当前位置:文档之家› 数学期望

数学期望

数学期望
数学期望

数学期望

1、定义:在概率论和统计学中,数学期望(mean)(或均值,亦简称期望)是试验中每次可能结果的概率乘以其结果的总和,是最基本的数学特征之一。它反映随机变量平均取值的大小。

需要注意的是,期望值并不一定等同于常识中的“期望”——“期望值”也许与每一个结果都不相等。期望值是该变量输出值的平均数。期望值并不一定包含于变量的输出值集合里。

大数定律规定,随着重复次数接近无穷大,数值的算术平均值几乎肯定地收敛于期望值。

2、离散型数学期望:

如果随机变量只取得有限个值或无穷能按一定次序一一列出,其值域为一个或若干个有限或无限区间,这样的随机变量称为离散型随机变量。离散型随机变量的一切可能的取值与对应的概率乘积之和称为该离散型

随机变量的数学期望[2] (若该求和绝对收敛),记为。它是简单算术平均的一种推广,类似加权平均。

公式

离散型随机变量X的取

为,为X对应取值的概率,可理解为数据出现的频率,则:

例子

某城市有10万个家庭,没有孩子的家庭有1000个,有一个孩子的家庭有9万个,有两个孩子的家庭有6000个,有3个孩子的家庭有3000个。则此城市中任一个家庭中孩子的数目是一个随机变量,记为X。它可取值0,1,2,3。其中,X取0的概率为0.01,取1的概率为0.9,取2的概率为0.06,取3的概率为0.03。则,它的数学期望

,即此城市一个家庭平均有小孩1.11个。

定理:

设Y是随机变量X的函数:(是连续函数)它的分布律为

绝对收敛,则有:

3、连续性数学期望

设连续性随机变量X的概率密度函数为f(x),若积分绝对收敛,则称积分的值为随机变量的数学期望,记为E(X)。[2]

若随机变量X的分布函数F(x)可表示成一个非负可积函数f(x)的积分,则称X为连续性随机变量,f(x)称为X的概率密度函数(分布密度函数)。

数学期望完全由随机变量X的概率分布所确定。若X服从某一分布,也称是这一分布的数学期望。

定理

若随机变量Y符合函数,且绝对收敛,则有:[2]

该定理的意义在于:我们求时不需要算出Y的分布律或者概率密度,只要利用X的分布律或概率密度即可。上述定理还可以推广到两个或以上随机变量的函数情况。设Z是随机变量X、Y的函数(g是连续函数),Z是一个一维随机变量,二维随机变量(X,Y)的概率密度为,则有:

4、性质:

设C为一个常数,X和Y是两个随机变量。以下是数学期望的重要性质:[2]

1.

2.

3.

4.当X和Y相互独立时,

随机变量的数学期望与方差

第9讲随机变量的数学期望与方差 教学目的:1.掌握随机变量的数学期望及方差的定义。 2.熟练能计算随机变量的数学期望与方差。 教学重点: 1.随机变量的数学期望 For personal use only in study and research; not for commercial use 2.随机变量函数的数学期望 3.数学期望的性质 4.方差的定义 For personal use only in study and research; not for commercial use 5.方差的性质 教学难点:数学期望与方差的统计意义。 教学学时:2学时。 For personal use only in study and research; not for commercial use 教学过程: 第三章随机变量的数字特征 §3.1 数学期望 For personal use only in study and research; not for commercial use 在前面的课程中,我们讨论了随机变量及其分布,如果知道了随机变量X的概率分布,那么X的全部概率特征也就知道了。然而,在实际问题中,概率分布一般是较难确定的,而在一些实际应用中,人们并不需要知道随机变量的一切概率性质,只要知道它的某些数字特征就够了。因此,在对随机变量的研究中,确定其某些数字特征是重要的,而在这些数字特征中,最常用的是随机变量的数学期望和方差。

1.离散随机变量的数学期望 我们来看一个问题: 某车间对工人的生产情况进行考察。车工小张每天生产的废品数X 是一个随机变 量,如何定义X 取值的平均值呢? 若统计100天,32天没有出废品,30天每天出一件废品,17天每天出两件废品, 21天每天出三件废品。这样可以得到这100天中每天的平均废品数为 27.1100 213100172100301100320=?+?+?+? 这个数能作为X 取值的平均值吗? 可以想象,若另外统计100天,车工小张不出废品,出一件、二件、三件废品的 天数与前面的100天一般不会完全相同,这另外100天每天的平均废品数也不一定是 1.27。 对于一个随机变量X ,若它全部可能取的值是 ,,21x x , 相应的概率为 ,,21P P , 则对X 作一系列观察(试验)所得X 的试验值的平均值是随机的。但是,如果试验次数 很大,出现k x 的频率会接近于K P ,于是试验值的平均值应接近 ∑∞=1k k k p x 由此引入离散随机变量数学期望的定义。 定义1 设X 是离散随机变量,它的概率函数是 ,2 ,1,)()(====k P x X P x p K K k 如果 ∑∞ =1||k k k p x 收敛,定义X 的数学期望为 ∑∞ ==1)(k k k p x X E 也就是说,离散随机变量的数学期望是一个绝对收敛的级数的和。 例1 某人的一串钥匙上有n 把钥匙,其中只有一把能打开自己的家门,他随意地 试用这串钥匙中的某一把去开门。若每把钥匙试开一次后除去,求打开门时试开次数 的数学期望。

数学期望的计算及应用

数学期望的计算及应用 数学与应用数学111 第四小组 引言: 我们知道,随机变量的概率分布是随机变量的一种最完整的数学描述,而数学期望又是显现概率分布特性的最重要的特征数字之一。因此,掌握数学期望的计算并应用他来分析和解决实际问题显得尤为重要。在学习了概率论以后,我们计算数学期望一般有三种方法:1.从定义入手,即∑∞ == 1 )(k k k p x X E ;2. 应用随机变量函数的期望公式 ∑∞ ==1 )())((k k k p x q x q E 3. 利用期望的有关性质。但是还是会碰到许多麻烦,这里我们将 介绍一些解决这些难题的简单方法。在现实生活中,许多地方都需要用到数学期望。如果我们可以在学会怎么解决数学期望的计算之后,将数学期望应用到现实生活中。就可以解决许多问题,例如农业上,经济上等多个方面难以解决的难题。 下面就让我们来看看,除了最常用的三种计算方法之外还有哪些可以计算较为棘手的数学期望的方法。 1. 变量分解法 ] 1[ 如果可以把不易求得的随机变量X 分解成若干个随机变量之和,应用)(...)()()...(2121n n X E X E X E E E X E ++=++再进行求解得值, 这种方法就叫做变量分解法。这种方法化解了直接用定义求数学期望时的难点问题,因为每一种结果比较好计算,分开来计算便可以比较简单的获得结果。 例题1 : 从甲地到乙地的旅游车上载有20位旅客,自甲地开出,沿途有10个车站,如到达一个车站没有旅客下车,就不停车,以X 表示停车次数,求E(X).(设每位旅客在各个车站下车是等可能的) 分析 : 汽车沿途10站的停车次数X 所以可能取值为0,1,….,10,如果先求出X 的分布列,再由定义计算E(X),则需要分别计算{X=0},{X=1},…,{X=10}等事件的概率,计算相当麻烦。注意到经过每一站时是否停车,只有两种可能,把这两种结果分别与0,1对应起来,映入随机变量i X 每一种结果的概率较易求得。把X 分解成若干个随机变量i X 之和,然后应用公式)(...)()()...(2121n n X E X E X E E E X E ++=++就能最终求出E(X)。

概率论中数学期望的概念

毕业论文(设计) 题目:概率论中数学期望的概念 姓名: 学号:0411******* 教学院:数学与计算机科学学院 专业班级:数学与应用数学专业2008级1班 指导教师: 完成时间:2012年04月10日 毕节学院教务处制

概率论中数学期望概念 摘要:数学期望是现代概率论中最重要的基本概念之一,无论在理论上还是在应用中都具有重要的地位和作用。但是,数学期望这一概念对许多学者来说却又是一个难点,特别是对概念的理解和对这一数学工具的使用上都很难掌握。本文从离散型随机变量的来源、定义、分布及其理解上详细阐述概率论中的数学期望的概念及其性质,并介绍说明这一数学工具在实际生活中的应用。目的是希望能给更多的学者提供一些参考及帮助。 关键词:离散型;随机变量;分布;函数;期望 Mathematical expection concept

in theory of probability Candidate:Xiong Xiao-ping Major:Mathematics and applied mathematics Student No:0411******* Advisor:Xue Chao-kui(Lecturer) Abstract:Mathematical expectation is the modern theory of probability in the most important one of the basic concept, whether in theory or in the applications has an important position and role. But, mathematical expectation is a difficult concept for many scholars, especially for the understanding of concepts and the mathematical tools to the use of all difficult to master. This article from source of discrete random variable, definition, distribution and understand the detail on the mathematics of the concept of probability theory and its properties expectations, and introduces the mathematical tools that in the actual life application. The main purpose is to give more scholars can provide some reference and help. Keywords:discrete; Random variable, Distribution; Functions; expect

数学期望在生活中的应用

数学期望在生活中的应用 王小堂保亭中学 摘要:数学期望是随机变量的重要数字特征之一,也是随机变量最基本的特征之一。通过几个例子,阐述了概率论与数理统计中的教学期望在生活中的应用,文章内容包括决策、利润、彩票、医疗等方面的一些实例,阐述了数学期望在经济和实际问题中颇有价值的应用。 关键词:随机变量,数学期望,概率,统计 数学期望(mathematical expectation)简称期望,又称均值,是概率论中一项重要的数字特征,在经济管理工作中有着重要的应用。本文通过探讨数学期望在经济和实际问题中的一些简单应用,以期起到让学生了解知识与人类实践紧密联系的丰富底蕴,切身体会到“数学的确有用”。 随机变量的数学期望值: 在概率论和统计学中,一个离散性随机变量的期望值(或数学期望、或均值,亦简称期望)是试验中每次可能结果的概率乘以其结果的总和。换句话说,期望值是随机试验在同样的机会下重复多次的结果计算出的等同“期望”的平均值。需要注意的是,期望值并不一定等同于常识中的“期望”——“期望值”也许与每一个结果都不相等。(换句话说,期望值是该变量输出值的平均数。期望值并不一定包含于变量的输出值集合里。) 单独数据的数学期望值算法: 对于数学期望的定义是这样的。数学期望 E(X) = X1*p(X1) + X2*p(X2) + …… + Xn*p(Xn) X1,X2,X3,……,Xn为这几个数据,p(X1),p(X2),p(X3),……p(Xn)为这几个数据的概率函数。在随机出现的几个数据中p(X1),p(X2),p(X3),……p(Xn)概率函数就理解为数据X1,X2,X3,……,Xn出现的频率f(Xi).则:E(X) = X1*p(X1) + X2*p(X2) + …… + Xn*p(Xn) = X1*f1(X1) + X2*f2(X2) + …… + Xn*fn(Xn) 很容易证明E(X)对于这几个数据来说就是他们的算术平均值。 1 决策方案问题 决策方案即将数学期望最大的方案作为最佳方案加以决策。它帮助人们在复杂的情况下从可能采取的方案中做出选择和决定。具体做法为:如果知道任一方案Ai(i=1,2,…m)在每个影响因素Sj(j=1,2,…,n)发生的情况下,实施某种方案所产生

期望 方差公式的证明全集

期望与方差的相关公式的证明 -、数学期望的来由 早在17世纪,有一个赌徒向法国著名数学家帕斯卡挑战,给他出了一道题目,题目是这样的:甲乙两个人赌博,他们两人获胜的机率相等,比赛规则是先胜三局者为赢家,赢家可以获得100法郎的奖励。当比赛进行到第三局的时候,甲胜了两局,乙胜了一局,这时由于某些原因中止了比赛,那么如何分配这100法郎才比较公平? 用概率论的知识,不难得知,甲获胜的概率为1/2+(1/2)*(1/2)=3/4,或者分析乙获胜的概率为(1/2)*(1/2)=1/4。因此由此引出了甲的期望所得值为100*3/4=75法郎,乙的期望所得值为25法郎。 这个故事里出现了“期望”这个词,数学期望由此而来。 定义1 若离散型随机变量ξ可能取值为i a (i =1,2,3 ,…),其分布列为i p (i =1,2,3, …),则当i i i p a ∑ ∞ =1 <∞时, 则称ξ存在数学期望,并且数学期望为E ξ=∑∞ =1 i i i p a , 如果i i i p a ∑ ∞ =1 =∞,则数学期望不存在。 [] 1 定义2 期望:若离散型随机变量ξ,当ξ=x i 的概率为P (ξ=x i )=P i (i =1,2,…,n ,…),则称E ξ=∑x i p i 为ξ的数学期望,反映了ξ的平均值. 期望是算术平均值概念的推广,是概率意义下的平均.E ξ由ξ的分布列唯一确定. 二、数学期望的性质 (1)设C 是常数,则E(C )=C 。 (2)若k 是常数,则E (kX )=kE (X )。 (3))E(X )E(X )X E(X 2121+=+。 三、 方差的定义 前面我们介绍了随机变量的数学期望,它体现了随机变量取值的平均水平,是随机变量一个重要的数字特征。但是在一些场合下,仅仅知道随机变量取值的

条件数学期望及其应用

条件数学期望及其应用 The ways of finding the inverse matrix and it ’s application Abstract :The passage lists the ways of calculating the first type of curvilinear integral,and discusses it ’s application in geometry and in physical. Keywords :Curvilinear integral;Continuous;Integrable; Lateral area. 0前言 在曲线积分中,被积函数可以是标量函数或向量函数.积分的值是路径各点上的函数值乘上相应的权重(一般是弧长,在积分函数是向量函数时,一般是函数值与曲线微元向量的标量积)后的黎曼和.带有权重是曲线积分与一般区间上的积分的主要不同点.物理学中的许多公式在推广之后都是以曲线积分的形式出现.曲线积分是物理学中重要的工具. 1条件数学期望 1.1条件数学期望的定义 定义1 设X 是一个离散型随机变量,取值为},,{21 x x ,分布列为 },,{21 p p .又事件A 有0)( A P ,这时 ,2,1,) () }({)|(| i A P A x X P A x X P P i i A i 为在事件A 发生条件下X 的条件分布列.如果有 A i i i p x | 则称 A i i i p x A X E |]|[ . 为随机变量X 在条件A 下的条件数学期望(简称条件期望). 定义2 设X 是一个连续型随机变量,事件A 有0)( A P ,且X 在条件A 之

数学期望(均值)、方差和协方差的定义与性质

均值、方差和协方差的定义和基本性质 1 数学期望(均值)的定义和性质 定义:设离散型随机变量X 的分布律为 {}, 1,2,k k P X x p k === 若级数 1k k k x p ∞=∑ 绝对收敛,则称级数1k k k x p ∞=∑的和为随机变量X 的数学期望,记为()E X 。即 ()1k k k E X x p ∞==∑。 设连续型随机变量X 的概率密度为()f x ,若积分 ()xf x dx ∞?∞? 绝对收敛,则称积分 ()xf x dx ∞?∞?的值为随机变量X 的数学期望,记为()E X 。即 ()()E X xf x dx ∞ ?∞=? 数学期望简称期望,又称为均值。 性质:下面给出数学期望的几个重要的性质 (1)设C 是常数,则有()E C C =; (2)设X 是一个随机变量,C 是常数,则有()()E CX CE X =; (3)设X 和Y 是两个随机变量,则有()()()E X Y E X E Y +=+,这一性质可以推 广至任意有限个随机变量之和的情况; (4)设X 和Y 是相互独立的随机变量,则有()()()E XY E X E Y =。 2 方差的定义和性质 定义:设X 是一个随机变量,若(){}2E X E X ?????存在,则称(){}2E X E X ?????为X

的方差,记为()D X 或()Var X ,即 性质:下面给出方差的几个重要性质 (1)设C 是常数,则有()0D C =; (2)设X 是一个随机变量,C 是常数,则有 ()()2D CX C D X =,()()D X C D X +=; (3)设X 和Y 是两个随机变量,则有 ()()()()()()(){}2D X Y D X D Y E X E X Y E Y +=++?? 特别地,若X 和Y 相互独立,则有()()()D X Y D X D Y +=+ (4)()0D X =的充分必要条件是以概率1取常数()E X ,即(){}1P X E X ==。 3 协方差的定义和性质 定义:量()(){} E X E X Y E Y ??????????称为随机变量X 与Y 的协方差。记为(),Cov X Y ,即 ()()(){},Cov X Y E X E X Y E Y =?????????? 性质:下面给出协方差的几个重要性质 (1)()(),,Cov X Y Cov Y X = (2)()(),Cov X X D X = (3)()()()(),Cov X Y E XY E X E Y =? (4)()(),,,,Cov aX bY abCov X Y a b =是常数 (5)()()()1212,,,Cov X X Y Cov X Y Cov X Y +=+ 参考文献 [1]概率论与数理统计(第四版),浙江大学

关于数学期望在生活中应用的一些探讨

关于数学期望在生活中应用的一些探讨 【摘要】:概率论与数理统计是高等学校理工科和经营类学生的必修课,是全国硕士研究生入学考试数学科目的必考内容之一。概率论与数理统计不仅是学习后续数学课程和专业课程的必备基础课程,也是自然科学和工程技术领域中的一种重要数学工具,它在培养学生的计算能力、逻辑推理能力和抽象思维能力方面起着十分重要的作用。然而,离散型随机变量数学期望是概率论和数理统计的重要概念之一,是概率论和数理统计来反映随机变量取值分布的特征数,通过探讨数学期望在生活中的一些实际问题应用,了解数学期望在生活中的实践运用,掌握概率论与数理统计已成为处理信息、制定决策的重要理论和方法。 【关键词】: 概率论与数理统计;离散型随机变量;数学期望 一丶引言 概率论与数理统计是一门与我们日常生活密不可分的学科,不过大多数人对这么学科的理解非常的片面,就那最简单的说,投一枚硬币,结果正面朝上和反面朝上的概率都为50%,这就是概率论。是的,这就是概率论最简单最容易理解的例子了。但学过这门学科的人又多以这门课较为理论化,特别是像母函数,极限定理等内容与现实的日常生活的联系并不是很大,它具有的专业性很强。但是我们的日常生活中又确实有很多例子需要我们来利用这门学科来做些分析才能得出结果。 三四百年前在欧洲许多国家,贵族之间盛行赌博之风。掷骰子是他们常用的一种赌博方式。因骰子的形状为小正方体,当它被掷到桌面上时,每个面向上的可能性是相等的,即出现1点至6点中任何一个点数的可能性是相等的。有的参赌者就想:如果同时掷两颗骰子,则点数之和为9与点数之和为10,哪种情况出现的可能性较大? 17世纪中叶,法国有一位热衷于掷骰子游戏的贵族德·梅耳,发现了这样的事实:将一枚骰子连掷四次至少出现一个六点的机会比较多,而同时将两枚骰子掷24次,至少出现一次双六的机会却很少。这是什么原因呢?后人称此为著名的德·梅耳问题。 又有人提出了“分赌注问题”:两个人事先约定谁先赢得5局便算赢家。而在甲赢3局,乙赢4局的时候因为特殊原因要终止赌博,那应该如何分配赌注呢?他们自己无法给出答案。赌徒们就去请教当时法国数学家帕斯卡,帕斯卡接受了这个问题,他没有立即回答,而把它交给另一位法国数学家费尔马。他们便围绕着赌博中的数学问题开始了深入细致的研究。后来,这些问题被来到巴黎的荷兰科学家惠更斯获悉,回荷兰后,他独立地进行研究。帕斯卡和费尔马两人一边亲自做赌博实验,一边仔细分析计算赌博中出现的各种问题,终于完整地解决了“分赌注问题”,正确的答案是,甲拿3/4,乙拿剩下的1/4。为什么呢?假定他们俩再赌一局,或者甲赢,或者乙赢。若是甲赢满了5局,钱应该全归他;甲如果输了,则甲乙各赢4局,这个钱应该对半分。现在,甲输赢的可能性都是1/2,所以,他拿的钱应该是1/2*1+1/2*1/2=3/4;当然,乙就应该得1/4。他们将此题的解法向更一般的情况推广,从而建立了概率论的一个基本概念——数学期望,这是描述随机变量取值的平均水平的一个量。 在十六世纪,惠更斯的专著《论掷骰子游戏中的计算》被认为是概率论中最早的论著。可以说早期概率论的真正创立者是帕斯卡、费尔马和惠更斯。这一时期被称为组合概率时期,计算各种古典概率。而后,雅可布·贝努利在前人研究的基础上,继续分析赌博中的其他问题,给出了“赌徒输光问题”的详尽解法,并证明了被称为“大数定律”的一个定理,这是研究等可能性事件的古典概率论中的极其重要的结果。 1713年,雅可布的著作《猜度术》出版。雅可布的侄子尼古拉·贝努利也真正地参与了“赌博”。他提出了著名的“圣彼得堡问题”:甲乙两人赌博,甲掷一枚硬币到掷出正面为一局。若甲掷一次出现正面,则乙付给甲一个卢布;若甲第一次掷得反面,第二次掷得正面,乙付给甲2个卢布;若甲前两次掷得反面,第三次得到正面,乙付给甲5个卢布。以此类推,若甲前n-1次掷得反面,第n次掷得正面,则乙需付给甲2n-1个卢布。那么问题来了,在赌博开始前甲应付给乙多少卢布,才有权参加赌博而不致乙方亏钱呢?当时有许多数学家都研究了这个问题,并给出了一些不同的解法。但是结果却是,不管甲事先拿出多少钱给乙,只要赌博不断地进行,乙肯定是要赔钱的。 随着十八世纪到十九世纪科学的发展,人们注意到很多物理和社会现象都与这种“赌博概率”有关,从而由赌博起源的概率论被应用到这些领域中,同时也大大推动了概率论本身的发展。法国数学家拉普拉斯将古典概率论向近代概率论进行推进,他明确给出了概率的古典定义,并在概率论中引入了更有力的数学分析工具,将概率论推向一个新的发展阶段。他还证明了“棣莫弗——拉普拉斯定理”,把棣莫弗的结论推广到一般场合,还建立了观测误差理论和最小二乘法。拉普拉斯于1812年出版了他的著作《分析的概率理论》,这是一部继往开来的作品。概率论在20世纪再度迅速地发展起来,这是由于科学技术发展的迫切需要而产生的。1906年,俄国数学家马尔科夫提出了所谓“马尔科夫链”的数学模型。1934年,前苏联数学家辛钦又提出一种在时间中均匀进行着的平稳过程理论。如何把概率论建立在严格的逻辑基础上,这是人们从概率诞生开始就关注的问题,这些年来,好多数学家进行过尝试,终因条件不成熟,一直拖了三百年才得以解决。 20世纪初,勒贝格测度与积分理论及随后发展的抽象测度和积分理论的完成为概率公理体系的建立奠定了基础。现在,概率论与以它作为基础的数理统计学科一起,在自然科学、社会科学、工程技术、军事科学及工农业生产等诸多领域中都起着不可或缺的作用。 二丶正文 1.离散型随机变量数学期望的定义 设离散型随机变量X的分布列∞∞∞∞ ∑P(X=Xi)=Pi (i=1,2,...),若数级∑XiPi绝对收敛,即∑XiPi < +∞,则称∑XiPi为X的 i=1 i=1 i=1 i=1 ∞∞ 数学期望或均值,记为E(X),即E(X)=∑XiPi。若∑XiPi发散时,则称X的数学期望不存在。 i=1 i=1 2.离散型随机变量数学期望的作用 期望表示随机变量在随机试验中取值的平均值,它事概率意义下的平均值,不同与相应数值的算术平均数,是简单算术平均数的一种推广,类似加权平均。它不仅在科学技术、工农业生产和经济管理中发挥着重要作用,而且常常出现在我们生活

数学期望

§2.2 随机变量的数学期望 每个随机变量都有一个概率分布(分布函数,或分布列、概率密度),这种分布完整地刻画了随机变量取值的统计规律性。由概率分布可以计算出有关随机变量的各个事件的概率。此外,概率分布还可以确定随机变量的各种特征数,比如,数学期望、方差、中位数等,这些特征数都是用以刻画随机变量(或其概率分布)的某一方面的特征。 例如,考虑某种元件的寿命,如果知道了寿命X 的概率分布,就可以计算出寿命在任一指定范围内的概率,对这种元件的寿命状况提供了一幅完整图景。根据这一分布,还可以确定用以反映寿命平均水平的特征数-数学期望,用以刻画寿命值的散布程度(或稳定程度)的特征数-方差.这些特征数虽不能对寿命状况提供完整刻画,但却往往是人们最为关注的一个方面.无论在理论上还是在实用中,这些特征数都有着极重要的意义.尤其是实用中,概率分布虽很“完美”,但难以把握;而特征数则容易把握,并且特征数是以一个“醒目”的数值刻画随机变量的某种特征,是概率分布某个方面的概括,这使得应用方便. 一. 数学期望的定义 定义 设离散型随机变量X 的分布列为 i i p x X P ==)(, ,2,1=i 如果 ∞<∑∞=1 ||i i i p x 则称∑∞=1i i i p x 为X 的数学期望,记为)(X E ,即 ∑∞== 1 )(i i i p x X E 若级数∑∞=1i i i p x 不绝对收敛,则称X 的数学期望不存在。 由以上定义可看出,若X 只取有限个值,则它的数学期望总是存在的。而若X 取可列个值,则它的数学期望不一定存在,是否存在就看级数∑∞=1i i i p x 是否绝对收敛,这个要求的目 的在于使期望值唯一。因为若无穷级数∑∞=1i i i p x 只是条件收敛,则可通过改变这个级数各项 的次序,使得改变后的级数不收敛或收敛到任意指定的值,这意味着这个级数的和存在与否,以及等于多少,与X 的取值的排列次序有关,而)(X E 作为刻画X 取值的平均水平的特征数,具有客观意义,不应与X 的取值的排列次序有关。 由定义,X 的期望值就是其所有可能取值的加权平均,每个可能值的权重就是X 取该值的概率,因此X 的数学期望又称为X 的均值。同时还可看出X 的数学期望完全由X 的概率分布所决定,所以X 的数学期望又叫做X 的分布的数学期望(对一般的随机变量的期望

浅谈数学期望

浅谈数学期望 摘要 概率统计是研究随机现象与统计规律的学科,数学期望是反映随机变量总体取值的平均水平的一个数字特征。虽然随机变量的概率分布能完整地描述随机变量的统计规律,但是在实际问题中,要获得随机变量的概率分布不是一件简单的事情,所以我们往往要知道一些从某些方面刻画随机变量特征的数值,从而也可以清晰地解决实际问题。数学期望则完美地演绎了这一角色。这篇论文主要介绍了数学期望的来源,定义,性质以及应用。让我们更加深刻地认识数学期望应用的广泛性以及对于分析实际问题的重要性。 关键词:概率统计,数学期望,统计规律,应用 Abstract Probability and Statistics is the study of random phenomena and statistical rules and disciplines, mathematical expectation is reflected in the overall average value of a random variable feature a number.Although the probability distribution of the random variable can complete description of the statistical laws of random variables. However, in practical problems, It’s not easy to get the probability distribution of the random variable , so we tend to know some portray in some ways of the numerical characteristics of random variables, which can clearly solve practical problems. Mathematical expectation plays this role perfectly. This paper introduces the mathematical expectation of origin, definition, properties, and applications. Let us deeper understanding that the breadth and application of mathematical expectation for the analysis of the importance of practical problems. Keywords: Probability and Statistics ,mathematical expectation, application 1·一般随机变量的数学期望 1.1引言 数学期望是刻画随机变量平均取值的数字特征,它是一类在概率论中最重要,也是最基本的与随机变量密切相关的数值。虽然它不能像随机变量概率分布那样完整地描述随机变量的统计规律,在实际问题中,利用概率统计知识可以获得合理的决策,但是要求出随机变量的分布函数并不是那么简单。实际上,我们只需要知道随机变量的某些重要特征也可以做出合理的决策,而数学期望则是随机变量中最重要的特征数。近年来,不管是在自然界还是社会生活,数学期望在各种决策中频繁“亮相”,并为决策者作出最优决策提供了重要的理论依据。 1.2数学期望的源来 数学期望源于一个赌博分本的问题。 17世纪中叶一位赌徒向法国数学家帕斯卡请教让他困惑许久的了一个摊分赌本的问题:甲乙赌徒相约,用硬币赌博,谁先赢三局就可以获得全部赌本100法郎,当甲赢了两局,乙赢了一局时,由于某些原因被迫停止赌博,问应该怎样分配赌本比较合理? 帕斯卡做出了如下的回答:当甲赢两局乙只赢了一局的时候。最多再玩两局就

数学期望和方差的应用

2QQ2±:箜!塑工 -学术-理论现代衾案一 数学期望和方差的应用 陈奕宏张鑫 (武警广州指挥学院广东广州510440) 摘要:本文主要讨论随机变量的数学期望和方差的性质,利用随机变量的对称性可简化求数学期望和方差的计算过程: 关键词:对称性数学期望方差 在教学过程中,由于很多同学对概牢论巾的定义和性质认识不深刻,冈此对概率论巾的问题存在许多认识误区,进一步影响了计算、证明能力。 性质l对随机变量x和y,则有E(nn簟Ⅸ+Ey①性质2设随机变量x和y相互独立,贝咿育层陇n=Ex?Ey②定义l设X是一个随机变量,若EI肛删Iz存在,则称其为X的方差,记为Dx。即 Dx=坦Ix—Ex】2③显然可得:们,-ElX一以】2 =E瞄2—2xEX+(踊2] =麟z一(删):④性质3设随机变量x和y相互独立,则有层孵y:净E孵?Ey2⑤证明:设随机变量X和y的联合分布密度为m砂),|jl《为x和y相互独立,有 “r,y)=^(掌)。,r(y) .’.E(x2y2)=J一。J一。工2y2“r,j,)d膏咖 =eex2y2以(r)厂r(y)如咖 =Cx2^(工)如Cy2加)咖 :Ex2E】,2⑥性质4设随机变量x和l,,n和西为常数,则有E(口X2+6y2)=n露x2+6曰y2(D证明:设随机变量x和l,的联合分布密度为厂(x,j,),则有 E似x2+6y2)=J+。J一。(口工2+6j,2)“r,j,)d_咖 =e仁nx2flx,,Mxdy+e仁b矿fIx,yⅪxdy ,+∞,+∞r十o,+∞ =n\一。\一亭2fIx,如dxd,+b1.。1一。旷fIx,,Ⅺxdy =口f)2【e№j,)dy】dr拍ej,2【C“础)dx协 =口仁量2【e,(Ⅵ)dyJdx柏ej,2【C,(础)dx坳 =n尽2以(r)dy拍D2加)dy =口EX2+西Ey2 掣狮,=∥茗引m,=驴㈣’翟引 求E伍2+y2)。 解:E(x2+y2)=Ex2+Eyz(南公式⑦) =I:一4r3出+炒.12y2(1+y)咖《 性质5设随机变量x和y卡H互独立,则有 D(x的=Dx?Dy+(E幻2?Dl,+(层y)2?Dx⑧ 证明:ODⅨy)=层(xy)2一IE(xy)J2 =E(X2y2)一(EX)2(E】,)2 南公式⑤,所以 D(Xn=EX2Ey2一(EX)2(E”2 =曰x2El,2一(E的2EP+(E的2(El,)2一(E抑2僻y)2 =【层x2一(EX)2】EP+(Ex)2【(E】,)2一(日y)2】 矗剪陋妒+(雕净汗钮曙(联)辚苦帮 =n碰Iy+(EY)2Dy+(Ey)2蹦 显然,若随机变量x和y独立,则可得D(xn>Dx?Dy⑨例设随机变量x和l,相互独立,均服从Ⅳ(O,1)分布,f=x—y,叩=xy,试求1)D叩;2)p£。。 解:1)方法一 OX和y相互独立 .‘.D即=D(xy)=E(xl,)2一【层(x聊】2 =E(r—l,)2一(以E的2 =E舻EP(由公式⑤) =【脚“(E的2】【Dy;(E玢2】=1 方法二 0X和y相互独立 .?.Dq=D(x】,)=似Dy+(E柳2Dy+(目】,)2Dx=l(由公式⑧)2)op。:』业 q厩丽 又OcoV(f,'7)=层【(f—Ef)('7一露77)j =层(x2y)一E(xP)(把f=x—y,’7=xy代人) 曲(南x与r鹃对称性)综上所述,本文主要讨论连续型随机变量的数字特征的性质,结合对随机变量的对称性可解决存概率论巾一些常见的求数[字特征的问题。 参考文献: …盛骤等编概率论与数理统计高等教育出版社2001.12口 现代企业教育MODERNENTERPRISEEDUCATION117 万方数据

条件数学期望及其应用

实用文档 文案大全条件数学期望及其应用 The ways of finding the inverse matrix and it's application Abstract:The passage lists the ways of calculating the first type of curvilinear integral,and discusses it's application in geometry and in physical. Keywords:Curvilinear integral;Continuous;Integrable; Lateral area. 0前言 在曲线积分中,被积函数可以是标量函数或向量函数.积分的值是路径各 点上的函数值乘上相应的权重(一般是弧长,在积分函数是向量函数时,一般是函数值与曲线微元向量的标量积)后的黎曼和.带有权重是曲线积 分与一般区间上的积分的主要不同点.物理学中的许多公式在推广之后都 是以曲线积分的形式出现.曲线积分是物理学中重要的工具. 1条件数学期望 1.1条件数学期望的定义 定义1设X是一个离散型随机变量,取值为},,{21?xx,分布列 为},,{21?pp.又事件A有0)(?AP,这时 ,2,1,)()}({)|(|??????iAPAxXPAxXPP iiAi

为在事件A发生条件下X的条件分布列.如果有 ???Aiii px| 则称 ??. Aiii pxAXE|]|[ 为随机变量X在条件A下的条件数学期望(简称条件期望). 定义2设X是一个连续型随机变量,事件A有0)(?AP,且X在条件A 之 实用文档 ??????dxAXxf)|(称为随机变量文案大全下的条件分布密度函数为)|(Axf.若 X在条件A下的条件数学期望. 定义3设),(YX是离散型二维随机变量,其取值全体为 },2,1,),,{(??jiyx ii, 联合分布列为 ?,2,1,),,(????jiyYxXPp iiij, 在i yY?的条件下X的条件分布列为?,2,1),|(|????iyYxXPp iiji若 ???jiii px|, 则 ??? jiiii pxyYXE|]|[ 为随机变量X在i yY?条件下的条件数学期望. 定义4 设),(YX是连续型二维随机变量,随机变量X在yY?的条件下的条件密度函数为)|(|yxp YX,若 ??????dxyxpx YX)|(|, 则称

数学期望的含义

数学期望的含义是什么? 06月282014年 【知乎用户的回答(24票)】: 简单明了地告诉你结论:期望就是均值。 首先需要明确的一点是:只有随机变量才有期望值。 何谓随机变量?简单地说,一个变量 ,它的取值是随机遇而定的,即我们不能预先知道它取值多少。所以自然地,面对一个如此奇怪充满未知的东西,我们希望用某些工具来刻画它,对它的性质有一点点了解,比如用分布函数,比如用期望方差偏度峰度等诸多统计量。 期望定义: 连续型随机变量: 离散型随机变量: 从数学上来说,这两个奇怪的公式实际上就是求加权平均数。从这个定义告诉我们,期望就是平均数,是随机变量各个取值对取这个值的概率的加权平均。如果我们知道 的分布函数,可以通过这个公式算出来它的期望。 但是现实情况往往不会那么好,对于一个随机变量 ,我们经过很多次观察,获得了一组观察值 ,并且我们对于它的分布不了解,不能直接计算出来期望。所以换一个方法“估计”它的期望。它的期望是多少?它的平均值是多少?我们对这个随机变量的“期待”是多少?在统计学上,这都是一个问题。用同样的思路,那就是取平均了, ,在统计学中,这个样本均值对随机变量期望是无偏估计,即当n充分大的时候,这个估计会和期望“非常非常接近”。 再提到你的例子,扔一个均匀硬币,正面+1分反面-1分,则数学“预期”是0。 设一个随机变量 表示丢硬币的结果,这是一个离散的随机变量,取1和-1的概率都是0.5。其实我们已经知道 的分布了,可以按照公式直接求期望。 但是为了解释清楚什么叫期望,我们还按照上述第二种情况来算。 我们丢了 次硬币,得到了一组观察值 ,这里面有1有-1,肯定没有0。 但是随着

数学期望

概率论与数理统计 数学期望在经济中的应用 班级:电子信息工程2班 小组成员:李建辉201208102069 刘廷201208102068 姚立志201208102045 刘卫超201208102057 李艳东201208102064 贾辉201208102081 指导教师:边学军 时间:2013~2014第二学期

数学期望在经济中的应用 [摘要] 文章通过实例介绍了数学期望在减少工作量、选择最优存储量、选择最佳进货量、总利润最大问题等方面的应用,说明了数学期望在经济决策中的重要作用.[关键词] 数学期望经济决策应用 概率论是从数量上研究随机现象统计规律性的学科,而随机变量的分布函数能够全面地反映随机变量的统计规律性.但在诸多的经济管理或决策工作中,一方面由于求出随机变量的分布函数并非易事,而且对于某些实际问题来说,并不需要对随机变量进行全面的描写,只需知道能够反映随机变量的某些重要的数字特征即可.数学期望是反映随机变量总体取值的平均水平的一个重要的数字特征,它在经济决策工作中有着广泛的应用,为决策者做出最优决策提供重要的理论依据。 一、数学期望的概念 定义1(1)设离散型随机变量X的概率分布为P{X=xk}=pk,k=1,2,…,若级数绝对收敛,则称级数为离散型随机变量X的数学期望(或均值),记为EX,即。若级数发散,则称随机变量X的数学期望不存在;(2)设连续型机变量X的概率密度函数为f(x),若积分绝对收敛,则称其为连续型随机变量X的数学期望或均值,记为E(X), 定义2设Y为随机变量X的函数:Y=g(X)(g是连续函数),(1)X是离散型随机变量,分布律为P{X=xk}=pk,k=1,2,…,若级数绝对收敛,则有(2)X是连续型随机变量,概率密度函数为f(x),若积分绝对收敛,则有 二、数学期望的应用 1.期望值问题 例1一商场共有16层楼,设有10位顾客在一层进入电梯,每位乘客在楼上任何一层出电梯是等可能的,且各乘客是否出电梯相互独立,求直到电梯中的乘客出空为止电梯需停次数X的期望值。 解:引入计数随机变量 则有X=X2+X3+…+X16。 由题意,每一个人在任何一层出电梯的概率为1/15,若10个人同时不在第i 层出电梯,那么电梯在该层就不停,而此时的概率为 因此,进而 2.减少工作量 例2某商场对员工(N人)进行体检,其中普查某种疾病需要逐个验血,一般来说,若血样呈阳性,则有此种疾病;呈阴性则无此疾病.逐个验血需要N次,

数学期望在生活中的应用原文

一、数学期望的定义及性质 (一)数学期望分为离散型和连续型 1、离散型 离散型随机变量的一切可能的取值Xi与对应的概率Pi(=Xi)之积的和称为该离散型随机变量的数学期望(设级数绝对收敛),记为E(X)。数学期望是最基本的数学特征之一。它反映随机变量平均取值的大小。又称期望或均值。如果随机变量只取得有限个值,称之为离散型随机变量的数学期望。它是简单算术平均的一种推广,类似加权平均。E(X) = X1*P(X1)+ X2*P(X2)+ …… + Xn*P(Xn)。X1,X2,X3,……,Xn 为这几个数据,P(X1),P(X2),P(X3),……,P(Xn)为这几个数据的概率函数。在随机出现的几个数据中,P(X1),P(X2),P(X3),……,P(Xn)概率函数就理解为数据X1,X2,X3,……,Xn出现的频率f(Xi),则:E(X) = X1*P(X1)+ X2*P(X2)+ …… + Xn*P(Xn) = X1*f1(X1) + X2*f2(X2)+ …… + Xn*fn(Xn)。 2、连续型 连续型则是:设连续性随机变量X的概率密度函数为f(X),若积分绝对收敛,则称积分的值为随机变量的数学期望,记为E(X)。若随机变量X的分布函数F(X)可表示成一个非负可积函数f(X)的积分,则称X为连续随机变量,f(X)称为X的概率密度函数(分布密度函数)。能按一定次序一一列出,其值域为一个或若干个有限或无限区间,这样的随机变量称为连续型随机变量。 (二)数学期望的常用性质 1.设X是随机变量,C是常数,则E(CX)=CE(X); 2.设X,Y是任意两个随机变量,则有E(X+Y)=E(X)+E(Y); 3.设X,Y是相互独立的随机变量,则有E(XY)=E(X)E(Y)。 对于第一条性质,假设E(X)你的考试成绩,C为你们全班人数,则你们全班总分的期望等于全班人数乘以个人的期望,这很好理解。 对于第二条性质,E(X)为你的考试成绩,E(Y)是小明的考试成绩,你和他成绩总和的期望当然等于你和他的期望值和。 对于第三条性质,我们一再强调是独立的,也就是相互没有关联,有关联是肯定是不是不等的。

概率统计与数学期望

龙源期刊网 https://www.doczj.com/doc/8612389819.html, 概率统计与数学期望 作者:汪元忠 来源:《课程教育研究·学法教法研究》2018年第36期 【摘要】随着人类社会的进步,科学技术的发展,经济全球化的日益进程,数学在生活 中的应用越来越广,生活中的数学无处不在.而数学中的一个非常重要的分支——概率统计, 在众多领域内扮演着越来越重要的角色,取得越来越广泛的应用。正如英国逻辑学家和经济学家杰文斯所说:概率论是“生活真正的领路人,如果没有对概率的某种估计,我们就寸步难行,无所作为”。 【关键词】概率统计数学期望 【中图分类号】G623.5 【文献标识码】A 【文章编号】2095-3089(2018)36-0117-01 数学期望在解数学题和实际生活中的一些应用,通过围绕数学期望在证明一些数学不等式、分析彩票中奖概率、医学普查及投资等实际问题中的应用,进一步揭示概率统计中数学期望与数学本身及实际生活的密切联系,为应用概率知识解决实际问题,数学模型的建立,学科知识的迁移奠定一定的理论基础。概率统计的分支学科—数学期望的应用尤为广泛,随着科学技术的发展与计算机的普及,它已广泛地应用于各行各业,成为研究自然科学,社会现象,处理工程和公共事业的有力工具,下面浅谈数学期望在实际生活中的一些应用: 数学期望在商品出售获利方面的应用:按节气出售的某种节令商品,每售出1斤可获利a 元,过了节气处理剩余的这种商品,每售出1斤净亏损b元。设商店在季度内这种商品的销量是一随机变量,在区间内服从均匀分布。为使商店所获利润的数学期望最大,问该商店应进多少货? 分析如下:设t表示进货数,进货t所获利润记为Y,则Y是随机变量, 令=0,得驻点t=由此可知,该店应进公斤商品,才能使利润的数学期望最大。 数学期望在医学普查中的应用:某地区的群众患有肝炎的概率为0.004左右,假若要对该地区5000人经行肝炎感染的普查,问用分组检验方法是否比逐个检查减少了次数? 分析如下:设将这5000人分成5000/K组,每组k人,每人所需检验的次数为随机变量,则的概率分布为: 每人平均所需检验次数的期望为:

相关主题
文本预览
相关文档 最新文档