当前位置:文档之家› 城市污水源热泵系统特点与展望

城市污水源热泵系统特点与展望

城市污水源热泵系统特点与展望
城市污水源热泵系统特点与展望

城市污水源热泵系统优越性分析

北京瑞宝利热能科技有限公司

一、城市污水源热泵系统简介

伴随着城市化高峰的到来与工业化进程的突飞猛进,使得我国能源消耗的比重与环境的污染程度与日俱增,城市污水源热泵系统作为一项节能新技术,不仅能节约能耗减少污染,减轻了我国目前面临的能源与环境压力,还将为全面建设小康社会提供了新的可再生清洁能源,实现能源结构的优质化转变。因此,开发利用城市污水源热泵系统作为热泵冷热源具备广阔的发展空间。

污水源热泵系统主要是一种制冷供暖装置系统。该系统主要以城市污水为热源水,通过消耗少许电力,将其热量提取出来并加以提升,实现采暖目的。而在夏季,利用污水源热泵机组则将空调场所热量通过污水带走,使之冷却。城市污水源热泵系统具备有制冷、采暖两种功能,并可同时提供卫生热水,节省了设备造价。

据了解,城市污水温度一年四季相对稳定,冬季比环境空气温度高,夏季比环境空气温度低,这种温度特性使得污水源热泵比传统空调系统运行效率要高,节能和节省运行费用效果显著,极具有市场竞争力。

二、城市污水源热泵系统特点

1.环保效益显著

污水源热泵技术是利用了城市废热作为冷热源,进行能量转换的供暖空调系统,污水经过换热设备后留下冷量或热量返回污水干渠,污水与其他设备或系统不接触,污水密闭循环,不污染环境与其他设备或水系统。供热时省去了燃煤、燃气、然油等锅炉房系统,没有燃烧过程,避免了排烟污染;供冷时省去了冷却水塔,避免了冷却塔的噪音及霉菌污染。不产生任何废渣、废水、废气和烟尘,环境效益显著。我国年污水排放量达464亿m,可节省用煤量0.33亿吨,以全国年总能耗30亿吨标煤计算,达到了1.1%,若按暖通空调的一次能源消耗量10亿吨标煤计算,达3.3%。同时每年可减少排放量达72万吨。

2.高效节能

冬季,污水体温度比环境空气温度高,所以热泵循环的蒸发温度提高,能效比也提高。而夏季水体温度比环境空气温度低,所以制冷的冷凝温度降低,使得冷却效果好于风冷式和冷却塔式,机组效率提高。污水源热泵将污水热能连同热泵机组本身产生热能一并转移到室内,能效比高达4.5~6.0,污水源热泵与空气源热泵相比,夏季冷凝温度低,冬季蒸发温度高, 能效比和性能系数大大提高,而运行工况稳定,比传统中央空调节省30~40﹪的运行费用。

3. 机组运行稳定

城市污冬暖夏凉,常年温度稳定,污水水温在冬季比环境温度高15~20度,夏季温度比环境温度低10--15度.因此热泵具有良好的热源,污水源热泵利用温差在5度,因此污水源热泵完全可以在高效率运行。水体的温度一年四季相对稳定,其波动的范围远远小于空气的变动,是很好的热泵热源和空调冷源,水体温度较恒定的特性,使得热泵机组运行更可靠、稳定,也保证了系统的高效性和经济性。不存在空气源热泵的冬季除霜等难点问题。

4. 一机多用

污水源热泵空调系统可供暖、空调,一机多用,一套系统可以替换原来的锅炉加空调的两套装置或系统。城市污水热泵空调系统利用城市污水,冬季取热供暖,夏季排热制冷,全年取热供应生活热水,夏季空调季节可实施部分免费生活热水供应。一套系统冬夏两用,实现三联供。

5. 节水

污水源热泵无需设冷却塔,节约了大量水资源。

6. 运行安全

污水源热泵既可省去打井费用,又不需要抽水与回灌所需动力,也可避免因回灌而引起的水资源破坏的问题。

7.环保效果显著

污水源热泵不需要锅炉,没有燃烧过程,不存在固体废弃物,有毒有害气体及烟尘排放问题,是环保型中央空调。

三、城市污水源热泵系统展望

污水源热泵系统效率高,节省运行费用。与空气热源热泵及其它传统空调方式比较,污水源热泵系统的效率大约高30~40% 。冬季,城市污水的温度远高于室外气温,污水源热泵用于供热时的性能系数(COP)可高达5以上,远高于普通风冷空调。同时,比冬季普通锅炉供暖费用更节省。

目前,污水源热泵众多大型建筑领域当中得到了广泛的应用。在全国许多城市,污水源热泵应用已呈现如火如荼之势。污水源热泵除了被广泛应用于各类民用建筑、公用建筑、军事建筑等所有需要供暖制冷以及供应洗浴热水的中央空调系统,还涉及到工业领域中冷冻、冷藏、冷却的工艺系统,成为节能减排的重要技术之一。

总之,污水源热泵系统未来所带来的社会效益和经济效益必将十分巨大,在具备污水源条件的地区必将逐步并最终取代传统制冷制热方式。

水源热泵技术介绍及工作原理

水源热泵技术介绍及工作原理 水源热泵技术是利用地球表面浅层水源中吸收的太阳能和地热能而形成的低温低位热能资源,并采用热泵原理,通过少量的高位电能输入,实现低位热能向高位热能转移的一种技术。 地球表面浅层水源(地下水、河流、湖泊、海洋等)中吸收了太阳进入地球的相当的辐射能量,并且水源的温度一般都十分稳定。水源热泵中央空调系统是由末端系统,水源热泵中央空调主机系统和水源热泵水系统三部分组成。冬季为用户供热时,水源热泵中央空调系统从水源中提取低品位热能,通过电能驱动的水源热泵中央空调主机(热泵)“泵”送到高温热源,以空气或水作为载冷剂提升温度后送到建筑物中满足用户供热需求。夏季为用户供冷时,水源热泵中央空调系统将用户室内的余热通过水源中央空调主机(制冷)转移到水源水中,由于水源温度低,所以可以高效地带走热量,以满足用户制冷需求。通常水源热泵消耗1kW的能量,用户可以得到4kW以上的热量或冷量。 水源热泵的特点及优势 属于可再生能源利用技术 水源热泵是利用了地球水体所储藏的太阳能资源作为冷热源,进行能量转换的供暖空调系统。其中可以利用的水体,包括地下水或河流、地表的部分的河流和湖泊以及海洋。地表土壤和水体不仅是一个巨大的太阳能集热器,收集了47%的太阳辐射能量,比人类每年利用能量的500倍还多(地下的水体是通过土壤间接的接受太阳辐射能量),而且是一个巨大的动态能量平衡系统,地表的土壤和水体自然地保持能量接受和发散的相对的均衡。这使得利用储存于其中的近乎无限的太阳能或地能成为可能。所以说水源热泵是一种清洁的可再生能源的技术。 高效节能 水源热泵机组可利用的水体温度冬季为12-22℃,水体温度比环境空气温度高,所以热泵循环的蒸发温度提高,能效比也提高。而夏季水体为18-35℃,水体温度比环境空气温度低,所以制冷的冷凝温度降低,使得冷却效果好于风冷式和冷却塔式,机组效率提高。

污水源热泵系统介绍.

污水源热泵系统介绍 供热空调的能源消耗占社会总能耗的比例大达30%,而环境污染的20%也是由供热空调燃煤引起的。因此,采用热泵技术,开发低位的、可再生的清洁能源用于建筑物的供热空调意义重大,是建筑节能减排的有效途径之一。这些能源包括:大气、土壤、地下水、地表水、工业余热及城市污水等等。其中污水在数量(水量)、质量(水温)及分布规律上(地理位置)具有明显优势。预计2010年我国污水排放量达720亿t/a,水温全年在10-25℃之间,按开发50%的水量计算,可供热空调的面积至少在5亿㎡以上。另外,原生污水均匀地分布在城市地下空间,为因地制宜地有效利用及建设分散式的热泵供热空调系统创造了有利条件。而地表水源在南方水源丰富的地区以及沿海城市更具有广阔的应用前景。 1 热泵原理 各类低位的清洁能源利用是通过热泵技术实现的。热泵空调技术是根据逆卡诺循环原理,将低温热源或低位能源(如城市污水、地下水等)中的低品位热能进行回收,转换为高品位热能的一种节能与环保性技术,利用这项技术的逆过程同时还可以达到制冷的目的,是以存在合适的低位能源为必要条件的。 3-膨胀阀 图1 热泵工作原理示意图

图1示意了一种水源热泵向建筑物供热的工作原理。所谓水源热泵,就是指以环 境中的水(污水、地表水、地下水等)作为热源。热泵工质(例如氟利昂)在压缩机1的驱动下,在压缩机1、冷凝器2、膨胀装置3、蒸发器4几个主要部件中循环运动。工质的热力性质决定了蒸发器中的工质温度可以保持在例如2℃(称为蒸发温度)左右,而冷凝器中则为60℃(称为冷凝温度)左右。这里的水源虽然在冬季可能仅为11℃,但却可以作为热泵系统的热源,因为当将它引入温度为2℃的蒸发器时,它必然要把自身中的热能(称为内能)交给机组,变为例如6℃排放出去。获取了水源热能的工质被压缩机压缩到例如60℃,在冷凝器中加热来自建筑物的系统循环水,由该水将热量带到建筑物的散热设备中。 总的来看,热泵能够从常温或低温(11℃)的环境中提取热量,以较高的温度(50℃)向建筑物供热。过程中机组每消耗1份高位能源(例如电能),能够从环境中提取3份以上的温差热量,建筑物实际可以得到的热量则为4份以上。 然而热泵技术应用的关键问题已不是热泵机组的效率有多高,而是需要有合适的低位能源或低温热源,以及整个系统的全面高效低能耗运行,以保证节能性。 2 污水源热泵 污水热泵是以污水(包括地表水)作为低温热源,利用热泵技术回收或提取污水中的低温热能,其中污水包括市政管网中未处理的原生污水、污水处理厂已处理污水,地表水包括江河湖水、海水及污水处理后的再生水。 由于污水及地表水的水质条件较差,利用过程中又是开式循环,悬浮物和杂质成迅速的累积过程,因此提取热量时需要解决防堵、防垢及低能耗运行等一系列可能影响到系统的运行效果、运行维护、投资、运行费的相关问题。 2.1 污水特性 2.1.1 污水源流量特性—量大且稳定

水源热泵工作原理及特点.

热泵是一种将低温热源的热能转移到高温热源的装置。通常用于热泵装置的低温热源改是我们周围的介质——空气、河水、海水,或者是从工业生产设备中排出助工质,这些工质常与周围介质具有相接近的温度。热泵装置的工作原理与压缩式制冷机是一致的;在小型空调器中,为了充分发挥它的效能,在夏季空调降温或在冬季取暖,都是使用同一套设备来完成的。在冬季取暖时,将空温器中的蒸发器与冷凝器通过一个换向阀来调换工作,见图2一17。 热泵工作原理图 [1] 由图2—17中可看出,在夏季空调降温时,按制冷工况运行,由压缩机排出的高压蒸汽,经换向阀(又称四通阀进入冷凝器,制冷剂蒸汽被冷凝成液体,经节流装置进入蒸发器,并在蒸发器中吸热,将室内空气冷却,蒸发后的制冷剂蒸汽,经换向阀后被压缩机吸入,这样周而复始,实现制冷循环。在冬季取暖时,先将换向阀转向热泵工作位置,于是由压缩机排出的高压制冷剂蒸汽,经换向阀后流入室内蒸发器(作冷凝器用,制冷剂蒸汽冷凝时放出的潜热,将室内空气加热,达到室内取暖目的,冷凝后的液态制冷剂,从反向流过节流装置进入冷凝器(作蒸发器用,吸收外界热量而蒸发,蒸发后的蒸汽经过换向阀后被压缩机吸入,完成制热循环。这样,将外界空气(或循环水中的热量“泵”入温度较高的室内,故称为“热泵”。上海冰箱厂生产的CKT 一3A 型窗式空调器,就是一种热泵式空调器。在图2—17的热泵循环中,从低温热源(室外空气或循环水,其温度均高于蒸发温度to 中取得Q 。kcal/h的热量,消耗了机械功ALkcal/h,而向高温热源(室内取暖系统供应了Qlkcal/h的热量,这些热量之间的关系是符合热力学第一定律的,即Q1=Q0十AL kcal/h

水源设计

一、水源供应系统概述 水源热泵系统是从各种水源或土壤埋管水环路中提取能量,根据目前常用的工艺措施,水源热泵系统的能量来源包括地表水源、废热水源、井水水源、土壤埋管。地表水源包括江、河、湖、海水源,废热水源包括工业废水、生活污水及中水、矿井坑道水源等,井水水源是指深度一般在400米以上的浅表层井水,土壤埋管是指水平埋管或深度一般在200米以上的垂直埋管式交换器。 水源供应系统是水源热泵中央空调的能量来源,与传统中央空调系统对比,它取代了锅炉供热系统和冷却塔,因此在水源热泵中央空调工程中是重中之重,对整个空调系统的使用效果、运行可靠程度、空调系统耗能量影响很大。地表水源和废热水源需要在进主机前采取相应的过滤、水处理和防腐措施,土壤埋管已有《地埋管地源热泵技术》等相关技术规范资料,而井水水源的供应系统目前尚没有专门的文字资料进行总结和归纳,因此本章将根据大量的【科莱智星】水源热泵项目工程实践经验,从水井系统的前期规划、取水方案和工程布局、井水量计算、潜水泵的选型与控制、水处理措施、回灌措施诸方面加以分析说明。 二、水井供应系统的前期规划 一个土建项目是否可以上水源热泵中央空调,取决于该项目所在地是否具有水源。如果有温度适宜、水量恒定的工业尾水、污水中水、地表水、海水等各种形式的水源,则可以直接从上述水源中提取冷热能。如果没有再考虑地下水方式是否可行。有的地区严重缺乏地下水,有的地区当地政府严禁开采地下水,有的项目在建筑物周边空地根本不具有水井施工的客观条件,所以地下水方式会受到各种因素的限制。 地下水方式的优势是一年四季400米以上的浅表层水温相对恒定,但全国各地的地下水状况各不相同,每一个地区的每一个项目在进行水源热泵项目论证时必须提前咨询当地地质勘探部门的专业人员,以确认项目所在地是否有水量稳定的地下水。有的项目紧靠大江大河,设计人员想当然地认为水量肯定没问题,但施工时却发现地下根本没有稳定的水源或水量很小。有的项目丰水期考察时水量充足,上马后却发现枯水期地下水严重不足。为了解决上述问题,在项目前期规划设计阶段,须作如下工作: 1、查看建筑物的总平面图,了解建筑物周边是否有空余场地可以用来打井。 2、了解当地政府是否允许开凿水源热泵水井,有哪些规定和办理程序。 3、通过水利部门和地质勘探部门了解地下水状况、水井工艺要求、打井成本、水质、水量、水温等详细资料。

污水源热泵系统工作原理及特点优势.

污水源热泵系统工作原理及特点优势 污水源热泵系统利用污水(生活废水、工业温水、工业设备冷却水、生产工艺排放的废温水),借助制冷循环系统,通过消耗少量的电能,在冬天将水资源中的低品质能量“汲取”出来,经管网供给室内空调、采暖系统、生活热水系统;夏天,将室内的热量带走,并释放到水中,以达到夏季空调的效果。污水源热泵系统的特点与优势:我国北方地区,冬季采暖主要是依靠煤、石油、天然气等石化燃料的燃烧来获得。采暖与环保成为一对难以解决的矛盾。城市污水是北方寒冷地区不可多得的热泵冷热源。它的温度一年四季相对稳定,冬季比环境空气温度高,夏季比环境空气温度低,这种温度特性使得污水源热泵系统比传统空调系统运行效率要高,节能和节省运行费用效果显著。原生污水源热泵系统以原生污水为热源,冬季采集来自污水的低品位热能,借助热泵系统,通过消耗部分电能,将所取得的能量供给室内取暖;在夏季把室内的热量取出,释放到水中,以达到夏季空调的目的。它有以下特点: 1。环保效益显著原生污水源热泵系统是利用了原生污水作为冷热源,进行能量转换的供暖空调系统,污水经过换热设备后留下冷量或热量返回污水干渠,污水与其他设备或系统不接触,污水密闭循环,不污染环境与其他设备或水系统。供热时省去了燃煤、燃气、燃油等锅炉房系统,没有燃烧过程,避免了排烟污染;供冷时省去了冷却水塔,避免了冷却塔的噪音及霉菌污染。不产生任何废渣、废水、废气和烟尘,环境效益显著。我国年污水排放量达464亿m,可节省用煤量0.33亿吨,以全国年总能耗30亿吨标煤计算,达到了1。1%,若按暖通空调的一次能源消耗量10 亿吨标煤计算,达3.3%。同时每年可减少排放量达72万吨。 2。高效节能冬季,污水体温度比环境空气温度高,所以热泵循环的蒸发温度提高,能效比也提高。而夏季水体温度比环境空气温度低,所以制冷的冷凝温度降低,使得冷却效果好于风冷式和冷却塔式,机组效率提高。 3。污水源参数 (1)污水水质问题城市污水包括工业废水,工业冷却水,及生活污水,而城市二级污水是经过一级物化处理和二级生化处理,去除了污水中大量的杂质,降低了污水的腐蚀度,更有利于污水中热能提取。 (2)污水水温保障城市污冬暖夏凉,常年温度稳定,污水水温在冬季比环境温度高15--20度,夏季温度比环境温度低10--15度。因此热泵具有良好的热源,污水源热泵系统利用温差在5度,因此污水源热泵空调系统完全可以在高效率运行。 (3)污水量的保证城市污水水量的变化主要是生活污水的变化,而生活污水的出水量基本保持不变。(4)污水换热器: 污水中含有大量油性污物,流经换热管时会产生挂膜现象,关闭黏结粘泥,从而增大换热热阻,影响换热效率,因此在设计污水换热时使污水走管程,同时设置自动反清洗装置,在换热器运行期间定时进行反冲洗,保证换热效率,提高热能利用 率。 4。综合分析 (1)污水源热泵系统运行稳定水体的温度一年四季相对稳定,其波动的范围远远小于空气的变动,是很好的热泵热源和空调冷源,水体温度较恒定的特性,使得热泵系统运行更可靠、稳定,也保证了系统的高效性和经济性。不存在空气源热泵的冬季除霜等难点问 题。 (2)一机多用此热泵系统可供暖、空调,一机多用,一套系统可以替换原来的锅炉加空调的两套装置或系统。城市污水源热泵系统利用城市污水,冬季取热供暖,夏季排热制冷,全年取热供应生活热水,夏季空调

污水源热泵工作原理及效益分析

污水源热本调研报告 所谓污水源热泵,主要是以城市污水做为提取和储存能量的冷热源,借助热泵机组系统内部制冷剂的物态循环变化,消耗少量的电能,从而达到制冷制暖效果的一种创新技术。 城市污水源热泵空调技术能实现冬季供暖、夏季空调、全年生活热水供应(很廉价的热水供应方案)、夏季部分免费生活热水供应。城市污水热泵空调是一项高新技术,具有节能、环保及经济效益,符合经济与社会的可持续性发展战略。城市污水源热泵机组以污水为冷热源,冬季采集来自污水的低品位热能,借助热泵系统,通过消耗部分电能(1份),将所取得的能量(大于4份)供给室内取暖;在夏季把室内的热量取出,释放到水中,以达到夏季空调的目的。 1、污水源热泵的工作原理 污水源热泵的主要工作原理是借助污水源热泵压缩机系统,消耗少量电能,在冬季把存于水中的低位热能“提取”出来,为用户供热,夏季则把室内的热量“提取”出来,释放到水中,从而降低室温,达到制冷的效果。其能量流动是利用热泵机组所消耗能量(电能)吸取的全部热能(即电能+吸收的热能)一起排输至高温热源,而起所消耗能量作用的是使介质压缩至高温高压状态,从而达到吸收低温热源中热能的作用。 污水源热泵系统由通过水源水管路和冷热水管路的水源系统、热泵系统、末端系统等部分相连接组成。根据原生污水是否直接进热泵机组蒸发器或者冷凝器可以将该系统分为直接利用和间接利用两种

方式。直接利用方式是指将污水中的热量通过热泵回收后输送到采暖空调建筑物;间接利用方式是指污水先通过热交换器进行热交换后,再把污水中的热量通过热泵进行回收输送到采暖空调建筑物。 2、污水源热泵系统的特点: (1)环保效益显著 城市污水源热泵是利用了污水作为冷热源,进行能量转换的供暖空调系统。供热时省去了燃煤、燃气、然油等锅炉房系统,没有燃烧过程,避免了排烟污染;供冷时省去了冷却水塔,避免了冷却塔的噪音及霉菌污染。不产生任何废渣、废水、废气和烟尘,环境效益显著。 (2)高效节能 冬季,污水温度比环境空气温度高,所以热泵循环的蒸发温度提高,能效比也提高。而夏季污水温度比环境空气温度低,所以制冷的冷凝温度降低,使得冷却效果好于风冷式和冷却塔式,机组效率提高。 (3)运行稳定可靠 污水的温度一年四季相对稳定,其波动的范围远远小于空气的变动。是很好的热泵热源和空调冷源,水体温度较恒定的特性,使得热泵机组运行更可靠、稳定,也保证了系统的高效性和经济性。不存在空气源热泵的冬季除霜等难点问题。 (4)一机多用,应用范围广 此热泵系统可供暖、空调,生活热水供应(夏季免费)等。一机多用,一套系统可以替换原来的锅炉加空调的两套装置或系统。 (5)投资运行费用低

水源热泵与地源热泵优缺点的比较

水源热泵与地源热泵优缺点的比较 一、水源热泵深井技术介绍 1、水源热泵原理 地下水是一个巨大的天然资源,其热惰性极大,全年的温度波动很小,一般说来,埋藏于地表20M以下的浅表层地下水可常年维持在该地区年平均温度左右,是理想的天然冷热源。水源热泵系统正是利用地下水的特性而工作的一种新型节能空调。在水源热泵的水井系统中,水源热泵一般成井深度为50米到300米,因为此部分地下水主要由地表水补给,且不适宜饮用,故用于水源热泵中央空调是极佳选择水源中央空调系统的是由末端(室内空气处理末端等)系统,水源中央空调主机(又称为水源热泵)系统和水源水系统三部分组成。 为用户供热时,水源中央空调系统从水源中中提取低品位热能,通过电能驱动的水源中央空调主机(热泵)“泵”送到高温热源,以满足用户供热需求。为用户供冷时,水源中央空调将用户室内的余热通过水源中央空调主机(制冷)转移到水源中,以满足用户制冷需求。 1.1系统原理图:制热工况为例(制冷工况可通过阀门切换来实现,即使水源水进冷凝器,蒸发器的冷冻循环水接用户系统),系统原理见下图:

分类:水源热泵根据对水源的利用方式的不同,可以分为闭式系统和开式系统两种。 闭式系统是指在水侧为一组闭式循环的换热套管,该组套管一般水平或垂直埋于地下或湖水海水中,通过与土壤或海水换热来实现能量转移。 开式系统也就是通常所说的深井回灌式水源热泵系统。通过建造抽水井群将地下水抽出,通过二次换热或直接送至水源热泵机组,经提取热量或释放热量后,由回灌井群回地下。. 水源热泵原理图:

深井回灌开式环路

地下水平式封闭环路 2.水源热泵优点 2.1高效节能 水源热泵是目前空调系统中能效比(COP值)最高的制冷、制热方式,。4~6,实际运行为7理论计算可达到. 水源热泵机组可利用的水体温度冬季为12~22℃,水体温度比环境空气温度高,所以热泵循环的蒸发温度提高,能效比也提高。而夏季水体温度为18~35℃,水体温度比环境空气温度低,所以制冷的冷凝温

上海世博轴江水源地源热泵系统设计

上海世博轴江水源地源热泵系统设计

一、世博园区简介

世博园区规划 F 区 文化博览中心 演艺中心世博中心 世博轴 中国馆 主题馆 VIP 生活中心Shangri-La hotel 非洲馆 欧洲馆 美洲馆 澳洲馆 亚洲馆 企业馆 最佳城市试验区

二、建筑概况 2 1 4 1 1 2 2 1 1 3 2 2 4 3 下 下 7. 3.7. 3.5 5.0 14.0 5.03.515.04. 4.3. 3.516.2 8. 3.5 216 90 1020 50100 0道路红线 228 3.5 16.5 35 4.5 55 25.0 121 38 121 671.0 道路红线 地下室边界 道路红线 道路红线 道路红线 道路红线道路红线地下室边界 800 磁悬浮控制线 上 南 路 上 南 路 路 明浦 路 明 浦 路 环 北 路 环 南 路 野 雪 历 城 路 路 浦 华路 野雪 路 环 南路 环 北 江 黄 浦 云 台 路 路 山 洪 浦明110KV 变电站 演艺中心 公共活动中心 餐饮娱乐广场 世博会期间高架步廊 主题展馆 停车场 广场 磁悬浮车站 中国馆 国家自建馆 国家自建馆 停车场 周家渡通信机房 8.0 围栏区 阳光谷D 阳光谷E 阳光谷A 阳光谷B 玻璃屋顶 滨江庆典广场会后开发高层 56 56 166 261 252 11.1 800 阳光谷C 道路红线 地下通道 接演艺中心地下 接公共活动中心地下 接中国馆 接磁浮车站 通道 地下通道接接轨道交通 通道 华 浦 路 +4.298+4.400 +4.000 +4.000+4.000 +4.500 +4.500 +4.000 下 下 82.1 61.5 85.1 591 75.9 623 83.4 59.5 .5.6 下沉式广场 (2#地块) (1#地块) 120 55地下通道一层通廊主入口(会中) 一层商业主入口(会后)地下一层入口 一层通廊主入口(会中) 一层商业主入口(会后)地下一层入口 一层安检入口(会中) 一层安检入口(会中) 一层商业主入口(会后)下沉式广场入口 下沉式广场入口 一、二层主入口 一层商业主入口(会后) 地下一层入口 地下一层入口 一层通廊主入口(会 中)一层商业主入口(会后) 一层通廊主入口(会中)一层商业主入口(会后)地下一层入口 地下一层入口10.00m 高架平台入口 995 接地铁车站地下通道一层通廊主入口(会 中) 一层商业主入口(会后)餐饮娱乐广场 地下车库出入口地下车库出入口+4.552 +4.600 地铁风口 地铁风口 接地铁广场 接地铁广场 660 9-10 660 X =-6065.3555Y =2039.6836 X =-6045.0653Y =2147.7960 X =-5041.6016Y =1948.5339 X =-5059.9552Y =1850.7413 702.3 22.470 70 150 146 50 150 16.8 800 40 155 10.00m 高架平台入口 南段用地 北段 800 阳光谷A 9.A C H J 1-1 3-31 下+4.200 +4.200 +4.200 +4.200+4.200-1.000+1.800+1.800 -1.000-1.000 下下下下下下 下 下 下 下 下 下 下 下 下 下 -1.000 -1.000-1.000-1.000-1.000-1.000+4.200-1.000-1.000 -1.000 -1.000 168 地下车道接 地块车库地下通道 接联合展馆 地下通道 北段 660 110 225 A C H J 70 70 995 995 X =-5728.1938Y =1976.1541 X =-5682.0769Y =2068.7362 X =-5203.0070Y =1978.8260 X =-5248.7401Y =1886.1718 20.0134 227 用地红线 用地红线 8.9 649.0674.0 22.4 1-1 3-2920.0 2.7 134 244 总平面图

水源热泵设计方案

水源热泵热水机组 设 计 方 案 方案目录 方案概述................................ 第一章水源热泵中央空调介绍........................ 第二章水源热泵中央空调相关政策依据................ 第三章方案设计.................................... 第四章工程概算.................................... 第五章水源热泵系统技术特点........................ 第六章公司简介.................................... 第七章工程清单目录................................

方案概述 本方案采用水源热泵中央空调新技术,水源热泵中央空调是二十世纪七十年代以来欧美发达国家大力推广的空调新技术。它是利用地下浅层水中低品位能源制冷和制热,空调运行成本比传统电制冷空调节约50%以上。 第一章水源热泵中央空调介绍 一、水源热泵现状及政策依据 水源热泵最早源于1912年瑞士的一项发明专利,二十世纪七十年代能源危机以后,这一节能、环保的空调技术受到西方国家的重视。水源热泵技术在美国、加拿大和北欧国家和地区已得到广泛地应用。瑞士的普及率达到50%以上,美国推广速度以每年20%的速度递增。 1995年中美签署了《中华人民共和国国家科学委员会和美利坚合众国能源部效率和再生能源技术的发展与利用领域合作协议书》,并与1997年又签署了该合作协议书的附件六——《中华人民共和国国家科学技术委员会与美利坚合众国能源部地能开发利用的合作协议》。其中,两国政府将地源热泵空调技术列为能源效率和再生能源的合作项目。建设部2000年第76号令也将地热、可再生能源以及空调节能技术列入建设部推广项目。2004年9月14日国家发改委高技术处颁发了《关于组织实施“节能和新能源关键技术”的通知》,将地热、热泵列为重点开发内容。2005年2月28日第十届全国人民代表大会常务委员会第十届会议通过了《中华人民共和国可再生能源法》鼓励大力推广应用太阳能、地热能、水能等可再生能源。 与此同时,适合推广水源热泵的北京市、山东、河南、辽宁、河北等地政府对推广水源热泵空调制定了优惠政策。这一举措极大的促进了我国地源热泵技术的发展。 北京市第一个地温空调工程——蓟门饭店(两会代表驻地)已运行七年。运行成本低于原燃煤锅炉和单冷机组,比改造前每年可节约数十万运行费用。 二、水源热泵工作原理 水源热泵技术利用地球表面浅层水源(如地下水、河流和湖泊)中低品位热能资源,通过逆卡诺循环实现低品位热能向高品位热能转移的一种技术。它以水为工作介质将地下土壤中的低品位热能提取出来,经高效的热泵机组,利用少量的高品位电能,将水中的低品位能量输送到空调场所,完成热交换的地下水又重新回灌到地下去。井水是在金属管路中闭路循环的,水不与大气接触,不消耗水,也不污染水,只提取水中的热能。地温空调

污水源热泵系统与集中供热系统对比

污水源热泵系统与集中供热系统对比 原生污水源热泵原理: 在高位能的拖动下,将热量从低位热源流向高位热源的技术。它可以把不直接利用的低品位热能(如空气、土壤、水、太阳能、工业废热等)转化为可利用的高位能,从而达到节约部分高位能(煤、石油、天然气、电能等)的目的。 在制冷状态下,污水源热泵原理是通过压缩机对冷媒做工,使其进行汽——液转化的循环。通过蒸发器内冷媒的蒸发将由风机盘管循环所携带的热量吸收至冷媒中,在冷媒循环的同时再通过冷凝器内冷媒的冷凝,由水路循环将冷媒所携带的热量吸收,最终由水路循环转移至城市原生污水里。在室内热量不断转移至地下的过程中,通过风机盘管,以13℃一下的冷风的形式为房间供冷。 在制热状态下,污水源热泵原理是通过压缩机对冷媒做功,并通过换向阀将冷媒流动方向换向。由地下的水路循环吸收地下水或土壤里的热量,通过冷凝器内的冷媒的蒸发,将水路循环中的热量吸收至冷媒中,在冷媒循环的同时再通过蒸发器内冷媒的冷凝,由风机盘管循环将冷媒所携带的热量吸收。在城市原生污水中的热量不断转移至室内的过程中,以35℃以上热风的形式向内供暖。 污水源热泵原理优势特点: 1)利用可再生能源,环保效益好 污水源热泵原理利用了城市原生污水中丰富的热量资源作为冷热源,进行能量转换的供暖制冷空调系统。城市原生污水是一个巨大的能量采集器,巨大的城市废热从市政污水管路中排出,这种储存于城市原生污水中的能源数以清洁的,可再生能源。 2)高效节能,运行费用低 污水源热泵原理是采用温度恒定的城市原生污水作为能源,能效比COP在4.5~5.0之间,比空气源热泵高出40%左右,污水源热泵机组运行费用比常规中央空调低30%~40%左右。 3)运行安全稳定,可靠性高 无燃烧设备,无爆炸隐患,使用安全。如使用燃油、燃气锅炉供暖,其燃烧产物对居住环境污染极重,影响人们的生命健康。污水源热泵机组利用常年温度稳定的城市原生污水,夏季不会向大气中排除废热,加剧城市的“热岛效应”;冬季不受外界气候影响,运行稳定可靠,不存在空气源热泵除霜和供热不足的问题。4)空调主机以及多用,便于布置,使用范围广泛 空调主机体积小,污水源热泵机组安装在储藏室等辅助空间,既可制冷,又可制热,也不需要高的入户电容量。地源热泵系统可供暖、空调,还可供生活热水,一机多用,一套系统可替换原来的锅炉加空调的2套装置或系统;可应用于宾馆、

水源热泵工作原理

水源热泵工作原理 地下水井系统,即水源热泵。它以水为介质来提取能量实现制热和制冷的一个或一组系统。针对水源热泵机组,就是通过消耗少量高品位能量,将地表水中不可直接利用的低品味热量提取出来,变成可以直接利用的高品位能源的装置。水源热泵是利用太阳能和地热能来制冷、供热,应该说其属热泵中“地源热泵”的一种。经过严格测试及不同地区热泵的应用实例测算,。水源热泵制热的性能系数在3.1–4.7之间,制冷的性能系数在3.5–6.7之间。 地球表面浅层水源(如深度在1000米以内的地下水、地表的河流、湖泊和海洋)吸收了太阳进入地球的辐射能量,这些水源的温度一般都十分稳定。 水源热泵机组工作原理就是在夏季将建筑物中的热量转移到水源中,由于水源温度低,所以可以高效地带走热量,而冬季,则从水源中提取能量,由热泵原理通过空气或水作为制冷剂提升温度后送到建筑物中,通常水源热泵水泵消耗1kw的能量,用户可以得到4kw 以上的热量或冷量。水源热泵根据对水源的利用方式的不同,可以分为闭式系统和开式系统两种。 闭式系统是指在水侧为一组闭式循环的换热盘管,该组盘管一般水平或垂直埋于湖水或海水中,通过与湖水或海水换热来实现能量转移(该组盘管直接埋于土壤中的系统称为土壤源热泵,也是地源热泵的一种);开式系统是指从地下或地表中抽水后经过换热器直接排放的系统。 水源热泵无论是在制热还是制冷过程中均以水为热源和冷却介质,即用切换工质回路来实现制热和制冷的运行。然而,更为方便的是由水回路中的三通阀来完成。虽然在水源热泵系统中水源直接进入蒸发器(制冷时为冷凝器),在某些场合,为避免污染封闭的冷水系统(通常是处理过的),需间接地用一个换热器来供水;另一种方法是利用封闭回路的冷凝器水系统,水作为热泵制热、制冷过程的介质,满足以下两个条件即可利用:一是水的温度在7℃~30℃之间,二是水量要充足。水源水可以是各种工业用废水、生活用水、海水、江、河水等,甚至是各种工业余热。 提取水中的热(冷)量比较简单易行的方式是打井,利用井泵提取地下水作为循环介质。冬季时,以地下水为“热源”,源源不断的将7℃以上的地下水通过热泵机组的蒸发器提出大约4℃以上的热量,使其降至3℃再注回地下,水在地下渗流过程中又吸收地下热量,温度又升至7℃以上,然后又被提升上来,如此不断循环,机组吸收的热量再被机组的冷凝器释放出来,用以加热供暖的水系统,使供水温度可达55℃以上,此温度称为空调供暖(国家标准45℃)的最佳温度,;夏季时,利用地下水(水温低于14℃)做冷却水,而常规制冷设备是利用冷却塔循环冷却,水温一般都在30℃~40℃,夏季的地下水只有14℃~18℃,

污水源热泵系统工程技术规范

污水源热泵系统工程技术规范 (草拟稿) Technical code for sewage source air-conditioning system 起草单位:广西瑞宝利热能科技有限公司 起草人:张昊

目录 1 总则 (2) 2 术语 (3) 3 工程勘察 (4) 4 污水换热系统设计 (6) 5 室内系统 (12) 6、整体运转、调试与验收 (13) 7、附录A 换热盘管外径及壁厚 (15) 1 总则 1.0.1 为使污水源热泵系统工程设计、施工及验收,做到技术先

进、经济合理、安全适用,保证工程质量,制定本规范。 1.0.2 本规范适用于以污水源为低温热源,以污水为传热介质,采用蒸汽压缩热泵技术进行供热、空调或加热生活热水的系统工程的设计、施工及验收。 1.0.3 污水源热泵系统工程设计、施工及验收除应符合本规范外,尚应符合国家现行有关标准的规定。 2 术语 2.0.1 污水源热泵系统sewage source heat pump system 以污水源为低温热源,由污水换热系统、污水源热泵机组、建筑

物内系统组成的供热空调系统。 2.0.2 污水源sewage source 含有固体悬浮物的城市污水、江河湖水、海水等,统称污水源。 2.0.3 污水源热泵机组sewage source heat pump unit 以污水或与污水进行热能交换的中介水为低温热源的热泵。 2.0.4 污水换热系统sewage heat transfer system 与污水进行热交换的污水热能交换系统。分为开式污水换热系统和闭式污水换热系统。 2.0.5 开式污水换热系统open-loop sewage heat transfer system 污水在循环泵的驱动下,经处理后直接流经污水源热泵机组或通过中间换热器进行热交换的系统。 2.0.6 闭式污水换热系统closed-loop sewage heat transfer system 将封闭的换热盘管按照特定的排列方法放入具有一定深度的污水体中,传热介质通过换热管管壁与污水进行热交换的系统。 2.0.7 传热介质heat-transfer fluid 污水源热泵系统中,通过换热管与污水进行热交换的一种液体。一般为水或添加防冻剂的水溶液。 2.0.8 城市原生污水city original sewage 污水渠中未经任何处理的城市污水称为城市原生污水。 2.0.9 污水换热器sewage heat exchanger 在含污水源热泵系统中,从污水中吸取热量或释放热量的换热设备。 2.0.10 中介水intermediate water 污水换热器中与污水换热的清洁水,视需求其中可加防冻液。 2.0.11 污水防阻机defend against hinder machine 含污水源热泵系统中分离污水中的悬浮物,防止悬浮物阻塞管路与设备的一种专利产品。 3 工程勘察 3.1 一般规定

什么是水源热泵中央空调 水源热泵机组原理及优缺点

什么是水源热泵中央空调水源热泵机组原理及优缺点 水源热泵中央空调是一项节能环保新技术,与地源热泵从大地中提取冷热量相比,水源热泵机组是利用地表水作为冷热源,然后进行能量转换的供暖空调系统。简单来说,水源热泵和地源热泵都是冷暖空调,不存在传统空调冬季化霜等难点问题,只不过水源热泵是通过地下水达到冷却制冷剂的效果,不占建筑面积。下面,我一起来看看水源热泵中央空调的定义、水源热泵机组原理及优缺点。 什么是水源热泵中央空调 水源热泵中央空调是一种利用地下浅层地热资源(如地下水、河流和湖泊中吸收地太阳能和地热能等)的既可供热又可制冷的高效节能空调系统。水源热泵机组以水为载体,在冬季采集来自湖水、河水、地下水的低品位热能,取得能量供给室内取暖;在夏季把室内的热量取出,释放到水中,以达到夏季空调供冷的目的。 水源热泵机组原理

夏季制冷时,水源热泵中央空调井水为机组的排热源。制冷剂在蒸发器内吸热蒸发,制取7℃冷水,送入房间使用,由于水体温度比环境空气温度低,所以制冷的冷凝温度降低,使得冷却效果好于风冷式和冷却塔式,机组效率提高;制冷剂再经压缩机压缩成高温高压的过热蒸汽,进入冷凝器,由井水带走热量并排至井中。 冬季制热时,水源热泵中央空调井水为机组的吸热源。制冷剂在蒸发器内吸取井水的热量蒸发,井水回灌井内,由于水体温度比环境空气温度高,所以热泵循环的蒸发温度提高,能效比也提高。制冷剂再经压缩机压缩成高温高压的过热蒸汽,进入冷凝器,加热循环水,制取45℃到50℃(最高可达65℃)的热水。 水源热泵机组原理的优缺点 水源热泵中央空调具有可再生能源利用技术、高效节能、制冷采暖生活热水三位一体、节省建筑空间、环境效益显著等多种优点,其缺点是对地下水质量要求比较高,需要良好的地下水源条件,用户在装水源热泵之前,需要先向各地水资委申请,申请通过之后才能装,

浅谈湖水源热泵系统方案

浅谈湖水源热泵系统分析建议 地表水源热泵就是利用江、河、湖、海的地表水作为热泵机组的热源。当建筑物的周围有大量的地表水域可以利用时,可通过水泵和输配管路将水体的热量传递给热泵机组或将热泵 机组的热量释放到地表蓄水体中。根据热泵机组与地表水连接方式的不同,可将地表水源热泵分为两类:即开式地表水源热泵系统和闭式地表水源热泵系统。 开式地表水源热泵系统和开式地下水源热泵系统近似,但由于地表水的传热特性与地下水的传热特性相差甚远,因此地表水源热泵系统的设计与地下水源热泵系统的设计不同。 闭式地表水源热泵系统与土壤源热泵系统类似,即通过放置在湖中或河流中的换热器与热泵机组连接,吸热或放热均通过湖水换热器内的循环介质进行。当热泵机组处于寒冷地区时,在冬季制热工况时,湖水热交换器内应采用防冻液作为循环介质。在开式系统中,从蓄水体底部将水通过管道输送到热泵机组中,进行热量交换后,再通过排水管道又将其输送回湖水表面,但水泵的吸入口与排放口的位置应相隔一定的距离。在开式地表水源热泵系统中,地表水的作用与冷却塔近似,而且不需要消耗风机的电能及运行维护费用,因此初投资比较低。 开式系统的主要优点如下: 由于减少了湖水换热器,增加了地表水与制冷剂之间的传热温差,因此比闭式地表水源热泵机组的换热量增大,即在相同条

件下,增加了机组的制冷量或制热量。如果湖水较深,湖水底部的温度比较低,夏季可以利用湖水底部的低温水来预冷新风或空调房间的回风,充分节约能量。来自热泵机组的温水排放到湖水上部温度较高的区域,这样保证湖水温度分布不发生改变,对湖水温度的影响小 开式系统存在的最大缺点是热泵机组的结垢问题。可采用可拆卸的板式换热器,并定期对其进行清洗或对机组进行定期的反冲洗等。另外,用于冬季制热,当湖水温度较低时,会有冻结机组换热器的危险,因此开式系统只能用于温暖气候的地区或热负荷很小的寒冷地区。在实际工程中,开式系统多应用于容量小的系统。 开式地表水源热泵系统的设计 开式地表水源热泵系统中,由于没有湖水换热器,系统设计相对简单,最关键的是选取合适的水流量。在夏季制冷时,由于地表水的温度总是低于空气温度,机组运行效率比较高。冷却水侧流量应根据放热负荷的大小。在冬季制热时,必须保证机组换热器出口水温在2以上,因此水侧进出口温差一般保持在3以内,每千瓦热负荷的最佳流量为0.2m3/H 。在气候寒冷地区,若冬季地表水温度在7以下时,则不适宜用开式热泵系统。 与土壤源热泵系统相比,闭式地表水源热泵系统的投资、泵的输送耗电量、湖水换热器的投资及运行费用方面均比较低。与开式地表水源热泵系统比较,它的优点如下:

污水源热泵系统工程技术要求规范

实用文档 污水源热泵系统工程技术规 (草拟稿) Technical code for sewage source air-conditioning system 起草单位:广西瑞宝利热能科技 起草人:昊

目录 1 总则 (2) 2 术语 (3) 3 工程勘察 (4) 4 污水换热系统设计 (6) 5 室系统 (12) 6、整体运转、调试与验收 (13) 7、附录A 换热盘管外径及壁厚 (15)

1 总则 1.0.1 为使污水源热泵系统工程设计、施工及验收,做到技术先进、经济合理、安全适用,保证工程质量,制定本规。 1.0.2 本规适用于以污水源为低温热源,以污水为传热介质,采用蒸汽压缩热泵技术进行供热、空调或加热生活热水的系统工程的设计、施工及验收。 1.0.3 污水源热泵系统工程设计、施工及验收除应符合本规外,尚应符合国家现行有关标准的规定。

2 术语 2.0.1 污水源热泵系统sewage source heat pump system 以污水源为低温热源,由污水换热系统、污水源热泵机组、建筑物系统组成的供热空调系统。 2.0.2 污水源sewage source 含有固体悬浮物的城市污水、江河湖水、海水等,统称污水源。 2.0.3 污水源热泵机组sewage source heat pump unit 以污水或与污水进行热能交换的中介水为低温热源的热泵。 2.0.4 污水换热系统sewage heat transfer system 与污水进行热交换的污水热能交换系统。分为开式污水换热系统和闭式污水换热系统。 2.0.5 开式污水换热系统open-loop sewage heat transfer system 污水在循环泵的驱动下,经处理后直接流经污水源热泵机组或通过中间换热器进行热交换的系统。 2.0.6 闭式污水换热系统closed-loop sewage heat transfer system 将封闭的换热盘管按照特定的排列方法放入具有一定深度的污水体中,传热介质通过换热管管壁与污水进行热交换的系统。 2.0.7 传热介质heat-transfer fluid 污水源热泵系统中,通过换热管与污水进行热交换的一种液体。一般为水或添加防冻剂的水溶液。 2.0.8 城市原生污水city original sewage 污水渠中未经任何处理的城市污水称为城市原生污水。 2.0.9 污水换热器sewage heat exchanger 在含污水源热泵系统中,从污水中吸取热量或释放热量的换热设备。 2.0.10 中介水intermediate water 污水换热器中与污水换热的清洁水,视需求其中可加防冻液。 2.0.11 污水防阻机defend against hinder machine 含污水源热泵系统中分离污水中的悬浮物,防止悬浮物阻塞管路与设备的一种专利产品。

水源热泵冷水机组的特点及原理

水源热泵冷水机组的特点及原理 水源热泵冷水机组凭借经济实用、环保、应用范围广等各方面优点,在生活中被广泛使用着。很多地区都将该系统运用在了建筑的配套设施之中,它符合可再生能源技术要求,响应了可持续发展的战略理念。小编现在为大家介绍下什么是水源热泵冷水机组?它与空调有什么区别? 一、什么是水源热泵冷水机组 “水源热泵”型冷水机组又称为冷暖型冷水机组,冷暖型机组可在夏季向空调系统提供冷冻水源。而在冬季可向空调系统提供空调热水水源,或直接向室内提供冷风和热风。冷水机组的热泵工作原理是利用冷水机组的蒸发器从环境中取热,经过压缩机所消耗的功(电能)起到补偿作用,冷水机组的冷凝器则向用户排热,制出所需要的热水。 二、水源热泵冷水机组与空调之间的区别 传统设计的空调系统中较多采用的是冷水机供冷、锅炉供热的方式,或者采用溴化锂机组同时提供冷水和热水。利用锅炉作为热源,存在着环境污染和运行费用高的问题,降低能源消耗;而冷水机组以热泵方式运行来供热和提供热水,使得不仅采用电力这种清洁能源,而且提高了冷水机组的综合能效比,降低了能耗。 地球表面浅层水源(一般在1000 米以内),如地下水、地表的河流、湖泊和海洋,吸收了太阳进入地球的相当的辐射能量,并且水源的温度一般都十分稳定。水源热泵技术的工作原理就是:通过输入少量高品位能源(如电能),实现低温位热能向高温位转移。水体分别作为冬季热泵供暖的热源和夏季空调的冷源,即在夏季将建筑物中的热量"取"出来,释放到水体中去,由于水源温度低,所以可以高效地带走热量,以达到夏季给建筑物室内制冷的目的;而冬季,则是通过水源热泵机组,从水源中"提取"热能,送到建筑物中采暖。 水源热泵是目前空调系统中能效比(COP值)最高的制冷、制热方式,理论计算可达到7,实际运行为4~6。 水源热泵机组可利用的水体温度冬季为12~22℃,水体温度比环境空气温度高,所以热泵循环的蒸发温度提高,能效比也提高。而夏季水体温度为18~35℃,水体温度比环境空气温度低,所以制冷的冷凝温度降低,使得冷却效果好于风冷式和冷却塔式,从而提高机组运行效率。水源热泵消耗1kW.h的电量,用户可以得到4.3~5.0kW.h的热量或5.4~6.2kW.h的冷量。与空气源热泵相比,其运行效率要高出 20~60%,运行费用仅为普通中央空调的40~60%。

水源热泵有哪些优点

水源热泵有哪些优点 (资料来源:中国联保网)水源热泵与常规空调技术相比,有以下优点: 高效节能 水源热泵是目前空调系统中能效比(COP值)最高的制冷、制热方式,理论计算可达到7,实际运行为4~6。 水源热泵机组可利用的水体温度冬季为12~22℃,水体温度比环境空气温度高,所以热泵循环的蒸发温度提高,能效比也提高。而夏季水体温度为18~35℃,水体温度比环境空气温度低,所以制冷的冷凝温度降低,使得冷却效果好于风冷式和冷却塔式,从而提高机组运行效率。水源热泵消耗1kW.h的电量,用户可以得到4.3~5.0kW.h的热量或5.4~6.2kW.h的冷量。与空气源热泵相比,其运行效率要高出20~60%,运行费用仅为普通中央空调的40~60 %。 可再生能源 水源热泵是利用了地球水体所储藏的太阳能资源作为热源,利用地球水体自然散热后的低温水作为冷源,进行能量转换的供暖空调系统。其中可以利用的水体,包括地下水或河流、地表的部分的河流和湖泊以及海洋。地表土壤和水体不仅是一个巨大的太阳能集热器,收集了47%的太阳辐射能量,比人类每年利用能量的500倍还多(地下的水体是通过土壤间接的接受太阳辐射能量),而且是一个巨大的动态能量平衡系统,地表的土壤和水体自然地保持能量接受和发散的相对的均衡。这使得利用储存于其中的近乎无限的太阳能或地能成为可能。所以说,水源热泵利用的是清洁的可再生能源的一种技术。 节水省地 以地表水为冷热源,向其放出热量或吸收热量,不消耗水资源,不会对其造成污染;省去了锅炉房及附属煤场、储油房、冷却塔等设施,机房面积大大小于常规空调系统,节省建筑空间,也有利于建筑的美观。

相关主题
文本预览
相关文档 最新文档