当前位置:文档之家› 开关型单节锂电池充电和升压放电控制芯片HB6266C

开关型单节锂电池充电和升压放电控制芯片HB6266C

开关型单节锂电池充电和升压放电控制芯片HB6266C
开关型单节锂电池充电和升压放电控制芯片HB6266C

开关型单节锂电池充电和升压放电控制芯片HB6266C

功能特性简述

●适用于单节锂离子/锂聚合物高效率同

步Buck充电器

●电池反向放电高效同步Boost控制器●最大10V输入电源耐压

●电池放电可低至3V

●0.5%的充电电压控制精度

● 1.5%的放电升压控制精度

●ISET脚充电使能和电流设置

●单键飞梭功能

●Boost自动检测负载进入待机模式

●待机模式总电流小于10uA

●ILOAD脚放电电流待机阈值设置

●恒压充电电压值可通过外接电阻微调●内置软启动

●内置Boot-Strap二极管

●峰值电流模补偿内置

●开关频率750KHz

●充电状态指示,电池电量指示

●内置最大100mA电流LED驱动

●电池短路检测,保护

●内置过温关断

●电池充电过压保护

●电源输入限流DPM,过流保护

●Cycle-by-cycle限流

●Boost输出过流保护

●外置充电时间设置

●内置输入欠压过压保护

●工作环境温度范围:-40℃~125℃

●TSSOP-24或QFN-24封装应用

●手持设备

●PDVD,PDA和智能手机

●电源管理

概述

HB6266 为同步开关型高效锂离子/锂聚合物电池充电和升压放电控制芯片,非常适合于便携式设备的电源管理应用。

HB6266的充电集高精度电压和充电电流调节器、预充、充电状态指示和充电截止等功能于一体,而放电部分具有自动检测负载进入待机模式和电池电量过低报警功能。

HB6266 对电池充电分为三个阶段:预充(Pre-charge )、恒流(CC/Constant Current)、恒压(CV/Constant V oltage)过程,恒流充电电流通过外部电阻决定,恒压充电电压可通过外部电阻微调。

HB6266内置输入电源限流环路,可根据负载情况动态调节电流分配,并具有快速响应和过流关断的功能。

HB6266集成的电池容量检测指示灯,无论在充电还是放电状态均可有效指示电池剩余电量。HB6266内置LED手电筒驱动,由单键飞梭控制。

HB6266 内置过温保护,充电时间限制,Cycle-by-cycle限流,Boost输出过流,过压及短路保护,确保芯片安全工作。

管脚定义

HB6266

LED 15KEY 23CS 6HLOAD 9TTC 8ISET 10VCC 7SW 21

HIDRV

20BOOT 19REGN 18LODRV 17GND 16SNS 14BAT

13

VFB 24VTRIM

12

S22DCH 22ILOAD 11S11ACOK 5S33S44

HB6266

DCH

19

LED

12

KEY

20

S3

24

S41CS 3HLOAD

6

TTC

5S2

23

S1

22

ACOK 2SW 18HIDRV

17BOOT 16REGN 15LODRV 14GND

13

SNS 11

BAT

10

VTRIM

9

ISET

7

VCC 4ILOAD 8

VFB

21

TSSOP-24封装 QFN-24封装

典型应用电路

4-8V

4-8V

模块功能框图

KEY

S4

ACOK LED

GND

LODRV BOOT

HIDRV SW

ISET

SNS

BAT

REGN

TTC

VFB

ILOAD

VCC

VTRIM

CS

S3S2S1

DCH HLOAD

最大工作范围

*长时间工作在最大范围条件下可能导致IC永久性损坏。推荐工作条件

电气参数

充电部分

放电(升压)部分

公共部分

典型波形

图1 充电波形

图2 放电升压波形

工作流程图

功能描述

充电模式

电池电压检测BA T和GND脚之间的压差。

当BAT脚电压低于2V时进入短路电流检测模式;当BAT脚电压大于2V且低于3V时进入预充电模式;当BA T脚电压大于3V且低于4.2V时进入快速充电模式;当BAT脚电压等于4.2V时进入恒压充电模式。

充电完成后,如果BA T脚电压于电流泄露下降到4.1V以下时,进入再充电周期。

放电模式

当VCC

放电过程中,在输出负载小于ILOAD设定阈值并持续40秒,输出负载大于HLOAD 设定阈值,BAT电压低于2.8V或者KEY负脉冲持续50m秒以上,Boost均自动关闭。

待机模式

待机模式时HB6266耗电达到最小,低于10uA。以下情况均进入待机模式:

当VCC

当Boost放电而REGN电压低于UVLO阈值;

当Boost放电检测到输出空载并持续40秒且LED照明关闭;

当Boost放电检测到输出过流且LED照明关闭。

输入限流设定

AC输入电流限流值I DPM由下式计算可得:

AC

ACSET

DPM R V I ?=

20

其中,V ACSET 为IC 内部基准电压1V ,R AC 为外部电流检测电阻,一般取20或50m Ω。

充电电流设定

电池恒流充电电流值I CHARGE 由下式计算可得:

SNS

ISET

CHARGE R V I ?=

40

其中,V ISET 是ISET 脚的输入电压,由内部检测电流乘以外接电阻得到。R SNS 为外部电

流检测电阻,一般取20或50m Ω。当ISET 脚小于100mV 时,充电停止;ISET 脚大于150mV 时,充电使能。

*放电模式下,ISET 脚低于100mV 时,进入测试模式,缩短BOOST 空载关断时间。 在恒流充电电流确定之后,短路检测电流为30%* I CHARGE ,预充电电流为30%*I CHARGE ,而充电截止电流为10%* I CHARGE 。

恒压输出的微调

测出BAT 脚恒压输出的电压值V CV ,把V CV 向上微调,将微调电阻R TRIM 接在VTRIM 脚与地之间;把V CV 向下微调,将微调电阻R TRIM 接在VTRIM 脚与BAT 脚之间。电阻R TRIM 阻值大小公式为:

R V V R CV CV TRIM ????

? ??-=2.4 其中R=20k Ω。

充电截止

在恒压阶段,充电电流在R SNS 电阻两端的压降低于快充电流的10%时,HB6266内部产生EOC 信号,充电截止。

同时,当充电电流在R SNS 电阻两端的压降快充电流的20%时,芯片内部会产生一个TAPE 信号,如果在半个小时后充电电流仍然没有下降到V ITERM ,充电截至。

充电时间限制

HB6266对预充电和总充电时间进行可编程限制,总充电时间限制:

TT

TTC CHARGE K C T ?=

其中,C TTC 为引脚TTC 外接电容值,K TTC 为系数。

预充电时间为总充电时间的1/8,如果发生充电超时,芯片进入FAULT 状态,ACOK 脚(HB6266A )或者S1脚(HB6266B )输出1Hz 脉冲指示,插拔适配器清除此状态。

取消充电时间限制功能,只需要将TTC 脚接地即可。

DCH 脚的输出放电控制

充电模式下,HB6266自动下拉DCH 脚,输入电源向输出负载供电;

放电模式下,HB6266在Boost 启动时下拉DCH 脚,电池通过升压向输出负载供电;

待机模式下,DCH 脚上拉,关闭向输出负载供电的通路,以节约功耗。 Boost 放电轻载电流

放电模式中,当系统负载变轻,并且持续20秒的时间,Boost 会自动关闭而进入待机模式以节约电池电量。电池的轻载放电电流I UC 由下式计算可得:

SNS

ILOAD

UC R V I ?=

40

其中,V ILOAD 是ILOAD 脚的输入电压,由内部检测电流乘以外接电阻得到。

Boost 放电重载过流

放电模式中,当系统负载变重,并且持续0.5毫秒的时间,Boost 会自动关闭而进入待机模式以保护电池本身。电池的重载过放电电流I OC 由下式计算可得:

SNS

HLOAD

OC R V I ?=

10

其中,V HLOAD 是HLOAD 脚的输入电压,由内部检测电流乘以外接电阻得到。

ACOK 状态指示

当输入电源VIN 满足充电条件即VIN>BA T 且4V

电池电量指示

*静置模式表示处于无电流的充放电模式。

KEY单键飞梭

待机模式中,如果BA T<2.8V或者REGN欠压,所有指令无效。

电源输入欠压和过压

在充电模式下,当检测到VCC电压低于4V或者高于8V时,充电停止同时DCH输出上拉,直到VCC电压重新回到正常值,充电重新启动。

电源输入过流保护

在充电模式下,如果负载持续增加导致VCC和CS脚之间的检测电阻电压超过内部设置的限流阈值的50%并且持续30毫秒时,充电停止同时DCH输出上拉,拔出适配器可清除此状态。

过电压保护

HB6266内置过电压保护功能。充电模式中,当电池电压过高时,立即关闭充电器的HIDRV和LODRV,并指示错误。当拔出适配器时,该错误解除。

放电模式中,当VFB电压过高时,比如说系统突然空载,同样关闭HIDRV和LODRV,直到VFB电压降至正常,Boost放电继续。

短路保护

HB6266内置短路保护功能。充电模式中,当电池电压过低时,比如说电池突然短路或者损坏,立即关闭充电器的HIDRV和LODRV,1m秒之后,重新软启并以30%的快充电流进行电池激活。

放电模式中,当电池放电至低于15%电量时,电量指示灯自动报警,当电池继续放电至低于2.8V时,自动关闭进入待机模式,此时KEY所有指令失效。

Cycle-By-Cycle限流保护

HB6266内置Cycle-By-Cycle限流保护功能。充电模式中,当检测到SNS-BAT压差大于80mV时,立即关闭PWM,直到下一周期SNS-BA T压差小于限流值。

放电模式中,当检测到BA T-SNS压差大于160mV时,立即关闭PWM,直到下一周期SNS-BA T压差小于限流值。

DCM断续工作模式

在充电模式下,当检测到SNS-BA T压差低于3mV时,LODRV关断同步整流管,防止电感电流倒灌,系统进入断续工作模式(DCM);当BAT电压低于2V时,LODRV保持关断,系统进入断续工作模式。

在放电模式下,当检测到BA T-SNS压差低于3mV时,HIDRV关断同步整流管,防止

电感电流倒灌,系统进入断续工作模式。

Refresh脉冲

充电模式中,当BOOT与SW脚之间的压差低于2.6V时,HIDRV关断,LODRV会开启40n秒,SW脚下拉,外部自举电容充电。

内置过温保护

当HB6266内部结温超过160℃时,充放电停止,降低芯片功耗;当内部结温降至140℃时,充放电重新启动。

封装和包装尺寸

TSSOP-24封装

QFN-24封装

蓄电池充放电试验方案

蓄电池检查试验方案 一、目的 为延长蓄电池使用寿命,确保电源类设备处于最佳运行状态,需对蓄电池组进行充放电试验,为保证检查试验过程中的人员分工明确、安全风险可控、试验方法规范,特制定本方案。 二、组织与职责 (一)组织管理组 组长: 1.协调蓄电池检查试验的整体统筹与实施。 2.监管各小组的履职情况。 副组长: 1.配合组长监管蓄电池检查试验工作的开展与实施。 2.配合组长监管各小组的履职情况。 安全负责人: 1.全面监管蓄电池检查试验工作当中的票证、倒闸操作以及安全交底工作,一经发现违规行为,立即叫停改造工作。 技术负责人: 1.负责监管蓄电池检查试验期间运行方式调整。 2.负责蓄电池检查试验期间提供相关的技术支持。 (二)现场实施组 组长: 成员: 三、编写依据 1.GB 50172-1992电气安装工程蓄电池施工及验收规范 2.DL/T 5044-1995火力发电厂.变电所直流系统设计技术规程 3.DL/T 724-2000电力系统用蓄电池直流电源装置运行与维护技术规程 四、工作范围 UPS、EPS、直流屏装置蓄电池组。 五、工作前的准备

1.方案学习 1.1组长负责对所有改造人员进行方案的学习培训,并进行签字确认。 1.2各小组组长负责对自己的成员进行方案的分解落实。 1.3安全负责人对所有人进行安全交底及措施的落实情况。 2.材料及工器具准备 六、工作项目及内容 1.按下表检查蓄电池型号及参数。 蓄电池型号及参数记录表

2.外观及接线检查 逐个目测检查蓄电池外观,不应有变形、污迹,蓄电池间连接可靠、无锈蚀。检查项目和结果满足下表要求。 蓄电池外观及接线检查项目确认表 3.蓄电池运行环境检查 蓄电池运行环境检查记录表

蓄电池充放电试验

蓄电池放电试验方案 批准: 审核: 编写: 重庆大唐国际彭水水电开发有限公司设备部 二〇一二年七月二日

蓄电池放电试验方案 本次试验按DL/T724-2000-6.3.3阀控蓄电池核对性放电要求进行全核对性放电试验。 一、计划时间: 开关站直流Ⅰ组蓄电池充放电试验:2012年07月11日08:00至2012年07月14日23:00 开关站直流Ⅱ组蓄电池充放电试验:2012年07月15日08:00至2012年07月19日23:00 地下厂房直流Ⅰ组蓄电池充放电试验:2012年07月29日08:00至2012年08月01日23:00 地下厂房直流Ⅱ段充电装置试验:2012年08月02日08:00至2012年08月05日23:00 大坝直流充电装置试验:2012年08月11日08:00至2012年08月14日23:00 二、组织措施 现场指挥:李正家 成员:谭小华(工作负责人)、刘宏生、肖琳、肖力、陈灏、刘应西、韦黎敏、运行当班值 三、试验前准备工作 1、设备部

1)外观检查:蓄电池槽、盖、安全阀、极柱封口剂等的材 料应具有阻燃性,用目测检查蓄电池外观,蓄电池的外观不应有裂纹、变形及污迹; 2)极性检测:用万用表检查蓄电池极性; 3)开路电压检查:蓄电池在环境温度5℃~35℃的条件 下完全充电后静置至少24h,测量蓄电池的开路电压应符开路电压最大最小电压差值不大于; 4)蓄电池连接压降:蓄电池间的连接条电压降应不大于 8mV; 5)内阻测试:制造厂提供的蓄电池内阻值应与实际测试的 蓄电池内阻值一致,允许偏差范围为±10%。 2、发电部 退出需放电试验的运行蓄电池组。 三、试验步骤 1、蓄电池核容试验: 1)以×10小时放电率电流对电池组充电,连续充电至少 72小时,直至3小时内充电电流基本稳定不变(电池组充满状态),静置1到2小时,电池组温度与周围温度基本一致后对电池组进行放电,放电电流为10小时放电率电流(120A),连续放电10小时(放电过程中调整负载,始终保持放电电流不变)或端电压达到终止电压或单个电池电压低于时,停止放电,记录连续放电时间,由此算出容量。

电容充放电计算公式

标 签:电容充放电公式 电容充电放电时间计算公式设,V0 为电容上的初始电压值; V1 为电容最终可充到或放到的电压值; Vt 为t时刻电容上的电压值。 则, Vt="V0"+(V1-V0)* [1-exp(-t/RC)] 或, t = RC*Ln[(V1-V0)/(V1-Vt)] 例如,电压为E的电池通过R向初值为0的电容C充电 V0=0,V1=E,故充到t时刻电容上的电压为: Vt="E"*[1-exp(-t/RC)]

再如,初始电压为E的电容C通过R放电 V0=E,V1=0,故放到t时刻电容上的电压为: Vt="E"*exp(-t/RC) 又如,初值为1/3Vcc的电容C通过R充电,充电终值为 Vcc,问充到2/3Vcc需要的时间是多少? V0=Vcc/3,V1=Vcc,Vt=2*Vcc/3,故 t="RC"*Ln[(1-1/3)/(1-2/3)]=RC*Ln2 = 注:以上exp()表示以e为底的指数函数;Ln()是e为底的对数函 解读电感和电容在交流电路中的作用 山东司友毓 一、电感 1.电感对交变电流的阻碍作用 交变电流通过电感线圈时,由于电流时刻都在变化,因此在线圈中就会产生自感电动势,而自感电动势总是阻碍原电流的变化,故电感线圈对交变电流会起阻碍作用,前面我们已经学习过,自感电动势的大小与线圈的自感系数及电流变化的快慢有关,自感系数越大,交变电流的频率越高,产生的自感电动势就越大,对交变电流的阻碍作用就越大,电感对交流的阻碍作用大小的物理量叫做感抗,用X L表示,且X L=2πfL。感抗的大小由线圈的自感系数L和交变电流的频率f共同决定。 2.电感线圈在电路中的作用 (1)通直流、阻交流,这是对两种不同类型的电流而言的,因为恒定电流的电流不变化,不能引起自感现象,所以对恒定电流没有阻碍作用,交流电的电流时刻改变,必有自感

铅蓄电池放电特性(精)

第八节铅蓄电池放电特性 一定放电电流,首先,物质的消耗,密度减少,电动势降低,引起输出端电压减少;另外,放电生成物增多,内电阻上升,引起内压降增多,也引致输出端电压进一步下降。 总之,放电过程中,除了内电阻是增大以外,其他的参数都将减少。 铅蓄电池的放电曲线不同放电电流时的放电曲线 图3-6铅蓄电池的放电曲线 (1)刚放电时, (消耗>补充) (电极上反应物之间接触面多,使反应过程充分进行,而且生成物不足阻碍反应进行,内阻压降基本不变。而进行反应的电极材料孔隙内、外的电解液密度差不多,硫酸分子扩散运动很慢,) 使之消耗量和扩散补充量不平衡,使进行反应的硫酸密度下降较快,故电动势和端电压都有较快的下降。 (2)随着反应深入到中期过程, (消耗=补充) 在反应的孔隙内、外的电解液密度的差值较大,促进补充硫酸的扩散运动速度加快,消耗的硫酸分子得以相应补充。密度减少变缓慢,电动势减少缓慢,内电阻变化也不明显,因此,端电压仍随电动势下降较慢。 (2)反应加深,进入放电后期时, (消耗>补充) 化学反应在孔隙内深处进行,硫酸扩散路径变长,生成物使硫酸扩散通道变窄,甚至被堵塞,处于硫酸消耗多于补充的不平衡状态,电动势下降较快,内阻及降不断增大,造成端电压下降加快,曲线变陡。 单体电池当放电电压达到D点时,就是放电的终止电压值。如果在低于终止放电电压值下继续放电的话,电池电压将迅速变为零。这种超量放电是不允许的,实践中,在终止放电电压值达到后的放电,蓄电池已经失去了保证向负载供电能力。一般D点电压值定为1.7伏,也就是额定负载下端电压下降到20伏,就应该给电池充电。 停止放电后,硫酸分子经一段时间扩散到电极孔隙内,会使该处电解液的密度回升,而且均匀分布,所以电动势值可回到1.99伏左右。 影响放电电压的放电条件: 第一,放电电流影响放电电压。 放电电流大小的改变,化学反应进行的程度不同。增大负载时,能量转换量大,化学反应要求更多、更快,硫酸消耗多,密度下降快,生成物多,内阻增大,影响扩散速度。因此,电动势和端电压下降就快了,达到终止放电的时间会缩短,所以放电电流越大,放电电压下降越快。可放电的时间越短。 (注意,放电电流较大状态下的放电终止电压值允许低一些。)

时间管理电池使用时间的计算办法

最新卓越管理方案您可自由编辑

ups电池使用时间的计算方法 市电停电后,UPS是依靠电池储能供电给负载的。标准型UPS本身机内自带电池,在停电后一般可以继续供电几分钟至几十分钟;而长效型UPS配有外置电池组,可以满足用户长时间停电时继续供电的需要,一般长效型UPS满载配置时间可达数小时以上。 一般长效型UPS备用时间主要受电池成成本、安装空间大小以及电池回充时间等因素的限制。一般在电力环境较差、停电较为频繁的地区采用UPS与发电机配合供电的方式。当停电时,UPS先由电池供电一段时间,如停电时间较长,可以起动备用发电机对UPS继续供电,当市电恢复时再切换到市电供电。 电池供电时意主要受负载大小、电池容量、环境温度、电池放电截止电压等因数影响。一般计算机UPS电池供电时间,可以先计算出电池放电电流,然后根据电池放电曲线查处放电时间。电池放电电流可以按以下经验公式计算: 放电电流=UPS容量(VA)×功率因数/(电池放电平均电压×效率)如果计算实际负载下的电池放电时间,只需将UPS容量换为实际负载容量即可 后备延时电池的配置方法

在UPS电源运行中,如果遇到市电供电中断时,蓄电池必须在用户所预期的一段时间内向逆变器提供足够的直流能源,以便在带额定负载的条件下,其电压不应下降到蓄电池组允许的最低临界放电电压以下。蓄电池的实际可供使用容量与下列等因素有关: ①蓄电池放电电流大小 ②蓄电池环境工作温度 ③蓄电池存储、使用的时间长短 ④负载特性(电阻性、电感性、电容性)及大小只有在考虑上述因素之后,才能正确选择和确定蓄电池的可供使用容量与蓄电池标称容量的比率。决定UPS后备长延时电池容量的重要因素是负荷大小、种类和特性。目前常用的微型机及其配件的负载特性如下表。常见的微机、服务器及其配件的负载特性

蓄电池充放电试验方法

蓄电池充放电 阀控式蓄电池俗称“免维护蓄电池”被广泛应用于备用电源系统中,“免维护”仅指无需加水、加酸、换液,而日常的检测和维护工作仍是不可缺少的。因蓄电池在运行中欠充、过充、过放、环境温度过高等都会使蓄电池的性能劣化,所以只有对其进行核对性放电才能客观、准确地测出蓄电池的真实容量, 才能保证直流电源系统运行的可靠性。 步骤/方法 1.放电前,应提前对电池组做均充,以使电池组达到满充电状态,一般以 2.35V/单体充电12小时,静置12-24h。 2.记录电池组浮充总电压、单体浮充电压、负载电流、环境温度以及整流器 (或开关电源)的其它设置参数,同时检查所有的螺钉是否处于拧紧状态。 3.结合基站/交换局的实际情况,断开电池组和开关电源之间的连接,确认 假负载处于空载状态后,把假负载正确连接到电池组正负极上,15分钟后记录电池的开路电压。 4.根据情况需要,确定电池组的放电倍率,一般以3小时率或10小时率放 电(3小时率放电电流为0.25C10,10小时率放电电流为0.10C10),在假负载上选择相匹配的负载档,对电池组进行放电。 5.在放电过程中,考虑到假负载上的电流表显示准确度不够,需用钳形电流 表对放电电流进行检测,根据钳形表的实际显示,对假负载进行调整,使电池组放电电流到要求的放电电流,等放电5分钟左右,开始记录电池组的总电压、单体电压、放电电流、环境温度以及连接条的温度等。

6.若是选择10小时率放电,应每1小时(3小时率放电,则每30分钟)测量 一次电池的放电总压、单体电压、放电电流等:在放电的后期应提高测量的频率,10小时率是在9小时后每30分钟测量一次;3小时率是在2小时后每15分钟测量一次。放电过程中,同时应重点监控环境温度、电池单体和连接条的温度,有没有出现异常情况,同时电池组中放电电压最低的单体电池。 7.对于新安装的电池组,放电结束条件是电池组放出容量达到额定容量要求 或电池组中有一个单体达到1.80V,而对于已经在线使用的电池组是以总压达到43.2V(48V电池系统)为放电结束。 8.对于放电过程中的情况,如在到放电终止时,电池组放出的容量经核算没 有达到所规定的额定容量,电池组的出厂容量可能存在问题,应及时联系相关厂家前来处理。 9.放电结束,先让假负载空载,接着再断开电池组与假负载的连接,把电池 与开关电源连接上,此时应注意已经放过电的电池组与整流器之间的压差较大,连接时可能会出打火现象,最好是先调低开关电源的浮充电压值,使开关电源的浮充电压值尽量接近电池组的开路电压,以减小火花。 10.若放电情况正常可观察和记录充电开始的情况,若放电情况不正常,应监 测电池组的充电情况,确保电池的正常充电。 注意事项:

电容的选取与充放电时间的计算

电容的选取与充放电时间的计算 电容的选取: 电容在电路中实际要承受的电压不能超过它的耐压值。在滤波电路中,电容的耐压值不要小于交流有效值的1.42倍。使用电解电容的时候,还要注意正负极不要接反。 不同电路应该选用不同种类的电容。揩振回路可以选用云母、高频陶瓷电容,隔直流可以选用纸介、涤纶、云母、电解、陶瓷等电容,滤波可以选用电解电容,旁路可以选用涤纶、纸介、陶瓷、电解等电容。 电容在装入电路前要检查它有没有短路、断路和漏电等现象,并且核对它的电容值。安装的时候,要使电容的类别、容量、耐压等符号容易看到,以便核实。 电容的原理: 在电子线路中,电容用来通过交流而阻隔直流,也用来存储和释放电荷以充当滤波器,平滑输出脉动信号。小容量的电容,通常在高频电路中使用,如收音机、发射机和振荡器中。大容量的电容往往是作滤波和存储电荷用。而且还有一个特点,一般1μF以上的电容均为电解电容,而1μF以下的电容多为瓷片电容,当然也有其他的,比如独石电容、涤纶电容、小容量的云母电容等。电解电容有个铝壳,里面充满了电解质,并引出两个电极,作为正(+)、负(-)

极,与其它电容器不同,它们在电路中的极性不能接错,而其他电容则没有极性。 把电容器的两个电极分别接在电源的正、负极上,过一会儿即使把电源断开,两个引脚间仍然会有残留电压(学了以后的教程,可以用万用表观察),我们说电容器储存了电荷。电容器极板间建立起电压,积蓄起电能,这个过程称为电容器的充电。充好电的电容器两端有一定的电压。电容器储存的电荷向电路释放的过程,称为电容器的放电。 举一个现实生活中的例子,我们看到市售的整流电源在拔下插头后,上面的发光二极管还会继续亮一会儿,然后逐渐熄灭,就是因为里面的电容事先存储了电能,然后释放。当然这个电容原本是用作滤波的。至于电容滤波,不知你有没有用整流电源听随身听的经历,一般低质的电源由于厂家出于节约成本考虑使用了较小容量的滤波电容,造成耳机中有嗡嗡声。这时可以在电源两端并接上一个较大容量的电解电容(1000μF,注意正极接正极),一般可以改善效果。发烧友制作HiFi音响,都要用至少1万微法以上的电容器来滤波,滤波电容越大,输出的电压波形越接近直流,而且大电容的储能作用,使得突发的大信号到来时,电路有足够的能量转换为强劲有力的音频输出。这时,大电容的作用有点像水库,使得原来汹涌的水流平滑地输出,并可以保证下游大量用水时的供应。

蓄电池充电曲线的研究

引言 铅酸蓄电池由于其制造成本低,容量大,价格低廉而得到了广泛的使用。但是,若使用不当,其寿命将大大缩短。影响铅酸蓄电池寿命的因素很多,而采用正确的充电方式,能有效延长蓄电池的使用寿命。 研究发现:电池充电过程对电池寿命影响最大,放电过程的影响较少。也就是说,绝大多数的蓄电池不是用坏的,而是“充坏”的。由此可见,一个好的充电器对蓄电池的使用寿命具有举足轻重的作用。 1蓄电池充电理论基础 上世纪60年代中期,美国科学家马斯对开口蓄电池的充电过程作了大量的试验研究,并提出了以最低出气率为前提的,蓄电池可接受的充电曲线,如图1所示。实验表明,如果充电电流按这条曲线变化,就可以大大缩短充电时间,并且对电池的容量和寿命也没有影响。原则上把这条曲线称为最佳充电曲线,从而奠定了快速充电方法的研究方向[1,2]。 图1最佳充电曲线 由图1可以看出:初始充电电流很大,但是衰减很快。主要原因是充电过程中产生了极化现象。在密封式蓄电池充电过程中,内部产生氧气和氢气,当氧气不能被及时吸收时,便堆积在正极板(正极板产生氧气),使电池内部压力加大,电池温度上升,同时缩小了正极板的面积,表现为内阻上升,出现所谓的极化现象。 蓄电池是可逆的。其放电及充电的化学反应式如下:

很显然,充电过程和放电过程互为逆反应。可逆过程就是热力学的平衡过程,为保障电池能够始终维持在平衡状态之下充电,必须尽量使通过电池的电流小一些。理想条件是外加电压等于电池本身的电动势。但是,实践表明,蓄电池充电时,外加电压必须增大到一定数值才行,而这个数值又因为电极材料,溶液浓度等各种因素的差别而在不同程度上超过了蓄电池的平衡电动势值。在化学反应中,这种电动势超过热力学平衡值的现象,就是极化现象。 一般来说,产生极化现象有3个方面的原因。 1)欧姆极化充电过程中,正负离子向两极迁移。在离子迁移过程中不可避免地受到一定的阻力,称为欧姆内阻。为了克服这个内阻,外加电压就必须额外施加一定的电压,以克服阻力推动离子迁移。该电压以热的方式转化给环境,出现所谓的欧姆极化。随着充电电流急剧加大,欧姆极化将造成蓄电池在充电过程中的高温。 2)浓度极化电流流过蓄电池时,为维持正常的反应,最理想的情况是电极表面的反应物能及时得到补充,生成物能及时离去。实际上,生成物和反应物的扩散速度远远比不上化学反应速度,从而造成极板附近电解质溶液浓度发生变化。也就是说,从电极表面到中部溶液,电解液浓度分布不均匀。这种现象称为浓度极化。 3)电化学极化这种极化是由于电极上进行的电化学反应的速度,落后于电极上电子运动的速度造成的。例如:电池的负极放电前,电极表面带有负电荷,其附近溶液带有正电荷,两者处于平衡状态。放电时,立即有电子释放给外电路。电极表面负电荷减少,而金属溶解的氧化反应进行缓慢Me-e→Me+,不能及时补充电极表面电子的减少,电极表面带电状态发生变化。这种表面负电荷减少的状态促进金属中电子离开电极,金属离子Me+转入溶液,加速Me-e→Me+反应进行。总有一个时刻,达到新的动态平衡。但与放电前相比,电极表面所带负电荷数目减少了,与此对应的电极电势变正。也就是电化学极化电压变高,从而严重阻碍了正常的充电电流。同理,电池正极放电时,电极表面所带正电荷数目减少,电极电势变负。 这3种极化现象都是随着充电电流的增大而严重。 2充电方法的研究 常规充电法

RC电路充放电时间计算

RC电路充放电时间计算 V0 为电容上的初始电压值; V1 为电容最终可充到或放到的电压值; Vt 为t时刻电容上的电压值。 则, Vt="V0"+(V1-V0)* [1-exp(-t/RC)] 或, t = RC*Ln[(V1-V0)/(V1-Vt)] 求充电到90%VCC的时间。(V0=0,V1=VCC,Vt=0.9VCC) 代入上式: 0.9VCC=0+VCC*[[1-exp(-t/RC)] 既 [[1-exp(-t/RC)]=0.9; exp(-t/RC)=0.1 - t/RC=ln(0.1) t/RC=ln(10) ln10约等于2.3 也就是t=2.3RC。 带入R=10k C=10uf得。 t=2.3*10k*10uf=230ms RC回路充放电时间的推导过程需要用高等数学,简单的方法只要记住RC回路的时间常数τ=R×C,在充电时,每过一个τ的时间,电容器上电压就上升(1-1/e)约等于0.632倍的电源电压与电容器电压之差;放电时相反。 如C=10μF,R=10k,则τ=10e-6×10e3=0.1s 在初始状态Uc=0时,接通电源,则过0.1s(1τ)时,电容器上电压Uc为0+(1-0)×0.632=0.632倍电源电压U,到0.2s(2τ)时,Uc为0.632+(1-0.632)×0.632=0.865倍U……以此类推,直到t=∞时,Uc=U。放电时同样运用,只是初始状态不同,初始状态Uc=U。

单片机复位(上电复位和按键复位,复位脉宽10ms,R常取值10k~47k,c 取值10~100uf,电容大些为好): 原理:如果复位是高电平复位,加电后电容充电电流逐渐减少,此时经电阻接地的单片机IO是没电压的,因为电容是隔直流的,直到充电完毕开始放电,放电的过程同样是电流逐渐减少的,开始放电时电流很大,加到电阻上后提供给IO高电平,一段时间(电容器的充放电参数:建立时间等)后,电流变弱到0,但是复位引脚已经有了超过3us的高电平,所以复位就完成了; 手动复位,如加按键,则是直接将电容短路,给复位引脚送高电平,此部分就只有电容在起作用;当然电源较大(一般3.3v-5v)的话,加电阻是为了分压,防止烧坏引脚。

蓄电池充放电状态

蓄电池特点 (1)使用寿命长 高强度紧装配工艺,提高电池装配紧度,防止活物质脱落,提高电池使用寿命。 低酸比重电液,提高电池充电接受能力,增强电池深放电循环能力。 增多酸量设计,确保电池不会因电解液枯竭缩短电池使用寿命。 因此GFM系列蓄电池的正常浮充设计寿命可达15年以上(25℃) (2)高倍率放电性能优良 高强度紧装配工艺,电池内阻极小,大电流放电特性优良,比一般电池提高20[%]以上。 (3)自放电低 高纯度原料和特殊造工艺,自放电很小,室温储存半年以上也可无需补电。 (4)维护简单 特殊氧气吸收循环设计,克服了电池在充电过程中电解失水的现象,在使用过程中电解液水份含量几乎没有变化,因此电池在使用过程中完全无需补水,维护简单。 (5)安全性高 电池内部装有特制安全阀,能有效隔离外部火花,不会引起电池内部发生爆炸。 (6)安装简捷 电池立式、侧卧、叠层安装均可,安装时占地面积小,灵活方便。 (7)洁净环保 电池使用时不会产生酸雾,对周围环境和配套设计无腐蚀,可直接将电池安装在办公室或配套设备房内,无需作防腐处理。 蓄电池的充放电特性 蓄电池具有自放电效应。从生产制造车间到用户使用,大约要延误数月的时间。以PA-NASONIC蓄电池为例,在30℃的环境温度下贮藏8个月,蓄

电池的残存容量仅为出厂时的一半,因此对于新购买的与配套的蓄电池,一般要进行一次较长时间的充电,这叫做初充电。蓄电池的初充电电流大小应按0.1C来充电,蓄电池在放电终了后可进行再充电,这叫正常充电。目前在UPS中普遍采用两种充电方式:浮充和脉充。所谓浮充电是指整流器的输出与蓄电池并联工作,并同时向负载供电,实际上此时整流器提供的电流分两路,一路送给负载,另一路送给蓄电池,以补充蓄电池自身内部损耗,浮充充电工作方式接线简单,对改善UPS输出瞬态响应特性有好处。脉冲充电的特点是充电电流随蓄电池容量而变化,用这种方式充电,可以缩短充电时间。 1.充电电压 由于UPS蓄电池属于备用工作方式,市电正常情况下处于充电状态,只有停电时才会放电。为延长蓄电池的使用寿命,UPS的充电器一般采用恒压限流的方式控制,蓄电池充满后即转为浮充状态。 对于端电压为12V的蓄电池,正常的浮充电压在13.5~13.8V之间。 浮充电压过低,蓄电池充不满,浮充电压过高,会造成过电压充电。当浮充电压超过14V时,即认为是过电压充电。严禁对蓄电池组过电压充电,因为过电压充电会造成蓄电池中的电解液所含的水被电解成氢和氧而逸出,使电解液浓度增大,导致蓄电池寿命缩短,甚至损坏。 2.充电电流 蓄电池充电电流一般以C来表示,C的实际值与蓄电池容量有关。举例来讲,如果是100Ah的蓄电池:C为100A。松下铅酸免维护蓄电池的最佳充电电流为0.1C左右,充电电流决不能大于0.3C。充电电流过大或过小都会影响蓄电池的使用寿命。 理想的充电电流应采用分阶段定流充电方式,即在充电初期采用较大的电流,充电一定时间后,改为较小的电流,至充电末期改用更小的电流。充电电流的设计一般为0.1C,当充电电流超过0.3C时可认为是过电流充电。避免用快速充电器充电,否则会使蓄电池处于“瞬时过电流充电”和“瞬时过电压充电”状态,造成蓄电池可供使用电量下降甚至损坏蓄电池。过电流充电会导致蓄电池极板弯曲,活性物质脱落,造成蓄电池供电容量下降,严重时会损坏蓄电池。 3.充电方式 铅酸蓄电池放电产物是硫酸铅,若不及时转化掉,会使蓄电池处于充电不足状态,从而降低蓄电池放电容量和缩短蓄电池使用寿命。因此,必须使蓄电池组处于充足电状态。对不同情况,可分浮充和均充。 (1)浮充充电。在线式蓄电池组是长期并联在充电器和负载线路上,作为 后备电源的工作方式。一般情况下,都采用浮充充电,单体蓄电池电压控

UPS后备时间电池计算公式

U P S后备时间电池计算 公式 集团标准化小组:[VVOPPT-JOPP28-JPPTL98-LOPPNN]

U P S电池放电时间计算方法(逆变效率按90%、12V电池放电终止电压10.5V) 1、计算蓄电池的最大放电电流值: I最大=Pcosф/(η*E临界) 注:P→UPS电源的标称输出功率 cosф→UPS电源的输出功率因数(UPS一般为0.8) η→UPS逆变器的效率,一般为0.88~0.94(实际计算中可以取0.9) E临界→蓄电池组的临界放电电压(12V电池约为10.5V,2V电池约为1.7V) 2、根据所选的蓄电池组的后备时间,查出所需的电池组的放电速率值C,然后根据: 电池组的标称容量=I最大/C 3、由于使用E临界——电池的最低临界放电电压值,所以会导致所要求的电池组的安时容量偏大的局面。按目前的使用经验,实际电池组的安时容量可按下面公式计算: 例如1.10KVAUPS延时60分钟 电池的最大放电电流26.4A=标称功率10000×0.8÷(0.9效率*32节*10.5V每节电池放电电压) 电池组的标称容量=26.4A÷0.61C=43.3AH 10KVA延时60分钟,电池配置为32节1组12V44AH。选配时32节12V1组容量≥44AH 例如1.20KVA延时180分钟 电池的最大放电电流52.9A=标称功率20000×0.8÷(0.9效率*32节*10.5V每节电池放电电压) 电池组的标称容量=52.9A÷0.28C=188.5AH 20KVA延时180分钟,电池配置为32节1组12V190AH。选配时32节12V1组容量≥190AH

蓄电池充放电实验记录.docx

` 吉沙电厂通讯电源直流蓄电池组容量校核充放电报告 时间: 2015/4/3 负责人:诺 参加人:付友国、周晓 放电前:(停充状态,供厂用负载电流4A)全组电压 50V 放电开始后:(放电总电流23A)全组电压V(盘上指针表读电流,并一只数字表读电压) 放电过程记录附后页 放电曲线充电曲线 单缸电压电压 1.83V 8.4h9h 时问时间 均充充入电量约 185Ah 后,充电装置过压保护动作,充电电流被限制,后改用大浮充再充,充入电量约 8×4=32(Ah)总充入容量:约 217Ah 后转为正常浮充。

` 蓄电池容量核定放电记录(2009/4/4 8:00) 缸电压 v缸电压缸电压全压放电电流记录时间 号号v号v v A 1 2.0339 2.0477 2.03214232009/4/3 8:40 2 2.0340 2.0378 2.03 3 2.0441 2.0379 2.04 4 2.0342 2.0380 2.03 5 2.0343 2.0481 2.03 6 2.0444 2.0482 2.03 7 2.0445 2.0483 2.03 8 2.0446 2.0484 2.04 9 2.0447 2.0585 2.04 10 2.0348 2.0486 2.04 11 2.0349 2.0487 2.04 12 2.0450 2.0588 2.04 13 2.0351 2.0489 2.04 14 2.0452 2.0490 2.04 15 2.0453 2.0391 2.03 16 2.0354 2.0492 2.04 17 2.0355 2.0493 2.03 18 2.0456 2.0394 2.04

电动叉车铅酸蓄电池充电控制策略

电动叉车铅酸蓄电池充电控制策略 摘要:环境的污染和能源的减少使得电动叉车的发展越来越迅速,而电动叉车 的动力源是电池,应用于电动叉车[1]的电池主要以铅酸蓄电池为主,由于铅酸蓄 电池的化学特性受各个因素的影响,因此对其所使用的充电电源会有更严格的要求。充电电源主要分为两部分:电路的硬件部分和充电控制策略[2]的软件部分。 硬件部分已经很成熟,而充电控制策略会直接影响蓄电池的使用寿命。本文主要 针对充电控制策略来研究的。 关键词:电动叉车蓄电池控制策略 一、铅酸蓄电池充放电的工作原理 1.1电池的内部构造 铅酸蓄电池是一般由几个基本部分构成:正极板、负极板、隔板、电解液、 电池槽盖、极柱。它是一种能量转化系统,主要在内部发生化学变化。 铅酸蓄电池的正极和负极由正负合金板栅、正负活性物质、正极管套及添加 剂等材料组成。正极活性物质是由PbO?组成,负极活性物质是由金属Pb组成; 电解液是密度为1.280~1.295g/H?SO?水溶液(20℃);电池槽盖具有良好的耐酸性、耐温性和绝缘性,并具有良好的机械强度;极柱的作用是充放电时将电流导 入或导出电池。 1.2放电过程 蓄电池放电时是将化学能转化为电能,正极上PbO2生成 PbSO4 ,负极上Pb 生成 PbSO4。电解液中H2SO4浓度减少,电解液中H2O增加。其转变公式为: PbO2 +2H?SO?+Pb PbSO?+2H2O+PbSO? 1.3 充电过程 蓄电池充电时是将电能转化为化学能。正极上PbSO4生成PbO2,负极上PbSO4生成Pb。电解液中H2SO4浓度增加,电解液中H2O减少。其转变公式为: 2PbSO4+2H2O PbO2+Pb+2H2SO4 到了充电末期,为了使活性物质更好的反应,就要引起水的电解,正极放出 O2,负极放出H2,其公式为: 2H20 2H2 + O2 二、影响蓄电池的失效形式及原因 衡量蓄电池寿命的标准是以蓄电池充放电次数来衡量的,当蓄电池放电量达 到标称容量的80%以下时称之为寿命终止,充放电次数越多,表示电池的性能越好。不正确的充放电都会引起蓄电池的失效。失效形式主要是活性物质脱落和蓄 电池硫化。 2.1活性物质脱落 蓄电池正极板上的活性物质PbO2是金属氧化物,不具有韧性且是粉末状的,无法形成极板,只能借助栅板(网格状)使小颗粒吸附在网格上,从而形成正极板。如果活性物质受到外界因素的影响,则会损坏正极板,从而影响了蓄电池的 使用寿命。蓄电池活性物质脱落主要有以下原因: ①充电电流过大②过放电③过充电④补水不及时 2.2蓄电池硫化 对蓄电池不能及时充电、充电充不足、补水不及时以及长时间搁置不充电等 原因,使蓄电池极板的表面上会附着过量的PbSO?, PbSO?是难溶电解质阻碍了 电池内部的化学反应,长时间的累积使得正负极板上的部分硫酸铅在充电过程中

电池放电时间计算

电池放电时间计算 Document number:WTWYT-WYWY-BTGTT-YTTYU-2018GT

新电池估算方法: 估计算法:电池容量×÷负载电流 详细算法: 第一,先求出电池10小时率的放电电流,即容量除以10,一组500AH的电池,10小时率放电电流为50A,二组500AH的,10小时率放电电流为100A。 第二,用实际放电电流除以10小时率放电电流,求出一个比率,根据这个比率,查《电池放电率与放电容量》表中的放电倍率,从这个放电倍率数中选择一个最为相近的值,对应看到放电率,和有效放电容量倍率这一栏,记录好表中数据。 第三,查看当时的放电环境温度。 第四,计算放电时长:t=额定容量×放电容量倍率×〔1+温度系数×(环境温度-25)〕/放电电流 一般温度系数基站里选用,机房里选用 注意事项: 1、实际放电中,电流是逐渐增大的,并不恒定,因此放电时长肯定要与计算出来的有差别,电流越大,同容量的情况下,放电时间就越短。 2、长期使用后,电池容量肯定要下降的,应该用实际容量进行计算,在初期,可以用额定容量进行计算。 3、如果电池前后两次放电间,由于种种原因没充满电,算出来的时间肯定也不一样,而且充电容量不能以小时×电流直接进行计算,存在一个充电效率问题,充电时,电池会把一部分容量转换为热能散失掉。

4、一般48v用电,电池都是以24节串联一组使用,根据规定,当其中最低一节电压率先达到,也就是只要有一只电池达到,放电终止,计算此时的容量。但实际应用当中,不是以此来停止电池放电的,而是整组电压降到多少V就终止放电,所以放电放到这个项目的时候,往往会有更大的误差。而且电池测试的一个项目是单体电压的最大最小差值,说明一组电池的单体电压是不均衡的。如果均衡的,那么以×24=,即可以放到算做结束,但实际当中这种事情至少我是没碰到过,如果相差幅度较大,可能总电压在48v时,有一节达到,但由于终止放电判定条件以整组电压计量的,我设定在47v,那还继续放电,这个求出的容量于真正意义上的容量就不等了,所以反过来求放电时长,也就不准了。 5、综合上述所说,只能求一个大概值,除非在条件达到一定要求的情况下,才有可能算得很准。当然,具体相差多少,本人也没做过实验,但至少可以有这样一个概念:到底能放5小时左右还是10小时左右,这个左右可能是几十分钟,也可能是1或2个小时,但从大的方向来判断,还是可以依靠的。 电池常用术语解释一:放电倍率 电池放电电流的大小常用"放电倍率"表示,即电池的放电倍率用放电时间表示或者说以一定的放电电流放完额定容量所需的小时数来表示,由此可见,放电倍率表示的放电时间越短,即放电倍率越高,则放电电流越大。(放电倍率=额定容量/放电电流) 根据放电倍率的大小,可分为低倍率(<0.5C)、中倍率(-3.5C)、高倍率(- 7.0C)、超高倍率(>7.0C) 如:某电池的额定容量为20Ah,若用4A电流放电,则放完20Ah的额定容量需用5h,也就是说以5倍率放电,用符号C/5或0.2C表示,为低倍率。

蓄电池定期充放电试验记录表

蓄电池定期充放电记录表 试验内容蓄电池核对性充放电试验 工作标准充放电时长分别为10小时,每小时测量一次单体电压并记录。 试验周期每年5月10-15日 注意事项 每组蓄电池充放电试验前所带负荷必须倒至另外一组蓄电池组运行;充放电参数已设定 好,不需再更改参数。 开始时间结束时间试验结果试验人工作票号值长备注 年月日 时分年月日 时分 年月日 时分年月日 时分 年月日 时分年月日 时分

和安风电场蓄电池放电试验记录表电池型号HZB2-200 额定容量A·h 200 额定电压V 2 电池特性阀控铅酸介质状态硫酸电瓶个数104 放电电流A 放电电压V 室温℃ 测量时间:年月日时分 班组:测量人: 瓶号电压V 瓶号电压V 瓶号电压V 瓶号电压V 1 27 53 79 2 28 54 80 3 29 55 81 4 30 56 82 5 31 57 83 6 32 58 84 7 33 59 85 8 34 60 86 9 35 61 87 10 36 62 88 11 37 63 89 12 38 64 90 13 39 65 91 14 40 66 92 15 41 67 93 16 42 68 94 17 43 69 95 18 44 70 96 19 45 71 97 20 46 72 98 21 47 73 99 22 48 74 100 23 49 75 101 24 50 76 102 25 51 77 103 26 52 78 104

和安风电场蓄电池充电试验记录表电池型号HZB2-200 额定容量A·h 200 额定电压V 2 电池特性阀控铅酸介质状态硫酸电瓶个数104 充电电流A 充电电压V 室温℃ 测量时间:年月日时分 班组:测量人: 瓶号电压V 瓶号电压V 瓶号电压V 瓶号电压V 1 27 53 79 2 28 54 80 3 29 55 81 4 30 56 82 5 31 57 83 6 32 58 84 7 33 59 85 8 34 60 86 9 35 61 87 10 36 62 88 11 37 63 89 12 38 64 90 13 39 65 91 14 40 66 92 15 41 67 93 16 42 68 94 17 43 69 95 18 44 70 96 19 45 71 97 20 46 72 98 21 47 73 99 22 48 74 100 23 49 75 101 24 50 76 102 25 51 77 103 26 52 78 104

电容的选取与充放电时间的计算完整版

电容的选取与充放电时 间的计算 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】

电容的选取与充放电时间的计算 电容的选取: 电容在电路中实际要承受的电压不能超过它的耐压值。在滤波电路中,电容的耐压值不要小于交流有效值的倍。使用电解电容的时候,还要注意正负极不要接反。 不同电路应该选用不同种类的电容。揩振回路可以选用云母、高频陶瓷电容,隔直流可以选用纸介、涤纶、云母、电解、陶瓷等电容,滤波可以选用电解电容,旁路可以选用涤纶、纸介、陶瓷、电解等电容。电容在装入电路前要检查它有没有短路、断路和漏电等现象,并且核对它的电容值。安装的时候,要使电容的类别、容量、耐压等符号容易看到,以便核实。 电容的原理: 在电子线路中,电容用来通过交流而阻隔直流,也用来存储和释放电荷以充当滤波器,平滑输出脉动信号。小容量的电容,通常在高频电路中使用,如收音机、发射机和振荡器中。大容量的电容往往是作滤波和存储电荷用。而且还有一个特点,一般1μF以上的电容均为电解电容,而1μF以下的电容多为瓷片电容,当然也有其他的,比如独石电容、涤纶电容、小容量的云母电容等。电解电容有个铝壳,里面充满了电解质,并引出两个电极,作为正(+)、负

(-)极,与其它电容器不同,它们在电路中的极性不能接错,而其他电容则没有极性。 把电容器的两个电极分别接在电源的正、负极上,过一会儿即使把电源断开,两个引脚间仍然会有残留电压(学了以后的教程,可以用万用表观察),我们说电容器储存了电荷。电容器极板间建立起电压,积蓄起电能,这个过程称为电容器的充电。充好电的电容器两端有一定的电压。电容器储存的电荷向电路释放的过程,称为电容器的放电。 举一个现实生活中的例子,我们看到市售的整流电源在拔下插头后,上面的发光二极管还会继续亮一会儿,然后逐渐熄灭,就是因为里面的电容事先存储了电能,然后释放。当然这个电容原本是用作滤波的。至于电容滤波,不知你有没有用整流电源听随身听的经历,一般低质的电源由于厂家出于节约成本考虑使用了较小容量的滤波电容,造成耳机中有嗡嗡声。这时可以在电源两端并接上一个较大容量的电解电容(1000μF,注意正极接正极),一般可以改善效果。发烧友制作HiFi音响,都要用至少1万微法以上的电容器来滤波,滤波电容越大,输出的电压波形越接近直流,而且大电容的储能作用,使得突发的大信号到来时,电路有足够的能量转换为强劲有力的音频输出。这时,大电容的作用有点像水库,使得原来汹涌的水流平滑地输出,并可以保证下游大量用水时的供应。

电动汽车充电站功率和时间分配控制策略.

第36卷第7期 2015年7月 电力 建设 V01.36.No。7Jul.,2015 ElectricPowerConstruction 电动汽车充电站功率和时间分配控制策略 梁锦华,原增泉,韩华春,许海平 (中国科学院电工研究所,北京市100190) 摘要:即插即充的无序充电会对电网稳定性造成巨大威胁,基于此,建立了充电站综合控制系统。针对充电规划时需考虑功率分配和电滟充电特性,提出了一种充电站功率和时间分配控制策略。该策略通过理论建模将充电控制过程转化为微小时间段的近似线性规划问题,经系统测试,可在满足用户基本充电要求的情况下,尽量减少对电网稳定性和电池寿命的影响。 关键词:电动汽车;充电设备;功率分配;时间分配 ControlStrategyofPowerandTimeAllocationfor ElectricVehicleChargingStation LIANGJinhua,YUANZengquan,HANHuachun,XUHaiping(Institute ofElectricalEngineeringChineseAcademyof a Sciences,Beijing100190,China) gIid,the comprehensivecontrol ABSTRACT:Becausedisorderlychargingposed hugethreattothestabilityofpower systemofchargingstationwasestablished.Forthereasonthatboththepowerdistributionandthebatterycharacteristicshouldbeconsideredduringchargingplanning,acontrolmethodofpowerandtimechargingstation,in

电容放电和充电时间计算

设:O V 为电容器两端的初始电压值 m a x V 为电容器两端充满时电压值 t V 为电容器两端任意时刻t 时的电压值 那么: ()??? ? ??-?-+=-RC t o o t e V V V V 1max 若,电压为E 的电池通过电阻R 向初值为0的电容C 充电,此时0=o V ,充电极限E V =max 故,任意时刻t ,电容上的电压为: ??? ? ??-?=????? ??-=-t RC t t V E E RC t e E V ln 1 若,已知某时刻电容上的电压t V ,根据常数可以计算出时间t 。 公式涵义: 完全充满时,t V 接近E ,时间t 无穷大; 当RC t =时,电容电压E 63.0=; 当RC t 2=时,电容电压E 86.0=; 当RC t 3=时,电容电压E 96.0=; 当RC t 4=时,电容电压E 98.0=; 当RC t 5=时,电容电压E 99.0=; 可见,经过RC 个5~3后,充电过程基本结束。 例:F C V V V t μ1.01M R 375V 325V V 0max O =Ω====,,,,,求t S t 20.0325 375375ln 101.010166=-????=

已知,初始电压为E 的电容C 通过电阻R 放电,0max O ==V E V ,; 那么,电容器放电时任意时刻t ,电容两端电压t V 为: t RC t t V E RC t e E V ln ?=??=- 例:F C V V t μ1.01M R 22V V 375O =Ω===,,,,求t S t 28.022375 ln 101.010166=????=

电容充放电计算公式

签:电容充放电公式 电容充电放电时间计算公式 设,V0 为电容上的初始电压值; V1 为电容最终可充到或放到的电压值; Vt 为t时刻电容上的电压值。 则, Vt="V0"+(V1-V0)* [1-exp(-t/RC)] 或, t = RC*Ln[(V1-V0)/(V1-Vt)] 例如,电压为E的电池通过R向初值为0的电容C充电 V0=0,V1=E,故充到t时刻电容上的电压为: Vt="E"*[1-exp(-t/RC)] 再如,初始电压为E的电容C通过R放电 V0=E,V1=0,故放到t时刻电容上的电压为: Vt="E"*exp(-t/RC) 又如,初值为1/3Vcc的电容C通过R充电,充电终值为 Vcc,问充到2/3Vcc需要的时间是多少? V0=Vcc/3,V1=Vcc,Vt=2*Vcc/3,故 t="RC"*Ln[(1-1/3)/(1-2/3)]=RC*Ln2 = 注:以上exp()表示以e为底的指数函数;Ln()是e为底的对数函

解读电感和电容在交流电路中的作用 山东司友毓 一、电感 1.电感对交变电流的阻碍作用 交变电流通过电感线圈时,由于电流时刻都在变化,因此在线圈中就会产生自感电动势,而自感电动势总是阻碍原电流的变化,故电感线圈对交变电流会起阻碍作用,前面我们已经学习过,自感电动势的大小与线圈的自感系数及电流变化的快慢有关,自感系数越大,交变电流的频率越高,产生的自感电动势就越大,对交变电流的阻碍作用就越大,电感对交流的阻碍作用大小的物理量叫做感抗,用X L表示,且X L=2πfL。感抗的大小由线圈的自感系数L 和交变电流的频率f共同决定。 2.电感线圈在电路中的作用 (1)通直流、阻交流,这是对两种不同类型的电流而言的,因为恒定电流的电流不变化,不能引起自感现象,所以对恒定电流没有阻碍作用,交流电的电流时刻改变,必有自感电动势产生以阻碍电流的变化,所以对交流有阻碍作用。 (2)通低频、阻高频,这是对不同频率的交变电流而言的,因为交变电流的频率越高,电流变化越快,感抗也就越大,对电流的阻碍越大。 (3)扼流圈:利用电感阻碍交变电流的作用制成的电感线圈。 低频扼流圈:线圈绕在铁芯上,匝数多,自感系数大,电阻较小,具有“通直流、阻交流”的作用。 高频扼流圈:匝数少,自感系数小;具有“通低频、阻高频”的作用。 二、电容 1.电容器为何能“通交流” 把交流电源接到电容器两个极板上后,当电源电压升高时,电源给电容器充电,电荷向电容器极板上聚集,在电路中形成充电电流;当电源电压降低时,电容器放电,原来极板上聚集的电荷又放出,在电路中形成放电电流,电容器交替进行充电和放电,电路中就有了电流,好像是交流“通过”了电容器,但实际上自由电荷并没有通过电容器两极板间的绝缘介质。 2. 电容器对交变电流的阻碍作用是怎样形成的 我们知道,恒定电流不能通过电容器,原因是电容器的两个极板被绝缘介质隔开了。当

相关主题
文本预览
相关文档 最新文档