当前位置:文档之家› 数列的十种典型递推式

数列的十种典型递推式

数列的十种典型递推式
数列的十种典型递推式

1 十大递推数列求通项: (1)等差数列:a n =a n-1+d

例1:已知:数列{a n }中a 1=1,a n =a n-1+3,(n ≥2).求a n 的通项公式。 答a n =3n-2. (2)等比数列: a n =a n-1q

例2:已知:数列{a n }中a 1=1,a n =2a n-1,(n ≥2).求a n 的通项公式。 答a n =1

2-n .

(3)似等差数列: a n =a n-1+f(n) 用叠加法。

例3:已知:数列{a n }中a 1=1,a n =a n-1+3n+1,(n ≥2).求a n 的通项公式。

答a n =2

65n 3n 2-+.

(4)线性数列: a n =pa n-1+q 构造等比数列。

例4:已知:数列{a n }中a 1=3,a n =2a n-1-1,(n ≥2).求a n 的通项公式。 答a n =12+n

.

(5) 似等比数列: a n =a n-1f(n) 叠乘法。

例5:已知:数列{a n }中a 1=3,a n =na n-1,(n ≥2).求a n 的通项公式。 答a n =3n !.

(6)三项递推: a n =pa n-1+qa n-2 设a n+1-xa n =y(a n -xa n-1),构造一个或二个等比数列再通过等差数列或解方程组求出。

例6:已知:数列{a n }中a 1=1,a 2=3,a n =3a n-1-2a n-2,(n ≥3).求a n 的通项公式。 答a n =2n -1. 例7:已知:数列{a n }中a 1=1,a 2=3,a n =4a n-1-4a n-2,(n ≥3).求a n 的通项公式。 答a n =(n+1)2n-2. 例8:已知:数列{a n }中a 1=1,a 2=4,a n =4a n-1-4a n-2,(n ≥3).求a n 的通项公式。 答a n =n2n-1.

例9:已知:数列{a n }中a 1=2,a 2=3,a n =5a n-1-6a n-2,(n ≥3).求a n 的通项公式。 答a n =3×2n-1-3n-1. 例10:已知:数列{a n }中a 1=a,a 2=b,a n =a n-1-a n-2,(n ≥3).求a n 的通项公式。 答周期为6. 例11 (2006年普通高等学校夏季招生考试数学(文史类)福建卷(新课程))

(22)已知数列满足

(I )证明:数列是等比数列;(II )求数列

的通项公式;(Ⅲ)若数列

满足

证明

是等差数列。

(7)似线性数列:a n+1=pa n +f(n) , 变为

1

11)

(++++=n n n n n p

n f p a p a ,即化为(3)型。 特别地①1n n a pa bn c +=++型,还可以令1(1)()n n a x n y p a xn y +-+-=--,待定系数x,y ,构造等比数列,要比通法简单。

②1n

n n a pa q b +=++型,还可以令1

1()n n n n a xq

y p a xq y ++--=--,待定系数x,y ,

构造等比数列,要比通法简单。

例12:已知:数列{a n }中a 1=5,a n =3a n-1+3n -1,(n ≥2).求a n 的通项公式。 答2

13)21(+?+

=n n n a (8)指数数列:a n+1=pa n k ,取对数,化为(4)型。 例13:已知:数列{a n }中a 1=4,a n =

3

)1(4-n n a n-13

,(n ≥2).求a n 的通项公式。

答a n

=1322-?n n . 原理:设c

ba r a s r a n n n +-=

-+)(1,先待定s,r 的值,再取倒数。得:s b

r a s c br r a n n +-+=-+)(11,

111++=-n n b r

a ,化为:

b n+1=ab n +

c 型,下略。

求法:在上述原理中,称r 为c

ba m

da a n n n ++=+1的特征根。特征根的求法除了按上述方法逐步

进行外,也可令c

bx m

dx x ++=

,解关于x 的方程,得出方程的根x 1,x 2即为特征根r 1,r 2.至此

法(ⅰ)令c

ba x a s x a n n n +-=

-+)

(111,再根据原式中分子的n a 的系数待定出s ,既可求解。

法(ⅱ)令

n 1n x 1b a =-,得a n =1n

x b 1

+,将该式代入已知等式即得b n 的递推关系。先求出

b n ,再求a n 。 注:该法更容易用。

例14(2006年奥林匹克竞赛山东省赛区预选赛19题,即最后一题) 已知:数列{a n }满足a n+1a n +3a n+1+a n +4=0,(n ≥2). (1)当a 1=-1时, 求a n 的通项公式。

(2)当a 1=-2.03时,求a n 的最小值和最大值。

(3)当a 2006是{a n }中的最小项时,求a 1的取值范围。 答(1)a n =-2+

n 1.(2)a 34最小为-5;a 35最大为-21.(3)2006

4013

200540111-<<-a .

例15 在数列{a n }中,a 1=4,且a n+1=

4

2

3++n n a a ,求a n 。

答:2

11

12

525-----+=n n n n n a 。 例16 已知曲线C :1xy =,过C 上一点(,)n n n A x y 作斜率1

2

n n k x =-

+为的直线交曲线C 于另一点111(,)n n n A x y +++,点列(1,2,3,)n A n = 的横坐标构成数列{}n x ,其中1117

x =。 (Ⅰ)求n x 与1n x +的关系式; (Ⅱ)求证:1123n x ?

?

+?

?-??

是等比数列;

(Ⅲ)求证:23*123(1)(1)(1)(1) 1.(,1)n n x x x x n N n -+-+-++-<∈≥ 。

答案:(Ⅰ)121n n x x +=+,(Ⅱ)1111122323n n

x x +????

+=-+????--????,

(Ⅲ)由(Ⅱ)知121

(2)3

n n a =+--

∴(ⅰ)当n 为偶数时,

11

112111

1

32(1)

(1)111122223339

n n n

n n n n n n x x ------?-+-=+=+-+?-121323

.22n n n --?<=

∴ 23123243331

(1)(1)(1)(1)112222n

n n n x x x x -+-+-++-<+++=-< 。 (ⅱ)当n 为奇数时,

231231

1

(1)(1)(1)(1)11(02n n n n n x x x x x x --+-+-++-<-

-<> 由可知) 综上所述:2

3

*

123(1)(1)(1)(1) 1.(,1)n

n x x x x n N n -+-+-++-<∈≥ 。 (10)f(a n ,S n )=0 构造f(a n-1,S n-1)=0,两式相减。

(11)两个数列的递推。若数列{a n },{b n }满足???+=+=----1n 21n 1n

1

n 21n 1n b m a m b b k a k a (n ≥2)。构造

a n +x

b n =y(a n-1+xb n-1)求解。

例16 已知:数列{a n },{b n }满足???+=+=----1n 1n n

1

n 1n n 4b 3a b b 2a a (n ≥2)且a 1=2,b 1=3,求a n ,b n 的通项公

式。

答:)15(4

3

b ,43541a n n n n -?=+?= . 例17 已知:数列{a n },{b n }满足??

???+=+=----1

n 1n n 1

n 1n n b 32a 31b b 31a 32a (n ≥2)且a 1=10,b 1=8,求a n ,b n 的通项

公式。答:a n =9+1n 3

1- ,b n =1n 31

9--.

(12) 周期数列

例18 已知:数列{a n }中a 1=a,a 2=b,a n =a n-1-a n-2,(n ≥3).求a n 的通项公式。 答:a 1=a,a 2=b,a 3=b-a,a 4=-a,a 5=-b,a 6=a-b,a 7=a,a 8=b,故a n 是周期为6的数列。

例19 已知:数列{a n }中a 1=a, a n =

1

a 33

a 1n 1-n +--,(n ≥2).求a n 的通项公式。

答:.a a ,1

a 33

-a -a ,1a 33a a ,a a 4321=-=+-=

=故a n 是周期为3的数列。 注:特别地,a 1=0时,常为考题。

例20 已知:数列{a n }中a 1=1, a n =

3

a 1

a 31n 1-n +--,(n ≥2).求a n 的通项公式。

答:a 1=1,1a ,32a ,32a ,1a ,23a ,32a 765432=+=--=-=-=-= . 故a n 是周期为6的数列。 例21 已知:数列{a n }中a 1=a, a n =

1

a 1

a 1n 1-n +--,(n ≥2).求a n 的通项公式。

答:a a ,a

1a

1a ,a 1a ,1a 1a a ,a a 54321=-+=-=+-=

=。故a n 是周期为4的数列。 2 数列求和中常用的拆裂项方法。

(1) 若a n 成等差数列,则

)11(1111++-=n n n n a a d a a 。)1

1(2112

1121+++++-=n n n n n n n a a a a d a a a .

(2)

)(11b a b

a b a --=+ (3)C n m =C 1

1++n m -C n m+1

n ×n != (n+1)!-n ! mC n m =nC 1

1--n m , m(m-1)C n m =n(n-1)C

2

2--n m , n 2=2 C n 2+n, n 3=6 C n 3+6 C n 2+n,

(4))n

1

1n 1(4114n 4n 1)12n (12

2--<+-=-

(完整版)数列的递推公式教案

数列的递推公式教案 普兰店市第六中学陈娜 一、教学目标 1、知识与技能:了解数列递推公式定义,能根据数列递推公式求项,通过数列递推公式求数列的通项公式。 2、过程与方法:通过实例“观察、分析、类比、试验、归纳”得出递推公式概念,体会数列递推公式与通项公式的不同,探索研究过程中培养学生的观察归纳、猜想等能力。 3、情感态度与价值观:培养学生积极参与,大胆探索精神,体验探究乐趣,感受成功快乐,增强学习数学的兴趣,培养学生一切从实际出发,认识并感受数学的应用价值。 二、教学重点、难点和关键点 重点:数列的递推定义以及应用数列的递推公式求出通项公式。 难点:数列的递推公式求通项公式。 关键:同本节难点。 三、教学方法 通过创设问题的情境,在熟悉与未知的认知冲突中激发学生的探索欲望;引导学生通过自主探究和合作交流相结合的方式进行研究;引导学生积极思考,运用观察、试验、联想、类比、归纳、猜想等方法不断地提出问题、解决问题,再提出问题,解决问题……经历知识的发生和发展过程,并注意总结规律和知识的巩固与深化。 四、教学过程 环节1:新课引入 一老汉为感激梁山好汉除暴安良,带了些千里马要送给梁山好汉,见过宋江以后,宋江吧老汉带来的马匹的一半和另外一匹马作为回礼送给了他,老汉又去见卢俊义,把

现有的马匹全送给了他,卢俊义也把老汉送来的马匹的一半和另外一匹马作为回礼送给了老汉……… 一直送到108名好汉的最后一名段景住都是这样的,老汉下山回家时还剩下两匹马,问老汉上山时一共带了多少匹千里马? 通过这个小故事让学生感受到数学来源于生活同时又为生活所服务。同时也能引起学生的兴趣和好奇心。 环节2:引例探究 (1)1 2 4 8 16……… (2) 1 ()1cos ()1cos cos ()]1cos cos[cos ……. (3)0 1 4 7 10 13 ……. 通过设置问题的情境,让学生分析找出这些数列从第二项(或后几项)后一项与前一项的关系,从而引出数列的递推公式的定义,便于学生对于数列递推公式的理解、记忆和应用。 递推公式定义: 如果已知数列的第1项(或前几项),且从第二项(或某一项)开始的任意一项a n 与它的前一项a n-1(或前几项)间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的递推公式。递推公式是数列一种的表示法,它包含两个部分,一是递推关系,一是初始条件,二者缺一不可. 环节3:应用举例及练习 例1:已知数列{a n }的第1项是1,以后的各项由公式 (n ≥2)给出,写出这个给出,写出这个数列的前5项. 解:据题意可知:a 1=1, 1 11n n a a -=+2111112,1a a =+=+=3211311,22a a =+=+=4312511,33a a =+=+=5413811.55a a =+ =+=

排列组合二项式递推数列求通项常见

排列组合二项式递推数列求通项常见题型解法自用资料集 排列组合的常见题型及其解法 排列、组合的概念具有广泛的实际意义,解决排列、组合问题,关键要搞清楚是否与元素的顺序有关。 复杂的排列、组合问题往往是对元素或位置进行限制,因此掌握一些基本的排列、组合问题的类型与解法对学好这部分知识很重要。 一.特殊元素(位置)用优先法 把有限制条件的元素(位置)称为特殊元素(位置),对于这类问题一般采取特殊元素(位置)优先 安排的方法。 例1.6人站成一横排,其中甲不站左端也不站右端,有多少种不同站法? 分析:解有限制条件的元素(位置)这类问题常采取特殊元素(位置)优先安排的方法。 解法1 :(元素分析法)因为甲不能站左右两端,故第一步先让甲排在左右两端之间的任一位置上,有 A4种站法;第二步再让其余的5人站在其他5个位置上,有A种站法,故站法共有:A4-A5 = 48o(种)解法2:(位置分析法)因为左右两端不站甲,故第一步先从甲以外的5个人中任选两人站在左右两端, 有A种;第二步再让剩余的4个人(含甲)站在中间4个位置,有A:种,故站法共有:A A4 = 480 (种) 二.相邻问题用捆绑法 对于要求某几个元素必须排在一起的问题,可用“捆绑法”:即将这几个元素看作一个整体,视为一 个元素,与其他元素进行排列,然后相邻元素内部再进行排列。 例2. 5个男生和3个女生排成一排,3个女生必须排在一起,有多少种不同排法? 6 3 解:把3个女生视为一个元素,与5个男生进行排列,共有A6种,然后女生内部再进行排列,有A3种,所以排法共有:A6 A3 ^4320 (种)。 三?相离问题用插空法 元素相离(即不相邻)问题,可以先将其他元素排好,然后再将不相邻的元素插入已排好的元素位置之间和两端的空中。 例3. 7人排成一排,甲、乙、丙3人互不相邻有多少种排法? 解:先将其余4人排成一排,有A44种,再往4人之间及两端的5个空位中让甲、乙、丙插入,有A 种,所以排法共有:此A =1440 (种) 四.定序问题用除法 对于在排列中,当某些元素次序一定时,可用此法。解题方法是:先将n个元素进行全排列有A^种, m(m空n)个元素的全排列有A;种,由于要求m个元素次序一定,因此只能取其中的某一种排法,可以 利用除法起到调序的作用,即若n个元素排成一列,其中m个元素次序一定,则有虫种排列方法。 A m

(完整版)已知数列递推公式求通项公式的几种方法

求数列通项公式的方法 一、公式法 例1 已知数列{}n a 满足1232n n n a a +=+?,12a =,求数列{}n a 的通项公式。 解:1232n n n a a +=+?两边除以12n +,得 113222n n n n a a ++=+,则113222n n n n a a ++-=,故数列{}2 n n a 是以1222 a 1 1==为首项,以23 为公差的等差数列,由等差数列的通项公式,得31(1)22n n a n =+-,所以数列{}n a 的通项公式为31()222 n n a n =-。 评注:本题解题的关键是把递推关系式1232n n n a a +=+?转化为 11 3 222 n n n n a a ++-=,说明数列{}2n n a 是等差数列,再直接利用等差数列的通项公式求出31(1)22 n n a n =+-,进而求出数列{}n a 的通项公式。 二、累加法 例2 已知数列{}n a 满足1121 1n n a a n a +=++=,,求数列{}n a 的通项公式。 解:由121n n a a n +=++得121n n a a n +-=+则 11232211 2 ()()()()[2(1)1][2(2)1](221)(211)1 2[(1)(2)21](1)1 (1)2(1)1 2 (1)(1)1n n n n n a a a a a a a a a a n n n n n n n n n n n ---=-+-++-+-+=-++-+++?++?++=-+-++++-+-=+-+=-++=L L L 所以数列{}n a 的通项公式为2 n a n =。 评注:本题解题的关键是把递推关系式121n n a a n +=++转化为121n n a a n +-=+,进而求出11232211()()()()n n n n a a a a a a a a a ----+-++-+-+L ,即得数列{}n a 的通项公式。

数列的递推公式练习

数列的递推公式练习 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

课时作业5数列的递推公式(选学) 时间:45分钟满分:100分 课堂训练 1.在数列{a n}中,a1=,a n=(-1)n·2a n-1(n≥2),则a5=() A.- C.- 【答案】 B 【解析】由a n=(-1)n·2a n-1知a2=,a3=-2a2=-,a4=2a3=-,a5=-2a4=. 2.某数列第一项为1,并且对所有n≥2,n∈N,数列的前n项之积为 n2,则这个数列的通项公式是() A.a n=2n-1 B.a n=n2 C.a n=D.a n= 【答案】 C 【解析】∵a1·a2·a3·…·a n=n2,a1·a2·a3·…·a n-1=(n-1)2,∴两式相除,得a n=. 3.已知数列{a n}满足:a4n-3=1,a4n-1=0,a2n=a n,n∈N+,则a2009= ________,a2014=________. 【答案】10 【解析】考查数列的通项公式. ∵2009=4×503-3,∴a2009=1, ∵2014=2×1007,∴a2014=a1007,

又1007=4×252-1,∴a1007=a4×252-1=0. 4.已知数列{a n},a1=0,a n+1=,写出数列的前4项,并归纳出该数列的通项公式. 【解析】a1=0,a2==,a3===,a4===. 直接观察可以发现,把a3=写成a3=, 这样可知a n=(n≥2,n∈N+). 当n=1时,=0=a1, 所以a n=(n∈N+). 课后作业 一、选择题(每小题5分,共40分) 1.已知数列{a n}满足:a1=-,a n=1-(n≥2),则a4=() C.- 【答案】 C 【解析】∵a1=-,a n=1-(n≥2), ∴a2=1-=1-=5, a3=1-=1-=, a4=1-=1-=1-=-. 2.数列{a n}满足a1=,a n=-(n≥2,n∈N+),则a2013=() B.- C.3 D.-3 【答案】 A

递推数列通项公式求法(教案)讲解学习

递推数列通项公式求 法(教案)

由递推数列求通项公式 马鞍中学 --- 李群花 一、课题:由递推数列求通项公式 二、教学目标 1、知识与技能: 会根据递推公式求出数列中的项,并能运用累加、累乘、待定系数等方法求数列的通项公式。 2、过程与方法: ①复习回顾所学过的通项公式的求法,对比递推公式与通项公式区别认识到由递推公式求通项公式的重要性,引出课题。 ②对比等差数列的推导总结出叠加法的试用题型。 ③学生分组讨论完成叠乘法及待定系数法的相关题型。 3、情感态度与价值观: ①通过对数列的递推公式的分析和探究,培养学生主动探索、勇于发现的求知精神; ②通过对数列递推公式问题的分析和探究,使学生养成细心观察、 认真分析、善于总结的良好思维习惯; ③通过互助合作、自主探究等课堂教学方式培养学生认真参与、积极交流的主体意识。 三、教学重点:根据数列的递推关系式求通项公式。 四、教学难点:解题过程中方法的正确选择。 五、教学课型,课时:复习课 1课时 六、教学手段:多媒体课件,黑板,粉笔 七、教学方法:激励——讨论——发现——归纳——总结 八、教学过程 (一)复习回顾:

1、通项公式的定义及其重要作用 2、学过的通项公式的几种求法 3、区别递推公式与通项公式,从而引入课题 (二)新知探究: 问题1: 在数列{a n }中 a 1=1,a n -a n-1=2n-1(n ≥ 2),求数列{a n } 的通项公式。 活动:通过分析发现形式类似等差数列,故想到用叠加法去求解。教师引导学生细致讲解整个解题过程。 总结:类型1:)(1n f a a n n =-+,利用叠加法(逐差相加法)求解。 问题2:例2在数列{a n }中 a 1=1, (n ≥ 2),求数列{a n } 的通项公式。 方法归纳:利用叠乘法求数列通项 活动:类比类型1推导过程,让学生分组讨论研究相关解题方案。 练习2设{a n }是首项为1的正项数列,且(n+1)a n 2+1 –na n 2 +a n+1a n =0, n n n a a 21 =-

高中数学几种常见的数列递推关系式专题辅导

高中数学几种常见的数列递推关系式 数列的递推关系是指数列中的前一项(前几项)与后一项的关系式。递推数列是数列中的重要内容,通过递推关系,观察,探求数列的规律,进而可求出整个数列的通项公式。通过递推关系的学习,可以培养学生的观察能力,归纳与转化能力,综合运用知识等能力,因此,是近几年高考与竞赛的热点。 下面针对几种高中常见的递推形式及处理方法做一总结。 一. 定义法 常见形式: 已知:a a a a d n n 11==++, ① 或a a a a q n n 110=≠=+, ② (其中,d 常数,q ≠0为常数) 定义法即高中所学的两大基本数列——等差数列与等比数列的基本定义式。 已知首项,与递推关系,数列的通项即知,在此不做赘述。但这两个基本数列的求通项公式的方法在后续学习中,在方法上起到了指导作用。即我们下面要介绍的方法。 二. 迭代法 常见形式:已知 a a a a f n n n 110=≠=++,() ③ 或a a a a f n f n n n 110=≠=+,,()()不恒为零 ④ (这里的f n ()是关于n 的关系式)。 这两个形式的递推关系式,虽然不是等差与等比数列,但表达方式上非常接近。我们可以利用迭代的方法来求出通项a n 也可以分别称为叠加法和叠乘法。 如:③a a f 211-=() a a f 322-=() …… a a f n n n N n n -=-≥∈-112()()*, 将以上n -1个式子叠加,可得 a a f f f n n n N n -=+++-≥∈11212()()()()*…, 这里,我们只须已知数列的首项a 1利用求和求出上述等式右端的和,即可求出数列 {}a n 的通项公式来。 如:④的具体例子: 例1. (2006年东北三省三校一模试题21)已知数列{}a n ,S n 是数列的前n 项和, a S n a n n 212 ==,。求S n 。 解:因为S n S S n n N n n n =-≥∈-2 21()()*, 所以n S n S n n 22 21-=- S S n n n n N n n -= -≥∈123()*, S S S S S S S S n n n n n n N n n n n 324312131425364132 3·…····… ·,---=---≥∈()*

(完整版)常见递推数列通项公式的求法典型例题及习题

常见递推数列通项公式的求法典型例题及习题 【典型例题】 [例1] b ka a n n +=+1型。 (1)1=k 时,}{1n n n a b a a ?=-+是等差数列,)(1b a n b a n -+?= (2)1≠k 时,设)(1m a k m a n n +=++ ∴ m km ka a n n -+=+1 比较系数:b m km =- ∴ 1-= k b m ∴ }1{-+ k b a n 是等比数列,公比为k ,首项为11-+k b a ∴ 11)1(1-?-+=-+ n n k k b a k b a ∴ 1)1(11--?-+=-k b k k b a a n n [例2] )(1n f ka a n n +=+型。 (1)1=k 时,)(1n f a a n n =-+,若)(n f 可求和,则可用累加消项的方法。 例:已知}{n a 满足11=a ,)1(1 1+= -+n n a a n n 求}{n a 的通项公式。 解: ∵ 11 1)1(11+- =+= -+n n n n a a n n ∴ n n a a n n 1111--= -- 112121---=---n n a a n n 21 3132-- -=---n n a a n n …… 312123-= -a a 21112-=-a a 对这(1-n )个式子求和得: n a a n 111- =- ∴ n a n 1 2- =

(2)1≠k 时,当b an n f +=)(则可设)()1(1B An a k B n A a n n ++=++++ ∴ A B k An k ka a n n --+-+=+)1()1(1 ∴ ???=--=-b A B k a A k )1()1( 解得:1-=k a A ,2 )1(1-+-=k a k b B ∴ }{B An a n ++是以B A a ++1为首项,k 为公比的等比数列 ∴ 1 1)(-?++=++n n k B A a B An a ∴ B An k B A a a n n --?++=-11)( 将A 、B 代入即可 (3)n q n f =)((≠q 0,1) 等式两边同时除以1 +n q 得q q a q k q a n n n n 1 11+?=++ 令 n n n q a C = 则q C q k C n n 1 1+ =+ ∴ }{n C 可归为b ka a n n +=+1型 [例3] n n a n f a ?=+)(1型。 (1)若)(n f 是常数时,可归为等比数列。 (2)若)(n f 可求积,可用累积约项的方法化简求通项。 例:已知: 311= a ,1121 2-+-=n n a n n a (2≥n )求数列}{n a 的通项。 解:123537532521232121212233 2211+= ?--?--?+-=???-----n n n n n n n a a a a a a a a a a n n n n n n ΛΛ ∴ 1211231+= +? =n n a a n [例4] 11 --+?? =n n n a m a m k a 型。

人教新课标版数学高二B版必修5素材 预习学案 2.1.2数列的递推公式(选学)

预习导航 1.体会递推公式是数列的一种表示方法. 2.理解递推公式的概念及含义,能够根据递推公式写出数列的前几项. 3.掌握由一些简单的递推公式求数列的通项公式. 1.数列的递推公式 如果已知数列的第1项(或前几项),且从第二项(或某一项)开始的任一项a n 与它的前一项1n a (或前几项)间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的递推公式. 名师点拨:(1)与所有的数列不一定都有通项公式一样,并不是所有的数列都有递推公式. (2)递推公式也是给出数列的一种重要方法.事实上,递推公式与通项公式一样,都是关于n 的恒等式,我们可用符合要求的正整数依次去替换n ,从而可以求出数列的各项. 【做一做1】 数列2,4,6,8,10,…的递推公式是( ) A .a n =a n -1+2(n ≥2) B .a n =2a n -1(n ≥2) C .a n =a n -1+2,a 1=2(n ≥2) D .a n =2a n -1,a 1=2(n ≥2) 答案:C 2.通项公式与递推公式的区别与联系 区别 联系 通项公式 项a n 是序号n 的函数式a n =f (n ) 都是给出数列的方法,可 求出数列中任意一项 递推公式 已知a 1(或前几项)及相邻项(或相邻几项) 间的关系式 但并不是所有的数列都有递推公式.例如\r(2)精确到1,0.1,0.01,0.001,…的不足近似值排列成一列数:1,1.4,1.41,1.414,…就没有递推公式. 【做一做2-1】 已知在数列{a n }中,a 1=2,a n =a n -1+2(n ≥2),则{a n }的通项公式是 ( ) A .3n B .2n C .n D .n 2 答案:B 【做一做2-2】 在数列{a n }中,a 1=1,a 2=2,且a n +1-a n =1+(-1)n (n ≥2),则a 10=________. 解析:由题意,知a 10-a 9=1+(-1)9,a 9-a 8=1+(-1)8,a 8-a 7=1+(-1)7,…,a 3

数列的递推关系

数列的递推关系 ? 教学重点: 数列的任意连续若干项能满足的关系式称为该数列的一个递推公式,由递推公式和相应有尽有前若干项可以确定一个数列.这种表示方法叫做递推公式法或递推法. ? 教学难点: 1.根据数列的首项和递推公式写出它的前几项,关归纳出通项公式. 2.n n S a 的关系 ???-=-1 1S S S a n n n )1() 2(=≥n n . ? 教学过程: 一、复习 数列的定义,数列的通项公式的意义(从函数观点出发去刻划). 二、递推公式 钢管的例子 3+=n a n 从另一个角度,可以: 1 4 11+==-n n a a a Λ ) 2() 1(≥=n n “递推公式”定义:已知数列{}n a 的第一项,且任一项n a 与它的前一项1-n a (或前n 项)间的关系可以用一个公式来表示,这个公式就叫做这个数列的递推公式. 例1.已知21=a ,41-=+n n a a 求n a . 解一:可以写出:21=a ,22-=a ,63-=a ,104-=a ,…… 观察可得:)1(42)4)(1(2--=--+=n n n a n 解二:由题设: 41-=-+n n a a

∴ Λ Λ4 4 432211-=--=--=------n n n n n n a a a a a a ) +412-=-a a )1(41--=-n a a n ∴ )1(42--=n a n 例2.若记数列{}n a 的前n 项之和为S n 试证明:?? ? -=-1 1 S S S a n n n ) 1()2(=≥n n 证:显然1=n 时 ,11S a = 当1≠n 即2≥n 时, n n a a a S +++=Λ21 1211--+++=n n a a a S Λ ∴ n n n a S S =--1 ∴???-=-1 1S S S a n n n )1() 2(=≥n n 注意:1? 此法可作为常用公式; 2? 当)(11S a =时 满足1--n n S S 时,则1--=n n n S S a . 例3.已知数列{}n a 的前n 项和为① n n S n -=22 ② 12 ++=n n S n ,求数列{}n a 的 通项公式. 解:1.当1=n 时,111==S a 当2≥n 时,34)1()1(222 2-=-+---=n n n n n a n 经检验 1=n 时 11=a 也适合 34-=n a n 2.当1=n 时,311==S a 当2≥n 时,n n n n n a n 21)1()1(12 2=-----++= ∴ ?? ?=n a n 23 ) 2()1(≥=n n 例4.已知21=a ,n n a a 21=+ 求n a .

数列的递推公式练习

课时作业5 数列的递推公式(选学) 时间:45分钟 满分:100分 课堂训练 1.在数列{a n }中,a 1=1 3,a n =(-1)n ·2a n -1(n ≥2),则a 5=( ) A .-16 3 C .-83 【答案】 B 【解析】 由a n =(-1)n ·2a n -1知a 2=23,a 3=-2a 2=-4 3,a 4=2a 3 =-83,a 5=-2a 4=163. 2.某数列第一项为1,并且对所有n ≥2,n ∈N ,数列的前n 项之积为n 2,则这个数列的通项公式是( ) A .a n =2n -1 B .a n =n 2 C .a n =n 2 n -12 D .a n =n +12 n 2 【答案】 C 【解析】 ∵a 1·a 2·a 3·…·a n =n 2,a 1·a 2·a 3·…·a n -1=(n -1)2,∴两式相除,得a n =n 2 n -12 . 3.已知数列{a n }满足:a 4n -3=1,a 4n -1=0,a 2n =a n ,n ∈N +,则a 2 009=________,a 2 014=________. 【答案】 1 0 【解析】 考查数列的通项公式.

∵2 009=4×503-3,∴a 2 009=1, ∵2 014=2×1 007,∴a 2 014=a 1 007, 又1 007=4×252-1,∴a 1 007=a 4×252-1=0. 4.已知数列{a n },a 1=0,a n +1=1+a n 3-a n ,写出数列的前4项,并归 纳出该数列的通项公式. 【解析】 a 1=0,a 2=1+a 13-a 1=13,a 3=1+a 23-a 2=1+13 3-13=1 2,a 4=1+a 33-a 3 =1+12 3-12 =3 5. 直接观察可以发现,把a 3=12写成a 3=2 4, 这样可知a n =n -1 n +1(n ≥2,n ∈N +). 当n =1时,1-1 1+1=0=a 1, 所以a n =n -1 n +1 (n ∈N +). 课后作业 一、选择题(每小题5分,共40分) 1.已知数列{a n }满足:a 1=-14,a n =1-1 a n -1(n ≥2),则a 4=( ) C .-14 【答案】 C

九类常见递推数列求通项公式方法

递推数列通项求解方法 类型一:1n n a pa q += +(1p ≠) 思路1(递推法):()123()n n n n a pa q p pa q q p p pa q q q ---??=+=++=+++=?? ......121(1n p a q p p -=++++ (2) 1 1)11n n q q p a p p p --??+=+?+ ? --?? 。 思路2(构造法):设()1n n a p a μμ++=+,即()1p q μ-=得1 q p μ= -,数列 {}n a μ+是以1a μ+为首项、p 为公比的等比数列,则1 111n n q q a a p p p -??+ =+ ?--??,即1111n n q q a a p p p -??=++ ? --?? 。 例1 已知数列{}n a 满足123n n a a -=+且11a =,求数列{}n a 的通项公式。 解:方法1(递推法): ()123232(23)3222333n n n n a a a a ---??=+=++=+++=?? (1) 22 3(122n -=++++ (2) 11 332 )12232112n n n --+??+=+?+=- ? --? ?。 方法2(构造法):设()12n n a a μμ++=+,即3μ=,∴数列{}3n a +是以134 a +=为首项、2为公比的等比数列,则113422n n n a -++=?=,即1 23n n a +=-。

1n n +思路1(递推法): 123(1)(2)(1)(3)(2)(1)n n n n a a f n a f n f n a f n f n f n ---=+-=+-+-=+-+-+-= …1 11 ()n i a f n -==+∑。 思路2(叠加法):1(1)n n a a f n --=-,依次类推有:12(2)n n a a f n ---=-、 23(3)n n a a f n ---=-、…、21(1)a a f -=,将各式叠加并整理得1 11 ()n n i a a f n -=-= ∑ ,即 1 11 ()n n i a a f n -==+ ∑ 。 例2 已知11a =,1n n a a n -=+,求n a 。 解:方法1(递推法):123(1)(2)(1)n n n n a a n a n n a n n n ---=+=+-+=+-+-+= ......1[23a =+++ (1) (1)(2)(1)]2 n i n n n n n n =++-+-+= = ∑ 。 方法2(叠加法):1n n a a n --=,依次类推有:121n n a a n ---=-、232n n a a n ---=-、…、 212a a -=,将各式叠加并整理得12 n n i a a n =-= ∑ ,12 1 (1)2 n n n i i n n a a n n ==+=+ = = ∑ ∑ 。

常见递推数列通项公式求法(教案)

问题 1:已知数列{a } , a 1 = 1 , a n +1 = n + 2 ,求{a n }的通项公式。 2 常见递推数列通项公式的求法 一、课题:常见递推数列通项公式的求法 二、教学目标 (1)会根据递推公式求出数列中的项,并能运用叠加法、叠乘法、待定系数 法求数列的通项公式。 (2) 根据等差数列通项公式的推导总结出叠加法的基本题型,引导学生分 组合作并讨论完成叠乘法及待定系数法的基本题型。 (3)通过互助合作、自主探究培养学生细心观察、认真分析、善于总结的良 好思维习惯,以及积极交流的主体意识。 三、教学重点:根据数列的递推关系式求通项公式。 四、教学难点:解题过程中方法的正确选择。 五、教学课时: 1 课时 六、教学手段:黑板,粉笔 七、教学方法: 激励——讨论——发现——归纳——总结 八、教学过程 (一)复习回顾: 1、通项公式的定义及其重要作用 2、区别递推公式与通项公式,从而引入课题 (二)新知探究: a n 变式: 已知数列 {a n } , a 1 = 1 , a n +1 = a n + 2n ,求{a n }的通项公式。 活动 1:通过分析发现形式类似等差数列,故想到用叠加法去求解。教师引导学 生细致讲解整个解题过程。 解:由条件知: a n +1 - a = 2n n 分别令 n = 1,2,3,? ? ? ? ??,(n - 1) ,代入上式得 (n - 1) 个 等式叠加之, 即 (a 2 - a 1 ) + (a 3 - a 2 ) + (a 4 - a 3 ) + ? ? ? ? ? ? +(a n - a n -1 ) = 2 + 2 ? 2 + 2 ? 3 + 2 ? (n - 2) + 2 ? (n - 1) 所以 a - a = (n - 1)[2 + 2 ? (n - 1)] n 1 a = 1,∴ a = n 2 - n + 1 1 n

专题由递推关系求数列的通项公式含答案

专题 由递推关系求数列的通项公式 一、目标要求 通过具体的例题,掌握由递推关系求数列通项的常用方法: 二、知识梳理 求递推数列通项公式是数列知识的一个重点,也是一个难点,高考也往往通过考查递推数列来考查学生对知识的探索能力,求递推数列的通项公式一般是将递推公式变形,推得原数列是一种特殊的数列或原数列的项的某种组合是一种特殊数列,把一些较难处理的数列问题化为熟悉的等差或等比数列。 三、典例精析 1、公式法:利用熟知的公式求通项公式的方法称为公式法。常用的公式有???≥???????-=????????????????=-21 11n S S n S a n n n 及 等差数列和等比数列的通项公式。 例1 已知数列{n a }中12a =,2 +2n s n =,求数列{n a }的通项公式 评注 在运用1n n n a s s -=-时要注意条件2n ≥,对n=1要验证。 2、累加法:利用恒等式()()1211+......+n n n a a a a a a -=+--求通项公式的方法叫累加法。它是求型如 ()1+f n n n a a +=的递推数列的方法(其中数列(){}f n 的前n 项和可求)。 例2 已知数列{n a }中112a = ,121 ++32 n n a a n n +=+,求数列{n a }的通项公式 评注 此类问题关键累加可消中间项,而(f n )可求和则易得n a 3、.累乘法:利用恒等式3 21121 n n n a a a a a a a a -=? ???????()0n a ≠求通项公式的方法叫累乘法。它是求型如()1n n a g n a +=的递推数列的方法(){}() g n n 数列可求前项积 例3 已知数列{n a }中1n n s na =- ,求数列{n a }的通项公式 评注 此类问题关键是化 ()1 n n a g n a -=,且式子右边累乘时可求积,而左边中间项可消。 4、转化法:通过变换递推关系,将非等差(等比)数列转化为等差或等比有关的数列而求得通项公式的方法 称为转化法。常用的转化途径有: ⑴凑配、消项变换——如将一阶线性递推公式1n n a qa d +=+(q, d 为常数,0,1q q ≠≠)通过凑配变成 11n d a q ++ -=1n d q a q ??+ ?-?? ,或消常数项转化为()211n n n n a a q a a +++-=- 例4、已知数列{n a }中,11a =,()1212n n a a n -=+≥,求数列{n a }的通项公式 点评: 此类问题关键是利用配凑或消项变换将其转化为等比数列

常见递推数列通项公式的求法典型例题及习题

.. . 常见递推数列通项公式的求法典型例题及习题 【典型例题】 [例1] b ka a n n +=+1型。 (1)1=k 时,}{1n n n a b a a ?=-+是等差数列,)(1b a n b a n -+?= (2)1≠k 时,设)(1m a k m a n n +=++ ∴ m km ka a n n -+=+1 比较系数:b m km =- ∴ 1-= k b m ∴ }1{-+ k b a n 是等比数列,公比为k ,首项为11-+k b a ∴ 11)1(1-?-+=-+ n n k k b a k b a ∴ 1)1(11--?-+=-k b k k b a a n n [例2] )(1n f ka a n n +=+型。 (1)1=k 时,)(1n f a a n n =-+,若)(n f 可求和,则可用累加消项的方法。 例:已知}{n a 满足11=a ,)1(1 1+= -+n n a a n n 求}{n a 的通项公式。 解: ∵ 11 1)1(11+- =+= -+n n n n a a n n ∴ n n a a n n 1111--= -- 112121---=---n n a a n n 21 3132-- -= ---n n a a n n ……

.. . 312123-= -a a 21112-=-a a 对这(1-n )个式子求和得: n a a n 111- =- ∴ n a n 1 2- = (2)1≠k 时,当b an n f +=)(则可设)()1(1B An a k B n A a n n ++=++++ ∴ A B k An k ka a n n --+-+=+)1()1(1 ∴ ???=--=-b A B k a A k )1()1( 解得: 1-= k a A ,2)1(1-+-=k a k b B ∴ }{B An a n ++是以B A a ++1为首项,k 为公比的等比数列 ∴ 1 1)(-?++=++n n k B A a B An a ∴ B An k B A a a n n --?++=-1 1)( 将A 、B 代入即可 (3)n q n f =)((≠q 0,1) 等式两边同时除以1 +n q 得q q a q k q a n n n n 1 11+?=++ 令 n n n q a C = 则q C q k C n n 1 1+ =+ ∴ }{n C 可归为b ka a n n +=+1型 [例3] n n a n f a ?=+)(1型。 (1)若)(n f 是常数时,可归为等比数列。 (2)若)(n f 可求积,可用累积约项的方法化简求通项。 例:已知: 311= a ,1121 2-+-=n n a n n a (2≥n )求数列}{n a 的通项。 解:123537532521232121212233 2211+= ?--?--?+-=???-----n n n n n n n a a a a a a a a a a n n n n n n

数列的几种递推公式

数列的几种递推公式 一、 )(1n f a a n n +=+ 解法:把原递推公式转化为)(1n f a a n n =-+,利用累加法(逐差相加法)求解。 例1:已知数列{}n a 满足211=a ,n n a a n n ++=+211,求n a 。 二、 n n a n f a )(1=+ 解法:把原递推公式转化为)(1 n f a a n n =+,利用累乘法(逐商相乘法)求解。 例2:已知数列{}n a 满足321=a ,n n a n n a 1 1+= +,求n a 。

例3:已知31=a ,n n a n n a 2 31 31+-=+ )1(≥n ,求n a 。 解:1231 32231232)2(31)2(32)1(31)1(3a n n n n a n +-?+?-??????+---?+---= 3437 52633134 8531n n n n n --= ????=---。 变式:已知数列{a n },满足a 1=1,1321)1(32--+???+++=n n a n a a a a (n ≥2),则 {a n }的通项1 ___n a ?=?? 12n n =≥ 解:由已知,得n n n na a n a a a a +-+???+++=-+13211)1(32, 用此式减去已知式,得 当2≥n 时,n n n na a a =-+1,即n n a n a )1(1+=+, 又112==a a , n a a a a a a a a a n n =???====∴-1 3423121,,4,3,1, 1, 将以上n 个式子相乘,得2 ! n a n =)2(≥n 三、 q pa a n n +=+1(其中p ,q 均为常数,)0)1((≠-p pq )。 解法(待定系数法):把原递推公式转化为:)(1t a p t a n n -=-+,其中p q t -=1,再利用换元法转化为等比数列求解。

常见递推数列通项的九种求解方法

常见递推数列通项的九种求解方法 高考中的递推数列求通项问题,情境新颖别致,有广度,创新度和深度,是高考的热点之一。是一类考查思维能力的好题。要求考生进行严格的逻辑推理,找到数列的通项公式,为此介绍几种常见递推数列通项公式的求解方法。 类型一:1()n n a a f n +=+(()f n 可以求和) ????→解决方法 累加法 例1、在数列{}n a 中,已知1a =1,当2n ≥时,有121n n a a n -=+-()2n ≥,求数列的通项公式。 解析: 121(2)n n a a n n --=-≥ ∴21324311 3 521 n n a a a a a a a a n --=??-=?? -=???-=-?? 上述1n -个等式相加可得: ∴211n a a n -=- 2n a n ∴= 评注:一般情况下,累加法里只有n-1个等式相加。 【类型一专项练习题】 1、已知11a =,1n n a a n -=+(2≥n ),求n a 。 2、已知数列{}n a ,1a =2,1n a +=n a +3n +2,求n a 。 3、已知数列}a {n 满足1a 1n 2a a 1n 1n =++=+,,求数列}a {n 的通项公式。 4、已知}{n a 中,n n n a a a 2,311+==+,求n a 。 5、已知112a =,112n n n a a +??=+ ??? * ()n N ∈,求数列{}n a 通项公式. 6、 已知数列{}n a 满足11,a =()1 132,n n n a a n --=+≥求通项公式n a ? 7、若数列的递推公式为1* 113,23()n n n a a a n N ++==-?∈,则求这个数列的通项公式 8、 已知数列}a {n 满足3a 132a a 1n n 1n =+?+=+,,求数列}a {n 的通项公式。 9、已知数列{}n a 满足211= a ,n n a a n n ++=+211,求n a 。 10、数列{}n a 中,12a =,1n n a a cn +=+(c 是常数,123n =,,,),且123a a a ,,成公比不为1的等比数列. (I )求c 的值; (II )求{}n a 的通项公式.

2018高中数学人教B版必修五2.1.2《数列的递推公式选学》双基达标练

2.1.2 数列的递推公式(选学) 1.数列{a n }满足a n +1=a n +n ,且a 1=1,则a 5的值为 ( ). A .9 B .10 C .11 D .12 解析 a 5=a 4+4=a 3+3+4=a 2+2+3+4=a 1+1+2+3+4=11. 答案 C 2.已知数列{a n }的首项为a 1=1,且满足a n +1=12a n +1 2n ,则此数列的第4项是( ). A.5 16 B.12 C.34 D.58 解析 ∵a 1=1,a n +1=12a n +1 2n , ∴a 2=12×a 1+12=1,a 3=12a 2+122=3 4 , a 4=1 2a 3+123=38+18=12 . 答案 B 3.设数列{a n }中,a 1=2,a n +1=2a n +3,则通项a n 可能是 ( ). A .5-3n B .3·2n -1-1 C .5-3n 2 D .5·2 n -1 -3 解析 由a 1=2,得a 2=2a 1+3=7,代入验证得只有D 适合. 答案 D 4.已知数列{a n }满足a 1=-14,a n =1-1a n -1(n >1)则a 4= . 解析 a 2=1-1a 1=5,a 3=1-1a 2=4 5 , a 4=1-1a 3=-1 4 . 答案 -1 4 5.已知数列{a n }中,a 1=12,a n =a n -1-1 2(n ≥2),则a n = . 解析 a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1 =-12-12+…+(-12)+1 2 =-12(n -1)+12=1-n 2 .

特征方程解数列递推关系

用特征方程与特征根解数列线性递推关系式的通项公式 一.特征方程类型与解题方法 类型一 递推公式为An+2=aAn+1+bAn 特征方程为 X 2 =aX+b 解得两根X 1 X 2 (1)若 X 1≠X 2 则A n =pX 1n +qX 2 n (2)若X 1=X 2=X 则A n =(pn+q)X n (其中p.q 为待定系数,由A 1.A 2联立方程求得) (3)若为虚数根,则为周期数列 类型二 递推公式为 特征方程为X = d c b a X X ++ 解得两根X 1 X 2 (1)若X 1≠X 2 则计算2111x A x A n n --++=21 x d cA b aA x d cA b aA n n n n -++-++=k 2 1x A x A n n -- 接着做代换B n =2 1 x A x A n n -- 即成等比数列 (2)若X 1=X 2=X 则计算x A n -+11=x d cA b aA n n -++1 =k+x A n -1 接着做代换B n =x A n -1 即成等差数列 (3)若为虚数根,则为周期数列 类型三 递推公式为 特征方程为X =d c b ax X ++2 解得两根X 1 X 2 。然后参照类型二的方法进行整理 类型四 k 阶常系数齐次线性递归式 A n+k =c 1A n+k-1+c 2A n+k-2+…+c k A n 特征方程为 X k = c 1X k-1+c 2X k-2+…+c k (1) 若X 1≠X 2≠…≠X k 则A n =X k n 11+X k n 22+…+X k k n k (2) 若所有特征根X 1,X 2,…,X s.其中X i 是特征方程的t i 次重根,有t 1+t 2+…+t s =k 则

相关主题
文本预览
相关文档 最新文档