当前位置:文档之家› 11条件数学期望(北大)

11条件数学期望(北大)

数学期望的计算及应用

数学期望的计算及应用 数学与应用数学111 第四小组 引言: 我们知道,随机变量的概率分布是随机变量的一种最完整的数学描述,而数学期望又是显现概率分布特性的最重要的特征数字之一。因此,掌握数学期望的计算并应用他来分析和解决实际问题显得尤为重要。在学习了概率论以后,我们计算数学期望一般有三种方法:1.从定义入手,即∑∞ == 1 )(k k k p x X E ;2. 应用随机变量函数的期望公式 ∑∞ ==1 )())((k k k p x q x q E 3. 利用期望的有关性质。但是还是会碰到许多麻烦,这里我们将 介绍一些解决这些难题的简单方法。在现实生活中,许多地方都需要用到数学期望。如果我们可以在学会怎么解决数学期望的计算之后,将数学期望应用到现实生活中。就可以解决许多问题,例如农业上,经济上等多个方面难以解决的难题。 下面就让我们来看看,除了最常用的三种计算方法之外还有哪些可以计算较为棘手的数学期望的方法。 1. 变量分解法 ] 1[ 如果可以把不易求得的随机变量X 分解成若干个随机变量之和,应用)(...)()()...(2121n n X E X E X E E E X E ++=++再进行求解得值, 这种方法就叫做变量分解法。这种方法化解了直接用定义求数学期望时的难点问题,因为每一种结果比较好计算,分开来计算便可以比较简单的获得结果。 例题1 : 从甲地到乙地的旅游车上载有20位旅客,自甲地开出,沿途有10个车站,如到达一个车站没有旅客下车,就不停车,以X 表示停车次数,求E(X).(设每位旅客在各个车站下车是等可能的) 分析 : 汽车沿途10站的停车次数X 所以可能取值为0,1,….,10,如果先求出X 的分布列,再由定义计算E(X),则需要分别计算{X=0},{X=1},…,{X=10}等事件的概率,计算相当麻烦。注意到经过每一站时是否停车,只有两种可能,把这两种结果分别与0,1对应起来,映入随机变量i X 每一种结果的概率较易求得。把X 分解成若干个随机变量i X 之和,然后应用公式)(...)()()...(2121n n X E X E X E E E X E ++=++就能最终求出E(X)。

条件数学期望及其应用

条件数学期望及其应用 The ways of finding the inverse matrix and it ’s application Abstract :The passage lists the ways of calculating the first type of curvilinear integral,and discusses it ’s application in geometry and in physical. Keywords :Curvilinear integral;Continuous;Integrable; Lateral area. 0前言 在曲线积分中,被积函数可以是标量函数或向量函数.积分的值是路径各点上的函数值乘上相应的权重(一般是弧长,在积分函数是向量函数时,一般是函数值与曲线微元向量的标量积)后的黎曼和.带有权重是曲线积分与一般区间上的积分的主要不同点.物理学中的许多公式在推广之后都是以曲线积分的形式出现.曲线积分是物理学中重要的工具. 1条件数学期望 1.1条件数学期望的定义 定义1 设X 是一个离散型随机变量,取值为},,{21 x x ,分布列为 },,{21 p p .又事件A 有0)( A P ,这时 ,2,1,) () }({)|(| i A P A x X P A x X P P i i A i 为在事件A 发生条件下X 的条件分布列.如果有 A i i i p x | 则称 A i i i p x A X E |]|[ . 为随机变量X 在条件A 下的条件数学期望(简称条件期望). 定义2 设X 是一个连续型随机变量,事件A 有0)( A P ,且X 在条件A 之

数学期望在生活中的应用

数学期望在生活中的应用 王小堂保亭中学 摘要:数学期望是随机变量的重要数字特征之一,也是随机变量最基本的特征之一。通过几个例子,阐述了概率论与数理统计中的教学期望在生活中的应用,文章内容包括决策、利润、彩票、医疗等方面的一些实例,阐述了数学期望在经济和实际问题中颇有价值的应用。 关键词:随机变量,数学期望,概率,统计 数学期望(mathematical expectation)简称期望,又称均值,是概率论中一项重要的数字特征,在经济管理工作中有着重要的应用。本文通过探讨数学期望在经济和实际问题中的一些简单应用,以期起到让学生了解知识与人类实践紧密联系的丰富底蕴,切身体会到“数学的确有用”。 随机变量的数学期望值: 在概率论和统计学中,一个离散性随机变量的期望值(或数学期望、或均值,亦简称期望)是试验中每次可能结果的概率乘以其结果的总和。换句话说,期望值是随机试验在同样的机会下重复多次的结果计算出的等同“期望”的平均值。需要注意的是,期望值并不一定等同于常识中的“期望”——“期望值”也许与每一个结果都不相等。(换句话说,期望值是该变量输出值的平均数。期望值并不一定包含于变量的输出值集合里。) 单独数据的数学期望值算法: 对于数学期望的定义是这样的。数学期望 E(X) = X1*p(X1) + X2*p(X2) + …… + Xn*p(Xn) X1,X2,X3,……,Xn为这几个数据,p(X1),p(X2),p(X3),……p(Xn)为这几个数据的概率函数。在随机出现的几个数据中p(X1),p(X2),p(X3),……p(Xn)概率函数就理解为数据X1,X2,X3,……,Xn出现的频率f(Xi).则:E(X) = X1*p(X1) + X2*p(X2) + …… + Xn*p(Xn) = X1*f1(X1) + X2*f2(X2) + …… + Xn*fn(Xn) 很容易证明E(X)对于这几个数据来说就是他们的算术平均值。 1 决策方案问题 决策方案即将数学期望最大的方案作为最佳方案加以决策。它帮助人们在复杂的情况下从可能采取的方案中做出选择和决定。具体做法为:如果知道任一方案Ai(i=1,2,…m)在每个影响因素Sj(j=1,2,…,n)发生的情况下,实施某种方案所产生

条件数学期望及其应用

实用文档 文案大全条件数学期望及其应用 The ways of finding the inverse matrix and it's application Abstract:The passage lists the ways of calculating the first type of curvilinear integral,and discusses it's application in geometry and in physical. Keywords:Curvilinear integral;Continuous;Integrable; Lateral area. 0前言 在曲线积分中,被积函数可以是标量函数或向量函数.积分的值是路径各 点上的函数值乘上相应的权重(一般是弧长,在积分函数是向量函数时,一般是函数值与曲线微元向量的标量积)后的黎曼和.带有权重是曲线积 分与一般区间上的积分的主要不同点.物理学中的许多公式在推广之后都 是以曲线积分的形式出现.曲线积分是物理学中重要的工具. 1条件数学期望 1.1条件数学期望的定义 定义1设X是一个离散型随机变量,取值为},,{21?xx,分布列 为},,{21?pp.又事件A有0)(?AP,这时 ,2,1,)()}({)|(|??????iAPAxXPAxXPP iiAi

为在事件A发生条件下X的条件分布列.如果有 ???Aiii px| 则称 ??. Aiii pxAXE|]|[ 为随机变量X在条件A下的条件数学期望(简称条件期望). 定义2设X是一个连续型随机变量,事件A有0)(?AP,且X在条件A 之 实用文档 ??????dxAXxf)|(称为随机变量文案大全下的条件分布密度函数为)|(Axf.若 X在条件A下的条件数学期望. 定义3设),(YX是离散型二维随机变量,其取值全体为 },2,1,),,{(??jiyx ii, 联合分布列为 ?,2,1,),,(????jiyYxXPp iiij, 在i yY?的条件下X的条件分布列为?,2,1),|(|????iyYxXPp iiji若 ???jiii px|, 则 ??? jiiii pxyYXE|]|[ 为随机变量X在i yY?条件下的条件数学期望. 定义4 设),(YX是连续型二维随机变量,随机变量X在yY?的条件下的条件密度函数为)|(|yxp YX,若 ??????dxyxpx YX)|(|, 则称

高数教案第十章重积分

高数教案第十章重积分 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

高等数学教案

第十章 重积分 §10-1 二重积分的概念与性质 一、二重积分的概念 (一)引例 1. 曲顶柱体的体积 设有一空间立体Ω,它的底是xoy 面上的有界区域D ,它的侧面是以D 的边界曲线为准线,而母线平行于z 轴的柱面,它的顶是曲面(.)z f x y =。 当(,)x y D ∈时,(,)f x y 在D 上连续且(,)0f x y ≥,以后称这种立体为曲顶柱体。 曲顶柱体的体积V 可以这样来计算: (1) 用任意一组曲线网将区域D 分成n 个小区域1σ?,2σ?, ,n σ?,以这 些小区域的边界曲线为准线,作母线平行于z 轴的柱面,这些柱面将原来的曲顶柱体Ω分划成n 个小曲顶柱体1?Ω,2?Ω, ,n ?Ω。 (假设i σ?所对应的小曲顶柱体为i ?Ω,这里i σ?既代表第i 个小区域,又表示它的面积值, i ?Ω既代表第i 个小曲顶柱体,又代表它的体积值。)

图10-1-1 从而 1n i i V ==?Ω∑ (将Ω化整为零) (2) 由于(,)f x y 连续,对于同一个小区域来说,函数值的变化不大。因此,可以将小曲顶柱体近似地看作小平顶柱体,于是 ?Ω??i i i i i i i f ≈?∈()()( )ξησξησ (以不变之高代替变高, 求i ?Ω的近似值) (3) 整个曲顶柱体的体积近似值为 V f i i i i n ≈=∑()ξησ?1 (4) 为得到V 的精确值,只需让这n 个小区域越来越小,即让每个小区域向某点收缩。为此,我们引入区域直径的概念: 一个闭区域的直径是指区域上任意两点距离的最大者。 所谓让区域向一点收缩性地变小,意指让区域的直径趋向于零。 设n 个小区域直径中的最大者为λ, 则 V f n i i i i =→=∑lim (),λξησ01 ? 2.平面薄片的质量 设有一平面薄片占有xoy 面上的区域D , 它在(),x y 处的面密度为(),x y ρ,这里(),0x y ρ≥,而且(),x y ρ在D 上连续,现计算该平面薄片的质量M 。

数学期望在生活中地应用原文

一、数学期望的定义及性质 (一)数学期望分为离散型和连续型 1、离散型 离散型随机变量的一切可能的取值Xi与对应的概率Pi(=Xi)之积的和称为该离散型随机变量的数学期望(设级数绝对收敛),记为E(X)。数学期望是最基本的数学特征之一。它反映随机变量平均取值的大小。又称期望或均值。如果随机变量只取得有限个值,称之为离散型随机变量的数学期望。它是简单算术平均的一种推广,类似加权平均。E(X) = X1*P(X1)+ X2*P(X2)+ …… + Xn*P(Xn)。X1,X2,X3,……,Xn 为这几个数据,P(X1),P(X2),P(X3),……,P(Xn)为这几个数据的概率函数。在随机出现的几个数据中,P(X1),P(X2),P(X3),……,P(Xn)概率函数就理解为数据X1,X2,X3,……,Xn出现的频率f(Xi),则:E(X) = X1*P(X1)+ X2*P(X2)+ …… + Xn*P(Xn) = X1*f1(X1) + X2*f2(X2)+ …… + Xn*fn(Xn)。 2、连续型 连续型则是:设连续性随机变量X的概率密度函数为f(X),若积分绝对收敛,则称积分的值为随机变量的数学期望,记为E(X)。若随机变量X的分布函数F(X)可表示成一个非负可积函数f(X)的积分,则称X为连续随机变量,f(X)称为X的概率密度函数(分布密度函数)。能按一定次序一一列出,其值域为一个或若干个有限或无限区间,这样的随机变量称为连续型随机变量。 (二)数学期望的常用性质 1.设X是随机变量,C是常数,则E(CX)=CE(X); 2.设X,Y是任意两个随机变量,则有E(X+Y)=E(X)+E(Y); 3.设X,Y是相互独立的随机变量,则有E(XY)=E(X)E(Y)。 对于第一条性质,假设E(X)你的考试成绩,C为你们全班人数,则你们全班总分的期望等于全班人数乘以个人的期望,这很好理解。 对于第二条性质,E(X)为你的考试成绩,E(Y)是小明的考试成绩,你和他成绩总和的期望当然等于你和他的期望值和。 对于第三条性质,我们一再强调是独立的,也就是相互没有关联,有关联是肯定是不是不等的。

数学期望在经济生活中的应用

数学期望在经济生活中的应用 【摘要】数学期望是随机变量的重要数字特征之一。本文通过探讨数学期望在决策、利润、委托代理关系、彩票等方面的一些实例,阐述了数学期望在经济和实际问题中的应用。 【关键词】随机变量数学期望经济应用 数学期望(mathematical expectation)简称期望.又称均值,是概率论中一项重要的数字特征.在经济管理工作中有着重要的应用。本文通过探讨数学期望在经济和实际问题中的一些简单应用,以期起到让学生了解知识与人类实践紧密联系的丰富底蕴,切身体会到“数学的确有用”。 一.决策方案问题 决策方案即将数学期望最大的方案作为最佳方案加以决策。它帮助人们在复杂的情况下从可能采取的方案中做出选择和决定。具体做法为:如果知道任一方案A(i=1,2,?,m)在每个影响因素S(j=1.2,?,n)发生的情况下,实施某种方案所产生的盈利值及各影响因素发生的概率,则可以比较各个方案的期望盈利,从而选择其中期望盈利最高的为最佳方案。 1.风险方案 假设某公司预计市场的需求将会增长。目前公司的员工都满负荷地工作着.为满足市场需求,公司考虑是否让员工超时工作或以添置设备的办法提高产量。假设公司预测市场需求量增加的概率为P,同时还有1-p的可能市 是合算的。然而现实是不知道哪种情况会出现,因此要比较几种方案获利的 期望大小。用期望值判断,有:E(A 1)=30(1-p)+34p,E(A 2 )=29(1-p)+42p, E(A 3)=25(1-p)+44p。事实上.若p=0.8,则E(A 1 )-33.2(万), E(A 2)=39.4(万),E(A 3 )=40.2(万),于是公司可以决定更新设备,扩大生产。 若p=O.5,则E(A 1)=32(万),E(A 2 )=35.5(万),E(A 3 )=34.5(万),此时公司 可决定采取员工超时工作的应急措施。由此可见,只要市场需求增长可能性在50%以上.公司就应采取一定的措施,以期利润的增长。 2.投资方案 假设某人用10万元进行为期一年的投资.有两种投资方案:一是购买股票:二是存入银行获取利息。买股票的收益取决于经济绝势,若经济形势

数学期望和方差的应用

2QQ2±:箜!塑工 -学术-理论现代衾案一 数学期望和方差的应用 陈奕宏张鑫 (武警广州指挥学院广东广州510440) 摘要:本文主要讨论随机变量的数学期望和方差的性质,利用随机变量的对称性可简化求数学期望和方差的计算过程: 关键词:对称性数学期望方差 在教学过程中,由于很多同学对概牢论巾的定义和性质认识不深刻,冈此对概率论巾的问题存在许多认识误区,进一步影响了计算、证明能力。 性质l对随机变量x和y,则有E(nn簟Ⅸ+Ey①性质2设随机变量x和y相互独立,贝咿育层陇n=Ex?Ey②定义l设X是一个随机变量,若EI肛删Iz存在,则称其为X的方差,记为Dx。即 Dx=坦Ix—Ex】2③显然可得:们,-ElX一以】2 =E瞄2—2xEX+(踊2] =麟z一(删):④性质3设随机变量x和y相互独立,则有层孵y:净E孵?Ey2⑤证明:设随机变量X和y的联合分布密度为m砂),|jl《为x和y相互独立,有 “r,y)=^(掌)。,r(y) .’.E(x2y2)=J一。J一。工2y2“r,j,)d膏咖 =eex2y2以(r)厂r(y)如咖 =Cx2^(工)如Cy2加)咖 :Ex2E】,2⑥性质4设随机变量x和l,,n和西为常数,则有E(口X2+6y2)=n露x2+6曰y2(D证明:设随机变量x和l,的联合分布密度为厂(x,j,),则有 E似x2+6y2)=J+。J一。(口工2+6j,2)“r,j,)d_咖 =e仁nx2flx,,Mxdy+e仁b矿fIx,yⅪxdy ,+∞,+∞r十o,+∞ =n\一。\一亭2fIx,如dxd,+b1.。1一。旷fIx,,Ⅺxdy =口f)2【e№j,)dy】dr拍ej,2【C“础)dx协 =口仁量2【e,(Ⅵ)dyJdx柏ej,2【C,(础)dx坳 =n尽2以(r)dy拍D2加)dy =口EX2+西Ey2 掣狮,=∥茗引m,=驴㈣’翟引 求E伍2+y2)。 解:E(x2+y2)=Ex2+Eyz(南公式⑦) =I:一4r3出+炒.12y2(1+y)咖《 性质5设随机变量x和y卡H互独立,则有 D(x的=Dx?Dy+(E幻2?Dl,+(层y)2?Dx⑧ 证明:ODⅨy)=层(xy)2一IE(xy)J2 =E(X2y2)一(EX)2(E】,)2 南公式⑤,所以 D(Xn=EX2Ey2一(EX)2(E”2 =曰x2El,2一(E的2EP+(E的2(El,)2一(E抑2僻y)2 =【层x2一(EX)2】EP+(Ex)2【(E】,)2一(日y)2】 矗剪陋妒+(雕净汗钮曙(联)辚苦帮 =n碰Iy+(EY)2Dy+(Ey)2蹦 显然,若随机变量x和y独立,则可得D(xn>Dx?Dy⑨例设随机变量x和l,相互独立,均服从Ⅳ(O,1)分布,f=x—y,叩=xy,试求1)D叩;2)p£。。 解:1)方法一 OX和y相互独立 .‘.D即=D(xy)=E(xl,)2一【层(x聊】2 =E(r—l,)2一(以E的2 =E舻EP(由公式⑤) =【脚“(E的2】【Dy;(E玢2】=1 方法二 0X和y相互独立 .?.Dq=D(x】,)=似Dy+(E柳2Dy+(目】,)2Dx=l(由公式⑧)2)op。:』业 q厩丽 又OcoV(f,'7)=层【(f—Ef)('7一露77)j =层(x2y)一E(xP)(把f=x—y,’7=xy代人) 曲(南x与r鹃对称性)综上所述,本文主要讨论连续型随机变量的数字特征的性质,结合对随机变量的对称性可解决存概率论巾一些常见的求数[字特征的问题。 参考文献: …盛骤等编概率论与数理统计高等教育出版社2001.12口 现代企业教育MODERNENTERPRISEEDUCATION117 万方数据

数学期望的计算方法及其应用

数学期望的计算方法及其应用

数学期望的计算方法及其应用 摘要:在概率论中,数学期望是随机变量一个重要的数字特征,它比较集中的反映了随机变量的某个侧面的平均性,而且随机变量的其他数字特征都是由数学期望来定义的,因此对随机变量的数学期望的计算方法的研究与探讨具有很深的实际意义。本论文着重总结了随机变量的数学期望在离散型随机变量分布与连续型随机变量分布下的一些常用的计算方法,如利用数学期望的定义和性质,利用不同分布的数学期望公式等等,并通过一些具体的例子说明不停的计算方法在不同情况下的应用,以达到计算最简化的目的。本文还通过介绍了一些随机变量数学期望的计算技巧,并探讨了各种简化计算随机变量数学期望的方法,利用一些特殊求和与积分公式,利用数学期望定义的不同形式,利用随机变量分布的对称性、重期望公式以及特征函数等,并通过例题使我们更加了解和掌握这些计算技巧,已达到学习该内容的目的。 关键词:离散型随机变量连续型随机变量数学期望计算方法 ABSTRACT:

第一节离散型随机变量数学期望的计算方法及应用1.1利用数学期望的定义,即定义法[1] 定义:设离散型随机变量X分布列为 则随机变量X的数学期望E(X)=)( 1i n i i x p x ∑=

注意:这里要求级数)( 1i n i i x p x ∑ = 绝对收敛,若级数 []2 例1 某推销人与工厂约定,永川把一箱货物按期无损地运到目的地可得佣金10元,若不按期则扣2元,若货物有损则扣5元,若既不按期又有损坏则扣16元。推销人按他的经验认为,一箱货物按期无损的的运到目的地有60﹪把握,不按期到达占20﹪,货物有损占10﹪,不按期又有损的占10﹪。试问推销人在用船运送货物时,每箱期望得到多少? 解设X表示该推销人用船运送货物时每箱可得钱数,则按题意,X的分布为 按数学期望定义,该推销人每箱期望可得= ) (X E10×0.6+8×0.2+5×0.1-6×0.1=7.5元1.2公式法 对于实际问题中的随机变量,假如我能够判定它服从某重点性分布特征(如二项分布,泊松

数学期望的计算方法及其应用概要

数学期望的计算方法及其应用 摘要:在概率论中,数学期望是随机变量一个重要的数字特征,它比较集中的反映了随机变量的某个侧面的平均性,而且随机变量的其他数字特征都是由数学期望来定义的,因此对随机变量的数学期望的计算方法的研究与探讨具有很深的实际意义。本论文着重总结了随机变量的数学期望在离散型随机变量分布与连续型随机变量分布下的一些常用的计算方法,如利用数学期望的定义和性质,利用不同分布的数学期望公式等等,并通过一些具体的例子说明不停的计算方法在不同情况下的应用,以达到计算最简化的目的。本文还通过介绍了一些随机变量数学期望的计算技巧,并探讨了各种简化计算随机变量数学期望的方法,利用一些特殊求和与积分公式,利用数学期望定义的不同形式,利用随机变量分布的对称性、重期望公式以及特征函数等,并通过例题使我们更加了解和掌握这些计算技巧,已达到学习该内容的目的。 关键词:离散型随机变量 连续型随机变量 数学期望 计算方法 ABSTRACT : 第一节 离散型随机变量数学期望的计算方法及应用 1.1 利用数学期望的定义,即定义法[1] 则随机变量X的数学期望E(X)= )(1 i n i i x p x ∑=

学期望不存在 [] 2 例1 某推销人与工厂约定,永川把一箱货物按期无损地运到目的地可得佣金10元,若不按期则扣2元,若货物有损则扣5元,若既不按期又有损坏则扣16元。推销人按他的经验认为,一箱货物按期无损的的运到目的地有60﹪把握,不按期到达占20﹪,货物有损占10﹪,不按期又有损的占10﹪。试问推销人在用船运送货物时,每箱期望得到多少? 按数学期望定义,该推销人每箱期望可得 =)(X E 10×0.6+8×0.2+5×0.1-6×0.1=7.5元 1.2 公式法 对于实际问题中的随机变量,假如我能够判定它服从某重点性分布特征(如二项分布,泊松分布,超几何分布等),则我们就可以直接利用典型分布的数学期望公式来求此随机变量的期望。 (1) 二点分布:X ~??? ? ??-p p 101 ,则()p X E = (2) 二项分布:),(~p n B X ,10 p ,则np X E =)( (3) 几何分布:)(~p G X ,则有p X E 1 )(= (4) 泊松分布:) (~λP X ,有λ=)(X E (5) 超几何分布: ),,(~M N n h X ,有N M n X E =)( 例2 一个实验竞赛考试方式为:参赛者从6道题中一次性随机抽取3道题,按要求独立完成题目.竞赛规定:至少正确完成其中2题者方可通过,已知6道备选题中参赛者甲有4题能正确分别求出甲、乙两参赛者正确完成题数的数学期望. 解 设参赛者甲正确完成的题数为X ,则X 服从超几何分布,其中 6,4,3N M n ===, 设参赛者乙正确完成的题数为Y ,则 )32,3(~B Y ,23 2 3)(=?==np Y E 1.3 性质法

高数教案第十章重积分

高等数学教案

第十章 重积分 §10-1 二重积分的概念与性质 一、二重积分的概念 (一)引例 1. 曲顶柱体的体积 设有一空间立体Ω,它的底是xoy 面上的有界区域D ,它的侧面是以D 的边界曲线为准线,而母线平行于z 轴的柱面,它的顶是曲面(.)z f x y =。

当(,) x y D ∈时,(,) f x y在D上连续且(,)0 f x y≥,以后称这种立体为曲顶柱体。 曲顶柱体的体积V可以这样来计算: (1) 用任意一组曲线网将区域D分成n个小区域1σ ?, 2 σ ?,, n σ ?,以这些小区域的边界曲线为准线,作母线平行于z轴的柱面,这些柱面将原来的曲顶柱体Ω分划成n个小曲 顶柱体 1 ?Ω, 2 ?Ω,, n ?Ω。 (假设 i σ ?所对应的小曲顶柱体为 i ?Ω,这里 i σ ?既代表第i个小区域,又表示它的面积值, i ?Ω既代表第i个小曲顶柱体,又代表它的体积值。) 图10-1-1 从而 1 n i i V = =?Ω ∑(将Ω化整为零) (2) 由于(,) f x y连续,对于同一个小区域来说,函数值的变化不大。因此,可以将小曲顶柱体近似地看作小平顶柱体,于是 ?Ω?? i i i i i i i f ≈?∈ ()() () ξησξησ (以不变之高代替变高, 求 i ?Ω的近似值) (3) 整个曲顶柱体的体积近似值为 V f i i i i n ≈ = ∑() ξησ ? 1 (4) 为得到V的精确值,只需让这n个小区域越来越小,即让每个小区域向某点收缩。为此,我们引入区域直径的概念: 一个闭区域的直径是指区域上任意两点距离的最大者。

数学期望及其应用

数学期望及其应用 Document serial number【KKGB-LBS98YT-BS8CB-BSUT-BST108】

本科生毕业论文 题目: 数学期望的计算方法与实际应用 专业代码: 070101 原创性声明 本人郑重声明: 所提交的学位论文是本人在导师指导下, 独立进行研究取得的成果. 除文中已经注明引用的内容外, 论文中不含其他人已经发表或撰写过的研究成果, 也不包含为获得聊城大学或其他教育机构的学位证书而使用过的材料. 对本文的研究做出重要贡献的个人和集体, 均已在文中以明确方式标明. 本人承担本声明的相应责任. 学位论文作者签名: 日期 指导教师签名: 日期 目录

摘要 数学期望简称期望,又称均值,是概率论中一项重要的数字特征,它代表了随机变量总体取值的平均水平。数学期望的涉及面非常之大,广泛应用于实际生活中的各个领域。在实际生活中,有许多问题都可以直接或间接的利用数学期望来解决。其意义是运用对实践中抽象出来的数学模型进行分析的方法,从而达到认识客观世界规律的目的,为进一步的决策分析等提供准确的理论依据。 本文从数学期望的内涵出发,介绍了数学期望的定义、性质,介绍了数学期望的几种计算方法并举以实例,通过数学期望在医学疾病普查、体育比赛和经济问题中的应用的探讨。特别是在经济问题方面,本文又详细分为免费抽奖问题、保险公司获利问题、决定生产批量问题、机器故障问题、最佳进货量问题和求职决策问题,试图初步说明数学期望在实际生活中的重要作用,几个例子将数学期望与实际问题结合,用具体实例说明利用数学期望方法解决实际问题的可行性,体现了数学期望在生活中的应用。 关键词:概率论与数理统计;数学期望;性质;计算方法;应用 Abstract Mathematical expectation or expectations, also known as average, is very important digital features in the theory of probability, and it represents the overall average value random variables. Mathematical expectation is very big, widely applied in all fields in actual life. In real life, there are a lot of problems can be directly or indirectly solved by using the mathematical expectation. Its meaning is to use mathematical model to carry on the analysis of practice of abstracting

高数 第十章线面积分习题和答案

第十章曲线积分曲面积分练习题 A 组 一.填空题 1. 设L 是 12 2 =+y x 上从)0,1(A 经)1,0(E 到)0,1(-B 的曲线段,则?L y dy e 2 = 2.设? MN 是从M(1,3) 沿圆 2)2()2(22=-+-y x 至点 )1,3(N 的半圆,则积分 ? ? +MN xdy ydx = 3. L 是从)6,1(A 沿6=xy 至点)2,3(B 的曲线段,则 ? ++L y x xdy ydx e )( = 4. 设L 是从)0,1(A 沿12 2 2 =+y x 至点2,0(B )的曲线段, 则 ? +L y x y x dy ye dx xe 2 22 = 5. 设L 是 2x y = 及 1=y 所围成的区域D 的正向边界,则 ?+L dx y x xy )(3 3 + dy y x x )(242+ = 6. 设L 是任意简单闭曲线,b a ,为常数,则? + +L bdy adx )( = 7. 设L 是xoy 平面上沿逆时针方向绕行的简单闭曲线,且9)34()2(=++-? dy y x dx y x L ,则L 所围成的 平面区域D 的面积等于 8. 常数 k = 时, 曲线积分? +L dy x kxydx 2 与路径无关。 9.设是球面 1222=++z y x ,则对面积的曲面积分 ?? ∑ ++ds z y x 222 = 10.设L 为)0,0(o , )0,1(A 和)1,0(B 为顶点的三角形围成的线, 则对弧长的曲线积分? L ds = 11. 设L 是从点)1,1(到)3,2(的一条线,则 ?-++L dy y x dx y x )()(= 12. 设L 是圆周 t a x cos =, t a y sin = )20(π≤≤t ,则 ? +L dS y x 322)(= 13. 设为曲面2 2 2 2 a z y x =++, 则??∑ dS z y x 2 22= 二、选择题 1.设→ → +=j y x Q i y x P A ),(),(,D y x ∈),(且P ,Q 在域D 内具有一阶连续偏导数,又L :? AB 是D 内任一曲线,则以下四个命题中,错误的是( )

§条件数学期望和条件方差

§2.6条件分布与条件数学期望 一、条件分布 我们知道随机变量的分布列全面地描述了随机变量的统计规律,如果要同 时研究两个随机变量,就需要他们的联合分布列,设二维随机变量()的可 能取值为()i.j=1.2…,为了计算联合分布列,利用乘法公式: 其中是表示在“”的条件下””的条件概率,常常记作 j=1.2…容易验证这时有 1) i=1.2… 2) 这说明具有分布列的两个性质, 事实上因而确是一个分布列,它描述了在””的条件 下,随机变量的统计规律,当然一般来说这个分布列与原来的分布列 不同,称为条件分布列。 如果()的联合分布列已知,则边际分布列为: 从而 由对称性,同时还有 反过来,如果已知,(或,)也可求得联合分布列 。 设与相互独立 显然当与相互独立时,。 二、条件数学期望 既然是一个分布列,当然可以对这个分布列求数学期望; 1、定义 定义:设随机变量在“”条件下的条件分布列为,

又,则称为在“”条件下的条件数学期望,简称条件期望,记作。 例1:某射手进行射击,每次击中目标的概率为p(0

数学期望理论及其应用

目录 1.摘要 (2) 2.数学期望理论简述 (3) 3.数学期望理论的应用 (5) 3.1在证明等式和不等式中的应用 (5) 3.2在投资理财问题中的应用 (7) 3.3在天气预测问题中的应用 (8) 3.4在求职决策问题中的应用 (8) 3.5在委托代理问题中的应用 (9) 3.6在法律纠纷问题中的应用 (10) 4.结语 (11) 5.参考文献 (12)

数学期望理论及其应用 吴庆安,合肥师范学院 摘要:数学期望是数学概率统计中一个重要的数字特征,在研究理论和解决实际问题方面有着广泛的应用。本文通过列举一些理论上和现今实际生活中相关的问题,同时利用数学期望的相关理论进行解决,从而达到理论联系实际的目的。 关键词:概率统计;数学期望;决策 The Mathematic Expectation Theory and its Application Wu Qing An,He Fei Teacher’s College Abstract:The mathematic expectation is an important digital characteristic in the probability statistics, which has the widespread application in the fundamental research and the actual problem solution aspect. This article through enumerates some theoretically the question which is related with the nowadays practical life, simultaneously carries on the solution using mathematic expectation's correlation theories, thus achieves the apply theory to reality the goal. Key words:Probability statistics;Mathematic expectation;Decision-making

简述数学期望的性质及其应用

编号:08005110111 南阳师范学院2012届毕业生 毕业论文(设计) 题目:简述数学期望的性质及其应用 完成人:xxx 班级:2008-01 学制:4年 专业:数学与应用数学 指导教师:xxx 完成日期:2012-03-31

目录 摘要 (1) 关键词 (1) 0引言 (1) 1 数学期望的定义 (1) 2 数学期望的性质 (1) 2.1一维随机变量数学期望的性质 (1) 2.2多维随机变量数学期望的性质 (3) 3数学期望的应用 (5) 3.1数学期望在农业中的应用 (5) 3.2数学期望在生活中的应用 (7) 3.3数学期望在经济中的应用 (9) 3.4数学期望在数学中的应用 (11) 参考文献 (12) Abst ract (12)

简述数学期望的性质及其应用 作者:xxx 指导老师:xxx 摘要:在概率论及数理统计中,数学期望是随机变量最重要的数字特征之一,许多随机变量的分布都与他的期望有关,文章解析了数学期望在日常生活中的应用,如求职决策问题,投资问题,彩票问题等, 从而不断激发学生学习数学的积极性和主动性,让学生在兴趣中学习探索,并应用于生活,让数学改变生活. 关键词:随机变量;风险概率;数学期望 0引言 概率论同其他数学分支一样,是在一定的社会条件下,通过人类 的社会实践和生产活动发展起来的一种智力积累.今日的概率论被广 泛应用于各个领域,已成为一棵参天大树,枝繁叶茂,硕果累累.人 类认识到随即现象的存在是很早的,从太古时代起,估计各种可能性 就一直是人类的一件要事.早在古希腊,哲学家就已经注意到必然性 和偶然性问题;我国春秋时代也已有可考词语(辞海);即使提到数 学家记事日程上的可考记载,也至少可推到中世纪.数学期望是概率 论早期发展中就已产生的一个概念,当时研究的概率问题大多于赌博 有关.通过对数学期望定义和性质的深刻理解和领悟,明白了数学期 望在当今乃至未来的重要作用。列举一些生产和生活实际中具有重要 指导意义的问题,加深对数学期望的性质及其应用的理解,对于学生 学习数学期望具有启发意义,结合生活实际和当今金融社会动荡不安 的情形,运用数学期望的性质综合分析,解决问题. 1数学期望的定义 数学期望是最基本的数学特征之一,它反映随即变量平均取值的 大小,又称期望或均值,随即变量可分为连续型随即变量和离散型随 即变量,其定义如下: 广义定义:一次随机抽样中所期望的某随机变量的取值.

(完整版)高等代数(北大版)第10章习题参考答案

第十章双线性函数与辛空间 1、设V是数域P上的一个三维线性空间,ε1,ε2,ε3是它的一组基,f是V上的 一个线性函数,已知 f (ε1+ε3)=1,f (ε2-2ε3)=-1,f (ε1+ε2)=-3 求f (X 1ε 1 +X 2 ε 2 +X 3 ε 3 ). 解因为f是V上线性函数,所以有 f (ε1)+ f (ε3)=1 f (ε2)-2 f (ε3)=-1 f (ε1)+f (ε2)=-3 解此方程组可得 f (ε1)=4,f (ε2)=-7,f (ε3)=-3 于是 f (X 1ε 1 +X 2 ε 2 +X 3 ε 3 ).=X 1 f (ε1)+X2 f (ε2)+X3 f (ε3) =4 X 1 -7 X 2 -3 X 3 2、设V及ε1,ε2,ε3同上题,试找出一个线性函数f ,使 f (ε1+ε3)=f (ε2-2ε3)=0, f (ε1+ε2)=1 解设f为所求V上的线性函数,则由题设有 f (ε1)+ f (ε3)=0 f (ε2)-2 f (ε3)=0 f (ε1)+f (ε2)=1 解此方程组可得 f (ε1)=-1,f (ε2)=2,f (ε3)=1 于是?a∈V,当a在V的给定基ε1,ε2,ε3下的坐标表示为 a= X 1ε 1 +X 2 ε 2 +X 3 ε 3 时,就有 f (a)=f (X 1ε 1 +X 2 ε 2 +X 3 ε 3 )

= X 1 f (ε1)+X 2 f (ε2 )+X 3 f (ε 3 ) =-X 1+2 X 2+ X 3 3、 设ε1,ε 2 ,ε 3 是线性空间V 的一组基,f1,f2,f3是它的对偶基,令 α1=ε1-ε 3 ,α2=ε1+ε 2-ε 3,α3=ε 2+ε 3 试证:α1,α2,α3是V 的一组基,并求它的对偶基。 证: 设 (α1,α2,α3)=(ε1,ε2 ,ε 3 )A 由已知,得 A =110011111????????-?? 因为A ≠0,所以α1,α2,α3是V 的一组基。 设g1,g2,g3是α1,α2,α3得对偶基,则 (g1,g2,g3)=(f1,f2,f3)(A ˊ)1- =(f1,f2,f3)011112111-?? ??-????--?? 因此 g1=f2-f3 g2=f1-f2+f3 g3=-f1+2f2-f3 4.设V 是一个线性空间,f1,f2,…fs 是V * 中非零向量,试证:?α∈V ,使 fi(α)≠0 (i=1,2…,s) 证:对s 采用数学归纳法。 当s =1时,f1≠0,所以?α∈V ,使fi(α)≠0,即当s =1时命题成立。 假设当s=k 时命题成立,即?α∈V ,使fi(α)=αi ≠0 (i=1,2…,k) 下面证明s=k+1时命题成立。 若f 1k +(α)≠0,则命题成立,若f 1k +(α)=0,则由f 1k +≠0知,一定?β∈V 使f 1k +(β)=b,设fi(β)=di(i=1,2…,k),于是总可取数c ≠0,使 ai+cdi ≠0(i=1,2…,k) 令c γαβ=+,则γ∈V ,且

数学期望在生活中的运用

数学期望的性质及其在实际生活中的应用 ●数学期望的概念: 在概率论和统计学中,数学期望(mean)(或均值,亦简称期望)是试验中每次可能结果的概率乘以其结果的总和。是最基本的数学特征之一,它反映随机变量平均取值的大小。 ●数学期望的定义 E(X) = X1*p(X1) + X2*p(X2) + …… + Xn*p(Xn) X1,X2,X3,……,Xn为这几个数据,p(X1),p(X2),p(X3),……p(Xn)为这几个数据的概率函数。在随机出现的几个数据中p(X1),p(X2),p(X3),……p(Xn)概率函数就理解为数据X1,X2,X3,……,Xn出现的频率f(Xi). 则: E(X) = X1*p(X1) + X2*p(X2) + …… + Xn*p(Xn) = X1*f1(X1) + X2*f2(X2) + …… + Xn*fn(Xn) E(X)对于这几个数据来说就是他们的算术平均值。 ●数学期望的应用: 例一、某一彩票中心发行彩票10万张,每张2元。设头等奖1个,奖金1万元,二等奖2个,奖金各5千元;三等奖10个,奖金各1千元;四等奖100个,奖金各100元; 五等奖1000个,奖金各10元。每张彩票的成本费为0.3元,请计算彩票发行单位的创收利润。 E(X)=10000×+5000×+ 0 =0.5(元) 每张彩票平均可赚 2-0.5-0.3=1.2(元), 因此彩票发行单位发行10万张彩票的创收利润为 100000×1.2=120000(元) 小结:通过计算期望,我们可以得到单张彩票的平均利润,从而得出总共的创收利润。 例二、某投资者有10万元资金,现有两种投资方案供选择:一是购买股票;二是存人银行。买股票的收益主要取决于经济形势,假设经济形势分为三种状态:形势好、形势中等、形势不好。在股市投资10万元,以一年计算,若形势好可获利40 000元;若形势中等可获利10 000元;若形势不好则会损失20 000元。如果存人银行,假设年利率为8%,即一年可得利息8 000元。又设年经济形势好、中等、不好的概率分别为30%、50%和20%。试问该投资者想获得最高收益期望应选择哪种投资方案? 分析: 购买股票的收益与经济形势有关,存入银行的收益与经济形势无关。购买股票在经济形势好和中等的情况下是合算的,但是如果经济形势不好,则采取存人银行的方案比较好。因此,要辨别哪一种方案更优,就必须计算购买股票的收益期望,然后与存入银行的收益进行比较来判断。 如果购买股票,其收益的期望值E=40000×0.3+10000×0.5+(-20000)×0.2=13000(元);如

相关主题
文本预览
相关文档 最新文档