当前位置:文档之家› 亥姆霍兹线圈的结构和原因

亥姆霍兹线圈的结构和原因

亥姆霍兹线圈的结构和原因
亥姆霍兹线圈的结构和原因

1、亥姆霍兹线圈的结构和原因:亥姆霍兹线圈是用两个半径和匝数完全相同的线圈,将其

同轴排列并令间距等于半径,串接而成的线圈。用它可以产生极微弱的磁场直至数百Gs的磁场,可用于地球磁场的抵消补偿、检测永磁体特性等。

2、磁场在现实生活中的应用:

磁场的新用途磁被广泛应用于现代科学技术中,收音机,电视机,录音机,录像机,电话,电报,电子手表,电子显微镜,各类电表,磨床吸盘,恒磁和电磁起重吊头,物理探矿设备,电子计算机以及种类繁多的发电机,电动机等等,都要应用各种各样磁性材料.磁悬浮列车已在一些国家中问世,由于它减少了车轮和地面之间的撞击,因而行驶平稳,无空气污染,

3、怎样正确判断探测器在亥姆赫兹线圈的轴线上:观察测量磁场传感器的变化。

4、实验步骤:

1.打开数码显示屏后面板的开关,先对LED显示屏调零;

2.打开稳压电源(已调好),同方向闭合两电键(使两线圈通以相同方向电流),转动小

手柄,使位于线圈轴线上的霍尔元件由导轨的一端缓慢移向另一端,观察两同向载流圆线圈磁场合成后的分布。(显示屏示数由小变大,中间一段基本不变,最后又由大变小);

3.改变其中一个线圈的电流方向,重复3的操作,观察两反向载流圆线圈磁场合成后的

分布。(显示屏示数由小变大,由大变小,又由小变大,由大变小)。把霍耳元件移动到两个线圈的中部,可找到合磁场为零的位置;

4.断开一个线圈的电流,重复3的操作,? 观察一个载流圆线圈磁场的分布。(显示屏示

数由小变大,又由大变小);

5.实验结束,打开电键,关闭显示屏和线圈电源。

5、在圆心处磁场最大。

点火线圈的基本原理

点火线圈的基本原理 通常的点火线圈里面有两组线圈,初级线圈和次级线圈。初级线圈用较粗的漆包线,通常用0.5-1毫米左右的漆包线绕200-500匝左右;次级线圈用较细的漆包线,通常用0.1毫米左右的漆包线绕15000-25000匝左右。初级线圈一端与车上低压电源(+)联接,另一端与开关装置(断电器)联接。次级线圈一端与初级线圈联接,另一端与高压线输出端联接输出高压电。 点火线圈之所以能将车上低压电变成高电压,是由于有与普通变压器相同的形式,初级线圈比次级线圈的匝数比大。但点火线圈工作方式却与普通变压器不一样,普通变压器的工作频率是固定50Hz,又称工频变压器,而点火线圈则是以脉冲形式工作的,可以看成是脉冲变压器,它根据发动机不同的转速以不同的频率反复进行储能及放能。 当初级线圈接通电源时,随着电流的增长四周产生一个很强的磁场,铁芯储存了磁场能;当开关装置使初级线圈电路断开时,初级线圈的磁场迅速衰减,次级线圈就会感应出很高的电压。初级线圈的磁场消失速度越快,电流断开瞬间的电流越大,两个线圈的匝比越大,则次级线圈感应出来的电压越高。 数字式电控点火系统 在现代汽车的高速汽油发动机上,已经采用由微处理机控制的点火系统,也称数字式电控点火系统。这种点火系统由微电脑(计算机)、各种传感器和点火执行器三部分组成。 实际上在现代发动机中,汽油喷射与点火这两个子系统都受同一个ECU控制,合用一组传感器。传感器基本上与电控汽油喷射系统中的传感器相同,例如有曲轴位置传感器、凸轮轴位置传感器、节气门位置传感器、进气歧管压力传感器、爆燃传感器等。其中爆燃传感器是电控点火专用的一个很重要的传感器(尤其是采用了废气涡轮增压装置的发动机),它能够监测发动机是否爆燃及爆燃的程度,作为反馈信号使ECU指令实现点火提前,使发动机不会爆燃又能获得较高的燃烧效率。 点火线圈的三大类型 数字式电控点火系统(ESA)按照结构分为分电器式与无分电器式(DLI)两种类型。分电器式电控点火系统只用一个点火线圈产生高压电,然后由分电器按照点火顺序

磁路和铁心线圈电路

解: U E 4.44 fN m 4.44 fN 4.44 50 1000 9 10 4(Wb) =5X 6.5+(5+6.5) 2 X 0.1=33.65cm 求所需磁通势 412.72 199.08 1424 2036A ⑹励磁电流 I F 型 2.04A N 1000 10-2设铁心是由 D21硅钢片叠制而成,片厚0.5mm,铁心截面A=6.6cm 2 ,磁路平均长度I =66cm,励 磁线圈匝数N=1000匝接,至频率f=50H z , U=220V 的正弦电压。求励磁电流有效值及 相位角(忽略线圈电阻及漏磁通)。 第十章磁路和铁心线圈电路 10-1图示为一直流电磁铁。磁路尺寸单位 为cm,铁心由D21硅钢片叠成,叠装因 数K Fe =0.92,衔铁材料为铸钢。要使电 磁铁空气隙中的磁通为 3X 10 wb 3 。 求:⑴所需磁通势;⑵若线圈匝数 N=1000匝,求线圈的励磁电流。 解:⑴ 将磁路分成铁心、衔铁、气隙三段。 ⑵求各段长度和截面积 11=( 30-6.5)+2(30-3.25)=77cm 12=30-6.5+4 X 2=31.5cm 210=0.1 X 2=0.2cm 2 A=6.5 X 5X 0.92=30cm 2 A ?=8X 5=40cm A=ab+(a+b) 10 ⑷求各段磁路磁场强度 B 0 3 10 3 A 30 104 3 103 A 2 40 104 3 10 3 求各段磁路磁感应强度 B i B 2 0.75T H 1 H 2 H 。 536A/m 632A/m 0.8 106B 0 0.8 1 06 0.89 33.65 10 4 0.89T 6 0.71 10 A/m NI H 1I 1 H 』2 H °l ° 536 0.77 6 632 0.315 0.71 10 0.002

电力电容器保护原理解释

常见电力电容器保护类型: 电容器保护 1 保护熔丝 现代电容器组的每台电容器上都装有单独的熔丝保护,这种熔丝结构简单,安装方便,只要配合得当,就能够迅速将故障电容器切除,避免电容器的油箱发生爆炸,使附近的电容器免遭波及损坏。此外,保护熔丝还有明显的标志,动作以后很容易发现,运行人员根据标志便可容易地查出故障的电容器,以便更换。 2 过电流保护(电流取自线路TA) 过电流保护的任务,主要是保护电容器引线上的相间短路故障或在电容器组过负荷运行时使开关跳闸。电容器过负荷的原因,一是运行电压高于电容器的额定电压,另一种情况是谐波引起的过电流。 为避免合闸涌流引起保护的误动作,过电流保护应有一定的时限,一般将时限整定到0.5s以上就可躲过涌流的影响。 3 不平衡电压保护(电压取自放电TV二次侧所构成的开口三角型) 电容器发生故障后,将引起电容器组三相电容不平衡。电容器组的各种主保护方式都是从这个基本点出发来确定的。 根据这个原理,国内外采用的继电保护方式很多,大致可以分为不平衡电压和不平衡电流保护两种。这两种保护,都是利用故障电容器被切除后,因电容值不平衡而产生的电压和电流不平衡来启动继电器。这些保护方式各有优缺点,我们可以根据需要选择。 单星形接线的电容器组目前国内广泛采用开口三角电压保护。 对于没有放电电阻的电容器,将放电线圈的一次侧与电容器并联,二次侧接成开口三角形,在开口处连接一只低整定值的电压继电器,在正常运行时,三相电压平衡,开口处电压为零,当电容器因故障被切除后,即出现差电压U0,保护采集到差电压后即动作掉闸。 4 不平衡电流保护 这种保护方式是利用故障相容抗变化后,电流变化与正常相电流间形成差电流,来启动过电流继电器,以达到保护电容器组的目的。常见的不平衡电流保护的方式有以下两种: 4.1 双星形中性点间不平衡电流保护 保护所用的低变比TA串接于双星型接线的两组电流器的中性线上,在正常情况下,三相阻抗平衡,中性点间电压差为零,没有电流流过中性线。如果某一台或几台电容器发生故障,故障相的电压下降,中性点出现电压,中性线有不平衡电流I0流过,保护采集到不平衡电流后即动作掉闸。

汽车电动助力转向机构的设计

汽车电动助力转向机构的设计 引言 在汽车的发展历程中,转向系统经历了四个发展阶段:从最初的机械式转向系统(Manual Steering,简称MS)发展为液压助力转向系统(Hydraulic Power Steering,简称HPS),然后又出现了电控液压助力转向系统(Electro Hydraulic Power Steering,简称EHPS)和电动助力转向系统(Electric Power Steering,简称EPS)。 装配机械式转向系统的汽车,在泊车和低速行驶时驾驶员操纵负担过于沉重,为了解决这个问题,美国GM公司在20世纪50年代率先在轿车上采用了液压助力转向系统[1]。但是,液压助力转向系统无法兼顾车辆低速时的转向轻便性和高速时的转向稳定性,因此在1983年日本koyo公司推出了具备车速感应功能的电控液压助力转向系统。这种新型的转向系统可以随着车速的升高提供逐渐减小的转向助力,但是结构复杂、造价较高,而且无法克服液压系统自身所具有的许多缺点,是一种介于液压助力转向和电动助力转向之间的过渡产品。到了1988年,日本Suzuki公司首先在小型轿车Cervo上配备了Koyo公司研发的转向柱助力式电动助力转向系统;1990年,日本Honda公司也在运动型轿车NSX上采用了自主研发的齿条助力式电动助力转向系统,从此揭开了电动助力转向在汽车上应用的历史。

第1章概述 1.1电动助力转向的优点 与传统的转向系统相比,电动助力转向系统最大的特点就是极高的可控制性,即通过适当的控制逻辑,调整电机的助力特性,以达到改善操纵稳定性和驾驶舒适性的目的。作为今后汽车转向系统的发展方向,必将取代现有的机械转向系统、液压助力转向系统和电控制液压助力转向系统[2]。 相比传统液压动力转向系统,电动助力转向系统具有以下优点: (1)只在转向时电机才提供助力,可以显著降低燃油消耗 传统的液压助力转向系统有发动机带动转向油泵,不管转向或者不转向都要消耗发动机部分动力。而电动助力转向系统只是在转向时才由电机提供助力,不转向时不消耗能量。因此,电动助力转向系统可以降低车辆的燃油消耗。 与液压助力转向系统对比试验表明:在不转向时,电动助力转向可以降低燃油消耗2.5%;在转向时,可以降低5.5%。 (2)转向助力大小可以通过软件调整,能够兼顾低速时的转向轻便性和高速时的操纵稳定性,回正性能好。传统的液压助力转向系统所提供的转向助力大小不能随车速的提高而改变。这样就使得车辆虽然在低速时具有良好的转向轻便性,但是在高速行驶时转向盘太轻,产生转向“发飘”的现象,驾驶员缺少显著的“路感”,降低了高速行驶时的车辆稳定性和驾驶员的安全感。 电动助力转向系统提供的助力大小可以通过软件方便的调整。在低速时,电动助力转向系统可以提供较大的转向助力,提供车辆的转向轻便性;随着车速的提高,电动助力转向系统提供的转向助力可以逐渐减小,转向时驾驶员所需提供的转向力将逐渐增大,这样驾驶员就感受到明显的“路感”,提高了车辆稳定性。

点火系统的组成与工作原理

点火系统得组成与工作原理 一、电控点火系统得类型 1.汽油机点火系统得类型 汽油机点火系主要有:传统点火系统与计算机控制得点火系统两 大类型。传统点火系统又可分为磁电机点火系统与蓄电池点火系统。 (1)磁电机点火系统:电能就是由磁电机本身提供得,其结构复杂,低速时点火性能差,一般只用于无蓄电池得机动车上。 (2)蓄电池点火系统:又称有触点点火系统,其结构简单、工作可靠,在汽车上得到广泛应用。 蓄电池点火系统得主要缺点: 1)高速易断火,不适合高速发动机。 2)断电器触点易烧蚀,工作可靠性差。 3)点火能量低,点火可靠性差。 (3)微机控制得点火系统:系统中使用模拟计算机根据各传感器信号对点火提前角进行控制。 主要优点: 1)在各种工况及环境条件下,均可自动获得最佳得点火提前角。 2)在整个工作工程中,均可对点火线圈初级回路通电时间与电流进行控制。 3)采用爆燃控制功能后,可使点火提前角控制在爆燃得临界状态。

2. 电控点火系统得类型:可分为有分电器与无分电器式。 二、基本组成与工作原理 1.基本组成 电控点火系统一般由电源、传感器、ECU 、点火器、点火线圈、分电器与火花塞组成。 电控点火系统得基本组成 电源:一般由蓄电池与发电机共同组成,主要就是给点火系统提供所需得电能。 传感器:用于检测发动机各种运行参数,为 ECU 提供点火控制所需得信号。 ECU:就是电控点火系统得中枢。 点火器:电控点火得执行元件 点火线圈:储存点火所需得能量,并将电源提供得低压电转变为足以在电极间产生击穿火花得15 ~20KV 得高压电。 分电器:根据发动机点火顺序,将点火线圈产生得高压电依次输送给各缸火花塞。 火花塞:利用点火线圈产生得高压电产生点火花,点燃气缸内得混合气。

亥姆霍兹线圈磁场实验

亥姆霍兹线圈磁场实验 实验名称:亥姆霍兹 日期: 2017.3.8 专业班级:环境工程163班 试验人: 李璐驿 学号:58021161000 指导老师: 钟双英 实验目的 (1) 学习感应法测量磁场的原理和方法; (2) 研究研究亥姆霍兹线圈周线上的磁场分布. 主要仪器 磁场测试仪、亥姆霍兹线圈架和亥姆霍兹磁场实验控制箱.工作温度10~35℃,相对湿度25%~75%. 两个励磁线圈各500匝,圆线圈的平均半径105R =mm,两线圈中心间距105mm.感应线圈距离分辨率0.5mm. 实验原理 一、 载流圆线圈与亥姆霍兹线圈 1、载流圆线圈磁场 半径为R 通以电流为I 的圆线圈,周线上磁场的公式为 ) (2222 320 X R R N I B += μ 式中0N 为线圈的匝数;x 为轴上某一点到圆心O 的距离;710410H m μπ-=??.本次实验取I=200mA. 2、亥姆霍兹线圈 两个相同线圈彼此靠近,使线圈上通以同向电流理论计算证明:线圈间距a 等于线圈半径R 时,两线圈合场在轴附近较大范围内是均匀的.这时线圈称为亥姆霍兹线圈,如图所示. 实验内容 1. 测量亥姆霍兹线圈周线上的磁场分布 2. 验证公式cos m m NS B εωθ= 3. *研究励磁电流频率改变对磁场强度的影响 数据记录与处理: 表 1

X/mm -50 -45 -40 -35 -30 -25 -20 B/mT 0.422 0.447 0.468 0.489 0.508 0.528 0.546 X/mm -15 -10 -5 0 5 10 15 B/mT 0.558 0.568 0.576 0.580 0.579 0.574 0.565 X/mm 20 25 30 35 40 45 50 B/mT 0.555 0.540 0.520 0.502 0.481 0.464 0.436 单线圈 0.700 0.600 0.500 0.400 0.300 0.200 0.100 0.000 -50 -45 -40 -35 -30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30 35 40 45 50 表二 X/mm -100 -90 -80 -70 -60 -50 -40 B/mT 0.553 0.615 0.672 0.723 0.761 0.805 0.835 X/mm -30 -20 -10 0 10 20 30 B/mT 0.846 0.855 0.853 0.853 0.850 0.846 0.844 X/mm 40 50 60 70 80 90 100 B/mT 0.828 0.802 0.764 0.722 0.667 0.602 0.548

FD2-1.711√3-1W高压并联电容器用放电线圈简介

FD2-1.7/11/√3-1W高压并联电容器用放电线圈 一、简介 FDG2型放电线圈为环氧树脂真空浇注单相户内半封闭型产品,适用于额定频率50Hz、额定电压10KV及以下的电力系统中与高压并联电容器组并联连接,当电容器组与系统断开后,以在5s内将电容器组上的剩余电压降至安全电压。在正常运行时,二次绕组可以做电压指示,用户如有特殊要求时,亦可带剩余电压绕组,起到继电保护用。 放电线圈用于6-10kV交流50HZ电力系统中,与电力电容器组并联,断电时放电之用,确保设备安全和检修人员的安全 本型放电线圈用于6-10kV交流50HZ电力系统中,与电力电容器组并联,断电时放电之用,确保设备安全和检修人员的安全。 本型放电线圈带有二次线圈,供线路测量或保护使用。 二、结构特点 本型放电线圈的油箱内有一个器身,器身的铁心为外铁式,用硅钢片迭装而成。在心柱上装置一次及二次线圈,油箱为圆形。箱盖上有二个高压套管和四个低压套管。器身固定在箱盖上,箱盖上有放气阀,整个结构紧凑,绝缘良好. 三、用途 本型放电线圈用于6-10kV交流50HZ电力系统中,与电力电容器组并联,断电时放电之用,确保设备安全和检修人员的安全。 本型放电线圈带有二次线圈,供线路测量或保护使用 五、用户须知 1.本放电线圈使用环境温度为+40℃—-40℃,相对湿度为85%,海拔不超过1000米,户外安装。 2.本放电线圈安装地点应无腐蚀性气体、蒸汽、化学沉积、灰尘、污垢及无强烈震动之场所。 3.放电线圈的外壳必须可靠接地。 六、型号说明 FD □- □/□

││││ │││└额定一次端电压(kV) ││└───配用电容器容量(Mvar) │└──────2表示带二次线圈;2A表示带两个二次线圈└────────单相式放电线圈

点火线圈结构和功能材料教学内容

点火线圈结构和功能 材料

点火线圈的结构和功能材料 王槐祥 2018-3 1、工程塑料 1.1工程塑料的基本特征 塑料是指以高分子量的有机物质为主要成分的材料。它在加工完成后,呈固态形状。再加工过程中,可以藉以流动造型。 工程塑料有优良的机械性能、绝缘性能、耐溶剂性能、阻燃性能、易于成型等特性,因此,工程塑料在汽车电气部件及结构部件上,得到了广泛的应用。 按工程塑料对热之变化,分为两大类: 1)热固性塑料。指加热后,会使分子结合成网状型态。一旦结合成网状聚合体,即使再加热也不会软化,显示出非可逆的变化,是分子结构发生化学变化所致。如高压管所用的PU 材料 等。 2)热塑性塑料。指加热后会熔化,可流动至模具冷却成型。再加热,又可以熔化的塑料。即可以应用加热和冷却,使其产生液态、固态的可逆变化,即物理变化。如PA、PBT、PPO 等。 1.2 工程塑料的基本性能 1.2.1 物理性能 1)密度单位:g/cm3 ,塑料的密度一般在0.8~2g/cm3 范围。 2)吸水率。以23℃时饱和吸水率表示。PA吸水率较高。对所有塑料,特别是吸水率较高的塑料,在注塑前一定要按要求对塑料粒子进行烘干处理。 1.2.2 机械性能

1)断裂应力(MPa) 2)断裂伸长率(%) 3)冲击强度(KJ/m2) 1.2.3 热性能 1)线膨胀系数(10-5/K),应选择与结合件线膨胀系数相近的塑料,以减少内应力。 2)热变形温度(在0.45MPa及1.8MPa条件下,℃) 3)最高使用温度(℃)(指短周期运行的温度) 1.2.4电气性能 1)介电常数 2)损耗角 3)介电强度(KV/mm) 1.2.5 阻燃性 塑料阻燃等级由 HB,V-2,V-1 向 V-0 逐级递增: HB:UL94 和 CSA C22.2 No 0.17 标准中最底的阻燃等级,要求对于 3 到 13 毫米厚的样品,燃烧速度小于 40 毫米每分钟;小于 3 毫米厚的样品,燃烧速度小于 70 毫米每分钟;或者在 100 毫米的标志前熄灭。 V-2:对样品进行两次 10 秒的燃烧测试后,火焰在 60 秒内熄灭。可以有燃烧物掉下。 V-1:对样品进行两次 10 秒的燃烧测试后,火焰在 60 秒内熄灭。不能有燃烧物掉下。 V-0:对样品进行两次 10 秒的燃烧测试后,火焰在 30 秒内熄灭。不能有燃烧物掉下。 点火线圈一般选用HB阻燃等级的塑料。对有特殊要求的产品,可以选用阻燃等级高的塑料。 1.2.6 成型收缩率 用(%)表示,在设计注塑模时一定要考虑成型收缩率,以保证成品尺寸。 1.3塑料材料的应用 1.3.1 点火线圈对结构和功能塑料部件的要求 1)加工性能

亥姆霍兹线圈实验报告

亥姆xx兹线圈实验报告 【实验原理】 1.载流圆线圈xxxx线圈的磁场 (1)载流圆线圈磁场 一半径为R,通以电流I的圆线圈,轴线上磁场的公式为 (1-1) 式中N 0为圆线圈的匝数,X为轴上某一点到圆心O的距离。 它的磁场分布图如图1-1所示。 (2)亥姆xx兹线圈 所谓亥姆霍兹线圈为两个相同线圈彼此平行且共轴,使线圈上通以同方向电流I,理论计算证明: 线圈间距a等于线圈半径R时,两线圈合磁场在轴上(两线圈圆心连线)附近较大范围内是均匀的,如图1-2所示。 2.xx效应法测磁场 (1)xx效应法测量原理 将通有电流I的导体置于磁场中,则在垂直于电流I和磁场B方向上将产生一个附加电位差,这一现象是霍尔于1879年首先发现,故称霍尔效应。 电位差U H称为xx电压。 如图3-1所示N型半导体,若在MN两端加上电压U,则有电流I沿X轴方向流动(有速度为V运动的电子),此时在Z轴方向加以强度为B的磁场后,运动着的电子受洛伦兹力F

B的作用而偏移、聚集在S平面;同时随着电子的向S平面(下平面)偏移和聚集,在P平面(上平面)出现等量的正电荷,结果在上下平面之间形成一个电场E H(此电场称之为霍尔电场)。这个电场反过来阻止电子继续向下偏移。当电子受到的洛伦兹力和霍尔电场的反作用力这二种达到平衡时,就不能向下偏移。此时在上下平面(S、P平面)间形成一个稳定的电压U H(xx电压)。 (2)xx系数、xx灵敏度、xx电压 设材料的长度为l,宽为b,厚为d,载流子浓度为n,载流子速度v,则与通过材料的电流I有如下关系: I=nevbd xx电压U H=IB/ned=R HIB/d=K HIB 式中xx系数R H=1/ne,单位为m3/c;霍尔灵敏度K H=R H/d,单位为mV/mA 由此可见,使I为常数时,有U H= K HIB =k 0B,通过测量xx电压U H,就可计算出未知磁场强度B。

继电保护中电容器保护常用保护原理

继电保护中电容器保护常用保护原理 电力电容器组不平衡保护综述 科技日益进步,经济持续发展,用户用电对电能的要求也日益升高。不单是对电能数量的需求不断增长,其对电压质量要求也越来越高,电容器保护测控装置不单要有足够的电能,还要有稳定的电能——即电压、频率、波形需符合要求,才能保证用户的用电设备持续保持最好的工作性能,从而保证工效效率。其中,电压质量是很重要的一个方面,不单对用户生产、生活、工作有重大影响,对整个电网的安全稳定经济运行也有着至关重要的作用。 与电压质量息息相关的就是无功电源,无功不足,会使得系统的电压幅值降低,对整个电网来说,电压过低可能引起电压崩溃,进而使系统瓦解,造成负荷大幅流失;对单个元件而言,电压的降低可能使其无法运行在最佳工况,同时造成电能损耗增大,甚至可能损坏设备,同时输电线路在同等条件下,电压越低传输的电能就越小。因此,必须保证无功电源的供应。同时,为了确保电网经济运行与用户的用电正常,又必须减小无功功率的流动,因此,无功补偿的基本原则是就地补偿。即在变电站及用户负荷处,将一定量的电容器串联、并联在一起,形成电容组,使其达到一定的容量、满足一定的电压要求,补偿系统无功、调节该节点电压。 1电容器组接线方式的决定因素 电容器通常是将若干元件封装在一铁壳内,构成电容器单元,再

由各单元先并后联,封装在铁箱内组成的。 当电容器组所接入电网的电压等级、容量要求确定以后,接线方式的选择则关系到了电容器组的安全性、可靠性以及经济性。决定接线方式的主要因素包括以下几个方面。 1.1受耐爆容量限制 电容器组在运行过程中,若其中某个电容器击穿短路,这个电容器将承受来自其自身及其他并联10KV电容器保护组的放电。为防止故障元件受放电能量过大冲击,导致电容元件爆炸,必须限制同一串联段上的并联台数,即有所谓的最大并联台数问题。可以通过减少并联数与增大串联段数的方法,来降低冲击故障电容器的放电能量。 1.2接线方式与设备不配套的限制 20世纪90年代末至21世纪初,由于工艺上的改进,使电力电容器的介质,结构发生改变,普遍采用了全膜电容器。电容器的容量越来越大,因此派生出了很多新的结构与接线方式。同时,在一段时间内,由于缺乏较高的 66kV电压等级的放电线圈,致使其66KV电容器保护测控装置选择及相应接线方式的应用受到限制,因此使相关接线方式适用范围受到了限制。由于这种不配套的限制,导致该时期电容器运行故障明显上升。经过阵痛之后,对配套设备的研究也跟上技术的研发进度,因此,这种限制现在基本消除。 1.3与应用的场合有关 在电力企业中,多采用星形接法,在工矿企业变电所中多采用三

汽车电子--点火线圈变压器结构原理

product training ignition transformer
Oct. 2007

product training ignition transformer
Session 1: Basic function of gasoline four stroke engine and the function of ignition system. Objective target: To recognize what an modern ignition system do in the engine.
Oct. 2007

Position and function of and engine in a car
First of all the engine of a car is responsible to produce the force and the power to move the car. They are also responsible to charge the battery, to power the air conditioner, to power the steering booster and so on.
cardan shaft engine
gearbox
axis
Oct. 2007

History of 4 stroke gasoline engine
first 4 stoke engine
car engine
modern racing engine
approx. 1867
1967
1997
Oct. 2007

发动机点火系统设计要点

专业实践报告 课题名称汽车电子点火系统 (2012 年秋季学期) 学院交通与机械工程学院 专业交通运输 班级交通09--1班 姓名杨冬冬 指导教师关醒权刘伟东 2013 年 1 月11 日

汽车电子点火系统 1.设计方案说明 1.1本课题研究的背景、目的和意义 桑塔纳2000型轿车采用的是带分电器式的电子点火系统,其突出特点是将点火系统与燃油喷射系统复合在一起,由一个电控单元(ECU)来控制,结构简单工作可靠。同时,也存在点火控制器故障、霍尔传感器损坏分电器盖、分火间破裂漏电、火花塞间隙增大,烧蚀严重,积油积碳过多等问题,存在一定的改进空间。学校考虑到机械类本科毕业生完全有能力对汽车点火系统的结构进行设计和验证,故提出了本课题的研究。 本课题的研究着重于使机械类本科毕业生以四年来所学的专业理论知识,结合一些课外参考文献,独立设计适用于桑塔纳2000型轿车的点火系统,培养学生独立思考、解决问题的能力和思维创新能力与实践能力,使其理论结合实际,学以致用,为以后走上工作岗位打好坚实的基础。 1.2 设计题目简介及其要求与目标 1.2.1桑塔纳2000型轿车点火系统 桑塔纳2000型轿车采用的是带分电器式的电子点火系统,主要由点火线圈、分电器、火花塞。带抗干扰元件的链接插座,爆燃传感器,点火导线等组成,结构简单,工作可靠,使用和维修比较方便。 1.2.2桑塔纳2000型轿车点火系统所要达到的效果及技术要求 点火系统的基本功用是在发动机各种工况和使用条件下,在气缸内适时、准确、可靠地产生电火花,以点燃可燃混合气,使发动机作功。 (1)能产生足以击穿火花塞两电极间隙的电压 使火花塞两电极之间的间隙击穿并产生电火花所需要的电压,称为火花塞击穿电压。火花塞击穿电压的大小与电极之间的距离(火花塞间隙)、气缸内的压力和温度、电极的温度、发动机的工作状况等因素有关。火花塞间隙越大,电极周围气体中的电子和离子距离越大,受到电场力的作用越小,越不容易发生碰撞的电离,一次要求具有较高的击穿电压方能点火;气缸内的压力越大或者温度越低,所要求的火花塞击穿电压越高;电极的温度对火花塞击穿电压也有影响,当火花塞的电极温度超过混合气的温度时,击穿电压可降低30%~50%。试

点火系统的组成与工作原理

点火系统的组成与工作原理 一、电控点火系统的类型 1.汽油机点火系统的类型 汽油机点火系主要有:传统点火系统和计算机控制的点火系统两大类型。传统点火系统又可分为磁电机点火系统和蓄电池点火系统。 (1)磁电机点火系统:电能是由磁电机本身提供的,其结构复杂,低速时点火性能差,一般只用于无蓄电池的机动车上。 (2)蓄电池点火系统:又称有触点点火系统,其结构简单、工作可靠,在汽车上得到广泛应用。 蓄电池点火系统的主要缺点: 1)高速易断火,不适合高速发动机。 2)断电器触点易烧蚀,工作可靠性差。 3)点火能量低,点火可靠性差。 (3)微机控制的点火系统:系统中使用模拟计算机根据各传感器信号对点火提前角进行控制。 主要优点: 1)在各种工况及环境条件下,均可自动获得最佳的点火提前角。 2)在整个工作工程中,均可对点火线圈初级回路通电时间和电流进行控制。

3)采用爆燃控制功能后,可使点火提前角控制在爆燃的临界状态。 2.电控点火系统的类型:可分为有分电器和无分电器式。 二、基本组成与工作原理 1.基本组成 电控点火系统一般由电源、传感器、 ECU 、点火器、点火线圈、分电器和火花塞组成。 电控点火系统的基本组成 电源:一般由蓄电池和发电机共同组成,主要是给点火系统提供所需的电能。 传感器:用于检测发动机各种运行参数,为 ECU 提供点火控制所需的信号。 ECU:是电控点火系统的中枢。 点火器:电控点火的执行元件 点火线圈:储存点火所需的能量,并将电源提供的低压电转变为足以在电极间产生击穿火花的 15 ~ 20KV 的高压电。 分电器:根据发动机点火顺序,将点火线圈产生的高压电依次输送给各缸火花塞。

第六章__磁路与铁心线圈电路

6.1.1有—线圈,其匝数N=1000,绕在由铸钢制成的闭合铁心上,铁心的截面积,铁心的平均长度cm。如要在铁心中产生磁通Wb,试问线圈中应通入多大直流电流?P210 7.3.1 解 查铸钢的磁化曲线可得 由可得 6.1.2如果上题的铁心中含有一长度为cm的空气隙(与铁心柱垂直),由于空气隙较短,磁通的边缘扩散可忽略不计,试问线圈中的电流必须多大才可使铁心中的磁感应强度保持上题中的数值?P211 7.3.2 解因为B不变,所以铁心中的H亦不变,,但多了空气隙,安培环路定律形式不同. 6.1.3 在题6.1.1中,如将线圈中的电流调到2.5 A,试求铁心中的磁通。 P211 7.3.3 解由可得 查铸钢磁化曲线可得. 6.1.4有一铁心线圈,试分析铁心中的磁感应强度、线圈中的电流和铜损 在下列几种情况下将如何变化: (1)直流励磁——铁心截面积加倍,线圈的电阻和匝数以及电源电压保持不变; (2)交流励磁——同(1);

(3)直流励磁——线圈匝数加倍,线圈的电阻及电源电压保持不变; (4)交流励磁——同(3); (5)交流励磁——电流频率减半,电源电压的大小保持不变; (6)交流励磁——频率和电源电压的大小减半。 假设在上述各种情况下工作点在磁化曲线的直线段。在交流励磁的情况下,设电源电压与感应电动势在数值上近于相等,且忽略磁滞和涡流。铁心是闭合的,截面均匀。P212 7.3.4 解(1)直流励磁:线圈电流不变; 不变,只是磁通增大了。 (2)交流励磁:,所以不变,减小一半;在磁化曲线线段减小一半;在磁化曲线线性段减小一半,减小一半,减小一半;也减小了(原值的)。 (3)直流励磁:不变;不变;IN增加一倍,磁阻未变,增加一倍,B也增加一倍。 (4)交流励磁:,减小一半,也减小一半;减小一半,减小一半,电流也减小为;铜损也减小了(原值的)。 (5)交流励磁:,增加一倍,也增加一倍,增加一倍,电流和I均增加一倍;也增大为原值的4倍。 (6)交流励磁:,不变;不变,不变,也不变 6.2.1为了求出铁心线圈的铁损,先将它接在直流电源上,从而测得线圈的电阻为1.75;然后接在交流电源上,测得电压V,功率W,电流A,试求铁损和线圈的功率因数。P212 7.4.1 解线圈的铜损

电容补偿原理

这个一般都是用有功功率/视在功率=cosφ 无功补偿电容器的作用要先从无功说起话说 那无功是这样的:功率的一部分能量用来建立磁场,作为交换能量使用,对外部电路并未 做功,它们由电能转换为磁场能,再由磁场能转换为电能,周而复始,并未消耗,这部分 能量称为无功功率。无功功率并不是无用之功,没有这部分功率,就不能建立感应磁场, 电动机、变压器等设备就不能运行。除负荷需要无功外,线路电感、变压器电感等也需要 。具体的好处就是很多很多:随便举几个!补偿无功后可以提高电压、降低线损、减少电 费支出、节约能源、增加电网有功容量传输、提高设备的使用效率、 电容补偿就是无功补偿或者功率因数补偿。电力系统的用电设备在使用时会产生无功功率 ,而且通常是电感性的,它会使电源的容量使用效率降低,而通过在系统中适当地增加电 容的方式就可以得以改善 电容补偿 - 简介 1,电容在交流电路里可将电压维持在较高的平均值!(近峰值).(高充低放),可改善增加电 路电压的稳定性! 2,对大电流负载的突发启动给予电流补偿!电力补偿电容组可提供巨大的瞬间电流!可减少 对电网的冲击! 3,电路里大量的感性负载会使电网的相位产生偏差,(感性元件会使交流电流相位滞后,电 压相位超前.)90度!而电容在电路里的特性与电感正好相反!起补偿作用!

电容补偿 - GWB-Z型高压无功自动补偿装置 一、概述 GWB-Z型高压无功自动补偿装置,适用于6KV、10KV的大中型工矿企业等负荷波动较大、功 率因数需经常调节的变电站配电系统。本装置是根据系统电压和无功缺额等因素,通过综 合测算,自动投切电容器组,以提高电压质量、改善功率因数及减少线损。本装置适用于 无人值守变电站和谐波电压、谐波电流满足国际GB/T14549-93规定允许值的场合。如现场 谐波条件超标,可根据情况配备1%-13%的电抗以抗拒谐波进入补偿设备。 二、、结构及基本工作原理 GWB-Z型高压无功自动补偿装置,由控制器、高压真空开关或真空接触器、高压电容器组 、电抗器、放电线圈、避雷器和一些必要的保护辅助设备组成。GWB-Z 型数字式高压无功 自动补偿控制器是根据九区图结合模糊控制原理、按电压优先和负荷无功功率以及投切次 数限量等要求决定是否投切电容器组,使母线电压始终处于标准范围内,确保不过补最大 限度减少损耗。在电压允许的范围内依据负荷的无功要求将电容器组一次投切到位。在投 入电容器之前预算电压升高量,如果超标则降低容量投入或不投入。异常情况时控制器发 出指令退出所有电容器组,同时发出声光报警。故障排除后,手动解除报警才能再次投入 自动工作方式。

点火线圈的组成结构及工作原理

点火线圈的组成结构及工作原理 点火装置的核心部件是由点火线圈和开关装置组成,点火线圈实际上就是一个变压器,将汽车电源供给的低压电转变为高压电,并按照发动机的作功顺序与点火时间的要求适时、准确地配送给各缸的火花塞,在其间隙处产生点火花,点燃气缸内的可燃混合气。这个看似普通的变压器内部有铁芯、初级绕组、次级绕组和绝缘物质等。 1、铁芯由互相绝缘的条形硅钢叠制而成,片间利用氧化油层或涂绝缘族隔离,外层套有绝缘套管,其作用是增强磁通。 2、初级绕组用导线直径为~的漆包线分层绕于初级绕组外层,以利散热,初级绕组为230~370 匝。外面也包有数层绝缘纸,以增强绝缘。绕组绕好后在真空中浸以石蜡和松香混合物,进一步加强绝缘。初级绕组的作用是利用绕组内电流变化实现电磁感应。 3、次级绕组用导线直径为~的漆包线绕于铁芯绝缘套管外部,约11000~26000 匝。为加强绝缘和免遭机械损伤,每层导线都用绝缘纸隔开,最外层的绝缘纸层数较多,或者套上纸板套管。其作用是产生互感电动势。 4、钢套初级绕组与外壳之间装有导磁用钢套。用磁钢片卷成筒形,构成磁路的一部分,使铁芯形成半封闭式磁路,减少漏磁。 5、填充物为加强绝缘和防止潮气浸入,在外壳内填满沥青或变压器油,填充变压器油时,线圈散热性较好,温升较低,且绝缘性好。近年来也使用六氟化硫(SF6)等气体绝缘或采用塑料造型绝缘。 6、附加电阻三接式点火线柱壳体外部装有一附加电阻,附加电阻两端连于胶木盖上的“+开关”和“开关”接柱,其作用是改善点火性能。两接柱点火线圈无附加电阻,在点火开关与点火线圈“+”接柱间,连入一根附加电阻线。 那么点火线圈是如何工作的呢山东名门汽车服务有限公司成立于2009年,坐落在济南老屯汽配市场。公司主要销售氙气灯、日行灯、改装灯、灯泡、火花塞、点火线圈、双光透镜、LED大灯等产品。对汽车零部件的使用非常熟悉。下面由他们讲解一下点火线圈的工作原理:

发动机点火系统设计

学号0908480118 专业实践报告 课题名称汽车电子点火系统 (2012 年秋季学期) 学院交通与机械工程学院 专业交通运输 班级交通09--1班 姓名杨冬冬 指导教师关醒权刘伟东 2013 年 1 月11 日

汽车电子点火系统 1.设计方案说明 1.1本课题研究的背景、目的和意义 桑塔纳2000型轿车采用的是带分电器式的电子点火系统,其突出特点是将点火系统与燃油喷射系统复合在一起,由一个电控单元(ECU)来控制,结构简单工作可靠。同时,也存在点火控制器故障、霍尔传感器损坏分电器盖、分火间破裂漏电、火花塞间隙增大,烧蚀严重,积油积碳过多等问题,存在一定的改进空间。学校考虑到机械类本科毕业生完全有能力对汽车点火系统的结构进行设计和验证,故提出了本课题的研究。 本课题的研究着重于使机械类本科毕业生以四年来所学的专业理论知识,结合一些课外参考文献,独立设计适用于桑塔纳2000型轿车的点火系统,培养学生独立思考、解决问题的能力和思维创新能力与实践能力,使其理论结合实际,学以致用,为以后走上工作岗位打好坚实的基础。 1.2 设计题目简介及其要求与目标 1.2.1桑塔纳2000型轿车点火系统 桑塔纳2000型轿车采用的是带分电器式的电子点火系统,主要由点火线圈、分电器、火花塞。带抗干扰元件的链接插座,爆燃传感器,点火导线等组成,结构简单,工作可靠,使用和维修比较方便。 1.2.2桑塔纳2000型轿车点火系统所要达到的效果及技术要求 点火系统的基本功用是在发动机各种工况和使用条件下,在气缸内适时、准确、可靠地产生电火花,以点燃可燃混合气,使发动机作功。 (1)能产生足以击穿火花塞两电极间隙的电压 使火花塞两电极之间的间隙击穿并产生电火花所需要的电压,称为火花塞击穿电压。火花塞击穿电压的大小与电极之间的距离(火花塞间隙)、气缸内的压力和温度、电极的温度、发动机的工作状况等因素有关。火花塞间隙越大,电极周围气体中的电子和离子距离越大,受到电场力的作用越小,越不容易发生碰撞的电离,一次要求具有较高的击穿电压方能点火;气缸内的压力越大或者温度越低,所要求的火花塞击穿电压越高;电极的温度对火花塞击穿电压也有影响,当火花塞的电极温度超过混合气的温度时,击穿电压可降低30%~50%。试

亥姆霍兹线圈磁场测定-实验报告

开放性实验实验报告—— 亥姆霍兹线圈磁场测定 姓名学号班级 亥姆霍兹线圈是一对相同的、共轴的、彼此平行的各有N匝的圆环电流。当它们的间距正好等于其圆环半径R时,称这对圆线圈为亥姆霍兹线圈。在亥姆霍兹线圈的两个圆电流之间的磁场比较均匀。在生产和科研中经常要把样品放在均匀磁场中作测试,利用亥姆霍兹线圈是获得一种均匀磁场的比较方便的方法。 一、实验目的 1. 熟悉霍尔效应法测量磁场的原理。 2. 学会亥姆霍兹磁场实验仪的使用方法。 3. 测量圆线圈和亥姆霍兹线圈上的磁场分布,并验证磁场的叠加原理 二、实验原理 同学们注意,根据自己的理解,适当增减,不要太多,有了重点就可以了。 1.霍尔器件测量磁场的原理 图3—8—1 霍尔效应原理

如图3—8—1所示,有-N型半导体材料制成的霍尔传感器,长为L,宽为b,厚为d,其四个侧面各焊有一个电极1、2、3、4。将其放在如图所示的垂直磁场中,沿3、4两个侧面通以电流I,电流密度为J,则电子将沿负J方向以速度运动,此电子将受到垂直方向磁场B的洛仑兹力 作用,造成电子在半导体薄片的1测积累过量的负电荷,2侧积累过量的正电荷。因此在薄片中产生了由2侧指向1侧的电场,该电场对电子的作用力,与反向,当两种力相平衡时,便出现稳定状态,1、2两侧面将建立起稳定的电压,此种效应为霍尔效应,由此而产生的电压叫霍尔电压,1、2端输出的霍尔电压可由数显电压表测量并显示出来。 如果半导体中电流I是稳定而均匀的,则电流密度J的大小为

(3—8—1) 式中b为矩形导体的宽,d为其厚度,则bd为半导体垂直于电流方向的截面积。 如果半导体所在范围内,磁场B也是均匀的,则霍耳电场也是均匀的,大小为 (3—8—2) 霍耳电场使电子受到一与洛仑兹力F m相反的电场力F e,将阻止电子继续迁移,随着电荷积累的增加,霍耳电场的电场力也增大,当达到一定程度时,F m与F e大小相等,电荷积累达到动态平衡,形成稳定的霍耳电压,这时根据F m=F e有 (3—8—3) 将(3—8—2)式代入(3—8—3)式得 (3—8—4) 式中、容易测量,但电子速度难测,为此将变成与I有关的参数。根据欧姆定理电流密度,为载流子的浓度,得,故有 (3—8—5) 将(3—8—5)式代入(3—8—4)式得

第6章 磁路与铁心线圈电路 课后习题

第6章 磁路与铁心线圈电路 62、某单相变压器如图所示,两个原绕组的额定电压均为110V ,副绕组额定电压为6.3V ,若电源电压为220V ,则应将原绕组的( a )端相连接,其余两端接电源。 (a)2和3; (b)1和3; (c)2和4。 63、变压器的铁损耗包含( b ),它们与电源的电压和频率有关。 (a)磁滞损耗和磁阻损耗 ; (b)磁滞损耗和涡流损耗; (c)涡流损耗和磁化饱和损耗。 64、变压器的铜损耗与负载的关系是( a )。 (a)与负载电流的平方成正比例; (b)与负载电流成正比例; (c)与负载无关。 65、变压器副边的额定电压是指当原绕组接额定电压时副绕组( b )。 (a)满载时的端电压; (b)开路时的端电压; (c)满载和空载时端电压的平均值。 66、一个R L =8Ω的负载,经理想变压器接到信号源上,信号源的内阻R 0=800Ω,变压器原绕组的匝数N 1=1000,若要通过阻抗匹配使负载得到最大功率,则变压器副绕组的匝数N 2应为( a )。 (a)100; (b)1000; (c)500。 67、一个负载R L 经理想变压器接到信号源上,已知信号源的内阻R 0=800Ω,变压器的变比K=10。若该负载折算到原边的阻值R 'L 正好与R 0达到阻抗匹配,则可知负载R L 为 ( c )。 (a)80Ω ; (b)0.8Ω; (c)8Ω。 68、一个信号源的电压U S =40V ,内阻R 0=200Ω,通过理想变压器接R L =8Ω 的负载。为使负载电阻换算到原边的阻值'=R L 200 Ω,以达到阻抗匹配,则变压器的变比K 应为( c )。 (a)25; (b)10; (c)5。 69、某理想变压器的变比K=10,其副边负载的电阻R L =8Ω。若将此负载 电阻折算到原边,其阻值'R L 为( b )。 (a)80Ω; (b)800Ω; (c)0.8Ω。 70、输出变压器原边匝数为N 1,副边绕组有匝数为N 2和N 3的两个抽头。将16Ω的负载接N 2抽头,或将4Ω的负载接N 3抽头,它们换算到原边的阻抗相等,均能达到阻抗匹配,则N 2:N 3应为( c )。 (a)4:1; (b)1:1; (c)2:1。

电力电容器保护原理解释

电力电容器保护原理解 释 文档编制序号:[KK8UY-LL9IO69-TTO6M3-MTOL89-FTT688]

常见电力电容器保护类型: 电容器保护 1 保护熔丝 现代电容器组的每台电容器上都装有单独的熔丝保护,这种熔丝结构简单,安装方便,只要配合得当,就能够迅速将故障电容器切除,避免电容器的油箱发生爆炸,使附近的电容器免遭波及损坏。此外,保护熔丝还有明显的标志,动作以后很容易发现,运行人员根据标志便可容易地查出故障的电容器,以便更换。 2 过电流保护 (电流取自线路TA) 过电流保护的任务,主要是保护电容器引线上的相间短路故障或在电容器组过负荷运行时使开关跳闸。电容器过负荷的原因,一是运行电压高于电容器的额定电压,另一种情况是谐波引起的过电流。 为避免合闸涌流引起保护的误动作,过电流保护应有一定的时限,一般将时限整定到0.5s以上就可躲过涌流的影响。 3 不平衡电压保护 (电压取自放电TV二次侧所构成的开口三角型) 电容器发生故障后,将引起电容器组三相电容不平衡。电容器组的各种主保护方式都是从这个基本点出发来确定的。 根据这个原理,国内外采用的继电保护方式很多,大致可以分为不平衡电压和不平衡电流保护两种。这两种保护,都是利用故障电容器被切

除后,因电容值不平衡而产生的电压和电流不平衡来启动继电器。这些保护方式各有优缺点,我们可以根据需要选择。 单星形接线的电容器组目前国内广泛采用开口三角电压保护。 对于没有放电电阻的电容器,将放电线圈的一次侧与电容器并联,二次侧接成开口三角形,在开口处连接一只低整定值的电压继电器,在正常运行时,三相电压平衡,开口处电压为零,当电容器因故障被切除后,即出现差电压U0,保护采集到差电压后即动作掉闸。 4 不平衡电流保护 这种保护方式是利用故障相容抗变化后,电流变化与正常相电流间形成差电流,来启动过电流继电器,以达到保护电容器组的目的。常见的不平衡电流保护的方式有以下两种: 4.1 双星形中性点间不平衡电流保护 保护所用的低变比TA串接于双星型接线的两组电流器的中性线上,在正常情况下,三相阻抗平衡,中性点间电压差为零,没有电流流过中性线。如果某一台或几台电容器发生故障,故障相的电压下降,中性点出现电压,中性线有不平衡电流I0流过,保护采集到不平衡电流后即动作掉闸。

相关主题
文本预览
相关文档 最新文档