后会返回执行shell命令后的返回值,但是此返回值也有可能为 system()调用/bin/sh失败所返回的127,因此最好能再检查errno 来确认执行成功。 附加说明 在编写具有SUID/SGID权限的程序时请勿使用system(),system()会继承环境变量,通过环境变量可能会造成系统安全的问题。 范例 #i nclude main() { system(“ls -al /etc/passwd /etc/shadow”)? } 执行结果: -rw-r--r-- 1 root root 705 Sep 3 13 :52 /etc/passwd -r--------- 1 root root 572 Sep 2 15 :34 /etc/shado 例2: char tmp[]? sprintf(tmp,"/bin/mount -t vfat %s /mnt/usb",dev)? system(tmp)? 其中dev是/dev/sda1。

linux添加系统调用实验步骤

首先,进入到内核源码目录/usr/src/linux-2.6.34中,添加自己的系统调用号。 lyh@lyh:~$ cd /usr/src/linux-2.6.34/ 系统调用号在unistd_32.h文件中定义。内核中每个系统调用号都是 以“__NR_"开头的,在该文件中添加自己的系统调用号 lyh@lyh:/usr/src/linux-2.6.34$ sudo vim arch/x86/include/asm/unistd_32.h #define __NR_pwritev 334 #define __NR_rt_tgsigqueueinfo 335 #define __NR_perf_event_open 336 #define __NR_recvmmsg 337 #define __NR_mycall 338 #ifdef __KERNEL__ #define NR_syscalls 339 在内核源文件中该行为#define NR_syscalls 338,在系统调用执行的过程中,system_call()函数会根据该值来对用户态进程的有效性进行检查。如果这个号大于或等于NR_syscalls,系统调用处理程序终止。所以应该将原来的#define NR_syscalls 338修改为#define NR_syscalls 339 其次,在系统调用表中添加相应的表项 (1)lyh@lyh:/usr/src/linux-2.6.34$ sudo vim arch/x86/kernel/syscall_table_32.S ENTRY(sys_call_table) .long sys_restart_syscall .long sys_exit ………………(这里省略了部分) .long sys_rt_tgsigqueueinfo .long sys_perf_event_open .long sys_recvmmsg .long sys_mycall (2)lyh@lyh:/usr/src/linux-2.6.34$ sudo vim arch/h8300/kernel/syscalls.S #include #include

qt4中如何调用C函数(linux下)

qt默认的编程语言为C++语言。如果你用qt编译.c文件,会出现找不到C语言的默认头文件等错误(如:stdio.h等)。qt中不支持 extern "C"{}的这种写法,我前几天有一个C程序需要移植到Qt的工程中,本希望直接extern "C"就ok了,但发现qt4居然不支持这种写法。我的程序中用到了好几个linux系统头文件,是向串口发指令之类的程序,程序中用到了互斥锁并创建了一个线程。如果再用qt语言来写一遍的话我会挂掉的,所以没有办法,在网上找了半天,终于找到解决方法。 将.c文件编译为函数库的方式在qt下调用,这种方法貌似行得通,我就开始行动了。 下面的内容讲得比较多,比较全,比较适合初学者,是我在网上down的,给出了原网站的链接,最后给出了一个程序。经过自己整理好归纳如下: 需要说明的是:使用gcc可以将程序编译成动态库或者静态库的形式,它们在程序中的调用的方式也不尽相同,给出的程序中调用的是动态连接库。编译成动态的还是静态的根据自己的需要进行。如果原C程序编译的时候需要gcc的额外选项(如gcc -lpthread -o hello hello.c)等,建议采用动态的形式。 1.什么是静态连接库,什么是动态链接库 静态链接库与动态链接库都是共享代码的方式,如果采用静态链接库,则无论你愿不愿意,lib 中的指令都全部被直接包含在最终生成的EXE 文件中了。但是若使用DLL,该DLL 不必被包含在最终EXE 文件中,EXE 文件执行时可以“动态”地引用和卸载这个与EXE 独立的DLL 文件。静态链接库和动态链接库的另外一个区别在于静态链接库中不能再包含其他的动态链接库或者静态库,而在动态链接库中还可以再包含其他的动态或静态链接库。在windows和linux上都是相同的,只不过文件的格式不同而已。 https://www.doczj.com/doc/8616218045.html,/winston/archive/2008/07/05/1236273.html 2.gcc生成静态库和动态库 第1步:编辑得到举例的程序--hello.h、hello.c和main.c; 第2步:将hello.c编译成.o文件;

Linux系统API函数手册簿

(一)文件操作篇 1、creat(建立文件) 头文件 1 #include 2 #include 3 #include 定义函数 1int creat(const char * pathname, mode_tmode); 函数说明 参数pathname指向欲建立的文件路径字符串。creat()相当于使用下列的调用方式调用open() 1 open(const char * pathname ,(O_CREAT|O_WRONLY|O_TRUNC)); 错误代码 关于参数mode请参考open()函数。 返回值 creat()会返回新的文件描述词,若有错误发生则会返回-1,并把错误代码设给errno。EEXIST 参数pathname所指的文件已存在。 EACCESS 参数pathname 所指定的文件不符合所要求测试的权限 EROFS 欲打开写入权限的文件存在于只读文件系统内 EFAULT 参数pathname 指针超出可存取的内存空间 EINVAL 参数mode 不正确。 ENAMETOOLONG 参数pathname太长。 ENOTDIR 参数pathname为一目录 ENOMEM 核心内存不足 ELOOP 参数pathname有过多符号连接问题。 EMFILE 已达到进程可同时打开的文件数上限 ENFILE 已达到系统可同时打开的文件数上限 附加说明 creat()无法建立特别的装置文件,如果需要请使用mknod()。 2、open(打开文件) 头文件 1 #include 2 #include 3 #include 定义函数

linux0.11系统调用原理及实验总结

Linux0.11系统调用原理及实验总结 1系统调用的原理 1.1概述 系统调用是一个软中断,中断号是0x80,它是上层应用程序与Linux系统内核进行交互通信的唯一接口。通过int 0x80,就可使用内核资源。不过,通常应用程序都是使用具有标准接口定义的C函数库间接的使用内核的系统调用,即应用程序调用C函数库中的函数,C函数库中再通过int 0x80进行系统调用。 所以,系统调用过程是这样的: 应用程序调用libc中的函数->libc中的函数引用系统调用宏->系统调用宏中使用int 0x80完成系统调用并返回。 另外一种访问内核的方式是直接添加一个系统调用,供自己的应用程序使用,这样就不再使用库函数了,变得更为直接,效率也会更高。 1.2相关的数据结构 在说具体的调用过程之前,这里先要说几个数据结构。 1.2.1 系统调用函数表 系统调用函数表sys_call_table是在sys.h中定义的,它是一个函数指针数组,每个元素是一个函数指针,它的值是各个系统提供的供上层调用的系统函数的入口地址。也就是说通过查询这个表就可以调用软中断0x80所有的系统函数处理函数。 1.2.2 函数指针偏移宏 这是一系列宏,它们的定义在unistd.h中,基本形式为#define _NR_name value,name为系统函数名字,value是一个整数值,是name所对应的系统函数指针在sys_call_table中的偏移量。 1.2.3 系统调用宏 系统调用宏_syscalln(type,name)在内核的unistd.h文件中定义的,对它展开就是: type name(参数列表) { 调用过程; }; 其中,n为参数个数,type为函数返回值类型,name为所要调用的系统函数的名字。在unistd.h 中共定义了4个这样的宏(n从0到3),也就是说,0.11核中系统调用最多可带3个参数。

8第八章Linux下的系统调用

第八章 Linux下的系统调用 8.1 系统调用介绍 8.1.1 引言 系统调用是内核提供的、功能十分强大的一系列函数。它们在内核中实现,然后通过一定的方式(库、陷入等)呈现给用户,是用户程序与内核交互的一个接口。如果没有系统调用,则不可能编写出十分强大的用户程序,因为失去了内核的支持。由此可见系统调用的地位举足轻重。内核的主体可以归结为: 系统调用的集合; 实现系统调用的算法。 8.1.2 系统调用的实现流程 这里我们通过getuid()这个简单的系统调用来分析一下系统调用的实现流程。在分析这个程序时并不考虑它的底层是如何实现的,而只需知道每一步执行的功能。 首先来看一个例子: #include /* all system call need this header*/ int main() { int i=getuid(); printf(“Hello World! This is my uid: %d\n”,i); } #include是每个系统调用都必须要的头文件,当系统执行到getuid()时,根据unistd.h中的宏定义把getuid()展开。展开后程序把系统调用号__NR_getuid(24)放入eax,然后通过执行“int $0x80”这条指令进行模式切换,进入内核。int 0x80指令由于是一条软中断指令,所以就要看系统规定的这条中断指令的处理程序是什么。 arch/i386/kernel/traps.c set_system_gate(SYSCALL_VECTOR,&system_call); 从这行程序我们可以看出,系统规定的系统调用的处理程序就是system_call。控制转移到内核之前,硬件会自动进行模式和堆栈的切换。现在控制转移到了system_call,保留系统调用号的最初拷贝之后,由SAVE_ALL来保存上下文,得到该进程结构的指针,放在ebx里面,然后检查系统调用号,如果__NR_getuid(24)是合法的,则根据这个系统调用号,索引sys_call_table,得到相应的内核处理程序:sys_getuid。执行完sys_getuid之后,保存返回值,从eax移到堆栈中的eax处,假设没有

linux系统调用和库函数调用的区别.doc

Linux下对文件操作有两种方式:系统调用(system call)和库函数调用(Library functions) 0可以参考紅inux程序设计》(英文原版为《Beginning Linux Programming^ ,作者是 Neil Matthew 和 Richard Stones)第三章:Working with fi 1 eSo系统调用实际上就是指最底层的一个调用,在1 inux程序设计里面就是底层调用的意思。面向的是硬件。而库函数调用则面向的是应用开发的,相当于应用程序的api,采用这样的方式有很多种原因,第一:双缓冲技术的实现。第二,可移植性。第三,底层调用本身的一些性能方面的缺陷。第四:让api也可以有了级别和专门的工作面向。 1、系统调用 系统调用提供的函数如open, close, read, write, ioctl等,需包含头文件unistd. ho 以 write 为例:其函数原型为 size t write (int fd, const void *buf, size_t nbytes),其操作对象为文件描述符或文件句柄fd(file descriptor), 要想写一个文件,必须先以可写权限用open系统调用打开一个文件,获得所打开文件的fd,例如fd=open(\7dev/video\〃, 0_RDWR) o fd 是一个整型值,每新打开一个文件,所获得的fd为当前最大fd加lo Linux系统默认分配了3个文件描述符值:0 —standard input, 1 — standard output, 2 —standard error0 系统调用通常用于底层文件访问(low-level file access),例如在驱动程序中对设备文件的直接访问。 系统调用是操作系统相关的,因此一般没有跨操作系统的可移植性。 系统调用发生在内核空间,因此如果在用户空间的一般应用程序中使用系统调用来进行文件操作,会有用户空间到内核空间切换的开销。事实上,即使在用户空间使用库函数来对文件进行操作,因为文件总是存在于存储介质上,因此不管是读写操作,都是对硬件(存储器)的操作,都必然会引起系统调用。也就是说,库函数对文件的操作实际上是通过系统调用來实现的。例如C库函数fwritcO 就是通过肌、ite()系统调用来实现的。 这样的话,使用库函数也有系统调用的开销,为什么不直接使用系统调用呢?这是因为,读写文件通常是大量的数据(这种大量是相对于底层驱动的系统调用所实现的数据操作单位而言),这时,使用库函数就可以大大减少系统调用的次数。这一结果又缘于缓冲区技术。在用户空间和内核空间,对文件操作都使用了缓冲区,例如用fwrite写文件,都是先将内容写到用户空间缓冲区,当用户空间缓冲区满或者写操作结束时,才将用户缓冲区的内容写到内核缓冲区,同样的道理,当内核缓冲区满或写结束时才将内核缓冲区内容写到文件对应的硬件媒介。 2、库函数调用标准C库函数提供的文件操作函数如fopen, fread, fwrite, fclose, fflush, fseek等,需包含头文件stdio. h o以fwrite为例,其函数原型为size t

linux中open函数使用

linux中open函数使用 int open(const char *path, int access,int mode) path 要打开的文件路径和名称 access 访问模式,宏定义和含义如下: O_RDONLY 1 只读打开 O_WRONLY 2 只写打开 O_RDWR 4 读写打开 还可选择以下模式与以上3种基本模式相与: O_CREAT 0x0100 创建一个文件并打开 O_TRUNC 0x0200 打开一个已存在的文件并将文件长度设置为0,其他属性保持 O_EXCL 0x0400 未使用 O_APPEND 0x0800 追加打开文件 O_TEXT 0x4000 打开文本文件翻译CR-LF控制字符 O_BINARY 0x8000 打开二进制字符,不作CR-LF翻译 mode 该参数仅在access=O_CREAT方式下使用,其取值如下: S_IFMT 0xF000 文件类型掩码 S_IFDIR 0x4000 目录 S_IFIFO 0x1000 FIFO 专用 S_IFCHR 0x2000 字符专用 S_IFBLK 0x3000 块专用 S_IFREG 0x8000 只为0x0000 S_IREAD 0x0100 可读 S_IWRITE 0x0080 可写 S_IEXEC 0x0040 可执行 返回值:成功则返回文件描述符,否则返回 -1 FILE *fopen(char *filename, char *mode) filename 文件名称 mode 打开模式: r 只读方式打开一个文本文件 rb 只读方式打开一个二进制文件 w 只写方式打开一个文本文件 wb 只写方式打开一个二进制文件 a 追加方式打开一个文本文件 ab 追加方式打开一个二进制文件 r+ 可读可写方式打开一个文本文件 rb+ 可读可写方式打开一个二进制文件 w+ 可读可写方式创建一个文本文件

linux系统调用和库函数调用的区别

linux系统调用和库函数调用的区别 Linux下对文件操作有两种方式:系统调用(system call)和库函数调用(Library func tions)。可以参考《Linux程序设计》(英文原版为《Beginning Linux Programming》,作者是Neil Matthew和Richard Stones)第三章: Working with files。系统调用实际上就是指最底层的一个调用,在linux程序设计里面就是底层调用的意思。面向的是硬件。而库函数调用则面向的是应用开发的,相当于应用程序的api,采用这样的方式有很多种原因,第一:双缓冲技术的实现。第二,可移植性。第三,底层调用本身的一些性能方面的缺陷。第四:让api也可以有了级别和专门的工作面向。 1、系统调用 系统调用提供的函数如open, close, read, write, ioctl等,需包含头文件unistd.h。以write为例:其函数原型为size_t write(int fd, const void *buf, size_t nbytes),其操作对象为文件描述符或文件句柄fd(file descriptor),要想写一个文件,必须先以可写权限用open系统调用打开一个文件,获得所打开文件的fd,例如fd=open(\"/dev/v ideo\", O_RDWR)。fd是一个整型值,每新打开一个文件,所获得的fd为当前最大fd 加1。Linux系统默认分配了3个文件描述符值:0-standard input,1-standard o utput,2-standard error。 系统调用通常用于底层文件访问(low-level file access),例如在驱动程序中对设备文件的直接访问。 系统调用是操作系统相关的,因此一般没有跨操作系统的可移植性。 系统调用发生在内核空间,因此如果在用户空间的一般应用程序中使用系统调用来进行文件操作,会有用户空间到内核空间切换的开销。事实上,即使在用户空间使用库函数来对文件进行操作,因为文件总是存在于存储介质上,因此不管是读写操作,都是对硬件(存储器)的操作,都必然会引起系统调用。也就是说,库函数对文件的操作实际上是通过系统调用来实现的。例如C库函数fwrite()就是通过write()系统调用来实现的。 这样的话,使用库函数也有系统调用的开销,为什么不直接使用系统调用呢?这是因为,读写文件通常是大量的数据(这种大量是相对于底层驱动的系统调用所实现的数据操作单位而言),这时,使用库函数就可以大大减少系统调用的次数。这一结果又缘于缓冲区技术。在用户空间和内核空间,对文件操作都使用了缓冲区,例如用fwrite写文件,都是先将内容写到用户空间缓冲区,当用户空间缓冲区满或者写操作结束时,才将用户缓冲区的内容写到内核缓冲区,同样的道理,当内核缓冲区满或写结束时才将内核缓冲区内容写到文件对应的硬件媒介。 2、库函数调用 标准C库函数提供的文件操作函数如fopen, fread, fwrite, fclose, fflush, fseek等,需包含头文件stdio.h。以fwrite为例,其函数原型为size_t fwrite(const void *buff

Linux内核服务例程与系统调用接口

Linux内核服务例程与系统调用接口 1.用宏生成系统调用例程 高级语言应用程序一般不能直接访问内核函数。但是,总还是有一些高级用 户需要访问内核函数,如果让用户自己编写汇编语言程序来实现内核的陷入, 显然是不合适的,因为它既不安全也不符合设置操作系统的初衷___为用户提 供一个友好的程序设汁平台。 由于用于封装内核服务例程的系统调用例程有一个固定的框架,所以为了简 化对内核服务例程的封装工作,Linux 定义了从_sysca110~_sysca115 的6 个宏,高级用户可使用这些宏把所需的内核服务例程封装为系统调用例程。 上述这6 个宏的名称后的数字表示被封装的内核服务例程可使用的参数个数 (系统调用号除外)。在上述宏对内核服务例程进行封装时,Linux 规定,给宏传 递参数的个数应是内核服务例程所需参数个数的2 倍再加2,即2(n+1)个,其 中″是系统调用的参数个数。也就是说.对于内核服务例程的每一个参数, 在宏中都必须用两个参数来表达:一个用来指明参数的名称,一个用来指明参 数的类型。还要附加两个参数,分别用来表达系统调用返回值的名称和类型。 例如,用宏来封装内核服务例程write()时,就应按下面的格式来调用宏 syscall3:_syscall3(int,write,int,fd,cONst char*,buf,unsingnde int,count) 其中:int 和wrlte 为返回值的类型和名称;int 和fd 为其参数fd 的类型和名称; const char*和buf 为其参数buf 的类型和名称;unsigned lnt 和count 为其参数count 的类型和名称。 2.系统调用接口 一般情况下,作为一个完善的操作系统,是不会让用户应用程序直接使用名 称类似于.svsxyz()形式的系统凋用例程来调用内核服务例程的。所以,通常还

Linux系统调用--semctl函数详解

【semctl系统调用】 功能描述: 在指定的信号集或信号集内的某个信号上执行控制操作。 用法: #include #include #include int semctl(int semid, int semnum, int cmd, ...); 参数: semid:信号集的标识符,即是信号表的索引。 semnum:信号集的索引,用来存取信号集内的某个信号。 cmd:需要执行的命令,有效值有 IPC_STAT //将与semid关联的内核数据结构拷贝到由arg.buf指针指向的内存区。 IPC_SET //将由arg.buf指针指向的semid_ds的一些成员写入相关联的内核数据结构,同时更新它的sem_ctime成员。 IPC_RMID //立即删除信号集,唤醒所有被阻塞的进程。 IPC_INFO //Linux特有命令,返回系统范围内关于信号集的制约和其它参数,并存放在arg.__buf指向的内存区。其结构形态如下: struct seminfo { int semmap; int semmni; int semmns; int semmnu; int semmsl; int semopm; int semume; int semusz; int semvmx; int semaem; };

SEM_INFO //返回和IPC_INFO相同的信息,不同点有:semusz字段包含有当前系统存在的信号集总量。semaem字段包含有系统内所有信号集的信号总量。 SEM_STAT //返回和IPC_STAT相同的信息。不过参数semid不是一个信号集标识,而是内核内部维持所有信号集信息的数组索引。 GETALL //将所有信号的值存入semun.array中。 GETNCNT //等待信号值增加的进程的总数。 GETPID //前一个对此信号进行操作的进程的识别码。 GETVAL //根据semnun返回信号的值。 GETZCNT //等待信号值变为0的进程的总数。 SETALL //将所有semun.array的值设定到信号集中。 SETVAL //根据semun设定信号的值。 ...:对于不同的命令,可能需要用到也可能不需要,是一个联合体,原型如下 union semun { int val; struct semid_ds *buf; unsigned short *array; struct seminfo *__buf; }; semid_ds结构体定义在,原型如下 struct semid_ds { struct ipc_perm sem_perm; time_t sem_ctime; unsigned short sem_nsems; }; ipc_perm结构体定义在,原型如下 struct ipc_perm { key_t key; uid_t uid; gid_t gid; uid_t cuid; gid_t cgid; unsigned short mode;

linux系统调用函数

国嵌系统调用手册 一、进程控制 fork 创建一个新进程 clone 按指定条件创建子进程 execve 运行可执行文件 exit 中止进程 _exit 立即中止当前进程 getdtablesize 进程所能打开的最大文件数 getpgid 获取指定进程组标识号 setpgid 设置指定进程组标志号 getpgrp 获取当前进程组标识号 setpgrp 设置当前进程组标志号 getpid 获取进程标识号 getppid 获取父进程标识号 getpriority 获取调度优先级 setpriority 设置调度优先级 modify_ldt 读写进程的本地描述表 nanosleep 使进程睡眠指定的时间 nice 改变分时进程的优先级 pause 挂起进程,等待信号 personality 设置进程运行域

prctl 对进程进行特定操作 ptrace 进程跟踪 sched_get_priority_max 取得静态优先级的上限 sched_get_priority_min 取得静态优先级的下限 sched_getparam 取得进程的调度参数 sched_getscheduler 取得指定进程的调度策略 sched_rr_get_interval 取得按 RR 算法调度的实时进程的时间片长 度 sched_setparam 设置进程的调度参数 sched_setscheduler 设置指定进程的调度策略和参数 sched_yield 进程主动让出处理器,并将自己等候调度队列队尾 vfork 创建一个子进程,以供执行新程序,常与 execve 等同时使用 wait 等待子进程终止 wait3 参见 wait waitpid 等待指定子进程终止 wait4 参见 waitpid capget 获取进程权限 capset 设置进程权限 getsid 获取会晤标识号 setsid 设置会晤标识号

linux下常用系统函数

linux下常用系统函数一、进程控制: fork 创建一个新进程 clone 按指定条件创建子进程 execve 运行可执行文件 exit 中止进程 _exit 立即中止当前进程 getdtablesize 进程所能打开的最大文件数 getpgid 获取指定进程组标识号 setpgid 设置指定进程组标志号 getpgrp 获取当前进程组标识号 setpgrp 设置当前进程组标志号 getpid 获取进程标识号 getppid 获取父进程标识号 getpriority 获取调度优先级 setpriority 设置调度优先级 modify_ldt 读写进程的本地描述表 nanosleep 使进程睡眠指定的时间 nice 改变分时进程的优先级 pause 挂起进程,等待信号 personality 设置进程运行域 prctl 对进程进行特定操作 ptrace 进程跟踪

sched_get_priority_max 取得静态优先级的上限 sched_get_priority_min 取得静态优先级的下限 sched_getparam 取得进程的调度参数 sched_getscheduler 取得指定进程的调度策略 sched_rr_get_interval 取得按RR算法调度的实时进程的时间片长度sched_setparam 设置进程的调度参数 sched_setscheduler 设置指定进程的调度策略和参数 sched_yield 进程主动让出处理器,并将自己等候调度队列队尾 vfork 创建一个子进程,以供执行新程序,常与execve等同时使用wait 等待子进程终止 wait3 参见wait waitpid 等待指定子进程终止 wait4 参见waitpid capget 获取进程权限 capset 设置进程权限 getsid 获取会晤标识号 setsid 设置会晤标识号 二、文件系统控制 1、文件读写操作 fcntl 文件控制 open 打开文件

操作系统- linux系统调用

实 验 报 告 一、理论分析(分值:20%) 【从操作系统原理(理论)的角度阐述系统功能调用的过程】 1、函数声明中都有asmlinkage限定词,用于通知编译器仅从栈中提取该函数的参数。 2、系统调用getXXX()在内核中被定义为sys_getXXX()。系统调用号:在linux中,每个系统调用都赋予一个系统调用号,通过这个独一无二的号就可以关联系统调用。当用户空间的

进程执行一个系统调用的时候,这个系统调用号就被用来指明到底要执行哪个系统调用;进程不会提及系统调用的名称。系统调用号一旦分配就不能再有任何变更(否则编译好的应用程序就会崩溃),如果一个系统调用被删除,它所占用的系统调用号也不允许被回收利用。Linux有一个"未使用"系统调用sys_ni_syscall(),它除了返回-ENOSYS外不做任何其他工作,这个错误号就是专门针对无效的系统调用而设的。内核记录了系统调用表中所有已注册过的系统调用的列表,存储在sys_call_table中。它与体系结构有关,一般在entry.s中定义。这个表中为每一个有效的系统调用指定了唯一的系统调用号。 3、Makefile控制着整个内核的编译,在每个子目录下调用编译.c 文件,生成.o文件,生成新的内核。会把新编译的sys_hello内核加入到系统调用中。系统调用表gedit syscall_32.tbl 中加入354 i386 hello sys_hello,当系统调用时可以在调用表中找到系统调用的号。 4、在syscalls.h中添加定义的内容的引用函数。 5、编译执行结果。 二、设计与实现(分值:30%) 【阐述在Linux中添加系统功能调用的方法】 1、在内核目录下创建hello文件夹 mkdir hello 2、进入hello文件夹 cd hello 3、创建hello.c的文件 vim hello.c 4、加入代码 #include asmlinkage long sys_hello(void) { printk(“Hello world\n”); return 0; } 5、在hello文件夹下添加Makefile文件 vim Makefile

Linux系统调用入门手册

1-1 本文是Linux系统调用系列文章的第一篇,对Linux系统调用的定义、基本原理、使用方法和注意事项大概作了一个介绍,以便读者对Linux系统调用建立一个大致的印象。 什么是系统调用? Linux内核中设置了一组用于实现各种系统功能的子程序,称为系统调用。用户可以通过系统调用命令在自己的应用程序中调用它们。从某种角度来看,系统调用和普通的函数调用非常相似。区别仅仅在于,系统调用由操作系统核心提供,运行于核心态;而普通的函数调用由函数库或用户自己提供,运行于用户态。二者在使用方式上也有相似之处,在下面将会提到。 随Linux核心还提供了一些C语言函数库,这些库对系统调用进行了一些包装和扩展,因为这些库函数与系统调用的关系非常紧密,所以习惯上把这些函数也称为系统调用。 Linux中共有多少个系统调用? 这个问题可不太好回答,就算让Linus Torvaldz本人也不见得一下子就能说清楚。 在 2.4.4版内核中,狭义上的系统调用共有221个,你可以在<内核源码目录>/include/asm-i386/unistd.h中找到它们的原本,也可以通过命令"man 2 syscalls"察看它们的目录(man pages的版本一般比较老,可能有很多最新的调用都没有包含在内)。广义上的系统调用,也就是以库函数的形式实现的那些,它们的个数从来没有人统计过,这是一件吃力不讨好的活,新内核不断地在推出,每一个新内核中函数数目的变化根本就没有人在乎,至少连内核的修改者本人都不在乎,因为他们从来没有发布过一个此类的声明。 随本文一起有一份经过整理的列表,它不可能非常全面,但常见的系统调用基本都已经包含在内,那里面只有不多的一部分是你平时用得到的,本专栏将会有选择的对它们进行介绍。 为什么要用系统调用? 实际上,很多已经被我们习以为常的C语言标准函数,在Linux平台上的实现都是靠系统调用完成的,所以如果想对系统底层的原理作深入的了解,掌握各种系统调用是初步的要求。进一步,若想成为一名Linux下编程高手,也就是我们常说的Hacker,其标志之一也是能对各种系统调用有透彻的了解。 即使除去上面的原因,在平常的编程中你也会发现,在很多情况下,系统调用是实现你的想法的简洁有效的途径,所以有可能的话应该尽量多掌握一些系统调用,这会对你的程序设计过程带来意想不到的帮助。 系统调用是怎么工作的? 一般的,进程是不能访问内核的。它不能访问内核所占内存空间也不能调用内核函数。

Linux文件操作函数

linux read/write和fread/fwrite有什么区别 1,fread是带缓冲的,read不带缓冲. 2,fopen是标准c里定义的,open是POSIX中定义的. 3,fread可以读一个结构.read在linux/unix中读二进制与普通文件没有区别. 4,fopen不能指定要创建文件的权限.open可以指定权限. 5,fopen返回指针,open返回文件描述符(整数). 6,linux/unix中任何设备都是文件,都可以用open,read. 如果文件的大小是8k。 你如果用read/write,且只分配了2k的缓存,则要将此文件读出需要做4次系统调用来实际从磁盘上读出。 如果你用fread/fwrite,则系统自动分配缓存,则读出此文件只要一次系统调用从磁盘上读出。 也就是用read/write要读4次磁盘,而用fread/fwrite则只要读1次磁盘。效率比read/write要高4倍。 如果程序对内存有限制,则用read/write比较好。 都用fread 和fwrite,它自动分配缓存,速度会很快,比自己来做要简单。如果要处理一些特殊的描述符,用read 和write,如套接口,管道之类的 系统调用write的效率取决于你buf的大小和你要写入的总数量,如果buf 太小,你进入内核空间的次数大增,效率就低下。而fwrite会替你做缓存,减少了实际出现的系统调用,所以效率比较高。

如果只调用一次(可能吗?),这俩差不多,严格来说write要快一点点(因为实际上fwrite最后还是用了write做真正的写入文件系统工作),但是这其中的差别无所谓。

Linux系统调用与实例分析

Linux系统调用与实例分析 计算机961班林霁9615018 一.系统调用的基本概念 通常,在OS的核心中都设置了一组用于实现各种系统功能的子程序(过程),并将它们提供给用户调用。每当用户在程序中需要OS提供某种服务时,便可利用一条系统调用命令,去调用系统过程。它一般运行在核心态;通过软中断进入;返回时通常需要重新调度(因此不一定直接返回到调用过程)。 系统调用是沟通用户(应用程序)和操作系统内核的桥梁。 二.L inux的系统调用 L inux系统调用的流程非常简单,它由0x80号软中断进入系统调用入口,通过使用系统调用表保存系统调用服务函数的入口地址来实现。 2.1 Linux系统调用的数据结构 在文件“arch/i386/entry.S”中定义了系统调用表(sys_call_table),该表保存了Linux的所有基于Intel x86系列体系结构的计算机的166个系统调用入口地址(其中3个保留,Linux开辟的系统调用表可容纳256项),其中每项都被说明成long型。下面是其中几项: .data ENTRY(sys_call_table) .long SYMBOL_NAME(sys_setup) /* 0 */ .long SYMBOL_NAME(sys_exit) .long SYMBOL_NAME(sys_fork)

…… …… .long SYMBOL_NAME(sys_nanosleep) /* 162 */ .long SYMBOL_NAME(sys_mremap) .long 0,0 .long SYMBOL_NAME(sys_vm86) .space (NR_syscalls-166)*4 NR_syscalls是在“include/linux/sys.h”文件中定义的宏,其值为256,表示x86微机上最多可容纳的系统调用个数。 在文件“include/asm-i386/ptrace.h”中定义了一种寄存器帧结构 struct pt_regs { long ebx; long ecx; long edx; long esi; long edi; long ebp; long eax; unsigned short ds, __dsu; unsigned short es, __esu; unsigned short fs, __fsu; unsigned short gs, __gsu; long orig_eax; long eip; unsigned short cs, __csu; long eflags; long esp; unsigned short ss, __ssu; };

向Linux内核添加系统调用函数

向Linux内核添加系统调用函数 实验环境: 虚拟机VMware 6.0 操作系统Ubuntu9.10(内核版本2.6.31-14-generic) 修改内核版本2.6.31.12 实验步骤: 1.下载Linux内核:在终端中输入命令sudo apt-get install linux-source,下载的文件在/usr/src 目录下。(注:如果源没有更新的,在下载之前请先更新源。) 2.将内核代码解压缩:例如下载的内核文件为linux-source-2.6.31.tar.bz2,运行解压命令tar –jxvf linux-source-2.6.31.tar.bz2。解压出的文件夹为/usr/src/linux-source-2.6.31。 3.修改/usr/src/linux-source-2.6.31/kernel/sys.c文件,例如在文件末尾增加一个系统响应函数。asmlinkage int sys_mycall(int number) { printk("这是***编写的的系统调用函数");//printk是内核中日志级别的输出函数 return number; } 4.在/usr/src/linux-source-2.6.31/arch/x86/kernel/syscall_table_32.S中添加:.long sys_mycall。 5.在/usr/src/linux-2. 6.31/arch/x86/include/asm/unistd_32.h中添加:#define __NR_mycall 序号(例如337),添加系统调用的入口参数(注意:其中会顺序定义入口参数的序号,添加的序号是在原有最大值的基础上+1) 6.编译内核: 首先切换到解压的内核目录下。 第一步:make mrproper 清除内核中不稳定的目标文件,附属文件及内核配置文件 第二步:make clean 清除以前生成的目标文件和其他文件 第三步:make oldconfig 采用默认的内核配置 第四步:make bzImage 编译内核 第五步:make modules 编译模块 第六步:make modules_install 安装模块 总共需要的编译的时间大约为两个小时。 7.编译完成后,设置采用新内核启动。 例如我们编译成功的内核版本号为2.6.31.12。 运行命令: cp /usr/src/linux-source-2.6.31/arch/i386/boot/bzImage /boot/vmlinuz-2.6.31.12(注意:2.6.31.12为你编译的内核版本。) mkinitramfs -o initrd.img-2.6.31.12 2.6.31.12 cp /usr/src/linux-source-2.6.31/ initrd.img-2.6.31.12 /boot/ initrd.img-2.6.31.12 8. 增加引导菜单项,配置启动项文件/boot/grub/grub.cfg。(旧版本可能对应于文件menu.lst。) 可以看到文件中结构 menuentry "Ubuntu, Linux 2.6.31-14-generic"{ …… } menuentry "Ubuntu, Linux 2.6.31-14-generic (recovery mode)"{ ……

相关主题
文本预览
相关文档 最新文档