当前位置:文档之家› 七年级上册数学 几何图形初步单元测试卷附答案

七年级上册数学 几何图形初步单元测试卷附答案

一、初一数学几何模型部分解答题压轴题精选(难)

1.将一副三角板放在同一平面内,使直角顶点重合于点O

(1)如图①,若∠AOB=155°,求∠AOD、∠BOC、∠DOC的度数.

(2)如图①,你发现∠AOD与∠BOC的大小有何关系?∠AOB与∠DOC有何关系?直接写出你发现的结论.

(3)如图②,当△AOC与△BOD没有重合部分时,(2)中你发现的结论是否还仍然成立,请说明理由.

【答案】(1)解:∵

同理:

(2)解:∠AOD与∠BOC的大小关系为:∠AOB与∠DOC存在的数量关系为:

(3)解:仍然成立.

理由如下:∵

又∵

【解析】【分析】(1)先计算出

再根据

(2)根据(1)中得出的度数直接写出结论即可.(3)根据

即可得到利用周角定义得∠AOB+∠COD+∠AOC+∠BOD=360°,而∠AOC=∠BOD=90°,即可得到∠AOB+∠DOC=180°.

2.问题情境1:如图1,AB∥CD,P是ABCD内部一点,P在BD的右侧,探究∠B,∠P,∠D之间的关系?

小明的思路是:如图2,过P作PE∥AB,通过平行线性质,可得∠B,∠P,∠D之间满足____关系。(直接写出结论)

问题情境2

如图3,AB∥CD,P是AB,CD内部一点,P在BD的左侧,可得∠B,∠P,∠D之间满足____关系。(直接写出结论)

问题迁移:请合理的利用上面的结论解决以下问题:

已知AB∥CD,∠ABE与∠CDE两个角的角平分线相交于点F

(1)如图4,若∠E=80°,求∠BFD的度数;

(2)如图5中,∠ABM= ∠ABF,∠CDM= ∠CDF,写出∠M与∠E之间的数量关系并证明你的结论。

(3)若∠ABM= ∠ABF,∠CDM= ∠CDF,设∠E=m°,用含有n,m°的代数式直接写出

∠M=________.

【答案】(1)解:根据问题情境2,可得出∠BFD=∠AEF+∠CDF

∵,∠ABE与∠CDE两个角的角平分线相交于点F

∴∠AEF=∠FBE,∠CDF=∠FDE

∴∠FBE+∠FDE=∠BFD

∵∠E+∠BFD+∠FBE+∠FDE=360°

∴80°+∠BFD+∠BFD=360°

∴∠BFD=140°

(2)结论为:6∠M+∠E=360°

证明:∵∠ABM= ∠ABF,∠CDM= ∠CDF

∴∠ABF=3∠ABM,∠CDF=3∠CDM

∵∠ABE与∠CDE两个角的角平分线相交于点F

∴∠ABE=6∠ABM,∠CDE=6∠CDM

∵∠ABE+∠CDE+∠E=360°

∴6(∠ABM+∠CDM)+∠E=360°

∵∠M=∠ABM+∠CDM

∴6∠M+∠E=360°

(3)证明:根据(2)的结论可知

2n∠ABM+2n∠CDM+∠E=360°

2n(∠ABM+∠CDME)+∠E=360°

∵∠M=∠ABM+∠CDM

∴2n∠M+m°=360°

∴∠M=

【解析】问题情境1: 图1中∠B,∠P,∠D之间关系是:∠P+∠B+∠D=360°,问题情境2:图3中∠B,∠P,∠D之间关系是:∠P=∠B+∠D;

【分析】问题情境1和2 过点P作EP∥AB,利用平行线的性质,可证得结论。

(1)利用问题情境2的结论,可得出∠BFD=∠AEF+∠CDF,再根据角平分线的定义得出∠AEF=∠FBE,∠CDF=∠FDE,再证明∠E+∠BFD+∠FBE+∠FDE=360°,就可建立方程80°+∠BFD+∠BFD=360°,解方程求出∠BFD的度数即可。

(2)根据已知可得出∠ABF=3∠ABM,∠CDF=3∠CDM,再根据角平分线的定义得出,∠ABE=6∠ABM,∠CDE=6∠CDM,然后根据问题情境1的结论∠ABE+∠CDE+∠E=360°,可推出6(∠ABM+∠CDM)+∠E=360°,变形即可证得结论。

(3)根据已知得出2n∠ABM+2n∠CDM+∠E=360°,再根据∠M=∠ABM+∠CDM,代入变形即可得出结论。

3.如图1,∠AOB=120°,∠COE=60°,OF平分∠AOE

(1)若∠COF=20°,则∠BOE=________°

(2)将∠COE绕点O旋转至如图2位置,求∠BOE和∠COF的数量关系

(3)在(2)的条件下,在∠BOE内部是否存在射线OD,使∠DOF=3∠DOE,且∠BOD=70°?若存在,求的值,若不存在,请说明理由.

【答案】(1)40

(2)解:∵

(3)解:存在.理由如下:

【解析】【解答】⑴

∵OF平分∠AOE,

故答案为:40。

【分析】(1)根据,∠EOF=∠COE-∠COF=40°,再由角平分线的定义得出∠AOF=∠EOF=40°,最后∠BOE=∠AOB?∠AOE=120°?80°=40°.

(2)由角平分线的定义得出∠AOE=2∠EOF,再利用等量代换得∠AOE=120°?∠BOE=2(60°?∠COF) , 整理得∠BOE=2∠COF;

(3)∠DOF=3∠DOE,设∠DOE=α,∠DOF=3α ,∠AOF=∠EOF=2α ,根据∠AOD+∠BOD=120°,构建一个含α的方程,5α+70°=120°求出α,进而求出∠DOF和∠COF.

4.如图1,直线MN与直线AB、CD分别交于点E、F,∠1与∠2互补.

(1)试判断直线AB与直线CD的位置关系,并说明理由;

(2)如图2,∠BEF与∠EFD的角平分线交于点P,EP与CD交于点G,点H是MN上一点,且GH⊥EG,求证:PF∥GH;

(3)如图3,在(2)的条件下,连接PH,K是GH上一点使∠PHK=∠HPK,作PQ平分∠EPK,问∠HPQ的大小是否发生变化?若不变,请求出其值;若变化,说明理由.

【答案】(1)解:AB∥CD.理由如下:

如图1,

∵∠1与∠2互补,

∴∠1+∠2=180°.

又∵∠1=∠AEF,∠2=∠CFE,

∴∠AEF+∠CFE=180°,

∴AB∥CD;

(2)证明:如图2,由(1)知,AB∥CD,

∴∠BEF+∠EFD=180°.

又∵∠BEF与∠EFD的角平分线交于点P,

∴∠FEP+∠EFP= (∠BEF+∠EFD)=90°,

∴∠EPF=90°,

即EG⊥PF.

∵GH⊥EG,

∴PF∥G H;

(3)解:∠HPQ的大小不发生变化,理由如下:

如图3,∵∠1=∠2,

∴∠3=2∠2.

又∵GH⊥EG,

∴∠4=90°-∠3=90°-2∠2.

∴∠EPK=180°-∠4=90°+2∠2.

∵PQ平分∠EPK,

∴∠QPK= ∠EPK=45°+∠2.

∴∠HPQ=∠QPK-∠2=45°,

∴∠HPQ的大小不发生变化,一直是45°.

【解析】【分析】(1)利用对顶角相等、等量代换可以推知同旁内角∠AEF、∠CFE互补,所以易证AB∥CD;

(2)利用(1)中平行线的性质推知°;然后根据角平分线的性质、三角形内角和定理证得∠EPF=90°,即EG⊥PF,故结合已知条件GH⊥EG,易证PF∥GH;

(3)利用三角形外角定理、三角形内角和定理求得∠4=90°-∠3=90°-2∠2;然后由邻补角

的定义、角平分线的定义推知∠QPK= ∠EPK=45°+∠2;最后根据图形中的角与角间的和差关系求得∠HPQ的大小不变,是定值45°.

5.如图,直线l上有A、B两点,AB=24cm,点O是线段AB上的一点,OA=2OB.

(1)OA=________cm,OB=________cm.

(2)若点C是线段AO上一点,且满足AC=CO+CB,求CO的长.

(3)若动点P、Q分别从A、B同时出发,向右运动,点P的速度为2cm/s,点Q的速度为1cm/s,设运动时间为t(s),当点P与点Q重合时,P、Q两点停止运动.

①当t为何值时,2OP﹣OQ=8.

②当点P经过点O时,动点M从点O出发,以3cm/s的速度也向右运动.当点M追上点Q后立即返回,以同样的速度向点P运动,遇到点P后立即返回,又以同样的速度向点Q 运动,如此往返,直到点P、Q停止时,点M也停止运动.在此过程中,点M行驶的总路程为________ cm.

【答案】(1)16;8

(2)解:设CO=x,则AC=16﹣x,BC=8+x,

∵AC=CO+CB,

∴16﹣x=x+8+x,

∴x= ,

∴CO=

(3)48

【解析】【解答】解:(1)∵AB=24,OA=2OB,

∴20B+OB=24,

∴OB=8,0A=16,

故答案分别为16,8.(3)①当点P在点O左边时,2(16﹣2t)﹣(8+t)=8,t= ,当点P在点O右边时,2(2t﹣16)﹣(8+t)=8,t=16,

∴t= 或16s时,2OP﹣OQ=8.

②设点M运动的时间为ts,由题意:t(2﹣1)=16,t=16,

∴点M运动的路程为16×3=48cm.

故答案为48cm.

【分析】(1)由OA=2OB,OA+OB=24即可求出OA、OB.(2)设OC=x,则AC=16﹣x,BC=8+x,根据AC=CO+CB列出方程即可解决.(3)①分两种情形①当点P在点O左边时,2(16﹣2t)﹣(8+t)=8,当点P在点O右边时,2(2t﹣16)﹣(8+x)=8,解方程即可.

②点M运动的时间就是点P从点O开始到追到点Q的时间,设点M运动的时间为ts由题意得:t(2﹣1)=16由此即可解决.

6.如图1,△ABC中,∠ABC=∠BAC,D是BC延长线上一动点,连接AD,AE平分∠CAD 交CD于点E,过点E作EH⊥AB,垂足为点H.直线EH与直线AC相交于点F.设∠AEH=,∠ADC= .

(1)求证:∠EFC=∠FEC;

(2)①若∠B=30°,∠CAD=50°,则=________,=________;

②试探究与的关系,并说明理由;

(3)若将“D是BC延长线上一动点”改为“D是CB延长线上一动点”,其它条件不变,请在图2中补全图形,并直接写出与的关系.

【答案】(1)证明:∵∠ABC=∠BAC,EH⊥AB.

∴∠EFC=∠AFH=90°-∠BAC,∠FEC=90°-∠ABC,

∴∠EFC=∠FEC.

(2)35°;70°;解:② , 理由如下: 由(1)可知:

, 又∵ , ∴ . ∴ .

(3)解:图形如下:

∵∠ABC=∠BAC,∠BHE=90°-∠ABC,∠F=90°-∠BAC,

∴ .

又∵,

∴在△CEF中有:∠ECF+2∠CEF=180°,

即 .

.

∵2∠EAC=∠DAC, ,

∴ .∴即 .

∴ .

【解析】【解答】解:(2)①∵∠CAD=50°,AE平分∠CAD,

∴∠ =∠AFH-∠EAC=90°-∠BAC-∠EAC=90°-30°-25°=35°.

∵∠ACB=∠ABC+∠BAC=60°,∠CAD=50°,

∴∠ =180°-∠ACB-∠CAD=180°-60°-50°=70°.

故答案为:35°,70°.

【分析】(1)利用等角的余角相等的性质证明即可.(2)①利用外角定理和角平分线的性质求解即可;②分别用∠和∠表示出∠AEC即可解.(3)画出图形,将所有的角度集中在△CEF 的内角和上,列出等式求解即可.

7.根据下图回答问题:

(1)如图1,CM平分∠ACD,AM平分∠BAC,∠MAC+∠ACM=90°,请判断AB与CD的位置关系并说明理由;

(2)如图2,当∠M=90°且AB与CD的位置关系保持(1)中的不变,当直角顶点M移动时,问∠BAM与∠MCD是否存在确定的数量关系?并说明理由;

(3)如图3,G为线段AC上一定点,点H为直线CD上一动点且AB与CD的位置关系保持(1)中的不变,当点H在射线CD上运动时(点C除外)∠CGH+∠CHG与∠BAC有何数量关系?猜想结论并说明理由.

【答案】(1)∵CM平分∠ACD,AM平分∠BAC,

∴∠BAC=2∠MAC,∠ACD=2∠ACM,

∵∠MAC+∠ACM=90°,

∴∠BAC+∠ACD=180°,

∴AB∥CD;

(2)∠BAM+∠MCD=90°,

理由:如图,过M作MF∥AB,

∵AB∥CD,

∴MF∥AB∥CD,

∴∠BAM=∠AMF,∠FMC=∠DCM,

∵∠M=90°,

∴∠BAM+∠MCD=90°;

(3)∠BAC=∠CHG+∠CGH.

理由:过点G作GP∥AB,

∵AB∥CD

∴GP∥CD,

∴∠BAC=∠PGC,∠CHG=∠PGH,

∴∠PGC=∠CHG+∠CGH,

∴∠BAC=∠CHG+∠CGH.

【解析】【分析】(1)已知CM平分∠ACD,AM平分∠BAC,根据角平分线的定义可得∠BAC=2∠MAC,∠ACD=2∠ACM,再由∠MAC+∠ACM=90°,即可得∠BAC+∠ACD=180°,根据同旁内角互补,两直线平行即可得AB∥CD;(2)∠BAM+∠MCD=90°,过M作MF∥AB,即可得MF∥AB∥CD,根据平行线的性质可得∠BAM=∠AMF,∠FMC=∠DCM,再由∠M=90°,即可得∠BAM+∠MCD=90°;(3)∠BAC=∠CHG+∠CGH,过点G作GP∥AB,即可得GP∥CD,根据平行线的性质可得∠BAC=∠PGC,∠CHG=∠PGH,所以PGC=∠CHG+∠CGH,即可得∠BAC=∠CHG+∠CGH.

8.在直角坐标系中,已知点A(a,0),B(b,c),C(d,0),a是-8的立方根,方程2x3b-5-3y2b-2c+5=1是关于x,y的二元一次方程,d为不等式组的最大整数解.

(1)求点A、B、C的坐标;

(2)如图1,若D为y轴负半轴上的一个动点,当AD∥BC时,∠ADO与∠BCA的平分线交于M点,求∠M的度数;

(3)如图2,若D为y轴负半轴上的一个动点,连BD交x轴于点E,问是否存在点D,使S△ADE≤S△BCE?若存在,请求出D的纵坐标y D的取值范围;若不存在,请说明理由.【答案】(1)解:-8的立方根是-2,

∴a=-2,

方程2x3b-5-3y2b-2c+5=1是关于x,y的二元一次方程,

∴,

解得,,

不等式组的最大整数解是5,

则A(-2,0)、B(2,4)、C(5,0)

(2)解:作MH∥AD,

∵AD∥BC,

∴MH∥BC,

∵∠AOD=90°,

∴∠ADO+∠OAD=90°,

∵AD∥BC,

∴∠BCA=∠OAD,

∴∠ADO+∠BCA=90°,

∵∠ADO与∠BCA的平分线交于M点,

∴∠ADM= ∠ADO,∠BCM= ∠BCA,

∴∠ADM+∠BCM=45°,

∵MH∥AD,MH∥BC,

∴∠NMD=∠ADM,∠HMC=∠BCM,

∴∠M=∠NMD+∠HMC=∠ADM+∠BCM=45°;

(3)解:存在,

连AB交y轴于F,

设点D的纵坐标为y D,

∵S△ADE≤S△BCE,

∴S△ADE+S△ABE≤S△BCE+S△ABE,即S△ABD≤S△ABC,

∵A(-2,0),B(2,4),C(5,0),

∴S△ABC=14,点F的坐标为(0,2),

S△ABD= ×(2-y D)×2+ ×(2-y D)×2=4-2y,

由题意得,4-2y D≤14,

解得,y D≥-5,

∵D在y轴负半轴上,

∴y D<0,

∴D的纵坐标y D的取值范围是-5≤y D<0.

【解析】【分析】(1)根据立方根的概念、二元一次方程组的定义、一元一次不等式组的解法分别求出a、b、c、d,得到点A、B、C的坐标;(2)作MH∥AD,根据平行线的性质得到∠BCA=∠OAD,得到∠ADO+∠BCA=90°,根据角平分线的定义得到∠ADM+∠BCM=45°,根据平行线的性质计算即可;(3)连AB交y轴于F,根据题意求出点F的坐标,根据三角形的面积公式列出方程,解方程即可.

9.课题学习近平行线的“等角转化”功能.

阅读理解:

如图1,已知点A是BC外一点,连接AB,AC.

求∠BAC+∠B+∠C的度数.

(1)阅读并补充下面推理过程

解:过点A作ED∥BC,所以∠B=∠EAB,∠C=________.

又因为∠EAB+∠BAC+∠DAC=180°,

所以∠B+∠BAC+∠C=180°

解题反思:

从上面的推理过程中,我们发现平行线具有“等角转化”的功能,将∠BAC,∠B,∠C“凑”在一起,得出角之间的关系,使问题得以解决.

方法运用:

(2)如图2,已知AB∥ED,求∠B+∠BCD+∠D的度数.(提示:过点C作CF∥AB)

深化拓展:

(3)如图3,已知AB∥CD,点C在点D的右侧,∠ADC=70°.点B在点A的左侧,∠ABC=60°,BE平分∠ABC,DE平分∠ADC,BE,DE所在的直线交于点E,点E在AB与CD两条平行线之间,求∠BED的度数.

【答案】(1)∠DAC

(2)解:如图2,过C作CF∥AB,

∵AB∥DE,

∴CF∥DE,

∴∠D=∠FCD,

∵CF∥AB,

∴∠B=∠BCF,

∵∠BCF+∠BCD+∠DCF=360°,

∴∠B+∠BCD+∠D=360°,

(3)解:如图3,过点E作EF∥AB,

∵AB∥CD,

∴AB∥CD∥EF,

∴∠ABE=∠BEF,∠CDE=∠DEF,

∵BE平分∠ABC,DE平分∠ADC,∠ABC=60°,∠ADC=70°,

∴∠ABE=∠ABC=30°,∠CDE=∠ADC=35°,

∴∠BED=∠BEF+∠DEF=30°+35°=65°.

【解析】【解答】解:(1)∵ED∥BC,

∴∠C=∠DAC,

故答案为∠DAC;

【分析】(1)根据平行线的性质即可得到结论;(2)过C作CF∥AB根据平行线的性质得到∠D=∠FCD,∠B=∠BCF,然后根据已知条件即可得到结论;(3)过点E作EF∥AB,然后根据两直线平行内错角相等,即可求∠BED的度数.

10.AB∥CD,C在D的右侧,BE平分∠ABC,DE平分∠ADC,BE、DE所在的直线交于点E.∠ADC=70°.

(1)求∠EDC 的度数;

(2)若∠ABC=30°,求∠BED 的度数;

(3)将线段 BC沿 DC方向移动,使得点 B在点 A的右侧,其他条件不变,若∠ABC=n°,请直接写出∠BED 的度数(用含 n的代数式表示).

【答案】(1)∵平分,

∴;

(2)过点作,如图:

∵平分,;平分,

∴,

∵,

∴,

∴;

(3)过点E作,如图:

∵DE平分,;BE平分,

∴,

∵,

∴,

∴.

【解析】【分析】(1)根据角平分线定义即可得到答案;(2)过点作,然后根据角平分线的定义、平行线的判定和性质以及角的和差进行推导即可得解;(3)过点作,然后根据角平分线的定义、平行线的判定和性质以及角的和差进行推导即可得解.

11.直线MN与直线PQ相交于O,∠POM=60°,点A在射线OP上运动,点B在射线OM上运动.

(1)如图1,∠BAO=70°,已知AE、BE分别是∠BAO和∠ABO角的平分线,试求出∠AEB 的度数.

(2)如图2,已知AB不平行CD,AD、BC分别是∠BAP和∠ABM的角平分线,又DE、CE 分别是∠ADC和∠BCD的角平分线,点A、B在运动的过程中,∠CED的大小是否会发生变化?若发生变化,请说明理由;若不发生变化,试求出其值.

(3)在(2)的条件下,在△CDE中,如果有一个角是另一个角的2倍,请直接写出∠DCE的度数.

【答案】(1)解:∵∠POM=60°,∠BAO=70°,

∴∠ABO=50°.

∵AE、BE分别是∠BAO和∠ABO的角平分线,

∴∠EAB= ∠OAB=35°,∠EBA= ∠OBA=25°,

∴∠AEB=180°-35°-25°=120°

(2)解:不发生变化,理由如下:

如图,延长BC、AD交于点F,

∵点D、C分别是∠PAB和∠ABM的角平分线上的两点,

∴∠FAB= ∠PAB= (180°-∠OAB),∠FBA= ∠MBA= (180°-∠OBA),

∴∠FAB+∠FBA= (180°-∠OAB)+ (180°-∠OBA)= (180°+∠AOB)=90°+ ∠AOB,∵∠AOB=60°,

∴∠F=180°-(∠FAB+∠FBA)=90°- ∠AOB=60°,

同理可求∠CED =90°- ∠F=60°;

(3)∠DCE的度数40°或80°

【解析】【解答】解:(3)①当∠DCE=2∠E时,显然不符合题意;

②当∠DCE=2∠CDE时,∠DCE= =80°;

③当∠DCE= ∠CDE时,∠DCE= =40°,

综上可知,∠DCE的度数40°或80°.

【分析】(1)由∠POM=60°,∠BAO=70°,可求出∠ABO的值,根据AE、BE分别是∠BAO和∠ABO的角平分线,可得∠EAB和∠EBA的值,在△EAB中,根据三角形内角和即可得出∠AEB的大小;(2)不发生变化,延长BC、AD交于点F,根据角平分线的定义

以及三角形内角和可得∠F =90°- ∠AOB,∠CED =90°- ∠F,即可得出∠CED的度数;(3)分三种情况求解即可.

12.如图1,将一副直角三角板的两顶点重合叠放于点O,其中一个三角板的顶点C落在另一个三角板的边OA上,已知∠ABO=∠DCO=90°,∠AOB=45°,∠COD=60°作∠AOD的平分线交边CD于点E。

(1)求∠BOE的度数。

(2)如图2,若点C不落在边OA上,当∠COE=15°时,求∠BOD的度数。

【答案】(1)解:∵∠COD=60°,OE为∠COD的平分线,

∴∠COE=30°,

∴∠BOE=∠AOB+∠COE

=45°+30°

=75°;

(2)解:∵∠COE=15°,

∴∠DOE=∠DOC-∠OCE=60°-15°=45°,

∵OE平分∠AOD,

∴∠AOD=2∠DOE=2×45°=90°,

∴∠BOD=∠AOD+∠AOB=90°+45°=135°.

【解析】【分析】(1)OE为∠COD的平分线,求出∠COE的度数,则∠BOE的度数等于∠AOB和∠COE的度数之和;

(2)现知∠COE的度数,则∠DOE度数可求,结合OE平分∠AOD,则∠AOD可求,于是∠BOD的度数可得;

相关主题
文本预览
相关文档 最新文档