当前位置:文档之家› 第4章 微生物细胞破碎 作业答案

第4章 微生物细胞破碎 作业答案

第4章 微生物细胞破碎 作业答案
第4章 微生物细胞破碎 作业答案

第4章微生物细胞破碎作业参考答案

一名词解释

细胞破碎技术:是指利用外力破坏细胞膜和细胞壁,使细胞内物质包括目的产物成分释放出来的技术。

化学渗透法:某些化学试剂,如表面活性剂、有机溶剂、金属螯合剂等可以改变细胞壁或细胞膜的通透性(渗透性),从而使胞内物质有选择地渗透出来,这种处理方式称为化学渗透法。

二填空题

1 (肽聚糖)是细菌细胞壁的主要化学成分;酵母细胞壁的主要成分是(葡聚糖);霉菌细胞壁主要由多糖组成,其中大多数的多糖壁是由(几丁质)和葡聚糖构成的。

2 细胞破碎的目的是释放出细胞内目的产物,方法很多。按其是否使用外加作用力可分为(机械法)和(非机械法)两大类。

3 机械法主要有(珠磨法)、(高压匀浆法)、(超声破碎法)和X-press法等。在机械破碎法中,由于消耗的机械能转为热量会使温度上升,在大多数情况下要采用(冷却)措施,以防止生物产品受热破坏。

4 非机械法有(酶溶法)、(化学渗透法)、物理法和干燥法等。

5 细胞破碎率测定方法主要有(直接测定法)、(目的产物测定法)和(导电测定法)三种。

三判断题

1 细胞壁破碎的主要阻力是连接细胞壁网状结构的共价键(√)。

2 革兰氏阳性菌比革兰氏阴性菌细胞壁要薄。(X )

四简答题

1 细菌、酵母、霉菌细胞壁的主要成分。

答:细胞破碎的主要阻力来自于细胞壁,不同类型的微生物其细胞壁的结构特性是不同的。1)细菌细胞壁主要化学成分:肽聚糖;主要阻力—肽聚糖的网状结构。

2)酵母菌细胞壁主要化学成分:葡聚糖(30%一34%)、甘露聚糖(30%)、蛋白质(6%一8%)和脂类;主要阻力—壁结构交联的紧密程度和它的厚度。

3)霉菌细胞壁主要化学成分:几丁质和葡聚糖;主要阻力—几丁质或纤维素的纤维状结构。

2 影响细胞壁破碎难易程度的主要因素。

答:微生物细胞壁的形状和强度取决于细胞壁的组成以及它们之间相互关联的程度。破碎细胞要克服的主要阻力是连接细胞壁网状结构的共价键。

在机械破碎中,细胞的大小和形状以及细胞壁的厚度和聚合物的交联程度是影响破碎程度的重要因素。细胞壁结构与细胞破碎关系:细胞个体小、球形、壁厚、聚合物交联程度高是最难破碎的。

在使用酶法和化学法溶解细胞时,细胞壁的组成显得特别重要,特别是细胞壁的结构。

五论述题

1 论述细胞壁破碎常用的五种方法。

答:细胞壁破碎常用的五种方法有珠磨法、高压匀浆法、超声波法、酶溶法和化学渗透法。1)珠磨法:利用进入珠磨机的细胞悬浮液与极细的研磨剂一起快速搅拌或研磨,研磨剂、

珠子与细胞之间的互相剪切、碰撞,使细胞破碎释放出内含物。

优点:珠磨机连续操作时兼具破碎和冷却双重功能,减少了产物失活的可能性,在适当条件下一次操作即可达到较高的破碎率,适合于各种微生物细胞的破碎。

缺点:操作参数多,一般凭经验估计,在大规模操作中,夹套冷却控温难度大。

2)高压匀浆法:利用高压使细胞悬浮液通过针形阀,由于突然减压和高速冲击撞击环使细胞破裂。

优点:操作参数少,适合于大规模操作,

缺点:不适合于丝状真菌及含有包涵体的基因工程菌。破碎率较低,往往需循环2-4次才能达到较高的破碎率,容易引起产物的失活的可能性,需配备换热器进行级间冷却。

3)超声破碎法:通常采用的超声破碎机在15—25kHz的频率下操作。

优点:操作简便,液量损失少,适合实验室规模。

缺点:易引起温度的剧烈上升,在大规模操作中,声能传递和散热困难,产生的化学自由基团能使某些敏感性活性物质失活。

4) 酶溶法:利用酶反应,分解破坏细胞壁上的特殊键,从而达到破壁的目的。

优点:选择性释放产物,条件温和,核酸泄漏量少,细胞外形完整。

不足:价格高,限制了大规模应用,通用性差,不同菌种需选择不同的酶,不易确定最佳的溶解条件;产物抑制的存在。

5)化学渗透法:某些化学试剂如有机溶剂、变性剂、表面活性剂、变性剂等通过改变细胞壁或膜的通透性(渗透性),从而使胞内物质有选择地渗透出来。化学渗透法取决于化学试剂的类型以及细胞壁的结构与组成。

优点:(1)对产物释放具有一定选择性。(2)细胞外形保持完整,碎片少,浆液粘度低,易于固液分离和进一步提取。

缺点:(1)通用性差,某种试剂只能作用于某些特定类型的细胞。(2)时间长,效率低,一般胞内物质释放率不超过50%。(3)有些化学试剂有毒性,在其后的产物提取精制过程中需设法分离除去。

2 在微生物细胞破碎技术中,机械法与非机械法有什么不同。

答:破碎方式分为机械法与非机械法。机械法包括以固体剪切力作用为机理的珠磨法与压榨法,以液体剪切力为作用机理的高压匀浆和超声波破碎法。非机械法包括干燥处理手段和以溶胞作用为机理的酶溶法、化学法、物理法。二者相比各有特点,同时也有自身局限性,以下是二者之间的不同。

(1)破碎机理:机械法应用高压或研磨剂,使细胞悬液在加速碰撞下迅速破碎,应用剪切作用,相对剧烈的切碎细胞,而非机械法运用化学试剂对细胞壁和膜的作用,改变通透性,以溶解局部壁膜的温和方式。

(2)碎片大小:机械法通过高压碰撞,剪切磨损已将细胞打成细小碎片,以至于匀浆中成分复杂,不易分离胞内物。非机械法只作用于细胞表面,所以在细胞大小方面,碎片较大,外形较完整,碎片少,易于初步分离。

(3)内含物释放:机械法可以将内含物全部释放,而非机械法部分释放,由微生物结构特性以及不同细胞对化学渗透剂的不同作用所致,破碎难易度不同,对试剂作用不同。(4)黏度:核酸释放的多少影响到黏度。机械法释放的核酸多,黏度高,非机械法基本不破坏细胞核,因此核酸释放少,浆液黏度低,便于进一步提取。

(5)时间效率:机械法作用时间短,效率高。而非机械法作用时间长,效率低,一般胞内物质释放率不超过百分之五十,而处理时间则长达2小时以上,所以往往需要添加还原剂保护,以防止活性损失太多,通常为提高收率而采用较高实际浓度,试剂用量大,成本高,也给后处理带来不便。

(6)设备:机械法需用专用设备如高压匀浆器,珠磨机。因此在工业生产上应用较广,而非机械法不需用专用设备,只须用化学试剂,控制好温度等条件既可。

(7)通用性:机械法通用性较强,除对仪器有堵塞作用如团状或丝状真菌以及较小的革兰阳性菌不适用高压匀浆器之外,一般大部分微生物细胞可采取机械法处理,而非机械法通用性差,某种试剂只能作用于某些特定类型的微生物细胞。

(8)经济方面:机械法只须用特定的仪器,控制条件方便容易变化不大,所以成本低。非机械法所用相应的化学试剂,培养时间长,成本高。

(9)应用范围:机械法适用于实验室,工业范围,非机械法适用于实验室范围。

机械法高效,廉价,简单,而得以工业化应用,但敏感性物质失活问题,碎片去除以及杂蛋白太多等问题仍要解决。

细胞破碎方法综述

细胞破碎方法综述 细胞破碎技术是指利用外力破坏细胞膜和细胞壁,使细胞内容物包括目的产物成分释放出来的技术,是分离纯化细胞内合成的非分泌型生化物质(产品)的基础。结合重组DNA 技术和组织培养技术上的重大进展,以前认为很难获得的蛋白质现在可以大规模生产。 关键词:细胞破碎;细胞壁;细胞膜;细胞破碎方法 1前言 目标产物的分离纯化在现代生物技术工业中占有十分重要的位置,它决定着产品的纯度和安全性,也决定着产品的收率与成本。许多生物产物在细胞培养过程中不能分泌到胞外,而保留在细胞内。破碎细胞的目的就是使细胞壁和细胞膜受到不同程度的破坏或破碎,释放其中的目标产物。 自20世纪80年代初重组DNA技术得到广泛应用以来,生物技术发生了质的飞跃,生物产品的数量越来越多,许多具有重大应用价值的产品应运而生,如具有显著医疗作用的胰岛素、干扰素、生长激素、白细胞介素一2等,它们的基因分别在宿主细胞(如大肠杆菌或酵母细胞)内克隆表达成为基因工程产物,从而提高了产量,降低了成本。很多基因工程产物都是胞内物质 (如上述药物经克隆表达后都属胞内物质),分离提取这类产物时,必须将细胞破壁,使产物得以释放,才能进一步提取。因此细胞破碎是提取胞内产物的关键性步骤,破碎技术的研究更加引起基因工程专家和生化工程学者的关注。 2细胞破碎技术 2.1高压匀浆破碎法(homogenization) 高压匀浆器是常用的设备,它由可产生高压的正向排代泵(positive displacenemt pump)和排出阀(discharge valve)组成,排出阀具有狭窄的小孔,其大小可以调节。细胞浆液通过止逆阀进入泵体内,在高压下迫使其在排出阀的小孔中高速冲出,并射向撞击环上,由于突然减压和高速冲击,使细胞受到高的液相剪切力而破碎。在操作方式上,可以采用单次通过匀浆器或多次循环通过等方式,也可连续操作。为了控制温度的升高,可在进口处用干冰调节温度,使出口温度调节在20℃左右。在工业规模的细胞破碎中,对于酵母等难破碎的及浓度高或处于生长静止期的细胞,常采用多次循环的操作方法。 2.2振荡珠击破碎法 (Skaking Bead) 将等体积的小量组织样品与高密度的ZircoBeads放入可密封的2ml螺旋盖微量管中,再加入缓冲液与稳定成份到1.5ml的体积, 用6500RPM振汤机高速上下振动8秒,休息8秒,再振动8秒即可.此方法是目前最快且一次可处理最多样品的方法. 一台机器最多可以在一天处理2400支样品.对小量且多样的人很方便. 2.3高速搅拌珠研磨破碎法(fine grinding) 研磨是常用的一种方法,它将细胞悬浮液与玻璃小珠、石英砂或氧化铝等研磨剂一起快速搅拌,使细胞获得破碎。在工业规模的破碎中,常采用高速珠磨机。 2.4超声波破碎法(ultrasonication)

细胞破碎技术—超声波破碎

细胞破碎技术——超声波破碎法 摘要: 细胞破碎技术的基本概念及其基本方法,重点介绍了从超声波破碎仪及超声波破碎常见的问题与解决方法上介绍了超声波破碎法。 关键词:细胞破碎方法超声波破碎仪常见问题 正文: 一、细胞破碎阻力 细菌——几乎所有细菌的细胞壁都是由肽聚糖(peptidoglycan)组成,它是难溶性的聚糖链(glycan chain),借助短肽交联而成的网状结构,包围在细胞周围,使细胞具有一定的形状和强度。短肽一般由四或五个胺基酸组成,如L-丙氨醯-D-谷氨醯-L-赖氨醯-D-丙氨酸。而且短肽中常有D-胺基酸与二氨基庚二酸存在。破碎细菌的主要阻力是来自于肽聚糖的网状结构,其网结构的致密程度和强度取决于聚糖链上所存在的肽键的数量和其交联的程度,如果交联程度大,则网结构就致密。 酵母菌——酵母细胞壁的最里层是由葡聚糖的细纤维组成,它构成了细胞壁的刚性骨架,使细胞具有一定的形状,覆盖在细纤维上面的是一层糖蛋白,最外层是甘露聚糖,由1,6一磷酸二酯键共价连接,形成网状结构。在该层的内部,有甘露聚糖-酶的复合物,它可以共价连接到网状结构上,也可以不连接。与细菌细胞壁一样,破碎酵母细胞壁的阻力主要决定于壁结构交联的紧密程度和它的厚度。 真菌——霉菌的细胞壁主要存在三种聚合物,葡聚糖(主要以β-1,3糖苷键连接,某些以β-1,6糖苷键连接),几丁质(以微纤维状态存在)以及糖蛋白。最外层是α-和β-葡聚糖的混合物,第2层是糖蛋白的网状结构,葡聚糖与糖蛋白结合起来,第3层主要是蛋白质,最内层主要是几丁质,几丁质的微纤维嵌入蛋白质结构中。与酵母和细菌的细胞壁一样,真菌细胞壁的强度和聚合物的网状结构有关,不仅如此,它还含有几丁质或纤维素的纤维状结构,所以强度有所提高。 植物细胞——对于已生长结束的植物细胞壁可分为初生壁和次生壁两部分。初生壁是细胞生长期形成的。次生壁是细胞停止生长后,在初生壁内部形成的结构。目前,较流行的初生细胞壁结构是由Lampert等人提出的“经纬”模型,依据这一模型,纤维素的微纤丝以平行于细胞壁平面的方向一层一层敷着在上面,同一层次上的微纤丝平行排列,而不同层次上则排列方向不同,互成一定角度,形成独立的网路,构成了细胞壁的“经”,模型中的“纬”是结构蛋白(富含羟脯氨酸的蛋白),它由细胞质分泌,垂直于细胞壁平面排列,并由异二酪氨酸交联成结构蛋白网,径向的微纤丝网和纬向的结构蛋白网之间又相互交联,构成更复杂的网路系统。半纤维素和果胶等胶体则填充在网路之中,从而使整个细胞壁既具有刚性又具有弹性。在次生壁中,纤维素和半纤维素含量比初生壁增加很多,纤维素的微纤丝排列得更紧密和有规则,而且存在木质素(酚类组分的聚合物)的沉积。因此次生壁的形成提高了细胞壁的坚硬性,使植物细胞具有很高的机械强度。 二、细胞破碎各类方法 目前已发展了多种细胞破碎方法,以便适应不同用途和不同类型的细胞壁破碎。破

细胞破碎方法

机械法 主要通过机械切力的作用使组织细胞破碎的方法,常用的器械有组织捣碎机、匀浆器、研钵和研磨、压榨器等。 1.组织捣碎机 将材料配成稀糊状液,放置于筒内约1/3体积,盖紧筒盖,将调速器先拨至最慢处,开动开关后,逐步加速至所需速度。一般用于动物组织、植物肉质种子、柔嫩的叶芽等,转速可高达10000rpm/M以上。 由于旋转刀片的机械切力很大,制备一些较大分子如核酸则很少使用。 2.匀浆器 先将剪碎的组织置于管中,再套入研杆来回研磨,上下移动,即可将细胞研碎。匀浆器的研钵磨球和玻璃管内壁之间间隙保持在十分之几毫米距离。制作匀浆器的材料,除玻璃外,还可以用硬质塑料、不锈钢、人造荧光树脂等。此法细胞破碎程度比高速组织捣碎机为高,适用于量少和动物脏器组织。 存在的问题;较易造成堵塞的团状或丝状真菌,较小的革兰氏阳性首以及有些亚细胞器,质地坚硬,易损伤匀浆阀,也不适合用该法处理。 3.研钵 多用于细菌或其他坚硬植物材料,研磨时常加入少量石英砂,玻璃粉或其他研磨剂,以提高研磨效果。 4.细菌磨 是一种改良了的研磨器,比研钵具有更大的研磨面积,而且低部有出口。操作时先把细菌和研磨粉调成糊状,每次加入一小勺,研磨20-30秒即可将细菌细胞完全磨碎。 物理法 主要通过各种物理因素使组织细胞破碎的方法。在生化制备中常用的方法有: 1.反复冻溶法 原理:因突然冷冻,细胞内冰晶的形成及胞内外溶剂浓度的突然改变而破坏细胞。 方法:将待破碎的细胞在-20度以下冰冻,室温融解,反复几次,由于细胞内冰粒形成和剩余细胞液 的盐浓度增高引起溶胀,使细胞结构破碎。 特点:此法适用于组织细胞,多用于动物性材料,对微生物细胞作用较差。 2.急热骤冷法 将材料投入沸水中,维持85-90分钟,至水浴中急速冷却,此法可用于细菌及病毒材料。 3.超声波处理 用一定功率的超声波处理细胞悬液,使细胞急剧震荡破裂,此法多适用于微生物材料,用大肠杆菌制备各种酶,常选用50-100毫克菌体/毫升浓度,频高于15~20KHz的超声波在高强度声能输入下可以进

细胞破碎技术

四、细胞破碎 某些蛋白质在细胞培养时被宿主细胞分泌到培养液中,提取过程只需直接采用过滤和离心进行固液分离,然后将获得的澄清滤液再进一步纯化即可,其后续分离和纯化都相对简单。但由于一些重组DNA(rDNA)产品结构复杂,必须在细胞内组装来获得生物活性,如果在培养时被宿主细胞分泌到培养液中,其生物活性往往有所改变,此类生物产品是细胞内产品(非分泌型),这些产品主要为医药和保健产品,对于这类产品的提取,需要先应用细胞破碎技术破碎细胞,使细胞内产物释放到液相中,然后再进行提纯,为后续的分离纯化做好准备工作。 细胞破碎技术是指利用外力破坏细胞壁和细胞膜,使细胞内容物包括目的产物成分释放出来的技术,是分离纯化细胞内合成的非分泌型生化物质(产品)的基础。随着重组DNA技术和组织培养技术上的重大进展,以前认为很难获得的蛋白质现在都可以大规模生产。 微生物细胞和植物细胞外层均为细胞壁,细胞壁里面是细胞膜,细胞膜和它所包围的细胞浆合称为原生质体。动物细胞没有细胞壁,仅有细胞膜。通常情况下,细胞壁较坚韧,细胞膜脆弱,易受渗透压冲击而破碎,因此细胞破碎的阻力主要来自于细胞壁。 基于遗传和环境等因素,不同类型生化物质其细胞壁的结构和组成不完全相同,故细胞壁的机械强度不同,细胞破碎的难易程度也就不同。此外,不同的生化物质其稳定性有较大差别,在破碎过程中应防止变性和被胞内的酶水解。因此,破碎方法的选择和操作条件的优化是十分必要的。 (一)机械破碎法 机械破碎法分为高压匀浆破碎法、高速搅拌珠研磨破碎法和超声波破碎法三种。 1.高压匀浆破碎法 Manton Gaulin高压匀浆器是高压匀浆破碎法常用的设备,它由可产生高压的泵和排出阀组成,排出阀具有狭窄的小孔,其大小可以调节。细胞浆液通过止逆阀进入泵体内,在高压下迫使其在排出阀的小孔中高速冲出,并射向撞击环上,由于突然减压和高速冲击,使细胞受到高的液相剪切力而破碎。在操作方式上,可以采用单次通过匀浆器或多次循环通过等方式,也可连续操作。为了控制温度的升高,可在进口处用干冰调节温度,使出口温度调节在20℃左右。在工业规模的细胞破碎中,对于酵母等难破碎的及浓度高或处于生长静止期的细胞,常采用多次循环的操作方法。 高压匀浆法适用于酵母和大多数细菌细胞的破碎,料液细胞浓度可达到20%左右。团状和丝状菌易造成高压匀浆器的堵塞,不宜使用高压匀浆法。使用高压匀浆法时应注意,高压匀浆器的操作温度上升约2~3℃/10MPa,为了保护目标产物的生物活性,需要对料液作冷却处理。多级破碎操作中,为有效防止温度上升,保护产物活性,需要在级间设置冷却装置。 影响高压匀浆器破碎的主要因素包括压力、温度和通过均浆器阀的次数。升高压力有利

细胞破碎技术与方法

细胞破碎技术与方法 细胞破碎技术是指利用外力破坏细胞膜和细胞壁,使细胞内容物包括目的产物成分释放出来的技术,是分离纯化细胞内合成的非分泌型生化物质(产品)的基础。结合重组DNA技术和组织培养技术上的重大进展,以前认为很难获得的蛋白质现在可以大规模生产。 由于细菌、酵母、真菌、植物都有细胞壁,但成分不同,且同类细胞结成的网状结构不同,因此其细胞壁的坚固程度不同,总体呈现递增态势。动物细胞虽没有细胞壁,但具有细胞膜,也需要一定的细胞破碎方法来破膜,达到提取产物的目的。 细胞破碎的方法主要分为化学法和机械法两大类。具体如下: 化学法 渗透冲击破碎法 ? 方法:渗透压冲击是较温和的一种破碎方法,将细胞放在高渗透压的溶液中(如一定浓度的甘油或蔗糖溶液),由于渗透压的作用,细胞内水分便向外渗出,细胞发生收缩,当达到平衡后,将介质快速稀释,或将细胞转入水或缓冲液中,由于渗透压的突然变化,胞外的水迅速渗入胞内,引起细胞快速膨胀而破裂。 反复冻融法 ? 方法:将细胞放在低温下冷冻(约-15℃),然后在室温中融化,反覆多次而达到破壁作用。由于冷冻,一方面能使细胞膜的疏水键结构破裂,从而增加细胞的亲水性能,另一方面胞内水结晶,形成冰晶粒,引起细胞膨胀而破裂。对于细胞壁较脆弱的菌体,可采用此法。 酶溶破碎发法

? 方法:利用各种水解酶,如溶菌酶、纤维素酶、蜗牛酶、半纤维素酶、脂酶等,将细胞壁分解,使细胞内含物释放出来。有些细菌对溶菌酶不敏感,加入少量巯基试剂或8摩尔尿素处理后,使之转为对溶菌酶敏感而溶解。 ? 特点: a) 此法适用多种微生物 b) 具有作用条件温和 c) 内含物成分不易受到破坏 d) 细胞壁损坏的程度可以控制 ? 存在的问题: a) 易造成产物抑制作用 b) 溶酶价格高 c) 酶溶法通用性差 化学试剂法 ? 方法:某些有机溶剂(如苯、甲苯)、抗生素、表面活性剂、金属螯合剂、变性剂等化学药品都可以改变细胞壁或膜的通透性从而使内含物有选择地渗透出来。SDS(十二烷基磺酸钠)是典型的阴离子表面活性剂 ? 特点:提取核酸时,常用此法破碎细胞。 ? 存在的问题: a) 时间长,效率低; b) 化学试剂毒性较强,同时对产物也有毒害作用 通用性差:某种试剂只能作用于某些特定类型的微生物细胞。 方法技术原理效果成本应用 化学法渗透冲击渗透压破坏细胞温和便宜 动物组织均质物或细胞 悬液 酶消化法 细胞壁被消化,使细 胞破碎 温和昂贵细菌或酵母

第四章 细胞的破碎与分离

第四章细胞的破碎与分离 教学基本要求: 1. 掌握细胞破碎的概念。 2. 熟悉和掌握细胞破碎的各种方法。 时间安排:3学时。 教学形式:本章以讲授为主,中间部分进行部分提问,采用PPT课件讲课。 教学内容: 由于有许多生化物质存在于细胞内部,必须在纯化以前将细胞破碎,使胞内物质释放到液相中,然后方可进行提取。细胞破碎是指选用物理、化学、酶或机械的方法来破坏细胞壁或细胞膜。 破碎率及其测定方法: 破碎率:被破碎细胞的数量占原始细胞数量的百分比。 测定方法:直接测定法和间接测定法。 细胞破碎方法分类 1) 机械破碎法(高速珠磨法、高压匀浆法、超声波法等) 2) 非机械破碎法(化学法、酶解法、渗透压法、冻融法、干燥法等) 机械破碎法: 一、固体剪切方法(珠磨): 1、定义—利用由高速转动的珠子所产生的剪切力而达到细胞破碎的过程 2、工作原理:固-固剪切力、液-固剪切力等。 3、影响因素: 转盘外缘速度:速度增加,破碎率增加,但功率-,温度- 珠粒添量和大小:要适度 温度:但研磨产热,功率-,温度-。如产物热不稳定,必须控温。 细胞浓度x:最佳x由实验确定。一般产热量随细胞浓度的降低而下降,但单位细胞重量的能耗-。 流量Q:破碎为一级反应。Q-, E-,Rˉ;Qˉ,Eˉ,R-。 二、高压匀浆法(液体剪切方法) 1、定义—利用高压细胞悬浮液因减压所产生的剪切力而达到细胞破碎的过程 2、工作原理:液-液剪切力、压力差等

3、影响因素: 通过匀浆机的次数 温度:高温使破碎率增加但高温使产物变性 压力:高压使破碎率增加但高压使能耗增加,且会使机器破损。 在大规模cell破碎中,高压匀浆机和珠磨机用得最多; 二者均具有适用对象广,工业化、实验室中应用,细胞完全破碎等优点。高压匀浆机最适合于酵母和细菌;珠磨机可用于酵母和细菌,但对真菌菌丝和藻类更合适。 三、超声波法 1、定义—利用超频率声波(15-25kHz)在液体介质中传播所产生的剪切力而达到细胞破碎的过程 2、工作原理:空穴现象,空穴的形成和闭合产生极大的冲击波和剪切力。 3、特点: 优点:适合于多种细胞的破碎 缺点:A、影响因素多,如振幅、黏度、表面张力、珠粒体积和直径、被处理悬浮液的体积和流速、探头材料和形状;B、超声产生超氧离子毒害作用;C、有效能量的利用率低; D、产热大,需控温; E、不易放大,仅应用于实验室规模的细胞破碎。 非机械破碎法 一、化学(脂溶)法: 1、定义——采用某些化学试剂改变细胞壁和膜的通透性,使内含物有选择性地释放出来的过程。 2、原理: 酸碱:改变溶液pH值,从而改变两性产物蛋白质等的电荷性质 有机溶剂:如甲苯,被细胞壁脂质层吸收后,导致细胞壁膨胀,细胞壁破裂。 表面活性剂: 二、酶解法 1、定义—利用酶促反应分解细胞壁上的化学键而达到细胞破碎的过程 2、原理 外源性酶解—溶菌酶、糖苷酶(β-1,4、β –1,6)、葡聚糖酶、甘露聚糖酶、蛋白水解酶、α-淀粉酶、纤维素酶、脂酶等。 内源性酶解(自溶)——温度、pH、时间、缓冲液浓度、激活剂等。

第三章 细胞破碎技术

第二章细胞破碎和分离提取技术 2.1细胞破碎技术 许多生物产物特别是蛋白质、基因重组产品、胞内产品如:青霉素酰化酶,碱性磷酸酶等胞内酶,干扰素、胰岛素、生长激素等基因工程产物以及部分植物细胞产物等都是胞内物质,这类生物产物需要分离纯化的第一步是收集细胞及细胞破碎,使目标产物释放出来,然后进行分离纯化。如图所示: 图胞内产品的分离纯化过程 2.1.1细胞破碎方法及机理 破碎细胞的目的是使细胞壁和细胞膜受到不同程度的破坏(增大渗透性)或破碎、释放其中的目标产物,主要采用的方法有机械法和非机械法两大类,图1列出了一些主要方法: 破碎方法 固体剪切作用液体剪切作用干燥处理溶胞作用 珠磨法压榨法高压匀浆超声破碎酶溶法化学法物理法 撞击法 图1 细胞破碎方法分类 机械破碎中细胞所受的机械作用力主要有压缩力和剪切力,化学破碎则利用化学或生化试剂或酶改变细胞壁或细胞膜的结构,增大胞内物质的溶解速率,或完全溶解细胞壁,形成原生质体后,在渗透压作用下,使细胞膜破裂而释放胞内物质,各作用力细胞破碎机理如图2 2.1.2机械方法破碎 机械破碎处理量大,破碎速度较快,时间短,效率较高,是工业规模细胞破碎的重要手段,细胞受到挤压,剪切和撞击作用,易被破碎在许多情况下,细胞内含物全部释放出来,由于机械搅拌产生热量,破碎要采用冷却措施,机械破碎主要的方法有珠磨法、高压匀浆法、

撞击破碎法和超声波等方法。 2.1.2.1 珠磨法(Bead milling ) 珠磨法是一种有效的常用的机械破碎方法,珠磨机是珠磨法所采用的设备,其结构示意图3,细胞悬浮液与玻璃珠(或石英砂,或氧化铝)一起高速搅拌,研磨使细胞达到某种程度破碎,在珠磨机中,细胞的破碎是由剪切力层之间的碰撞和磨料的滚动而引起的。 珠磨法破碎细胞可采用间歇式连续操作,研究表明,两种情况下,细胞破碎动力学可近似表示为: t k l S 11 n ?=- 其中, t 在间歇操作时,为破碎操作时间,连续操作时为细胞悬浮液在破碎室内的平均停留时间,即R V t =,其中V 为悬浮液体积m 3,Q 为悬浮液流量m 3/S ,S 为破碎率,k 为破碎 速率常数,与许多因素有关。 珠磨法破碎受许多操作参数的影响,总结在表1中: 同一进料速度,细胞浓度越高,则破碎率越高,所需能耗越低;同时我们也能发现,破碎率越高所需能耗越大(同一悬浮液中)即破碎的能耗与破碎率成正比,提高破碎率,需要增加装珠量,或延长破碎时间,或提高转速,这些措施不仅导致电能消耗增加,且产生较多热量,引起浆液温度升高增加制冷量,因而总能量消耗增加。 珠磨法操作简便稳定,破碎率可控制,易放大,在实验室和工业规模上已得到应用,适用于绝大多数微生物细胞破碎,特别是对于有大量菌丝体的微生物和一些有亚细胞器(质地坚硬)的微生物细胞。 2.1.2.2高压匀浆法(high-pressure homogenization ) 高压匀浆法是大规模破碎细胞的常用方法,高压匀浆器是该法所采用的设备,它由高压泵和匀浆阀组成,结构简图见图5,它是利用高压迫使悬浮液通过针形阀,由于突然简压和高速冲击撞击造成细胞破裂,在高压匀浆器中,细胞经历了高速造成的剪切、碰撞和由高压到常压的突变,从而造成细胞壁的破坏,细胞膜随之破裂,胞内产物得到释放,高速匀浆破碎的动力学方程为: ()b a 1n P N k l ??= 其中S 为破碎率,且max R R R =;k 为破碎速度常数,p 为动力,且上述参数s,k,a,b,p 等随微 生物种类和培养条件的不同而有所差异。 影响高压匀浆破碎的因素主要有压力、温度和通过匀浆器阀的次数,图6是操作压力和循环次数对破碎的影响。由图可知,操作压力对细胞破碎的影响要比匀浆次数的影响大得多。从提高破碎效率的角度应选择尽可能高的压力;而从降低能耗及延长设备寿命的角度应避免很高的压力,因此,工业生产中常采用的压力为55-70Mpa 。 高压匀浆法操作参数少,且易于确定;且样品损失量少,在间歇处理少量样品方面效果好,在实验室和工业生产中都已得到应用,适用于酵母和大多数细胞的破碎。对于易造成堵塞的团状或丝状真菌以及一些易损伤匀浆阀,质地坚硬的亚细胞器一般不适用。

细胞破碎技术的研究与进展

合肥学院Hefei University 生物分离工程课程综述 题目: 细胞破碎技术的研究与进展 系别: 专业: 学号: 姓名: 2013年4月1日

细胞破碎技术的研究与进展 摘要:本文主要概述细胞破碎方法中的高压匀浆法和珠磨法, 讨论了两种方法的特点及存在的问题, 并对它们进行了比较, 最后概括了细胞破碎技术的发展方向。 关键词:细胞破碎技术;高压匀浆法;珠磨法;发展方向 1引言: 自年代初重组技术得到广泛应用以来,生物技术发生了质的飞跃, 生物产品的数量越来越多,许多具有重大应用价值的产品应运而生,如具有显著医疗作用的胰岛素、干扰素、生长激素、白细胞介素一等, 它们的基因分别在宿主细胞如(大肠杆菌或酵母细胞)内克隆表达成为基因工程产物,从而提高了产量,降低了成本。很多基因工程产物都是胞内物质如上述药物经克隆表达后都属胞内物质,分离提取这类产物时,必须将细胞破壁,使产物得以释放,才能进一步提取。因此细胞破碎是提取胞内产物的关键性步骤,破碎技术的研究更加引起基因工程专家和生化工程学者的关注。 2 细胞破碎技术的概述: 细胞破碎技术是指利用外力破坏细胞膜和细胞壁,使细胞内容物包括目的产物成分释放出来的技术,是分离纯化细胞内合成的非分泌型生化物质(产品)的基础。结合重组DNA 技术和组织培养技术上的重大进展,以前认为很难获得的蛋白质现在可以大规模生产。目前已发展了多种细胞破碎方法,以便适应不同用途和不同类型的细胞壁破碎。破碎方法可规纳为机械法和非机械法两大类。细胞的机械破碎主要有高压匀浆法、珠磨法、撞击破碎法和超声波破碎法等方法,本文主要介绍高压匀浆法和珠磨法。 3 高压匀浆法: 高压匀浆法]1[是大规模破碎细胞的常用方法,高压匀浆器是该法所采用的设备,它由高 压泵和匀浆阀组成。它是利用高压迫使悬浮液通过针形阀,由于突然简压和高速冲击撞击造成细胞破裂,在高压匀浆器中,细胞经历了高速造成的剪切、碰撞和由高压到常压的突变,从而造成细胞壁的破坏,细胞膜随之破裂,胞内产物得到释放。 3.1破碎机理 同所有的机械破碎方式一样,高压匀浆法破碎细胞实质上是将细胞壁和膜撕裂,靠胞内的渗透压使其内含物全部释放出来。破碎的难易程度无疑由细胞壁的机械强度决定,而细胞壁的机械强度则由微生物的形态和生理状态决定。因此细胞的培养条件, 包括培养基限制型或

第4章 微生物细胞破碎 作业答案

第4章微生物细胞破碎作业参考答案 一名词解释 细胞破碎技术:是指利用外力破坏细胞膜和细胞壁,使细胞内物质包括目的产物成分释放出来的技术。 化学渗透法:某些化学试剂,如表面活性剂、有机溶剂、金属螯合剂等可以改变细胞壁或细胞膜的通透性(渗透性),从而使胞内物质有选择地渗透出来,这种处理方式称为化学渗透法。 二填空题 1 (肽聚糖)是细菌细胞壁的主要化学成分;酵母细胞壁的主要成分是(葡聚糖);霉菌细胞壁主要由多糖组成,其中大多数的多糖壁是由(几丁质)和葡聚糖构成的。 2 细胞破碎的目的是释放出细胞内目的产物,方法很多。按其是否使用外加作用力可分为(机械法)和(非机械法)两大类。 3 机械法主要有(珠磨法)、(高压匀浆法)、(超声破碎法)和X-press法等。在机械破碎法中,由于消耗的机械能转为热量会使温度上升,在大多数情况下要采用(冷却)措施,以防止生物产品受热破坏。 4 非机械法有(酶溶法)、(化学渗透法)、物理法和干燥法等。 5 细胞破碎率测定方法主要有(直接测定法)、(目的产物测定法)和(导电测定法)三种。 三判断题 1 细胞壁破碎的主要阻力是连接细胞壁网状结构的共价键(√)。 2 革兰氏阳性菌比革兰氏阴性菌细胞壁要薄。(X ) 四简答题 1 细菌、酵母、霉菌细胞壁的主要成分。 答:细胞破碎的主要阻力来自于细胞壁,不同类型的微生物其细胞壁的结构特性是不同的。1)细菌细胞壁主要化学成分:肽聚糖;主要阻力—肽聚糖的网状结构。 2)酵母菌细胞壁主要化学成分:葡聚糖(30%一34%)、甘露聚糖(30%)、蛋白质(6%一8%)和脂类;主要阻力—壁结构交联的紧密程度和它的厚度。 3)霉菌细胞壁主要化学成分:几丁质和葡聚糖;主要阻力—几丁质或纤维素的纤维状结构。 2 影响细胞壁破碎难易程度的主要因素。 答:微生物细胞壁的形状和强度取决于细胞壁的组成以及它们之间相互关联的程度。破碎细胞要克服的主要阻力是连接细胞壁网状结构的共价键。 在机械破碎中,细胞的大小和形状以及细胞壁的厚度和聚合物的交联程度是影响破碎程度的重要因素。细胞壁结构与细胞破碎关系:细胞个体小、球形、壁厚、聚合物交联程度高是最难破碎的。 在使用酶法和化学法溶解细胞时,细胞壁的组成显得特别重要,特别是细胞壁的结构。 五论述题 1 论述细胞壁破碎常用的五种方法。 答:细胞壁破碎常用的五种方法有珠磨法、高压匀浆法、超声波法、酶溶法和化学渗透法。1)珠磨法:利用进入珠磨机的细胞悬浮液与极细的研磨剂一起快速搅拌或研磨,研磨剂、

浅谈常用细胞破碎方法

浅谈常用细胞破碎方法 随着生物技术的逐渐发展,生物所产生的各种代谢产物也逐渐被人们发现其有用的一面,但是在获得目的产物过程中,往往因为不同产物所处的生物个体不同,造成了个体差异性,所以为了获得大量,不被破坏的产物,往往针对不同生物个体选用不同的细胞破碎技术来做预处理。现将几年来一直常用的细胞破碎技术介绍一下: 关键词:细胞破碎机械法酶法 (一)细胞破碎的定义 1.细胞破碎(cell rupture)技术:利用外力破坏细胞膜和细胞壁,使细胞内容物包括目的产物成分释放出来的技术。 2.破碎各种细胞的主要阻力: 2.1破碎细菌细胞的主要阻力:肽聚糖网状结构的致密程度和强度,取决于聚糖链上所存在的肽键的数量和其交联的程度; 2.2 破碎酵母细胞的阻力:葡聚糖交联的紧密程度和它的厚度; 2.3 破碎霉菌细胞的阻力:葡聚糖网状结构的交联度,几丁质或纤维素的纤维状结构。 (二) 细胞破碎的方法 1.机械法 1.1高压匀浆破碎法(homogenization) 高压匀浆器(High pressure homogenizer) 操作原理:在高压下迫使细胞浆液在排出阀的小孔中高速冲出,并射向撞击环上,使细胞受到高的液相剪切力而破碎。 操作方式:单次或多次循环 出口温度:20℃左右 压力:55-70Mpa 适用范围:酵母和大多数细菌细胞的破碎。 料液细胞浓度:20%左右。☆团状和丝状菌,不宜使用。 注意事项: (1)操作温度:↑2-3℃/10MPa (2)对料液作冷却处理。 (3)多组破碎操作中需要在级间设置冷却装置可有效防止温度上升,保护产物活性。(4)较易造成堵塞的团状或丝状真菌,较小的革兰氏阳性菌以及有些亚细胞器,质地坚硬,

细胞破碎方法简述

细胞破碎方法简述-CAL-FENGHAI.-(YICAI)-Company One1

细胞破碎方法简述 2010-04-26 09:27:19|?分类:电泳资料 |标签: |字号大中小订阅 本文引用自啸月天狼《细胞破碎方法简述》 更多相关资料请查看 分离膜是指能以特定形式限制和传递流体物质的分隔两相或两部分的界面。膜的形式可以是固态的,也可以是液态的。被膜分割的流体物质可以是液态的,也可以是气态的。膜至少具有两个界面,膜通过这两个界面与被分割的两侧流体接触并进行传递。分离膜对流体可以是完全透过性的,也可以是半透过性的,但不能是完全不透过性的。膜在生产和研究中的使用技术被称为膜技术。随着科学技术的迅猛发展和人类对物质利用广度的开拓,物质的分离已成为重要的研究课题。分离的类型包括同种物质按不同大小尺寸的分离;异种物质的分离;不同物质状态的分离等。 在化工单元操作中,常见的分离方法有筛分、过滤、蒸馏、蒸发、重结晶、萃取、离心分离等。然而,对于高层次的分离,如分子尺寸的分离、生物体组分的分离等,采用常规的分离方法是难以实现的,或达不到精度,或需要损耗极大的能源而无实用价值。 具有选择分离功能的高分子材料的出现,使上述的分离问题迎刃而解。膜分离过程的主要特点是以具有选择透过性的膜作为分离的手段,实现物质分子尺寸的分离和混合物组分的分离。膜分离过程的推动力有浓度差、压力差和电位差等。膜分离过程可概述为以下三种形式: ①渗析式膜分离料液中的某些溶质或离子在浓度差、电位差的推动下,透过膜进入接受液中,从而被分离出去。属于渗析式膜分离的有渗析和电渗析等; ②过滤式膜分离利用组分分子的大小和性质差别所表现出透过膜的速率差别,达到组分的分离。属于过滤式膜分离的有超滤、微滤、反渗透和气体渗透等; ③液膜分离液膜与料液和接受液互不混溶,液液两相通过液膜实现渗透,类似于萃取和反萃取的组合。溶质从料液进入液膜相当于萃取,溶质再从液膜进入接受液相当于反萃取。 膜分离技术是利用膜对混合物中各组分的选择渗透性能的差异来实现分离、提纯和浓缩的新型分离技术。膜分离过程的共同优点是成本低、能耗少、效率高、无污染并可回收有用物质,特别适合于性质相似组分、同分异构体组分、热敏性组分、生物物质组分等混合物的分离,因而在某些应用中能代替蒸馏、萃取、蒸发、吸附等化工单元操作。实践证明,当不能经济地用常规的分离方法得到较好的分离时,膜分离作为一种分离技术往往是非常有用的。并且膜技术还可以和常规的分离方法结合起来使用,使技术投资更为经济。 膜分离过程没有相的变化(渗透蒸发膜除外),常温下即可操作;由于避免了高温操作,所浓缩和富集物质的性质不容易发生变化,因此在膜分离过程食品、医药等行业使用具有独特的优点;膜分离装置简单、操作容易,对无机物、有机物及生物制品均可适用,并且不产生二次污染。由于上述优点,近二三十年来,膜科学和膜技术发展极为迅速,目前已成为工农业生产、国防、科技和人民日常生活中不可缺少的分离方法,越来越广泛地应用于化工、环保、食品、医药、电子、电力、冶金、轻纺、海水淡化等领域 细胞破碎方法简述随着重组DNA技术得到广泛应用以来,生物技术发生了质的飞跃.很多基因工程产物都是胞内物质,必须将细胞破壁,使产物得以释放,才能进一步提取,因此细胞破碎是提取胞内产物的关键步骤,破碎方法的得当

第三章 细胞破碎

第三章细胞破碎 1.细胞破碎技术: 细胞破碎(cell rupture)技术是指利用外力破坏细胞膜和细胞壁,使细胞内物质包括目的产物成分释放出来的技术。细胞破碎技术是分离纯化细胞内合成的非分泌型生化物质(产品)的基础。 2.细胞破碎方式: 3.细胞破碎方法及其原理: 4.在选择细胞破碎方法时需要考虑哪些因素? a)对象的细胞结构—不同结构的细胞破碎方法的不同 b)破碎细胞过程中,对目的物的破坏程度 c)提取物需要的保护条件 d)破碎温度 5.几种常见破碎细胞的机械法: a)高压匀浆破碎法(homogenization) b)高速珠研磨破碎法(bead grinding) c)超声波破碎法(ultrasonication) 高压匀浆法:采用高压匀浆器(由高压泵和匀浆阀组成);细胞悬浮液自高压室针形阀喷出时,每秒速度高达几百米,高速喷出的浆液又射到静止的撞击环上, 被迫改变方向从出口管流出。细胞在这一系列高速运动过程中经历了高速剪切、 碰撞及压力骤降,造成细胞破碎。 ☆高压匀浆法适用的范围: ?酵母和大多数细菌细胞的破碎;?料液细胞浓度可以很高,20%左右。 ☆不宜使用高压匀浆法。 ?易造成堵塞的团状或丝状真菌

?较小的革兰氏阳性菌 ?含有包含体的基因工程菌(因包含体坚硬,易损伤匀 浆阀) 影响高压匀浆器细胞破碎因素: ● 升高压力有利于破碎, ?减少细胞的循环次数,甚至一次通过匀浆阀就可达到几 乎完全的破碎,这样就可避免细胞碎片不至过小。 ?但p大到一定值时对匀浆器的磨损增加,也有实验表明p 超过一定值时,R增加但很慢。 ?在工业生产中,通常采用的压力为55-70Mpa。 ●破碎性能还随菌体种类和生长环境的不同而不同 大肠杆菌的细胞比酵母细胞容易破碎, 生长在简单的合成培养基上的大肠杆菌比生长在复杂培养基 上容易破碎。 珠磨法bead mill:细胞悬浮液与极细的玻璃小珠、石英砂、氧化铝等研磨剂(直径小于1mm)一起快速搅拌或研磨,研磨剂、子与细胞之间的互相剪切、碰撞,使细破碎,释放出内含物。在工业规模的破碎中,常采用高速珠磨机。 珠磨法的破碎率一般控制在80%以下:降低能耗、减少大分子目的产物的失活、减少由于高破碎率产生的细胞小碎片不易分离而给后续操作带来的困难。 超声波破碎:超声波破碎法(Ultrasonication)利用超声波振荡器发射的15-25kHz的超声波探头处理细胞悬浮液。超声波振荡器以可分为槽式和探头直接插入介质两种型式,一般破碎效果后者比前者好。超声波的细胞破碎效率与细胞种类、浓度和超声波的声频、声能有关。 超声波破碎的机理:一般认为在超声波作用下液体发生空化作用(cavitation),液体中局部空穴的形成、增大和闭合产生极大的冲击波和剪切力,引起的粘滞性旋涡在细胞上造成了剪切力,使细胞内液体发生流动,从而使细胞破碎。操作过程产生大量的热,因此操作需在冰水或外部冷却的容器中进行。 超声波破碎的适用范围: 6. 不同机械破碎方法的比较:?超声波破碎是很强烈的破碎方法,适用于多数 微生物的破碎。 ?一般杆菌比球菌易破碎,G-细菌比G+细菌易 破碎,对酵母菌的效果较差。 ?但超声波产生的化学自由基团能使某些敏感性 活性物质失活。 ?超声波破碎的有效能量利用率极低 ?由于对冷却的要求相当苛刻,所以不易放大, 但在实验室小规模细胞破碎中常用 7.非机械破碎方法 酶溶破碎法(enzyme lysis)化学破碎法(chemical treatment)去垢剂破碎法(detergents)渗透压冲击破碎法(osmotic shock)冻融破碎法(freezing and thawing) a)酶解b)化学法溶胞c)物理法–渗透压冲击–冻结和融化–干燥法 其中酶法和化学法溶胞应用最广。 8.酶解(酶溶法Enymaticlysis)

微生物细胞的破碎

微生物细胞的破碎 所谓的微生物细胞破碎就是使微生物的细胞壁或细胞膜受到不同程度的破坏或破碎,增大胞膜通透性,使胞内产物获得最大程度的释放,便于所需的生化物质的提取和分离的一种操作。本质上这是一种增溶作用,其主要阻力来自于各种微生物细胞壁的结构和组成的差异。 由于各种微生物细胞壁的结构和组成的差异导致细胞破碎的难易程度不同。因此,了解微生物细胞壁结构和强度对判断细胞破碎的难易程度和选择合适的细胞破碎方法有着十分重要的意义。 几乎所有细菌的细胞壁都是由具有网状结构的肽聚糖组成,肽聚糖包围在细胞周围,使细胞具有一定的形状和强度。破碎细菌的主要阻力来自于肽聚糖的网状结构,其网结构的致密程度和强度取决于聚糖链上所存在的肽键的数量和其交联的程度,如果交联程度大,则网结构就致密。 几乎所有细菌的细胞壁都是由具有网状结构的肽聚糖组成,肽聚糖包围在细胞周围,使细胞具有一定的形状和强度。破碎细菌的主要阻力来自于肽聚糖的网状结构,其网结构的致密程度和强度取决于聚糖链上所存在的肽键的数量和其交联的程度,如果交联程度大,则网结构就致密。 大多数霉菌的细胞壁主要由多糖,尤其是具有β-1,4糖苷

键的几丁质和β-1,6糖苷键的葡聚糖组成,还含有较少量的蛋白质和脂类。破碎霉菌细胞壁的阻力主要决定于霉菌细胞壁的强度和聚合物的网状结构,还有几丁质或纤维素的纤维状结构。 海藻类的细胞壁非常复杂,主要结构成分是纤维状的多糖类物质。破碎海藻细胞壁的阻力主要取决于纤维素的β-1,4糖苷键结构。 海藻类的细胞壁非常复杂,主要结构成分是纤维状的多糖类物质。破碎海藻细胞壁的阻力主要取决于纤维素的β-1,4糖苷键结构。 二.胞破碎的原则 选择性地释放目标生化物质的关键是要根据目标生化物质的性质和在细胞内存在的位置来选择适当的破碎方法和操作条件。一般原则有以下两个方面: ①仅破坏或破碎存在目标生化物质的位置周围:当目标生化物质存在于细胞膜附近时,可采用较温和的方法,如酶解法、渗透压冲击法和冻结-融化法等。当目标生化物质存在于细胞质内时,则需采用强烈的机械破碎法。 ②选择性溶解目标生化物质:当目标生化物质处于与细胞膜或细胞壁结合的状态时,调整溶液pH值、离子强度或添加与目标生化物质具有亲和性的试剂如螯合剂、表面活性剂等。使目标生化物质容易溶解释放。所选的溶液体系应使其他杂质不易溶出。

细胞破碎技术

细胞破碎技术 细胞破碎技术是我们根据国际九十年代最新技术研制成功的新产品。对粘度低于 0.2Pa.s,温度低于80摄氏度液体物料(液-液相或液-固相)的均质乳化,如乳品、饮料、化妆品、药品等产品的均质、乳化,细胞破碎技术有很好的适用性,下面小编给大家介绍一下细胞破碎技术。 1、细胞破碎技术工作原理 样品必须经过严密的金刚石制备分散阀门,并承受超高压力能量狭缝瞬间释放所产生的剪切、空穴、碰撞三种均质分散效应,同时样品始终享受着低温水浴的冷却或恒温(4~6℃间任意调整),使之处理后的样品颗粒均匀纳米化且不易抱团;4-80℃间任意可调也可通过升温改变样品流动性,便于制备与分散。 2、细胞破碎技术用途

适用于:高等院校、科研所、化工、涂料、新材料、新能源、生物医药等行业使用 石墨烯,纳米碳管、碳粉制备与分散; 纳米高分子材料制备与分散; 纳米涂料制备与分散; 纳米电池液、浆料制备与分散; 纳米油墨制备与分散; 纳米染料制备与分散; 纳米油漆制备与分散; 纳米药物制备与分散; 其他??????????? 3、细胞破碎技术设备操作说明 整套机器设备安装到位后,检查各系统联接无误(进水管/出水管、排水管、冲洗水管、电源、电路),观察物料样品是否通过透明胶管进入主机进口,冷却循环水是否正常运转流通,然后操作相关按钮,使主机正常工作。 具体步骤见下: (1)接通总电源,整机通电。将钥匙插入工作/锁定转换孔,并旋到工作位置。 (2)进样杯中加满纯净水或缓冲液,按“液压泵”“开”按钮(绿色),油泵启动,供油压力输入主附油缸。 (3)按“主机”“开”按钮,机器正常运转(往复运动)。 (4)顺时针缓慢调节调压阀,使低压表、高压表压力同步上升,根据样品种类,调节破碎压力(200Mpa以下)。 (5)当纯净水或缓冲液到达进样杯颈部时,按“主机”“关”按钮,机器停止运转。将待破碎样品加入进样杯中,按“主机”“开”按钮,细胞破碎开始。经均质阀破碎后的样品,沿循环冷却管路冷却后,从出样口流出,样品一次破碎完成(可根据需要,进行多次破碎)。(6)样品破碎完后,逆时针调节调压阀,使右边低压表至“0”位,加入纯净水或75%酒精进行清洗,直至出样清澈。

细胞破碎

细胞破碎-------综述 摘要:细胞破碎,细胞破碎技术是指利用外力破坏细胞膜和细胞壁,使细胞内容物包括目的产物成分释放出来的技术。细胞破碎分离提纯某一种蛋白质时,首先要把蛋白质从组织或细胞中释放出来并保持原来的天然状态,不丧失活性。所以要采用适当的方法将组织和细胞破碎。不同的生物体或同一生物体的不同部位的组织,其细胞破碎的难易不一,使用的方法也不相同,如动物脏器的细胞膜较脆弱,容易破碎,植物和微生物由于具有较坚固的纤维素、半纤维素组成的细胞壁 细胞破碎方法有:高压匀浆破碎法振荡珠击破碎法高速搅拌珠研磨破碎法超声波破碎法渗透压冲击破碎法酶溶破碎法等等,这篇综述主要讲的是超声波破碎法。 关键词:细胞破碎超声波破碎法原理应用超声波细胞破碎仪又叫超声波细胞粉碎仪是一种利用强超声在液体中产生空化效应,对物质进行超声处理的多功能、多用途的仪器。能用于多种动植物细胞、病毒细胞的破碎,同时超声波细胞破碎仪可用来乳化、分离、匀化、提取、消泡、清洗及加速化学反应等。 仪器原理: 超声波细胞破碎仪的原理并不是太神秘、太复杂。简单说就是将电能通过换能器转换为声能,这种能量通过液体介质而变成一个个密集的小气泡,这些小气泡迅速炸裂,产生的象小炸弹一样的能量,从而起到破碎细胞等物质的作用。超声波是物质介质中的一种弹性机械波,它是一种波动形式,因此它可以用于探测人体的生理及病理信息,既诊断超声。同时,它又是一种能量形式,当达到一定剂量的超声在生物体内传播时,通过它们之间的相互作用,能引起生物体的功能和结构发生变化,即超声生物效应。超声对细胞的作用主要有热效应,空化效应和机械效应。热效应是当超声在介质中传播时,摩擦力阻碍了由超声引起的分子震动,使部分能量转化为局部高热(42-43℃),因为正常组织的临界致死温度为45.7℃,而肿瘤组织比正常组织敏感性高,故在此温度下肿瘤细胞的代谢发生障碍,DNA、RNA、蛋白质合成受到影响,从而杀伤癌细胞而正常组织不受影响。空化效应是在超声照射下,生物体内形成空泡,随着空泡震动和其猛烈的聚爆而产生出机械剪切压力和动荡,使肿瘤出血、组织瓦解以致坏死。另外,空化泡破裂时产生瞬时高温(约5000℃)、高压(可达500×104Pa),可使水蒸气热解离产生.OH自由基和.H原子,由.OH自由基和.H原子引起的氧化还原反应可导致多聚物降解、酶失活、脂质过氧化和细胞杀伤。机械效应是超声的原发效应,超声波在传播过程中介质质点交替地压缩与伸张构成了压力变化,引起细胞结构损伤。杀伤作用的强弱与超声的频率和强度密切相关。 结构特点: ●超声探头采用进口钛合金材质 ●高能效换能器结构图片[1] ●振幅自动调节,在不同的负载状况时振幅保持一致 ●设置超声间歇时间

细胞破碎方法简述

细胞破碎方法简述 2010-04-26 09:27:19| 分类:电泳资料| 标签:|字号大中小订阅 本文引用自啸月天狼《细胞破碎方法简述》 更多相关资料请查看https://www.doczj.com/doc/8612506143.html, 分离膜是指能以特定形式限制和传递流体物质的分隔两相或两部分的界面。膜的形式可以是固态的,也可以是液态的。被膜分割的流体物质可以是液态的,也可以是气态的。膜至少具有两个界面,膜通过这两个界面与被分割的两侧流体接触并进行传递。分离膜对流体可以是完全透过性的,也可以是半透过性的,但不能是完全不透过性的。膜在生产和研究中的使用技术被称为膜技术。 随着科学技术的迅猛发展和人类对物质利用广度的开拓,物质的分离已成为重要的研究课题。分离的类型包括同种物质按不同大小尺寸的分离;异种物质的分离;不同物质状态的分离等。 在化工单元操作中,常见的分离方法有筛分、过滤、蒸馏、蒸发、重结晶、萃取、离心分离等。然而,对于高层次的分离,如分子尺寸的分离、生物体组分的分离等,采用常规的分离方法是难以实现的,或达不到精度,或需要损耗极大的能源而无实用价值。 具有选择分离功能的高分子材料的出现,使上述的分离问题迎刃而解。膜分离过程的主要特点是以具有选择透过性的膜作为分离的手段,实现物质分子尺寸的分离和混合物组分的分离。膜分离过程的推动力有浓度差、压力差和电位差等。膜分离过程可概述为以下三种形式: ①渗析式膜分离料液中的某些溶质或离子在浓度差、电位差的推动下,透过膜进入接受液中,从而被分离出去。属于渗析式膜分离的有渗析和电渗析等; ②过滤式膜分离利用组分分子的大小和性质差别所表现出透过膜的速率差别,达到组分的分离。属于过滤式膜分离的有超滤、微滤、反渗透和气体渗透等; ③液膜分离液膜与料液和接受液互不混溶,液液两相通过液膜实现渗透,类似于萃取和反萃取的组合。溶质从料液进入液膜相当于萃取,溶质再从液膜进入接受液相当于反萃取。膜分离技术是利用膜对混合物中各组分的选择渗透性能的差异来实现分离、提纯和浓缩的新型分离技术。膜分离过程的共同优点是成本低、能耗少、效率高、无污染并可回收有用物质,特别适合于性质相似组分、同分异构体组分、热敏性组分、生物物质组分等混合物的分离,因而在某些应用中能代替蒸馏、萃取、蒸发、吸附等化工单元操作。实践证明,当不能经济地用常规的分离方法得到较好的分离时,膜分离作为一种分离技术往往是非常有用的。并且膜技术还可以和常规的分离方法结合起来使用,使技术投资更为经济。 膜分离过程没有相的变化(渗透蒸发膜除外),常温下即可操作;由于避免了高温操作,所浓缩和富集物质的性质不容易发生变化,因此在膜分离过程食品、医药等行业使用具有独特的优点;膜分离装置简单、操作容易,对无机物、有机物及生物制品均可适用,并且不产生二次污染。由于上述优点,近二三十年来,膜科学和膜技术发展极为迅速,目前已成为工农业生产、国防、科技和人民日常生活中不可缺少的分离方法,越来越广泛地应用于化工、环保、食品、医药、电子、电力、冶金、轻纺、海水淡化等领域 细胞破碎方法简述 随着重组DNA技术得到广泛应用以来,生物技术发生了质的飞跃.很多基因工程产物都是胞内物质,必须将细胞破壁,使产物得以释放,才能进一步提取,因此细胞破碎是提取胞内产物的关键步骤,破碎方法的得当与否,直接影响到所提取产品的产量、质量和生产成本。现将近年来常用的几种细胞破碎方法介绍一下。 1 高压匀浆法 设备是高压匀浆器,它由高压泵和匀浆间组成,英国ADV公司和美国Microfluidics公

相关主题
文本预览
相关文档 最新文档