当前位置:文档之家› 电缆故障测试仪波形分析

电缆故障测试仪波形分析

电缆故障测试仪波形分析
电缆故障测试仪波形分析

https://www.doczj.com/doc/8615840135.html, HT-TC电缆故障测试仪

电缆故障测试仪波形分析

1、根据波形分析测试数据

波形测出后,如果想对测试波形进行进一步分析计算,可以根据波形上显示点数计算出任两点间代表距离,基中标尺每格代表时间为测试仪自动计算给定。

计算距离的方法如下:

两点间距离=两点间实际格数×时间/格×速度÷2(米)

具体步骤如下:

(1)计算每点代表距离:每点代表距离计算公式为:S=V∕2f,其中V为电波传输速度(根据电缆类型自定),f为采样频率,默认选25MHz。例如,油浸纸电缆V=160m∕μs,当f=25MHz时,每点代表距离S=160/2×25=3.2(米)。

(2)计算两点间总点数:波形上显示出每大格多少个测试点,根据两点间的格数,就可计算出两点间总点数。例如测试波形显示“每格5点”,所计算的两点间为4.3大格,则两点产间总点数为4.3×5=21.5点(小数点为不满一格比例长度)。

(3)计算距离:分别计算出每点代表距离及总点数后,就可以计算出两点间距离来。例如:前面已经计算出每点代表距离为3.2米,

https://www.doczj.com/doc/8615840135.html, HT-TC电缆故障测试仪

总点数为21.5点,则计算距离为3.2×21.5=60.8(米)。

针对疑难故障,测试完毕后,可拍照测试波形,仔细分析波形特点,对找出故障点,提高测试效率会起到事半功倍作用。

2、测试波形分析与定标

电缆故障探测时,首先必须熟练掌握设备操作方法;其次,必须能对各种测试波形进行分析,准确确定光标起点、终点。下面就对各种测试波形特点及定标方法做简要介绍。

2.1低压脉冲法测试开路故障(测全长、测速度)波形

低压脉冲法测开路断线故障,或者用电缆好相测全长、测速度(相线开路)时,测试波形如图19所示。

图19 低压脉冲测全长波形

波形特点:发射脉冲与一次反射,二次反射等各反射波形都为正脉冲波形。

定光标方法:光标起点定在发射脉冲上升沿与基线交点处,光标终点定在一次反射脉冲上升沿与基线交点处。

2.2 低压脉冲法测低阻短路故障波形

脉冲法测低阻短路故障,或者将好相非测试端与铠装短接测全长、

https://www.doczj.com/doc/8615840135.html, HT-TC电缆故障测试仪

测速度时,测试波形如图20所示。

图20 低压脉冲测低阻短路故障波形

波形特点:发射脉冲为正脉冲波形,一次反射为负脉冲波形,二次反射为正脉冲波形,三次反射又为负脉冲波形,依次类推。

定光标方法:发射脉冲上升沿与基线交点定为起点,一次反射脉冲下降沿与基线交点定为终点。

2.3 闪络法电流取样测试波形

高压闪络法测试电缆故障时,其波形变化较大,但大部分测试波形都有共同点,及各类性质的故障反射波形全为正波形,且前沿有负反冲,以电流取样为例,闪络法测试时其测试波形如图21所示。

图21 闪络法电流取样测试波形

波形特点:发射波形为正脉冲波形,反射波形为正脉冲波形,但脉冲前沿有一个向下的负反冲,随故障不同,负反冲大小有较大差别。

定光标方法:在发射脉冲上升沿与基线交点处定光标起点,在反

https://www.doczj.com/doc/8615840135.html, HT-TC电缆故障测试仪射脉冲负反冲下降前沿与基线交点处,定光标终点。若在测试时反射脉冲无前沿负反冲,终点光标定在反射脉冲上升沿与基线交点处。

2.4 闪络法测试时故障点不放电波形

对于有些高阻故障,加高压冲击时,虽然球间隙放电,并且有时放电声还较大(清脆),但故障点实际上并未形成闪络放电,而是将电能缓慢释放掉,这时,显示波形就无法确定故障点。故障点不放电时,从波形上可显示出来,从而可以采取其它测试方法迫使故障点放电。闪络测试故障点不放电波形如图22所示。

图22 闪络测试故障点不放电波形

波形特点:故障点不放电波形特点为发射脉冲为正波形,一次反射脉冲为负波形,二次反射波形又为正波形,以此类推。同时,发射波形同反射波形间距离等于电缆全长。

遇到故障点不放电波形时,可按以下几种方法迫使故障点闪络放电:一是加大放电球隙,提高冲击电压;二是加大电容容量,增加冲

https://www.doczj.com/doc/8615840135.html, HT-TC电缆故障测试仪

击能量;对于疑难故障,可长时间施加冲击高压,迫使故障点形成固定放电通道,然后进行测试。

2.5 冲闪法测试纯短路故障波形

对于纯短路故障(如直接将相地短接),可用冲闪法测试(如用冲闪法测电缆全长、测速度)。短路是低阻故障的一个特例,用冲闪法测试纯短路故障时,波形反射有其特殊性,例如用冲闪法测相地短接电缆时测试波形如图23所示。

图23 冲闪法测试纯短路故障波形

波形特点:纯短路故障测试时,其波形特点为发射波形和反射波形都为正脉冲波形,这与低压脉冲测试终端开路故障波形相似。

定标方法:分别用发射脉冲波形及反射脉冲波形上升沿与基线交点定光标起点、终点。若是测故障,其测试距离就为故障距离;若是用好相终端短接测全长,则二波形间距离就为电缆全长。

了解纯短路故障测试波形特点,有助于我们分析理解各种故障实测波形。在特殊情况下,也可用此种方法测电缆全长或者测电波传输速度。

2.6 冲闪测试时故障点二次击穿放电波形

对于个别阻值较高的高阻故障,不是一下子故障点击穿闪络放电,

https://www.doczj.com/doc/8615840135.html, HT-TC电缆故障测试仪

而是冲击电压越过故障点,先传到终端,再从终端返回过程中、电压叠加,然后故障点才闪络放电,此后在测试端和故障点之间来回反射,显示故障点二次击穿放电波形。冲闪法电流取样测试时,故障点二次击穿放电波形如图24所示。

图24 故障点二次击穿测试波形

波形特点:二次击穿波形特点为发射脉冲为正脉冲波形,一次反射为负脉冲波形,并且二次波形间距离为电缆全长(同故障点不放电波形)。从第三个波形开始,测试波形与冲闪测试标准波形一致,其间距代表故障距离。

定光标方法:二次击穿波形同时具有故障点不放电波形及正常放电波形特点。定光标时,先定前面二波形,看是否与电缆全长一致,然后再观察后面几个反射波形,看是否具有前面讲的冲闪波形特点(正脉冲前沿有负反冲,且各反射波形间距一致)。若具有二次击穿波形特点,则按后面具有故障点闪络击穿特点的二波形分别定光标起点、终点,就可确定故障点距离。

实际测试时须注意,由于故障性质及测试条件不同,二次击穿波形也变化较大,有时第二个波形(终端不放电反射波形)与第三个波形间距较大(延时击穿时间较长),有时间距小,甚至合二为一(延

https://www.doczj.com/doc/8615840135.html, HT-TC电缆故障测试仪

时较小)。定光标时,不管前面几个波形多么复杂,只要后面有正常放电波形,就按后面波形定光标起点、终点,确定故障距离。

对于故障点二次击穿波形,测试时可以加大球间隙,增加电容容量,提高冲击电压,一般就可以测出正常闪络放电波形。

2.7 冲闪测试时近端故障测试波形

若故障点距测试端很近(15-20米以下),冲闪测试时,测试波形如图25所示。

图25 近端故障冲闪测试波形

波形特点:近端故障用闪络法测试时,其波形特点为;测试波形为正负交替的余弦大振荡波形,并且二波形间距离大于电缆全长,为电缆全长数倍。

遇到近端反射波形时,说明故障点离测试端不远。要精确测试,有以下几种方法:一是到另一端测试;二是用标准长度电缆(如50米或100米)与被测电缆相连接测试,在测试距离后,测试距离减去所加电缆长度,即为故障点至测试端距离;三是用好相与故障相在远端相接,将测试信号加在好相进行测试。

总之,对各种电缆故障测试过程中,正确地分析波形,是快速完成出测定点的关键。不论故障波形多么复杂,归纳起来,不外乎上面

https://www.doczj.com/doc/8615840135.html, HT-TC电缆故障测试仪

讲到的各种测试波形的变形。

3、高压发生器及测试附件说明

冲闪法接线如图26所示,原理是将220V的市电通过操作箱调压

为0-220V,经过直流升压变压器输出高压脉动直流给脉冲电容充电,

当脉冲电容的电压足够高时击穿球隙同时击穿故障点,电容放电。然

后电容继续充电,如此循环……

图26 冲闪法测试高压发生器接线图

图26示意说明:T1.3kVA/0.22kV调压器

T2.3kVA/50kV交直流高压变压器

D.高压整流硅堆,大于150kV/0.2A C.高压脉冲电容,容量1~8μF,耐压大于10kV

V.电压表

B.电流采样盒(配套附件)

J.高压球隙

4、测试说明

https://www.doczj.com/doc/8615840135.html, HT-TC电缆故障测试仪(1)电力电缆的高阻故障(高阻故障:故障点的直流电阻大于该电缆的特性阻抗的故障为高阻故障)几乎占全部故障率的90%以上。冲闪方式用于测试高阻泄漏性故障及高阻闪络性故障,大部分电缆高阻故障都可以使用冲闪方式测试。

(2)冲闪方式测试故障,采用电流取样法,电流取样接线简单,安全性高,波形易于识别。

(3)调整球隙(若放电,放电球隙清脆响亮,操作箱电流大于10A-15A,否则视为未放电,请重新调整球隙,提高冲闪电压),电压升到一定值,故障点发生闪络放电,仪器记录下波形。根据波形大小可重新调整输入振幅,重复采样,直到采到相对标准的波形。

(4)调整球隙一般1mm大约代表3kV,请根据被测电缆电压等级适当调整。高压闪络测试时,由于工作电压极高,稍有不慎就会对人身及设备造成损失。

(5)不同性质的电缆故障要用不同的测试方法,不同介质的电缆有不同的电波传播速度,不同耐压等级的电缆则有不同的耐压要求,而被测试电缆的接头位置及最近是否在电缆上方进行施工作业,这些在测试前都最好做到心中有数。

(6)用测试主机的低压脉冲法测试电缆长度,校对电缆的电波传输速度。

(7)测试电缆全长可以让我们更加了解故障电缆的具体情况,判断是高阻还是低阻故障,判断电波速度的准确性(准确的电波传输

https://www.doczj.com/doc/8615840135.html, HT-TC电缆故障测试仪速度是提高测试精度的保证,当速度不准确时,可反算速度)。这些都可以用低压脉冲测试方法来解决。

(8)对不同电缆故障要用不同的方法,低阻故障(开路、短路等)要用低压脉冲法测试;而高阻故障(泄漏、闪络等)则要用闪络法方法测试。选择合适的测试方法,用测试仪主机对电缆进行故障距离粗测。低阻故障用低压脉冲法测量,高阻故障用高压闪络法测量。

(9)电缆仪(又称闪测仪)设定的四种电缆的波速为:

油浸纸电缆:V=160m/μs

不滴流电缆:V=144m/μs

聚氯乙烯电缆:V=184m/μs

交联聚乙烯电缆:V=172m/μs

注意:电力电缆的特性阻抗一般为10—40Ω之间。是由电缆的单位长度的电阻,电感,电容决定的特性参数,不要将特性阻抗与绝缘电阻,以及电缆的直流电阻混淆。

https://www.doczj.com/doc/8615840135.html, HT-TC电缆故障测试仪低压脉冲法测试比较简单,直接测试。而高压闪络法测量则需要注意接线及所加直流电压的高低。10kV油浸纸电缆和交联乙烯电缆的最高耐压分别为50kV和35kV,一般不得超过电缆的最高耐压,高压设备的地线必须与被测电缆的铅包接地良好连接。

(10)精确定点前首先必须知道电缆的路径,若已知路径可省去此步骤。

(11)接好高压设备,根据电缆的性质及电缆的耐压等级来决定升压程度,保证故障点充分击穿。然后用定点仪对电缆故障点进行精确定位,最后确定在1米范围内。

相关资料下载:https://www.doczj.com/doc/8615840135.html,/400/index.html

相关产品图集:https://www.doczj.com/doc/8615840135.html,/400/index.html#content

产品说明书:https://www.doczj.com/doc/8615840135.html,/400/file/400.pdf

电桥电缆故障测试仪

电桥电缆故障测试仪基于MURRAY电桥原理而设计,适用于敷设后各种电线电缆的击穿点(低阻、高阻及闪络型击穿)及没有击穿但绝缘电阻偏低点的定位:如用兆欧表发现电缆阻值较低,但运行电压下不击穿的绝缘缺陷点。当然,也可用于电缆厂内各种线缆的缺陷点定位。粗测电缆故障定位方法有电桥法及波反射法二种。目前波反射法定位仪较普及。其缺点为:部分仪器现场连线复杂,有定位盲区。波形不典型时,要求定位人员熟练掌握仪器,并富有经验才能分辩脉冲波形。有几种电缆故障很难用波反射法查找:如,高压电缆护套绝缘缺陷点,钢带铠装低压力缆,PVC 电缆,没有反射波,无法定位。短电缆,无法定位。一些高阻击穿点,在冲击电压下无法击穿,也难以定位。高压电桥电缆故障测试仪内含高频高压恒流源,解决了电源对电桥高灵敏放大的干扰难题,电源与电桥合为一体。测量电缆为专用的高压电缆,采用四端法电阻测量原理,定位精度高。电桥置于高压侧,而操作钮安全接地。彻底解决了电桥法用于高阻定位的局限性,使电桥法无盲区、精确、方便的特点得以发挥。与波反射法相比,高压电桥电缆故障测试仪特别适用于: 1.敷设后电缆的高阻击穿点,特别是难以烧成低阻的线性高阻击穿点,如电缆中间接头的线性高阻击穿(这种主要是由于电缆接头制作工艺不过关造成的。施加高压时只泄露爬弧不击穿放电)。 2. 高压电桥平衡法没有测试盲区,用于判断短电缆及靠近电缆端头的击穿点。 3. 高压电桥法仅仅要求电缆相线电阻的均匀性即可进行测量。而行波传输特性不好的电缆,如介质损耗很大的PVC低压电缆; ◎设备采用高频高压开关电源构成高压恒流源,电压高,电流稳定,体积小,重量轻。 ◎采用高灵敏度放大器及检流计指示平衡,与比例电位器构成平衡电桥,整体置于高电位。面板上的操作钮处于低电位,通过绝缘杆操作电桥。

电缆故障测试仪说明书

电缆故障测试仪说明书 第一节概述 有线通信的畅通和电力的输送有赖于电缆线路的正常运行。一旦线路发生障碍,就会造成通信及时查出故障并迅速予以排除,就会造成很大的经济损失和不良的社会影响。因而,电缆故障测试仪是维护各种电缆的重要工具。电缆故障智能测试仪采用了多种故障探测方式,应用当代最先进的电子技术成果和器件,采用计算机技术及特殊性电子技术,结合本公司长期研制电缆测试仪的成功经验而推出的高科技,智能化,功能全的全新产品。 电缆故障智能测试仪是一套综合性的电缆故障探测仪器。能对电缆的高阻闪络故障,高低阻性的接地,短路和电缆的断线,接触不良等故障进行测试,若配备声测法定点仪,可准确测定故障点的精确位置。特别适用于测试各种型号、不同等级电压的电力电缆及通信电缆。

第二节功能介绍及技术指标 一、功能介绍 1.功能齐全 测试故障安全、迅速、准确。仪器采用低压脉冲法和高压闪络法探测,可测试电缆的各种故障,尤其对电缆的闪络及高阻故障可无需烧穿而直接测试。如配备声测法定点仪,可准确测定故障的精确位置。 2.试精度高 仪器采用高速数据采样技术,A/D采样速度为100MHz,使仪器读取分辨率为1m,探测盲区为1m。 3.智能化程度高 测试结果以波形及数据自动显示在大屏幕液晶显示屏上,判断故障直观。并配有全中文菜单显示操作功能,无需对操作人员作专门的训练。 4.具有波形及参数存储,调出功能 采用非易失性器件,关机后波形、数据不易失。 5.具有双踪显示功能。 可将故障电缆的测试波形与正常波形进行对比,有利于对故障进一步判断。 6.具有波形扩展比例功能。 改变波形比例,可扩展波形进行精确测试。 7.可任意改变双光标的位置,直接显示故障点与测试

110千伏高压电缆异常的分析及处理

110千伏高压电缆异常的分析及处理 发表时间:2019-12-27T16:39:25.243Z 来源:《中国电业》2019年18期作者:何义良 [导读] 高压电缆制作、连接、施工等过程中,会受到多种因素的影响而产生故障 摘要:高压电缆制作、连接、施工等过程中,会受到多种因素的影响而产生故障,直接威胁到高压电缆的正常运行。本文根据某高压电缆工程展开分析,针对引起高压电缆异常情况的原因进行分析,采用局部放电试验进行验证,并提出了电缆故障的处理,并提出了高压电缆常见故障处理措施。 关键词:高压电缆;110kV;故障处理 高压电力电缆有着较高的安全性,施工起来比较便捷,已经被广泛应用到电力工程施工当中。随着城市规模的不断变大,要求高压电力电缆不要占用太多的空间,交联聚乙烯电缆有着很好的安全性,不会占用太多的面积。但电力电缆在实际运行过程中经常会存在异常现象,很多故障都是由电缆终端或中间连接部位而导致的,电缆连接终端制作工艺水平与能否安全应用有着直接关系,本文对某变电所110kV 高压电缆应用前的试验过程中发生异常现象进行分析,并制定了切实有效的解决措施,要求工作人员在高压电缆终端制作工艺提高重视,避免应用过程中产生运行故障。 1 110kV高压电缆工程基本情况 某变电所位于市区范围内,110kV高压线路进线采用交联聚乙烯绝缘保护材料,应用无缝铝护套进行防护,电缆长度为150米,采用交联户外油浸终端。按照电力工程施工计划,三根电缆施工完成后进入到试验环节。对外防护套、绝缘性能测试都达到合格标准,工频耐压测试应用串联谐振加压处理方法。采用的试验电压为2Ue,则试验电压为128kV。查找电缆资料可以得知,该高压电缆电容值每公里 0.162uF,然后按照串联谐振频率值进行计算:,电流值则为,公式当中的f则为谐振频率,I为试验样品电流值,则是试验样品电容,是分压器具备的电容值,L是电抗器具备的电感值,U是试验电压值。从试验加压曲线可以得知,A和B相电缆都通过了耐压性能试验,电流值设置在2A。C相电缆试验过程中,把电压提升到额定值,发现试验样品电流值为2.35A,已经超过计算数据1.936A,但还在正常区间。采用额定电压持续加压13分钟,户外电缆终端设备出现了轻微的放电声音,试验运行电流也呈现出变大的趋势。由于放电声音的不断变大,试验运行电流也呈现出变大趋势,如果试验电流上升到保护电流上限数值5A,保护装置会自动把电源完全切除掉,试验则会迫终止。对该高压电缆外观进行仔细地观察,没有发现该电缆存在着较为明显的放电痕迹。对该电缆再次进行加压测试时,试验电压只保持5分钟左右时间,再次出现试验电流超过保护上限值而出现的电源被切断问题,使得高压电缆耐压实验无法继续开展。 2 110kV高压电缆异常情况分析 2.1电缆绝缘或终端密封材料老化而导致的绝缘性能降低 按照以往的电缆测试经验,如果高压电缆运行时间比较长,或者存在绝缘材料局部发电现象,电缆具备的绝缘性能会出现下降问题。油浸电缆终端密封材料出现老化,环境水分进入也会导致电缆绝缘性能降低。由于该电缆为新建设变电所电源进线,还没有正式投入使用。对电缆生产厂家试验报告进行分析,发现每个电缆主绝缘电阻的实际测量值和出厂试验值并没有太大的差别,可以有效地排除掉高压电缆绝缘性能降低使得耐压试验无法继续完成的可能。高压电缆终端密封材料出厂时期只达到了一个月,还没有出现密封材料安装不当或者受损问题。 2.2电缆保护层被损坏而导致的绝缘性能下降 110kV电缆在施工作业过程中,受到异物刺伤而出现绝缘层受损。比如,铁钉、刀片等对电缆绝缘进行了破坏,会使电缆绝缘出现异常。通过对电缆绝缘性测验可以发现,没有存在绝缘受损的现象,具有较好的外绝缘保性性能,绝缘电阻值可以达到1万兆欧左右,表明电缆外绝缘保护层保存完好,在外保护内部的绝缘不会存在受到损坏的可能性,可以排除高压电缆主绝缘受损的可能。 3.3电缆终端制作工艺不合理导致的主绝缘性能降低 随着电缆故障的逐渐排除,把电缆故障的可能性转移到电缆接头制作上来,尤其是户外电缆终端制作时存在的问题,对施工作业人员进行沟通发现,在进行户外电缆终端接头制作过程中,存在着天气影响因素。对制作记录中可以发现,高压电缆终端接头制作前一天有阴雨,制作当天气温降低,气温最低达到了3度,而且空气湿度比较大。对电缆终端接头加入的为聚丁烯油,该绝缘物质可以有效地填充到电缆终端每个部位的间隙中,从而更好地保护电缆内部的绝缘。该绝缘油有着较高的粘稠度,会随着外界温度的减小而变大。该绝缘油在环境温度为5度时,呈现出较高的粘稠度,内部会夹杂着气泡。高压电缆终端接产学研制作厂家对填加的聚丁烯油过程中的温度有着较高的要求,如果环境温度低于20度,应该采用加热措施来减小绝缘油粘度,然后方可以把其注入到电缆终端,但电力工程施工作业现场的人员却没有对环境温度影响因素提高重视,缺少了加热处理工艺。 从上面的分析中可以看出,可以初步确定高压电缆缺陷是由于在户外电缆终端接头加工过程中,外界环境温度不高、空气湿度大而导致的,没有采取合理的加热处理措施,使得绝缘油中存在着气泡,混入了大量的湿度较大的空气。对高压电缆施加2倍额定电压进行性能试验时,绝缘油中存在着水分和气泡,会在高电压作用下形成游离态的气体分子,使得绝缘油中产生数量较多的带电粒子,会在气泡部位出现局部放电。释放出更多的气体会使得气泡体积不断变大,会产生更为明显的局部放电问题,使得试验电流不断变大,当大于设定保护值之后会自动退出试验。在该种条件下,高压电缆投入应用会存在着较大的安全隐患,较长时间的绝缘油内部放电会使得终端接头部位的绝缘性性能减小,最后会使电缆内部被击穿,使得电缆终端接头出现故障,严重情况下会引起爆炸问题。 3局部放电试验对电缆故障的验证 采用三相电缆分别进行局部放电试验,对每相电缆放电性能进行分析来验证,也就是在相同的试验电压和试验方法情况下,比较性能正常的A、B相和具备故障的C相高压电缆局部放电数据,对放电初始电压、熄灭电压和放电波形等进行对比分析,可以进一步证明C相电缆中存在着明显的局部放电现象,可以对故障原因进行证实,可以为后续的处理提供数据支持。 按着相关的标准,可以在环境温度条件下对每相电缆进行局部放电试验,采取的试验方法是先把试验运行电压逐步提高到1.75Ue,然后在该电压条件下保持10秒钟,再缓慢减小到1.5Ue。在该电压值下,如果放电量不超过5pC则达到合格标准。三相高压电缆在相同的性能试验条件下,获取到的试验结果有着较大的不同,从试验数据统计表1中可以看出,C相高压电缆有着较大幅度的局部放电,但该电缆在出厂性能试验中的局部放电量都达到了合格标准,也就是不超过2pC。A、B两相高压电缆在施工现场完成终端接头的制作和安装,电缆具备

电缆故障测试仪冲击高压闪测法(冲闪法)

https://www.doczj.com/doc/8615840135.html, 电缆故障测试仪冲击高压闪测法(冲闪法)电缆故障测试仪冲击高压闪测法(冲闪法) 第一节冲闪法基本原理 冲闪法适用于测试高阻泄漏性故障。对其他类型高低阻故障也可用冲闪法测试。测试方法与直闪法相同,只不过给电缆不是加直流高压而是通过球间隙施加冲击电压,使故障点击穿放电,而产生反射电压(或者电流),由仪器记录这一瞬间状态的过程,通过波形分析来测定故障点的位置。它是测高阻及闪络性故障的主要方法。同样取样方式也分电压取样和电流取样,当然细分还可分为高端和低端电压取样,电感与电阻取样,始端与终端取样等。由于低端电流取样接线简便、可靠安全、波形易于识别,所以电流取样法非常具有实用价值。 第二节电流取样冲闪法 闪冲法操作方法如下:开机(上电复位)——复位(主菜单)——键1(工作选择菜单)——键3(冲闪1).根据工作选择菜单提示,冲闪分为:冲闪1和冲闪2两种方式。其中闪冲1是正脉触发方式(如电流取样),冲闪2是负脉冲触发方式(如高端电压取样)。按推荐选用电流取样方式,所以按键3进入冲闪1工作模式。 进入冲闪后,按屏幕提示接线图连接接线和取样器如图(11)所示:

https://www.doczj.com/doc/8615840135.html, 图(11)中:T1、为0~250V1-2KVA调压器 T2、为高压变压器,功率1-3KVA D、为高压整流硅堆,大于150KV/0.2A(高压实验变压器已内置) R 、为限流电阻(可不要) C 、为高压脉冲电容,容量1∽8μF,耐压大于10KV V 、为直流电压表 B、为电流取样器(配套附件) 以上设备除电流取样器B之外,其余为外配设备,可用图(11)分体高压试验设备,也可用一体化高压电源(注意必须将高压放电棒与高压地线连接好方可试验)。 根据接线图连接完毕后,再用速度键选择传输速度或重新键入速度值。将输入振幅旋钮旋至1/3左右,然后按采样键,仪器进入等待采样状态。 调整球隙、输入振幅旋钮后,然后通电对故障电缆升压。电压升到一定值,故障点发生闪络放电。仪器记录下波形。根据波形大小可重新调整输入振幅,重复采样。冲闪测试波形如图(12)所示:

电力电缆故障测试仪地埋线故障检测仪

T-880电力电缆故障测试仪地埋线故障检测仪T-880电力电缆故障测试仪RL024280地埋线故障检测仪RL187405图片 型号:RL024280型号:RL187405 T-880电力电缆故障测试仪RL024280地埋线故障检测仪RL187405内容 型号:RL024280

T-880电力电缆故障测试仪 长度测试+漏电测试 T-880加强版:长度测试+漏电测试+路径查找(功能上取得重大突破:断线点可以实现精确定位,带外铠电缆的对地短路、相线断线也能测试)---10天倒计时上市发售,目前接收预定,6月25日前预定客户到正式上市发售时送精美礼品一份。 长度测试:电缆线的断线、短路距离;也可以测试电缆线总长度(用于工程验收) 漏电测试:针对地埋线路绝缘层被破坏造成的绝缘不好定位; 路径查找:对于不知道地埋走向电缆能方便的查找出其准确走向; 工业级制造标准,不存在接口粗糙连接不好情况,专业指导,售后无忧。 使用ARM技术和FAGA技术一键自动快速测试,不用漫长等待,测试结果直观明了!采用大屏幕真彩液晶显示 适用于测量低压电力电缆的断线、混线(短路)、漏电等故障的精确位置。是缩短故障查找时间、提高工作效率、减轻线路维护人员劳动强度的得力工具。线路查修人员也可以用于线路工程验收和检查电缆电气特性。填补农电故障及小区供电故障没有相应仪表测试的空白。 产品功能: 长度测试单元: ?脉冲反射测试法,可以测试断线、混线(短路)、严重绝缘不良类型的故障距离; ?全自动测试,智能故障诊断,全中文操作菜单,液晶显示具有背光功能; ?自动增益和自动阻抗平衡技术,替代繁琐的电位器调节; ?手动分析功能,方便对电缆进行分析判断; ?可充锂电电池,智能充电,无需值守。 ?脉冲反射测试法:最大测量范围2km,测试分辨率:1m,测试盲区:0m, 脉冲宽度:80ns-10μs自动调节。 漏电测试单元: ?故障智能诊断,辅助耳机音频判断; ?背带包式设计,方便随身携带; ?对于绝缘没处理好或者绝缘层遭到破坏造成的漏电(线间漏电、对地漏电)故障均可测试; ?测试电缆地埋深度不大于3米; ?测试精度:探测误差±5cm; 其他指标: ?充电时间约3个小时,充满后连续工作时间8小时;

脉冲电缆故障测试仪

电缆高频(高次)脉冲电缆故障测试仪 脉冲电缆故障测试仪是应用于电缆故障查找的一种流行原理和方法,具有测试时间短,可靠性高和性价比高的突出优势,满足35kv及以下系统电缆的各种故障的测量,现阶段,经过电磁技术的持续升级,脉冲电缆故障测试仪由单脉冲移植到“二次脉冲”和“多次脉冲”的测试环境中,不过,我们使用频次比较高的还是“单脉冲”,毕竟价格便宜,功能还比较完善。 测量工程案例0713 上图是中粮集团抽风系统电缆临时出现故障,我司携带设备驱车前往现场处理,通过技术人员专业的排查和检测,判定C相故障,类型为高阻,随后开机巡查电缆的路径方向,经过3个小时的处理,最终将故障点定位,开挖后故障属实。

新疆伟华矿业10kv壁挂电缆出现故障导致境内部分设备无法运行,我司技术部门与现场沟通之后,推荐购买脉冲电缆故障测试仪,并由我司提供现场指导,最终在1.7公里处定位故障点,直接减少该单位经济损失达30万元。 脉冲电缆故障测试仪的优势 1、满足各种电压等级电力电缆的断线、接地、高阻故障性故障的测量和定位; 2、“低压阻抗法”+“高压闪络法”双疗法,克服现场环境干扰; 3、图形化可视界面、简单易懂,简洁明了,极易判读; 4、基于嵌入式平台系统、电磁滤波技术、声磁同步技术等优良的技术融合、贯通。 主要技术指标 测量方式:脉冲法、电流法、高阻法和阻抗法;

测量最大长度:长度<20km ;深度>3.5m;软土可达5m; 操作方式:手动按键式操作; 可靠性:98%; 脉冲频段:6MHz、12 MHz、24MHz、48 MHz、96 MHz、192MHz、324MHz ;可调节波速范围:160m/μs~210 m/μs; 供电方式:DC12V 锂电池 传感器类型:磁棒、信号放大器

电缆故障测试仪的四种实用测定方法

https://www.doczj.com/doc/8615840135.html, 电缆故障测试仪的四种实用测定方法电缆故障测试仪(闪测仪)可用于检测各种电缆的低阻、高阻、短路、开路、泄漏性故障以及闪络性故障,可准确的检测地下电缆的故障点位置、电缆长度和电缆的埋设路径。具有测试准确、智能化程度高、适应面广、性能稳定以及轻巧便携等特点。仪器采用汉字系统,高清晰度显示,界面友好。 一、电缆故障的种类与判断 无论是高压电缆或低压电缆,在施工安装、运行过程中经常因短路、过负荷运行、绝缘老化或外力损坏等原因造成故障。电缆故障分为接地、短路、断线三类。三芯电缆故障类型主要有以下几方面:一芯或两芯接触;二相芯线间短路;三相芯线完全短路;一相芯线断

https://www.doczj.com/doc/8615840135.html, 线或多相断线。对于直接短路或断线故障用万用表可直接测量判断,对于非直接短路和接池故障,用兆欧表遥测芯线间绝缘电阻或芯线对地绝缘电阻,根据其阻值可判定故障类型。 二、电缆故障点的查找方法 1、测声法所谓测声法就是根据故障电缆放电的声音进行查找,该方法对于高压电缆芯线对绝缘层闪络放电较为有效。此方法所用设备为直流耐压试验机。电路接线如图1所示,其中SYB为高压试验变压器,C为高压电容器,ZL为高压整流硅堆,R为限流电阻,Q为放电球间隙,L为电缆芯线。当电容器C充电到一定电压值时,球间隙对电缆故障

https://www.doczj.com/doc/8615840135.html, 芯线放电,在故障处电缆芯线对绝缘层放电产生"滋、滋"的火花放电声,再在杂噪声音最小的时候,借助耳聋助听器或医用听诊器等音频放大设备进行查找。查找时,将拾音器贴近地面,沿电缆走向慢慢移动,当听到"滋、滋"放电声最大时,该处即为故障点。使用该方法一定要注意安全,在试验设备端和电缆末端应设专人监视。 2、电桥法电桥法就是双臂电桥测出电缆芯线的直流电阻值,再准确测量电缆实际长度,按照电缆长度与电阻的正比例关系,计算的故障点。该方法对于电缆芯线间直接短路或短路点接触电阻小于1Ω的故障,判断误差一般不大于3m,对于故障点接触电阻大于1Ω的故障,可采用加高电压烧穿的方法使电阻降至1Ω以下,再按此方法测量。 测量电路首先测出芯线a与b之间的电阻R1,则R1=2RX+R,其中R为a相或b相至故障点的一相电阻值,R为短接点的接触电阻。再就电缆的另一端测出a’和b’芯线间的直流电阻值R2,则R2=2R(L-X)+R,式中R(L-X)为a’相和b’相芯线至故障点的一相电阻值。测完R1与R2后,再按图3所示电路将b’与C’短接,测出b、c两相芯线间的直流电阻值,则该阻值的1/2为每相芯线的电阻值,用RL表示。RL=RX +R(L-X),由此可得出故障点的接触电阻值:R=R1+R2-2RL。因此,故障点两侧芯线的电阻值可用下式表示:RX=(R1-R)/2,R(L-X)=(R2-R)/2。RX、R(L-X)、RL三个数值确定后,按比例公式即可求出故障点距电缆端头的距离X或(L-X):X=(RX/RL)L,(L-X)=(R(L-X)/RL)L,式中L为电缆的总长度。采用电桥法时应保证测量精度,电桥连接线要尽量短,经径要足够大,与电缆芯线连接要采用压接或焊搂,计算过程中小数位要全部保留。

电缆故障测试仪高压发生器介绍

https://www.doczj.com/doc/8615840135.html, 电缆故障测试仪高压发生器介绍电缆故障测试仪高压发生器介绍 如图3.4所示是冲闪法接线图,原理是将220V的市电通过操作箱调压为0-220V,经过直流升压变压器输出高压脉动直流给脉冲电容充电,当脉冲电容的电压足够高时击穿球隙同时击穿故障点,电容放电。然后电容继续充电,如此循环…… 图3.4 冲闪法测试高压发生器接线图 图3.4中:T1:3KVA/0.22KV调压器 T2:3KVA/50KV交直流高压变压器 D :高压整流硅堆,大于150KV/0.2A C :高压脉冲电容,容量1∽2μF,耐压小于40KV V :电压表 B :采样盒(配套附件) J :高压球隙 请注意:升压之前,一定要将放电棒接好,一旦高压发生器经过上电过程,在碰触高压发生器之前一定要将电容放电,方可操作,否则十分危险!

https://www.doczj.com/doc/8615840135.html, 电力电缆的高阻故障(高阻故障:故障点的直流电阻大于该电缆的特性阻抗的故障为高阻故障)几乎占全部故障率的90%以上。冲闪方式用于测试高阻泄漏性故障及高阻闪络性故障,大部分电缆高阻故障都可以使用冲闪方式测试。 冲闪方式测试故障,采用电流取样法。电流取样接线简单,安全性高,波形易于识别。 调整球隙(若放电,放电球隙清脆响亮,操作箱电流大于10A-15A否则视为未放电,请重新调整球隙,提高冲闪电压),电压升到一定值,故障点发生闪络放电,仪器记录下波形。根据波形大小可重新调整输入振幅,重复采样,直到采到相对标准的波形。 注意:调整球隙一般1mm大约代表3KV,请根据被测电缆电压等级适当调整。 高压闪络测试时,由于工作电压极高,稍有不慎就会对人身及设备造成损失,因此操作中应注意以下几点: 高压闪络测试时,高压试验设备应由专业人员操作,仪器接线,调整时应断电并彻底放电。 高压试验设备电源与测试仪工作电源分开使用,测试仪连线应远离高压线。冲闪法时,测试主机应断掉外接电源。 高压尾、操作箱接接地端必须可靠与电缆铠装及大地相连,以确保测试成功及设备、人身安全。 测试前,应先对故障电缆加压放电,确保各连接线点无放电现象,所加电压已使故障点发生闪络放电,然后开始用仪器测试。 在有易燃物品的环境中利用高压测试时,应有保护措施。 电缆故障的测试过程: 为顺利快速的解决电缆故障,测试电力电缆故障请遵循以下步骤:

电缆故障测试仪的使用方法

https://www.doczj.com/doc/8615840135.html, HTRS-V变压器容量及空载负载测试仪 电缆故障测试仪的使用方法 1、电缆故障测试原理 本仪器主机采用时域反射(TDR)原理,对被测电缆发射一系列电脉冲,并接收电缆中因阻抗变化引起的反射脉冲,再根据电波在电缆中的传播速度和两次反射波的特征拐点代表的时间,可测出故障点到测试端的距离为: S=VT/2 式中:S代表故障点到测试端的距离 V代表电波在电缆中的传播速度 T代表电波在电缆中来回传播所需要的时间这样,在V已知和T已经测出的情况下,就可计算出故障点距测试端的距离S。这一切只需稍加人工干预,就可由计算机自动完成,测试故障迅速准确。 本测试系统故障测试有低压脉冲法、多次脉冲法、直闪电流法、冲闪电流法四种基本方式。 2、低压脉冲方式 低压脉冲用于测试电缆中电波传播的速度、电缆全长、低阻故障(故障相电阻值低于1K)和开路故障及短路故障,主机即可完成任务,无须多次脉冲产生器。同时给下一步应

https://www.doczj.com/doc/8615840135.html, HTRS-V变压器容量及空载负载测试仪 用多次脉冲法测试电缆高阻故障提供了依据。 脉冲测试的基本原理 测量电缆故障时,电缆可视为一条均匀分布的传输线,根据传输线理论,在电缆一端加上脉冲电压,该脉冲按一定的速度(决定于电缆介质的介电常数和导磁系数)沿线向远端传输,当脉冲遇到故障点(或阻抗不均匀点)就会产生反射,且闪测仪记录下发送脉冲和反射脉冲之间的传输时间△T,则可按已知的传输速度V来计算出故障点的距离Lx,Lx=V?△T/2,如图8所示:测全长则可利用终端反射脉冲:L=V?T/2 同样已知全长可测出传输速度:V=2L/T 测试时,在电缆故障相上加上低压脉冲,该脉冲沿电缆

电缆故障事故调查

电缆故障着火事故调查报告 事故发生时间:2006年4月21日凌晨 事故地点:主井井口 事故经过:2006年4月21日凌晨主井口着火,2:20分发现火情时,西面塔衣中部有1.5m见方着火面,因气候干燥、风力大、塔衣又属易燃化纤物,所以很快引起西侧塔衣的全面燃烧及围墙外电缆大面积着火。 电缆着火后引起开关跳闸,吊泵断电停运。潜水泵电源开关跳闸。 施工单位立即组织灭火。6:45分水泵恢复排水。 早7:00通知工程部, 工程部人员赶到现场时。施工单位在做现场清理工作。围墙根部电缆绝缘均已烧毁,堆积部分电缆未发现短路迹象,电缆芯线无过载痕迹。 事故原因分析: 当时下井电缆有三根。 一.吊泵电源:电缆标注型号:VV-3×70+1×35 电缆长度720m,其中井下120m,地面600m盘8字堆放,8字长

4m、宽1m。电压等级660V,井下吊泵功率150kw,额定 电流163A,电流表显示150A。吊泵已连续运转20小时, 运转正常。事故发生后对电缆线径实测,线径不足 50mm2。灭火后将原VV-3×70+1×35电缆复用一部分 给吊泵供电,吊泵正常运转,说明吊泵是好的。 存在问题有: 1、电缆线径不足,容易过载发热; 2、电缆选型不合适,用不阻燃VV型普通电力电缆代替矿用电缆; 3、VV型普通电力电缆电缆不适用于移动电器设备,在抢险时电缆过度弯曲会造成内部绝缘损伤,塑料绝缘破坏,出现局部弧光放电现象; 4、电缆堆放不合适,会产生涡流发热、或因散热不良造成局部发热。 5、部分电缆被塔衣覆盖,散热不良。 二、潜水泵电源:电缆型号:U-3×25+1×16,电压等级380V,负荷7.5kw潜水泵,电缆截面足够,发热量不大。 三、信号电缆:不带负荷,属空载状态。 四、不排除外因火的可能性。 事故教训:本次火灾事故造成VV型电力电缆600m、信号电缆、部分矿用电缆严重损毁,虽未造成人员伤害,但事故的性质很严重。根据事故处理“四不放过”原则,要求施工单位就此事故引以为戒,结合安监局的检查时所提出的问题,制定整改措施,强化安全管理。

电缆故障测试仪使用方法

电缆故障零电位测试法 电缆故障零电位测试法也就是电位比较法,它适应于长度较短的电缆芯线对地故障,应用此方法测量简便精确,不需要精密仪器和复杂计算。测量原理如下:将电缆故障芯线与等长的比较导线并联,在b、c两端加电压VE时,相当于在两个并联的均匀电阻丝两端接了电源,此时,一条电阻丝上的任何一点和另一条电阻丝上的对应点之间的电位差必然为零,反之,电位差为零的两点必然是对应点。因为微伏表的负极接地,与电缆故障点等电位,所以,当微伏表的正极在比较导线上移动至指示值为零时的点与电缆故障点等电位,即电缆故障点的对应点。S为单相闸刀开关,E为6E蓄电池或4节1号干电池,G为直流微伏表,测量步骤如下: 1)先在b和c相芯线上接上电池E,再在地面上敷设一根与故障电缆长度相等的比较导线S,该导线要用裸铜线或裸铝线,其截面应相等,不能有中间接头。 2)将微伏表的负极接地,正极接一根较长的软导线,导线另一端要求在敷设的比较导线上滑动时能充分接触。 3)合上闸刀开关S,将软导线的端头在比较导线上滑动,当微伏表指示为零时的位置即为电缆故障点的位置。 电缆故障高压电桥测试法 电缆故障高压电桥测试法就是用双臂电桥测出电缆芯线的直流电阻值,再准确测量电缆实际长度,按照电缆长度与电阻的正比例关系,计算出电缆故障点。该方法对于电缆芯线间直接短路或短路点接触电阻小于1Ω的故障,判断误差一般不大于3m,对于故障点接触电阻大于1Ω的故障,可采用加高电压烧穿的方

法使电阻降至1Ω以下,再按此方法测量。测量电路时,首先测出芯线a与b 之间的电阻R1,R1=2RX+R其中RX为a相或b相至电缆故障点的一相电阻值,只为短接点的接触电阻。再就电桥移到电缆的另一端,测出a1与b1芯线间的直流电阻值R2,则R2=2R(L-X)R,R(L-X)为a1相或b1相芯线至电缆故障点的一相电阻值。测完R1与R2后,再按图3所示电路将b1与c1短路,测出b、c两相芯线间的直流电阻值,则该组织的1/2为每相芯线的电阻值,用RL表示,RL=RX R(L-X),由此可得出故障点的接触电阻值:R=R1 R2-2RL 表,因此,故障点两侧芯线的电阻值可用下式表示:RX=(R1-R)/2,R(L-X)=(R2-R)/2。RX、R(L-X)、RL三个数值确定后,按比例公式即可求出故障点距电缆端头的距离X或(L-X):X=(RX/RL)L,(L-X)=(R(L-2)在电缆的末端在测量每相芯线的电容电流Ia1、Ib2、Ic3的数值,以核对完好芯线与断线芯线的电容之比,初步可判断出断线距离近似点。 根据电容量计算公式C=I/(2ΠfU)可知,正电压U、频率f不变时,C与I成正比。因为工频电压的f(频率)不变,测量时只要保证施加电压不变,电容电流之比即为电容量之比。设电缆全长为L,芯线断线点距离为X,则Ia/Ic=L/X,X=(IC/Ia)L。测量过程中,只要保证电压不变,电流表读书准确,电缆总长 度测量精确,其测定误差比较小。 电缆故障测声测试法 所谓电缆故障测声测试法就是根据故障电缆放电的声音进行查找,该方法对于高压电缆芯线对绝缘层闪络放电较为有效。此方法所用设备为直流耐压试验机,其中TB为高压试验变压器,C为高压电容器,VE为高压整流硅堆,R为限流电阻,Q为放电球间隙,L为电缆芯线。当电容器C充电到一定电压值时,球间隙

脉冲电流法-电力电缆故障测试仪

第四章脉冲电流法 §4-1 脉冲电流法与线性电流耦合器 电缆的高阻与闪络性故障由于故障点电阻较大(大于10倍的电缆波阻抗),低压脉冲在故障点没有明显的反射(反射脉冲幅度小于5%),故不能用低压脉冲反射法测距。脉冲电流法是将电缆故障点用高电压击穿,使用仪器采集并记录下故障点击穿产生的电流行波信号,通过分析判断电流行波信号在测量端与故障点往返一趟的时间来计算故障距离。脉冲电流法采用线性电流耦合器采集电缆中的电流行波信号。 图4.1 线性电流耦合器应用示意图 图4.1是冲击高压闪络测试的接线示意图,线性电流耦合器L放置在储能电容C接电缆外皮的接地引线旁。L实际上是一个空心线圈,与地线中电流产生的磁场相匝链。设时间t2与t1时电流分别为i2与i1,t1小于t2但接近t2,根据电磁感应定律求出线圈的输出电压: V=K(i2-i1)/(t2-t1)=KΔi/Δt (4.1) 其中参数K是一取决于线圈匝数、形状及与地线相对位置的常数,电流变化量: 47

Δi=i2-i1, 时间变化量: Δt=t2-t1。 式(4.1)说明,线性电流耦合器的输出电压与地线电流的变化率成正比,而不是与地线中电流本身成正比。 (a) (b) 图4.2 a.地线中的电流 b. 线性电流耦合器的输出 图4.2给出了地线中的电流与对应的线性电流耦合器的输出,可以看出线性电流耦合器在地线中电流开始上升时,输出是一个尖脉冲,而在地线中电流趋于平稳后,输出为零。因此,在故障点击穿产生的电流行波到达后,线性电流耦合器输出一脉冲信号,可以从线性电流耦合器有无脉冲信号输出,判断测量点是否有电流行波出现。 与脉冲电压法使用电阻、电容分压器进行电压取样 48

电力电缆事故案例

案例3:可燃气体引发的电力电缆爆破事故 2000年11月25日凌晨至上午9点,武汉市某所变电所低压总空气开关接连发生3次跳闸现象,经查,临时从该所接电,在所住宅区北墙外施工的市自来水公司有1台电焊机电源短路,排除故障后,送电正常。下午5点,位于住宅区西北角新建球场处1个窨井突然发生爆炸,1个面积约2m<sup>2</sup>,厚度50mm的窨井水泥盖板被炸碎。据现场目击者叙述,爆炸前几分钟还有几个小孩在附近玩耍。此时,变电所低压总空气开关未跳闸,而居民家中电灯忽明忽暗非常明显,在距爆炸点正南方10m远处,检查人员听到地下断续放电声响,故判断此处埋设电缆发生故障,随后立即停电,将这2路电缆退出电网,挖开故障点,发现2路电缆已断,中间约1m多长一截电缆不知去向。 2 事故分析 该所住宅区用电是由马路对面所区一容量为315KV·A的变压器采用直埋电缆方式引到住宅区配电房的,损坏的2根电缆1根为截面70mm<sup>2</sup>动力电缆,另1根为截面120mm<sup>2</sup>照明电缆,于1987年在同一壕沟中敷设。1998年,因居民用电量增加,电缆负荷过大,

故对住宅区电网进行一次扩容,另挖一条濠沟,敷设1根截面150mm<sup>2</sup>电缆与原照明电缆并联。 经现场勘察情况发现,可燃易爆的物质就是沼气。原来,所饭店厨房下水通过1条排水沟流入1个面积约2m<sup >2</sup>,深1m多的窨井中。由于近期新球场的建立,使原本透气的排水沟至窨井盖四周被混凝土浇注严实,加上窨井盖为自制水泥盖板,没有透气孔,至使窨井中高浓度有机污水产生的沼气无法顺利排出,而沼气的主要成分是甲烷,其爆炸极限浓度在5%~15%之间,属易燃易爆气体。此外,电缆敷设又不符合规定要求:(1)电缆埋设深度为~,没有敷盖混凝土保护板,电缆外皮有明显划伤痕迹,部分划伤处已开裂;(2)所饭店厨房排水沟位置设置不当,排水沟与埋地电缆交叉,沟底与电缆几乎挨着,没有防渗措施。 综上所述,由于电缆在敷设时,外皮受到机械损伤,埋地深度不够,没有覆盖保护板,加上所饭店厨房排水沟与电缆交叉,沟底与电缆几乎挨着,安全净距为零,且没有采取防渗措施,使电缆长期受到污水浸蚀。当电焊机电源线发生短路时,短路电流使电缆迅速发热,加速了电缆绝缘老化,导致受损处电缆绝缘破损发生相间短路。由于短路产生的电弧温度可以高达6000℃,当电弧遇排水沟中沼气时,就引起窨

电缆故障测试仪的测试方法

https://www.doczj.com/doc/8615840135.html, 电缆故障测试仪的几种测试方法,华天电力是电缆故障测试仪的生产厂家,15年致立研发标准、稳定、安全的电力测试设备,专业电测,产品选型丰富,找电缆故障测试仪,就选华天电力。 电缆故障测试仪可测试各型号35KV以下电压等级的铜、铝芯高、低压电力电缆的各类故障。常见的油浸纸电缆、交联聚乙烯电缆、不滴法电缆和取氯乙烯电缆等四种电缆的电波传播速度已经在仪器中预置。 电缆长度及故障距离的测量均是屏幕直接显示不需要人工换算,可测试各种型号电缆的开路、短路及电力电缆的高阻闪络性故障、高阻泄漏性故障。 电缆故障测试仪测试故障时,具体故障类型按以下方法进行测试。 低电阻接地故障。电缆的单相低电阻接地故障是指电缆的一根芯线对地的绝缘由阻低于100kΩ,而芯线连续性良好。此类故障隐蔽性强,我们可以采用回路定点法原理进行测试。接线图如图所示,将故障芯线与另一完好芯线组成测量回路,用电桥测量,一端用跨接线跨接,另一端接电源、电桥或检流计,调节电桥电阻使电桥平衡,当电缆芯线材质和截面相同时,若损坏的线芯和良好的芯线在电桥上位置相互调换时,则有式中Z——测量端至故障点的距离m;L——电缆总长度,m;R1、R2——电桥的电阻臂。

https://www.doczj.com/doc/8615840135.html, 在正常情况下,这两种接线测量结果应相同,误差一般为0.1%~0.2%,如果超出此范围或者X>L/2,可将测量仪表移到线路的另一端测量。 另外,我们还可以采用连续扫描脉冲示波器法(MST—1A型或LGS—1型数字式测试仪)进行测试。短路或接地故障点处反射波将为负反射,示波器荧屏图如图所示。此时故障点距离可按下列公式计算式中X——反射时间μs;V——波速,m/μs。 两相短路故障点的测试 当出现两相短路故障点,测量接线方法如图所示。测量时可将任一故障芯线作接地线,另一故障芯线接电桥,计算公式和测量方法与单相低电阻接地故障点相同。 三相短路故障点的测试 当发生三相短路故障时,测量时必须借用其他并行的线路或装设临时线路作回路,装设临时线路,必须精确测量该线路的电阻,接线方法如同图所示。可按下式计算,即式中R 为临时线的单线电阻值。 高电阻接地故障点 电缆的高电阻接地故障是指导体与铝护层或导体与导体之间的绝缘电阻值远低于正常值,但大于100kΩ,而芯线连续性良好。 用高压电桥法寻找高阻接地故障 其接线原理如图所示,由于故障点电阻大,必需使用高压直流电源,以保证通过故障点的电流不致太小。桥臂电阻为100等分的3.5Ω左右的滑线电阻,电桥所加电压10~200kV,微安表指示为100~20μA,故障点至测量端的距离可按下式测算,即当调换图中故障芯线与完好芯线的位置时则有式中X——故障点至测量的距离,m;L——电缆线路长度,m;C ——滑线电桥读数。

电缆故障测试仪DWA10使用说明书汇总

DW-A10 电缆故障探测仪 使 用 说 明 书 武汉德威电力测试设备有限公司

简介 一、系统组成 本电缆故障测试仪由测试主机、路径信号产生器、路径信号接收器和定位仪等几 部分组成。 故障测试主机包括一体化电脑、低压脉冲产生和数据处理,用于测试故障的距离,也可用来测量电缆的长度和电波在电缆中的传播速度。 路径信号产生器产生频率30KHz、最大幅度30V的断续正弦波信号,用于寻测电缆路径。 路径信号接收器用来接收路径信号,用于查找电缆走向和估测电缆埋设的深度。 定位仪用于故障点的精确定位。 二、技术性能 1、故障测试系统 ●可测试各种电力电缆的各类故障及同轴通信电缆和市话电缆的开路、短路故障。 ●可测量长度已知的任何电缆中电波传播的速度。 ●测试距离:不小于16千米 ●系统误差:小于1米 ●采样频率:25MHz ●最小分辨率:0.2米 ●测试盲区:小于16米 ●电源:直流12V(免维护电瓶) ●重量:5Kg 2、路径信号产生器 ●输出信号频率:30KHz ●振荡方式:断续 ●输出功率:30W ●电源:220V±10% ●重量:4Kg 3、定位仪 ●测试灵敏度:50Ω内阻的信号源输出300Hz信号,定点仪在维持输出为2V、信杂比优于20:1的情况下输入信号不大于10μv。 ●输入阻抗:不小于1.2KΩ。 ●使用2×2000Ω耳机。 ●工作电压:DC9V±10%。 ●使用环境温度:-20℃~70℃

三、进入与退出系统 打开电源开关,稍等 后系统进入主控界面。 按“测试”按钮进入 测试方式;按“帮助”进 入帮助系统;按“退出” 可退出测试管理系统。 关机时请使用windows 系统的“开始”、“关闭计 算机”。 电缆故障测试 一、测试原理 本仪器采用时域反射(TDR)原理测量电缆故障的距离。对于低阻、开路故障,仪器向被测电缆发射一系列电脉冲,有故障的电缆会在故障点产生一个反射信号(如果没有电缆故障,反射为电缆全长);对于高阻故障,给电缆上加一冲击直流负高压,使故障点产生反射脉冲。我们根据发射脉冲和反射脉冲的时间差及电缆中电波的传播速度,可测出故障点到测试端的距离为: S=VT/2 式中:S代表故障点到测试端的距离 V代表电波 在电缆中的传播速度 T代表电波 在电缆中来回传播所需要 的时间 在速度V已知和时间T 已经测出的情况下,就可计 算出故障点距测试端的距 离S 。 这一切只需稍加人工 干预,就可由计算机自动完

ST-330B自动分析电缆测试仪的故障波形

下面我们以ST-330B自动分析电缆测试仪为例。 1、电缆故障测试仪的技术特点 1. 可测试各种型号35kV以下电压等级的铜铝芯电力电缆、同轴通信电缆和市话电缆的各类故障,如开路故障、短路故障、高阻闪络性故障和高阻泄漏性故障。 2. 具有多种测试方法,如低压脉冲法、冲击高压电流取样法、直流高压闪络法等 3.技术参数 测距范围: 4m~40Km 测距精度:测量范围小于1Km时测量误差不大于1m 测量范围大于1Km时测量相对误差不大于0.5% 脉冲幅度:在50Ω时不小于250V。 脉冲宽度: 0.2μs、2μs、4μs三种。 采样频率: 48MHz、。 系统测量误差:主机测量结果再配合双探头电缆故障精准定点仪测量,系统误差为10cm。 读数分辨率:V/2f V电波在电缆中的传播速度(m/μs)f采样频率(MHz)。比如油浸纸电缆的传播速度为V=160m/μs,用f=40MHz采样,则读数分辨率为 160/(2×40)=2m 预置了5种电缆介质的电波传播速度:油浸纸:160m/μs;交联聚乙烯:172m/μs;聚氯乙烯:184m/μs;矿用橡套电缆:100m/μs;以及其它非动力电缆的电波传播速度的设置(自选介质)。 对于其它非动力电缆,可以在输入该电缆的已知全长后测出电波在该电缆中的传播速度。 采样方式:电流取样法。 供电电源:工频或机内聚合物可充电电池。 工频:交流电220V±10%、频率50Hz±5%,仪器可正常工作24小时以上。 机内电池:电池充满电后,仪器可连续工作6小时左右。 工作温度:-10oC~50oC

ST-330B面板示意图 (详情点击进入官网或来电咨询) 2、屏幕操作界面介绍: 1)电缆类型: 用触摸笔点击“电缆类型”菜单条。每点击一次,“电缆类型:”后的参数条应按照如下顺序循环: 在电“电缆类型”的“其它电缆”项目中,“波速测量”菜单条是激活的。别的项目中不激活。 2)检测方法: 用触摸笔点击“检测方法”菜单条。每点击一次,“采样模式:”后的参数条应按照如下顺

110kV电缆接头的故障分析和建议

110kV电缆接头的故障分析和建议 发表时间:2019-10-16T09:30:45.420Z 来源:《基层建设》2019年第21期作者:郭楠 [导读] 摘要:110kV电缆线路是电网的重要组成部分,确保电缆线路的安全运行是电网企业的重要职责。 江苏省电力有限公司扬中供电分公司江苏扬中 212200 摘要:110kV电缆线路是电网的重要组成部分,确保电缆线路的安全运行是电网企业的重要职责。电缆工程质量的好坏关系着电缆未来的安全运行,因此,必须做好电缆工程质量管理工作,对建设过程中的质量控制要点进行严格检查、监督和纠正,确保所有工程项目顺利竣工投运,为整个电力系统的稳定运行打下基础。鉴于此,本文主要分析110kV电缆接头的故障分析和建议。 关键词:110kV电缆;接头;故障 随着我国经济快速发展,城市化水平不断提高,架空线路缆化入地项目不断推进,电力电缆在城市建设中得到广泛应用。电力电缆作为城市中传输电能的重要载体,已然成为一个结构复杂、线路众多的庞大体系。然而,伴随着电缆的广泛应用,电缆故障数量也随之攀升。其中,高压电缆故障因其停电范围广、故障修复时间长等原因,对电网的健康运行和居民的正常生活影响尤为严重。因此,探索降低高压电缆故障率的可行性方案,提高供电的可靠性,已成为电力运维人员及管理人员的重要任务。 1、110kV电缆接头的故障分析 发生接头故障的电缆线路为 110 kV 浪沙Ⅰ线电缆,全长 5.8 km,电缆型号为 YJLW03-64/110k V-1*1200 mm2。该电缆工程于某年 3 月23 日完成电缆敷设,4 月 18 日完成附件安装,4 月 21 日进行电缆耐压及局放试验。4 月 21 日 21 时对 110 kV 浪沙Ⅰ线 A 相进行电缆耐压试验时,当电压达到 128 kV 的 5 min 后发生了跳闸;重新加压,电压到 30 kV 时再次发生跳闸;23 时再次对该相电缆进行加压,仍在 30 kV 时发生跳闸,结果证明 110 kV 浪沙Ⅰ线相试验未通过。同工程的 110 kV 浪沙Ⅱ线三相、浪沙Ⅰ线 B、C 相通过耐压试验,进行局放时未发现局放信号,试验合格。4 月 22 日通过对 110 kV 浪沙Ⅰ线A 相电缆进行故障定位,发现故障点位于 110 kV 浪沙Ⅰ线 A 相 #6 接头。 图1故障接头解剖 2、故障原因 在110kV电缆中间接头制作过程中,存在填料和树指没有拌匀的情况,在具体浇制时各种材料配合比例不科学,注模过快或是温度不适宜,从而导致环氧树脂混合物绝缘体内部有气孔。当模型结合面进入水和空气时,会影响绝缘密封性,导致电缆头运行时温度变化过大。另外,还存在直通铝压接管和导线的压接不合理的情况,这必然会造成电缆接触不良情况发生,运行时极易发生发热及老化现象。当电缆沟内存在较多的积水和污泥,或是施工过程中存在不合理的情况,在恶劣的环境下运行,再加之维护工作不到位,从而导致110kV电缆中间接头故障发生。当中间接头外壳模型结合面不严实,存在裂缝,严重时存在环氧树指外泄的情况,这种情况下,中间接头固定外壳套模容易被烧穿,导致相间短路故障发生。 对于压力连接的电缆接头,对于压接面积和压接深度没有明确的规定,接头电阻都是接触电阻,接触电阻和接触力大小、接触面积及压接工具吨位等都有着较大的联系。当压接机具压力不足时,连接机具的空隙会较大,极易造成导体连接压力不足问题发生,由此而导致电缆中间接头出现故障。部分电缆接头自身散热性能较差,或者外壳内存在一些混合物,这就导致散热困难现象出现。当前各种接头绝缘材料耐热性能都较差,当温度达到一定高度时,接头处的氧化膜会加厚,导致接触电阻增大,通电后,接头绝缘材料会碳化,由此产生故障。 3、对策及建议 为了能够有效的减少高压电缆中间接头故障的发生机率,需要选择高质量的电缆附件,同时对于新工艺和新产品还要进行试验。选择可靠、稳定的连接金具。做好工作人员培训工作,努力提高工作人员专业技能水平,确保电缆施工和维护工作中做到认真、负责。并制定一系列的操作规范,强化质量控制,以此来确保电缆中间接头的质量,保证电缆安全、稳定的运行。 第二,细化电缆附件采购标准,明确各项技术标准及要求,从源头杜绝附件质量问题。 第三,电缆附件安装前需要对施工人员及厂家技术指导人员进行安全交底,明确附件安装时的注意点及要求。 第四,做好电缆附件检查和附件安装图纸的审查工作,充分检查附件安装各个步骤的合理性和必要性。 第五,加强电缆工程现场监管力度,做好电缆工程质量管理。特别是进行重要工序施工时,如接头制作、附件安装等必须安排专人进行现场监督,严格要求施工人员按照附件安装图纸进行施工,同时对附件安装的关键工序进行拍照存档。 第六,加强对施工监理的管理。电缆运行部门安排专人对接施工监理,督促施工监理的监督工作,定时要求其汇报工程情况,保障工程的施工质量。 第七,进行电缆工程验收时,严格要求验收人员按照《电缆线路施工及验收规范》进行验收,对发现的缺陷要及时要求施工单位进行限时整改,整改完成后再次组织验收,保障电缆工程质量。 第八,安排专人负责收集电缆工程资料,并存档,为以后的运行维护工作提供便利。 第九,通过加强基本技能培训、常态开展电缆故障分析、组建电缆专家团队,全面推进电缆专业人才队伍建设。(1) 组织电缆专业技能培训。定期开展配网电缆专业基本技能培训,以电缆敷设、验收、运维、检修技术为重点,教授电缆专业基础知识、敷设验收注意要点、预处理工艺规范、故障查找基本方法等内容,宣贯电缆作业资质管理、管沟标准工艺及验收办法、接头制作关键工序拍照标准等规定,切实提高电缆运检人员的基本技能。(2) 常态开展电缆故障分析。电缆检修、运维班组对所有故障电缆开展解剖分析,3 个工作日内完成电缆故障分析报告,包含现场环境、故障原因、责任认定及整改措施等图文信息,故障实物至少保留 1 年。加强与电科院进行技术交流,定期邀请电科院电缆专家开展电缆典型故障案例分析,进一步提升电缆运维、检修人员的故障分析判断能力,打造电力电缆专家人才梯队。(3) 组建电缆专家团队。组建电缆专家团队,制作电缆全过程管理视频课件,包含基础知识、故障分析、质量检测、实际操作、仿真试验等内容,涵盖电缆知识、建设、运维、检修、实训等全过程管理,全面提升电缆人才队伍的技能水平。 总之,在电力系统中,电缆发挥着重要的作用。通过保证电缆接头完好性,可能效的保证电力设备安全、可靠的运行。但对于高压电缆中间接头来讲,当其长时间运行时,或是操作人员在具体操作过程中存在不当行为时,都会导致高压电缆中间接头故障发生,一旦高压电缆中间接头故障发生后,则会影响正常的供电。由此可见,本文的研究也就显得十分的有意义。

相关主题
文本预览
相关文档 最新文档