当前位置:文档之家› 水源热泵机组的变工况特性研究(精)

水源热泵机组的变工况特性研究(精)

水源热泵机组的变工况特性研究(精)
水源热泵机组的变工况特性研究(精)

水源热泵机组的变工况特性研究

简介:本文通过对水源热泵机组的压缩机、冷凝器和蒸发器的变工况特性分析和计算,得到水源热泵机组变工况特性模型,对该模型进行误差检验,其误差均在允许范围内。应用水源热泵机组变工况模型,可以清楚、方便地对水源热泵机组进行变工况分析研究,对于以后水源热泵机组及其空调系统的优化设计等其它方面的研究都具有一定的参考和实用价值。

关键字:水源热泵变工况数学模型

1、概述

目前,水源热泵系统因是一种新型的、利用地球表面或浅层水源(如地下水、河流和湖泊)以及人工再生水源工业废水、中水、地热尾水等)的既可供热又可制冷的节能、高效环保系统,愈来愈多地受到建设机构、设计单位、房地产商、生产厂家以及公众的关注和应用。水源热泵机组的特点应用在于冷热源介质和工作温度范围变化较大,因此研究水源热泵机组的变工况特性就更具有必要性。本文试图对水源热泵机组的变工况特性的进行研究,通过理论分析和科学计算,从理论上建立水源热泵机组变工况模型,并对机组变工况特性进行分析,对今后水源热泵机组及其空调系统的优化设计等其它方面的研究都具有一定的参考和实用价值。

在这里,水源热泵机组的变工况特性研究涉及主要部件:压缩机、冷凝器和蒸发器。由于机组节流装置的内容积相对整个水源热泵机组来说是很小的,因此,节流装置对机组的影响很小,可忽略不计。

2、压缩机的变工况特性

研究水源热泵机组压缩机的变工况特性,首先需要建立其数学模型。水源热泵机组压缩机数学模型的形式不仅取决于研究对象的性质,还取决于待解决问题的性质。本文的研究目的在于选用合适的压缩机,有利于水源热泵机组的优化设计,因此建立其数学模型时并不要求准确反映机组压缩机内部的工作过程,而是侧重于反映对于水源热泵机组性能有影响的参数,目的在于选用合适的压缩机,使之与该机组的其他部件匹配好。为抓住主要矛盾,我们首先对水源热泵机组压缩机的理论循环进行分析。

2.1 理论变工况特性

水源热泵机组压缩机的理论循环示意图如图1所示。在进行水源热泵机组压缩机理论变工况特性分析时,参照文献(3),首先可做如下假设:

(1) 汽化潜热随温度的变化规律:

(1)

式中代表工质的临界温度,,是随工质而定的常数。

(2) 工质的

液态定压比热为常数,且液体定压加热过程线与饱和液体线重合。

(3) 取工质蒸发温度对应下的饱和液体的焓为工质焓值的计算基准点。

(4) 在求解水源热泵机组的耗功量时,为了简化问题分析可把工质的原放热过程2—4由过程线6—4代替。

作如上假设后,对照图1,经过分析可导出水源热泵机组的耗功量:(2)

上式中为冷凝温度,为蒸发温度,为工质的液态定压比热,为制冷剂流量。

水源热泵机组在制热工况下,在冷凝器中的放热量为:

(3)

水源热泵机组在制冷工况下,其制冷量为:

(4)

由于水源热泵机组制冷、制热两种工况非同一循环,因此必须明确上述公式中:。

若取,,则水源热泵机组的理论性能系数:

(5)

若考虑有过冷和干法压缩,对照图1近似取,则水源热泵机组的理论制冷量、制热量和耗功量分别为:

(6)

(7)

上式中,为过冷度,为过热度。

若制冷剂的性质一定,既则可根据文献(4)查出相关制冷剂的热物性参数,由已知蒸发温度、冷凝温度求出水源热泵机组的理论制冷量、制热量、耗功量及性能系数。

2.2 压缩机的实际变工况特性

水源热泵机组的实际循环与理论循环的差别主要是由两大因素组成,其一是系统中的制冷剂外界进行的热交换,其二是流动阻力。以蒸发式压缩制冷为例,实际制冷循环如图2所示。图中12341是一般蒸汽压缩式理论循环,

为实际循环。对热泵机组的实际循环的研究,是在上述理论研究的基础上,考虑实际因素的影响,引入适当的修正系数来进行的。

水源热泵机组的实际制冷量可以在理论制冷量的基础上引入制冷量修正系数来进行计算,即令:

(9)

式中,:制冷量修正系数。

同理,亦可将水源热泵机组的实际制热量和耗功量表示成以下形式:

(10)

(11)

式中:,分别为制热量和耗功量修正系数。

影响水源热泵机组制冷量修正系数()、制热量修正系数()和耗功

量修正系数()的实际因素主要包括压缩机的运行工况、压缩机的结构特点以及制冷剂的性质等,以往的研究中,当压缩机的结构和制冷剂的性质一定时,通常将其整理成蒸发压力和冷凝压力的函数关系,考虑到蒸发温度、冷凝温度和蒸发压力、冷凝压力存在着一定关系,研究中进一步将上述修正系数表示为蒸发温度和冷凝温度的函数关系,使其更具有直观性。通过对计算数据的观察、分析和反复尝试过程,发现以下形式的关系式既简单,又有较好的回归精度:

上式中,A,B,C,D,E,F:由实验而确定的系数;:多变指数,取决

于制冷剂的性质。

本研究中针对螺杆式压缩机(采用R22制冷剂),根据厂家提供的压缩机试验数据,进行了计算与分析。已知:制冷剂R22,理论输气量:133m3/h,气体比热:0.699kj/kgk,液体比热:1.319kj/kgk,过热度和过冷度均为5℃。计

算中首先根据压缩机的性能曲线,查得该压缩机的实际制冷量和耗功量并求出实际制热量,然后根据式(6)(7)(8)计算出该压缩机的理论制冷

量、耗功量及理论制热量,进而通过式(9)(10)(11)计算出热泵机组的制冷量、制热量和耗功量修正系数。计算结果如下:

(12)

(13)

(14)

另外,对于某种型号的螺杆式压缩机(其他类型的压缩机也适用)来说,当使用的制冷剂一定时,其制冷量,耗功量,以及在冷凝器需要排出的热量,即制热量,由压缩机性能曲线图可以看出压缩机的制冷量与蒸发温度、冷凝温度呈某种指数关系,暂设:,,,由于该压缩机用于水源热泵机组,并且机组实际具有制冷和制热两种工况,所以在非同一工况下,必须明确上述公式中:。

首先求取水源热泵机组在制冷工况下,制冷量与蒸发温度、冷凝温度的指数函数关系。(1) 由式两边取对数,得到:

。(2) 根据压缩机性能曲线选取五个点对应的制冷量,

求与、的指数函数关系。3) 由这五点对应的与、,分别构成20个线性方程式,并联立组成一个线性方程组:

(4) 最后,求解这个线性方程组。把该方程组看作一过限定系统,利用MATLAB6.0进行编程计算得到。解得,,,即:。最后求得:

(15)

同理,求得耗功量与蒸发温度、冷凝温度的函数关系:

(16)

机组在制热工况下,在求取制热量与蒸发温度、冷凝温度的指数函数关系时,考虑到该工况下:,同理求得:

(17)

以上分析和计算得到的螺杆式压缩机在水源热泵工况下的运行特性数学模型能较准确地反应该压缩机的运行特性;并且从理论分析基础上给出的水源热泵机组制冷量,制热量和耗功量的计算公式更具有说服力,也更为准确。由于实际因素的影响,水源热泵机组制热工况的变化特性要较其制冷工况特性复杂,不能简单地按其制冷工况变化规律理解。

3、冷凝器、蒸发器的变工况特性

3.1 冷凝器变工况特性

考虑水源热泵机组的运行特点:开停机不频繁,机组大部分时间处于稳定运行状态,这时,机组开停机时对冷凝器进行按过热区、两相区和过冷区分段处理就显得无足轻重,可以不予考虑;并且,本研究是从整体上进行冷凝器的研究,不必考虑冷凝器的具体结构,因此冷凝器内制冷剂的汽、液相变化从整个机组运行的宏观角度来看,也可以忽略,从而简化冷凝器的建模。于是作者尝试采用以下的方法建立冷凝器的数学模型。

建立冷凝器基于稳定运行状态的几个方面的假设:

1) 冷凝器的总换热系数为一常数,等于水源热泵机组在标准工况下冷凝器的换热系数。

2) 传热管外制冷剂的流动为一维均相流动,不考虑压降。实际制冷剂的流动是复杂的分相流动,而且实际冷凝器内管外侧由于结构布置上的原因,导致流速分布不均,会对换热造成一定影响,这与具体装置有关。

3) 管内冷却水的流动也看作是一维流动,且不考虑压降。

4) 管壁热阻忽略不计。与管内、外侧的换热热阻相比,管壁径向热阻很

小,管壁的轴向热阻对换热影响也不大,均可忽略不计。

由于忽略了冷凝器内的流动压降,就可不必考虑动量方程;稳定流动也使

得质量方程自动满足。因此,所要考虑的只有能量方程。

根据以上分析,作者将冷凝器的每个传热管划分成若干微元,最后得到冷

凝器的数学模型:

(18)

3.2 蒸发器的变工况特性

目前,对蒸发器数学模型主要有以下三种:动态集中参数模型、稳态分布

参数模型和稳态集中参数模型。考虑水源热泵机组的运行特点以及研究目的,

与冷凝器的建模相似,作者通过分析、计算得到蒸发器基于稳定状态下的数学

模型:

(19)

对于冷凝器和蒸发器来说,当冷却水流量一定时,即当水源热泵机组稳态

运行时,由于在一定热负荷范围内传热系数、变化不大,均可看作常

数,故换算系数和也基本不变,其值等于也分别等于某一常数。这样,

对于冷凝器和蒸发器来说,它们的热交换能力分别是冷凝温度和冷却剂进口温

度的函数、蒸发温度和冷冻水进口温度的函数。

4、水源热泵机组变工况特性

由于水源热泵机组主要部件压缩机、冷凝器和蒸发器是在稳定运行工况下

进行的,一定寻求热泵机组的状态平衡点,以便于该机组变工况特性的研究。

因此,该问题的核心是:如何根据各主要部件的计算结果,以及水源热泵机组

标准状况时的特性,求得机组变工况的数学模型。

首先对水源热泵机组进行变工况计算分析。利用压缩机、蒸发器、冷凝器

间存在着能量变化关系,将上述三部件变工况模型联立,建立方程组:

(20)

本研究中,冷凝器选用某种型号的管壳式冷凝器,蒸发器选用某种型号的干式蒸发器。根据螺杆式压缩机厂家提供的制热标准工况和制冷标准工况的条

件和厂家提供的冷凝器、蒸发器的相关参数,进一步求得与、、、

的函数关系、与、、、的函数关系,并将式(20)简化为一非线性方程组:

(21)

然后,利用VC++和求解非线性方程组的NEWTON迭代法进行编程计算,得到水源热泵机组稳态下的运行仿真结果,输入量为:、、、,

输出量为:、、、、、、,最后利用该仿真结果作者分别对制冷和制热两种工况,首先利用MATLAB6.0软件绘制曲线图,以便更好地反映输入量与输出量之间的函数关系,然后根据图形特点选取曲线拟合关系式,利用MATLAB6.0编制程序,对这些曲线进行拟合,从而找到输入量与输出量之间的具体函数关系式,最后对拟合得到的关系式进行误差检验,看是否在误差允许范围内。

根据上述方法,针对曲线拟合最后得到对制冷工况和制热工况下输入量:

、、、与输出量:、、、、、、之间的函数关系,对这些变量拟合得到的表达式的误差检验结果也均在允许范围之内,具体如下:

a) 制冷工况

(1) 变冷却水流量

(2) 变冷冻水流量

(3) 变冷却水温度

(4) 变冷冻水温度

合并同类项,计算得到:b) 制热工况

(1) 变冷却水流量

(2) 变冷冻水流量

(3) 变冷却水温度

(4) 变冷冻水温度

合并同类项,计算得到:

因此,综合上述分析和计算得到该水源热泵机组的系统仿真数学模型为:

1) 制冷工况:

2) 制热工况:

5、结论

1) 本文分析、计算得到了水源热泵机组变工况的数学模型,该数学模型的建立为进一步研究制冷空调系统变工况特性研究提供了更直接的依据,并且为以后对机组的优化奠定了基础,使机组的优化设计变得更为方便。

2) 该数学模型的建立没有采用微分方程的形式来表达,而是充分利用实验数据和实验特性曲线(本文所采用的相关资料均由生产厂家提供),对这些实验数据和实验特性曲线进行数据拟合,采用代数的形式进行表达的。由于采用微分方程的准确性优待进一步研究,这样一来,相比采用微分形式,本文得到的代数方程式更具有准确性和可靠性。

3) 该数学模型建立的更大的意义在于,它突破了以往对制冷空调系统变工况研究的局限。以往对制冷空调系统的变工况研究仅限于对各部件性能曲线的简单叠加上,这种简单迭加不能准确反映出各个状态参数与机组制冷或制热量的变化关系,还需要进一步准确反映他们之间的变化关系。本文作者正是建立

了他们之间关系的数学模型,这就是该数学模型的重要意义所在,为以后制冷空调系统的变工况特性研究和以此为基础的其它各项研究奠定了基础。

因此,从一定意义上说,水源热泵机组变工况的数学模型是具有开创性的工作,对今后制冷空调系统的研究具有重要意义。

在对水源热泵机组变工况的研究时,由于时间关系,作者仅分别选用了某种型号的螺杆式压缩机、干式蒸发器和管壳式冷凝器进行研究的,若是当机组选用其他类型的压缩机、蒸发器和冷凝器时,它们联合工作变工况的研究原理和方法都是相似的,此项工作还需要作者日后进一步完善。

1、丁国良,张春路,制冷空调装置仿真与优化,北京,科学出版社,2001

2、田胜元,萧曰嵘,实验设计与数据处理,北京,中国建筑工业出版社,2000

4、林澜,宋之平,热泵循环效率解析计算式工程热理学报,NO.5,1986

5、李鹏翔,水源热泵机组的优化设计研究,山东建筑工程学院硕论文,2003

什么是水源热泵中央空调 水源热泵机组原理及优缺点

什么是水源热泵中央空调水源热泵机组原理及优缺点 水源热泵中央空调是一项节能环保新技术,与地源热泵从大地中提取冷热量相比,水源热泵机组是利用地表水作为冷热源,然后进行能量转换的供暖空调系统。简单来说,水源热泵和地源热泵都是冷暖空调,不存在传统空调冬季化霜等难点问题,只不过水源热泵是通过地下水达到冷却制冷剂的效果,不占建筑面积。下面,我一起来看看水源热泵中央空调的定义、水源热泵机组原理及优缺点。 什么是水源热泵中央空调 水源热泵中央空调是一种利用地下浅层地热资源(如地下水、河流和湖泊中吸收地太阳能和地热能等)的既可供热又可制冷的高效节能空调系统。水源热泵机组以水为载体,在冬季采集来自湖水、河水、地下水的低品位热能,取得能量供给室内取暖;在夏季把室内的热量取出,释放到水中,以达到夏季空调供冷的目的。 水源热泵机组原理

夏季制冷时,水源热泵中央空调井水为机组的排热源。制冷剂在蒸发器内吸热蒸发,制取7℃冷水,送入房间使用,由于水体温度比环境空气温度低,所以制冷的冷凝温度降低,使得冷却效果好于风冷式和冷却塔式,机组效率提高;制冷剂再经压缩机压缩成高温高压的过热蒸汽,进入冷凝器,由井水带走热量并排至井中。 冬季制热时,水源热泵中央空调井水为机组的吸热源。制冷剂在蒸发器内吸取井水的热量蒸发,井水回灌井内,由于水体温度比环境空气温度高,所以热泵循环的蒸发温度提高,能效比也提高。制冷剂再经压缩机压缩成高温高压的过热蒸汽,进入冷凝器,加热循环水,制取45℃到50℃(最高可达65℃)的热水。 水源热泵机组原理的优缺点 水源热泵中央空调具有可再生能源利用技术、高效节能、制冷采暖生活热水三位一体、节省建筑空间、环境效益显著等多种优点,其缺点是对地下水质量要求比较高,需要良好的地下水源条件,用户在装水源热泵之前,需要先向各地水资委申请,申请通过之后才能装,

汽轮机各种工况TRLTHATMCRVWO等

汽轮机各种工况 T R L T H A T M C R V W O 等 文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

一、汽机 1.额定功率(铭牌功率TRL)是指在额定的主蒸汽及再热蒸汽参数、背压11.8KPa绝对压力,补给水率3%以及回热系统正常投入条件下,考虑扣除非同轴励磁、润滑及密封油泵等所耗功率后,制造厂能保证在寿命期内任何时间都能安全连续地在额定功率因素、额定氢压(氢冷发电机)下发电机输出的功率。此时调节阀应仍有一定裕度,以保证满足一定调频等需要。在所述额定功率定义条件下的进汽量称为额定进汽量。2.最大连续功率(T-MCR)是指在1.额定功率条件下,但背压为考虑年平均水温等因素确定的背压,(设计背压)补给水率为0%的情况下,制作厂能保证在寿命期内安全连续在额定功率因素、额定氢压(氢冷发电机)下发电机输出的功率。该功率也可作为保证热耗率和汽耗率的功率。保证热耗率考核工况:系指在上述条件下,将出力为额定功率时的热耗率和汽耗率作为保证,此工况称为保证热耗率的考核工况。 3.阀门全开功率(VWO)是指汽轮机在调节阀全开时的进汽量以及所述T-MCR定义条件下发电机端输出的功率。一般在VWO下的进汽量至少应为额定进汽量的1.05倍。此流量应为保证值。上述所指是由主汽轮机机械驱动或由主汽轮机供汽给小汽轮机驱动的给水泵,所需功率不应计算在额定功率中,但进汽量是按汽动给水泵为基础的,如果采用电动给水泵时,所需功率应自额定功率中减除(但在考核热耗率和汽耗率时是否应计入所述给水泵耗工,可由买卖双方确定)。 二、锅炉

水源热泵冷水机组的特点及原理

水源热泵冷水机组的特点及原理 水源热泵冷水机组凭借经济实用、环保、应用范围广等各方面优点,在生活中被广泛使用着。很多地区都将该系统运用在了建筑的配套设施之中,它符合可再生能源技术要求,响应了可持续发展的战略理念。小编现在为大家介绍下什么是水源热泵冷水机组?它与空调有什么区别? 一、什么是水源热泵冷水机组 “水源热泵”型冷水机组又称为冷暖型冷水机组,冷暖型机组可在夏季向空调系统提供冷冻水源。而在冬季可向空调系统提供空调热水水源,或直接向室内提供冷风和热风。冷水机组的热泵工作原理是利用冷水机组的蒸发器从环境中取热,经过压缩机所消耗的功(电能)起到补偿作用,冷水机组的冷凝器则向用户排热,制出所需要的热水。 二、水源热泵冷水机组与空调之间的区别 传统设计的空调系统中较多采用的是冷水机供冷、锅炉供热的方式,或者采用溴化锂机组同时提供冷水和热水。利用锅炉作为热源,存在着环境污染和运行费用高的问题,降低能源消耗;而冷水机组以热泵方式运行来供热和提供热水,使得不仅采用电力这种清洁能源,而且提高了冷水机组的综合能效比,降低了能耗。 地球表面浅层水源(一般在1000 米以内),如地下水、地表的河流、湖泊和海洋,吸收了太阳进入地球的相当的辐射能量,并且水源的温度一般都十分稳定。水源热泵技术的工作原理就是:通过输入少量高品位能源(如电能),实现低温位热能向高温位转移。水体分别作为冬季热泵供暖的热源和夏季空调的冷源,即在夏季将建筑物中的热量"取"出来,释放到水体中去,由于水源温度低,所以可以高效地带走热量,以达到夏季给建筑物室内制冷的目的;而冬季,则是通过水源热泵机组,从水源中"提取"热能,送到建筑物中采暖。 水源热泵是目前空调系统中能效比(COP值)最高的制冷、制热方式,理论计算可达到7,实际运行为4~6。 水源热泵机组可利用的水体温度冬季为12~22℃,水体温度比环境空气温度高,所以热泵循环的蒸发温度提高,能效比也提高。而夏季水体温度为18~35℃,水体温度比环境空气温度低,所以制冷的冷凝温度降低,使得冷却效果好于风冷式和冷却塔式,从而提高机组运行效率。水源热泵消耗1kW.h的电量,用户可以得到4.3~5.0kW.h的热量或5.4~6.2kW.h的冷量。与空气源热泵相比,其运行效率要高出 20~60%,运行费用仅为普通中央空调的40~60%。

汽轮机各种工况(TRL、THA、T-MCR、VWO等)

一、汽机 1.额定功率(铭牌功率TRL)是指在额定的主蒸汽及再热蒸汽参数、背压11.8KPa 绝对压力,补给水率3%以及回热系统正常投入条件下,考虑扣除非同轴励磁、润滑及密封油泵等所耗功率后,制造厂能保证在寿命期内任何时间都能安全连续地在额定功率因素、额定氢压(氢冷发电机)下发电机输出的功率。此时调节阀应仍有一定裕度,以保证满足一定调频等需要。在所述额定功率定义条件下的进汽量称为额定进汽量。 2.最大连续功率(T-MCR)是指在1.额定功率条件下,但背压为考虑年平均水温等因素确定的背压,(设计背压)补给水率为0%的情况下,制作厂能保证在寿命期内安全连续在额定功率因素、额定氢压(氢冷发电机)下发电机输出的功率。该功率也可作为保证热耗率和汽耗率的功率。保证热耗率考核工况:系指在上述条件下,将出力为额定功率时的热耗率和汽耗率作为保证,此工况称为保证热耗率的考核工况。 3.阀门全开功率(VWO)是指汽轮机在调节阀全开时的进汽量以及所述T-MCR 定义条件下发电机端输出的功率。一般在VWO下的进汽量至少应为额定进汽量的1.05倍。此流量应为保证值。上述所指是由主汽轮机机械驱动或由主汽轮机供汽给小汽轮机驱动的给水泵,所需功率不应计算在额定功率中,但进汽量是按汽动给水泵为基础的,如果采用电动给水泵时,所需功率应自额定功率中减除(但在考核热耗率和汽耗率时是否应计入所述给水泵耗工,可由买卖双方确定)。 二、锅炉 1.锅炉额定蒸发量,即是汽轮机在TRL工况下的进汽量。对应于:汽轮机额定功率TRL,指在额定进汽参数下,背压11.8KPa,3%的补给水量时,发电机端带

额定电功率MVA。 2.锅炉额定蒸发量,也对应汽轮机TMCR工况。对应于:汽轮机最大连续出力TMCR,指在额定进汽参数下,背压4.9KPa,0%补给水量,汽轮机进汽量与TRL 的进汽量相同时在发电机端所带的电功率MVA。 3.锅炉最大连续出力(BMCR),即是汽轮机在VWO工况下的汽轮机最大进汽量。对应于:汽轮机阀门全开VWO工况,指在额定进汽参数下,背压 4.9KPa,0%补给水量时汽轮机的最大进汽量。 注: a.汽机进汽量和锅炉蒸发量是按机组采用汽动给水泵考虑的。 b.在TMCR工况下考核汽机热耗和锅炉效率的保证值。在VWO工况下考核汽机最大进汽量和锅炉最大连续出力保证值。 c.一般说,汽机TMCR时的出力比之TRL时的出力大5%左右。汽机VWO时的进汽量比之TMCR时的进汽量多3~5%,出力则多4~4.5%。 d.如若厂用汽需用量较大时,锅炉BMCR的蒸发量考虑比汽机VWO时的进汽量再增多3%左右。 e.不考虑超压条件。 f.TMCR工况下汽机背压4.9KPa为我国北方地区按冷却水温为20℃的取值。在我国南方地区可根据实际冷却水温取值,调整为5.39KPa或更高些。 600MW机组 1机组热耗保证工况(THA工况)机组功率(已扣除励磁系统所消耗的功率)为600MW时,额定进汽参数、额定背压、回热系统投运、补水率为0%. 2铭牌工况(TRL工况)机组额定进汽参数、背压11.8KPa、补水率3%,

燃气轮机和内燃机发电机组性能及经济性分析

燃气轮机和内燃机发电机组性能及经济性分析 摘要:介绍燃气分布式能源系统配置。对燃气轮机、燃气内燃机发电机组性能(性能参数、变工况特性、余热特性、燃气进气压力)、经济性等进行比较。 关键词:分布式能源系统;燃气轮机发电机组;燃气内燃机发电机组;经济性 Analysis on Performance and Economy of Gas Turbine and Gas Engine Generator Units Abstract:The configuration of gas distributed energy system is introduced.The performance of gas turbine generator unit including performance parameters,variable conditions characteristics,waste heat characteristics and gas inlet pressure as well as the economy are compared with gas engine generator unit. Keywords:distributed energy system:gas turbine generator unit;gas engine generator unit;eeonomy 1概述 燃气分布式能源系统(以下简称分布系统)是指布置在用户附近,以天然气为主要一次能源,采用发电机组发电,并利用发电余热进行供冷、供热的能源系统[1-11]。主要设备包括发电机组、余热利用装置等,作为动力设备的发电机组是分布系统的关键。 分布系统通常采用的发电机组为燃气轮机发电机组(以下简称燃气轮机组)、燃气内燃机发电机组(以下简称内燃机组)。燃气轮机组是以连续流动气体为工质,将热能转化为机械能的旋转式动力设备,包括压气机、燃烧室、透平、辅助设备等,具有结构紧凑、操作简便、稳定性好等优点。在分布系统中应用的主要是发电功率范围为25~20000kW的微型、小型燃气轮机组。 内燃机组是将液体或气体燃料与空气混合后,直接输入气缸内部燃烧并产生动力的设备,是一种将热能转化为机械能的热机,具有体积小、热效率高、启动性能好等优点,发电功率范围为5~18000kW。美国不同规模分布系统的发电机组发电功率见表1[12]。

汽轮机变工况

第三章第三章汽轮机的变工况 chapter 3 The changing condition of Steam turbine 设计工况:运行时各种参数都保持设计值。 变工况:偏离设计值的工况。 经济功率:汽轮机在设计条件下所发出的功率。 额定功率:汽轮机长期运行所能连续发出的最大功率。 研究目的:不同工况下热力过程,蒸汽流量、蒸汽参数的变化,不同调节方式对汽轮机工作的影响;保证机组安全、经济运行。 第一节喷嘴的变工况 The changing condition of a nozzle 分析:喷嘴前后参数与流量之间的变化关系 一、渐缩喷嘴的变工况 The changing condition of a contracting nozzle 试验:调整喷嘴前后阀门,改变初压和背压,测取流量的变化。 (一)(一)初压P*0不变而背压P1变化 (1)(1)εn=1,P1= P*0,G=0,a-b,d (2)(2)0<εn<εcr,G<G cr,a-b1-c1,1 (3)(3)εn=εcr,G=G cr,a-b2-c2,e (4)(4)ε1d<εn<εcr,G=G cr,a-b3-c3,3 (5)(5)εn=ε1d,G=G cr,a-c4,4 (6)(6)εn<ε1d,G=G cr,a-c4-c5,5 列椭圆方程: (二)(二)流量网图 改变p*0可得出一系列曲线,即流量网图 横坐标:ε1= p1/p*0m; 纵坐标:βm=G/G 0m; 参变量:ε0= p*01 /p*0m p*0m、G*0m:分别为初压最大值和与之相应的临界流量的最大值。 例1:已知:p0 =9MPa ,p01 =7.2MPa,p1 =6.3MPa,p11 =4.5MPa 求:流量的变化。

第三章 汽轮机的变工况特性-第三节 配汽方式及其对定压运行机组便工况的影响

第三节 配汽方式及其对定压运行机组便工况的影响 汽轮机的配汽方式有节流配汽、喷嘴配汽与旁通配汽等多种,其中最常用的是节流配汽与喷嘴配汽两种。旁通配汽主要用在船、舰汽轮机上,故这里不作介绍。下面先介绍配汽方式,然后介绍配汽方式对定压运行机组交工况的影响。 一、节流配汽 进入汽轮机的所有蒸汽都通过一个调节汽门(在大容量机组上,为避免这个汽门尺寸太大,可通过几个同时启闭的汽门),然后流进汽轮机,如图3.3.1(a)所示。最大负荷时,调节汽门全开,蒸汽流量最大,全机扣除进汽机构节流损失后的理想比治降)('?mac t h (见图3.3.1b)最大,故功率最大。部分负荷时,调节汽门关小,因蒸汽流量减小,且蒸汽受到节流,全机扣除进汽机构节流损失后的理想 比治降减为)(''?mac t h 故功率减小。图3.3.1(b)中0 p '表示调节汽门全开时第一级级前压力,0 p ''表示调节汽门部分开启时第一级级前压力。 节流配汽汽轮机定压运行时的主要缺点是,低负荷时调节汽门中节流损失较大,使扣除进汽机构节流损失后的理想比焓降减小得较多。通常用节流效率th η表示节流损失对汽轮机经济件的影响:

mac t mac t th h h ?' '?=)(η (3.3.1) 根据第二章全机相对内效率i η的定义,可得 th i mac t mac t mac t mac i mac t mac i i h h h h h h ηηη'=?' '?''?''?=?''?=)()()()( (3.3.2) 式中,)()(''?' '?='mac t mac i i h h η,指未包括进汽机构的通流部分相对内效率,对再热机组m ac t h ?、)(''?mac t h 、)(''?mac i h 均为高中低压缸比焓降之和。 节流效率是蒸汽初终参数和流量的函数。图3.3.2是初压0p =12.75MPa ,初温0t =565℃时,节流效率th η与背压g p 、流量比G G /1的关系曲线。只要求出 G G /1下的0P '',若是再热机组尚需知道再热压力 1r p 、再热压损1r p ?与再热温度r t ,就可查水蒸汽图表求出th η。由图可见,在同一背压下,蒸汽流量比设计值小得越多,调节汽门中的节流越大,节流效率越低。在同一流量下,背压越高,节流效率越低。因此,全饥理想比焓降较小的背压式汽轮机,不宜 采用节值配汽。背压很低的凝汽式汽轮机,即使流量下降较多,节流效率仍降得根少。 与喷嘴配汽相比,节流配汽的优点是:没有调节级,结构比较简单,造成本较低;定压运行流量变化时,各级温度变化较小,对负荷变化适应性较好。 现代大型节流配汽汽轮机若是滑压运行则既可用于承担基本负荷, 也可用于

汽轮机各种工况(TRL、THA、T-MCR、VWO等)

1.额定功率(铭牌功率TRL)是指在额定的主蒸汽及再热蒸汽参数、背压11.8KPa 绝对压力,补给水率3%以及回热系统正常投入条件下,考虑扣除非同轴励磁、润滑及密封油泵等所耗功率后,制造厂能保证在寿命期内任何时间都能安全连续地在额定功率因素、额定氢压(氢冷发电机)下发电机输出的功率。此时调节阀应仍有一定裕度,以保证满足一定调频等需要。在所述额定功率定义条件下的进汽量称为额定进汽量。 2.最大连续功率(T-MCR)是指在1.额定功率条件下,但背压为考虑年平均水温等因素确定的背压,(设计背压)补给水率为0%的情况下,制作厂能保证在寿命期内安全连续在额定功率因素、额定氢压(氢冷发电机)下发电机输出的功率。该功率也可作为保证热耗率和汽耗率的功率。保证热耗率考核工况:系指在上述条件下,将出力为额定功率时的热耗率和汽耗率作为保证,此工况称为保证热耗率的考核工况。 3.阀门全开功率(VWO)是指汽轮机在调节阀全开时的进汽量以及所述T-MCR 定义条件下发电机端输出的功率。一般在VWO下的进汽量至少应为额定进汽量的1.05倍。此流量应为保证值。上述所指是由主汽轮机机械驱动或由主汽轮机供汽给小汽轮机驱动的给水泵,所需功率不应计算在额定功率中,但进汽量是按汽动给水泵为基础的,如果采用电动给水泵时,所需功率应自额定功率中减除(但在考核热耗率和汽耗率时是否应计入所述给水泵耗工,可由买卖双方确定)。 二.锅炉 1.锅炉额定蒸发量,即是汽轮机在TRL工况下的进汽量。对应于:汽轮机额定功率TRL,指在额定进汽参数下,背压11.8KPa,3%的补给水量时,发电机端带额定电功率MVA。

2.锅炉额定蒸发量,也对应汽轮机TMCR工况。对应于:汽轮机最大连续出力TMCR,指在额定进汽参数下,背压4.9KPa,0%补给水量,汽轮机进汽量与TRL 的进汽量相同时在发电机端所带的电功率MVA。 3.锅炉最大连续出力(BMCR),即是汽轮机在VWO工况下的汽轮机最大进汽量。对应于:汽轮机阀门全开VWO工况,指在额定进汽参数下,背压 4.9KPa,0%补给水量时汽轮机的最大进汽量。 注: a.汽机进汽量和锅炉蒸发量是按机组采用汽动给水泵考虑的。 b.在TMCR工况下考核汽机热耗和锅炉效率的保证值。在VWO工况下考核汽机最大进汽量和锅炉最大连续出力保证值。 c.一般说,汽机TMCR时的出力比之TRL时的出力大5%左右。汽机VWO时的进汽量比之TMCR时的进汽量多3~5%,出力则多4~4.5%。 d.如若厂用汽需用量较大时,锅炉BMCR的蒸发量考虑比汽机VWO时的进汽量再增多3%左右。 e.不考虑超压条件。 f.TMCR工况下汽机背压4.9KPa为我国北方地区按冷却水温为20℃的取值。在我国南方地区可根据实际冷却水温取值,调整为5.39KPa或更高些。 600MW机组 1机组热耗保证工况(THA工况)机组功率(已扣除励磁系统所消耗的功率)为600MW时,额定进汽参数、额定背压、回热系统投运、补水率为0%.2铭牌工况(TRL工况)机组额定进汽参数、背压11.8KPa、补水率3%,回热系统投运下安全连续运行,发电机输出功率(已扣除励磁系统所消耗的功率)

水源热泵设备选型

水源热泵设备选型 ⒈一般情况下按空调冷负荷确定机组型号,对于热负荷高的地区要校核采暖负荷。 传统的系统——用较大的热负荷或冷负荷选择系统。以出水温度35℃的制冷量或以出水温度18℃的 制热量作为选择水源热泵机组的依据。 ⒉无锅炉系统——用冷负荷选择水源热泵机组,房间的热损耗需用足够能量的电加热型加热器加以抵 消。 ⒊水系统进水温度选定原则:一般制冷为15~35℃,制热为10~32℃,国标规定制造商参数标定按制 冷进出水温度30/35℃,热泵制热进出水温度20℃。 ⒋水量及风量确定原则:一般每KW的水流量为0.19m3/h,风量为140~250m3/h。 ⒌实际制冷量及制热量会因室内设计干、湿球温度的不同而有所变化,应根据室内设计干、湿球温度进 行修正。 二、循环水系统设计 水环系统通常有冷却塔、换热器、蓄热箱、辅助加热器、泵及相应管路组成。水环水温控制范围一般为15~35℃,在此温度范围内,一般不需要开冷却塔或辅助加热器。 三、系统水流量设计 水源热泵系统夏季需冷量的计算方法与其它系统相同。根据需冷量和所需的冷却水温差,各台水源热泵装置的循环水量即可求出,在考虑到装置的同时使用系数,即可得到整个系统所要求的夏季总冷却循环水量。 一般来说,单一性质的建筑同时使用系数较高,综合性建筑则低一些。另水源热泵装置的数量越多,同时使用系数越小,反之则越大。同时使用系数可按以下原则来确定: ⒈循环水量小于36 m3/h时,同时使用系数取0.85~0.9 ⒉循环水量为36~54 m3/h时,同时使用系数取0.85~0.85 ⒊循环水量大于54 m3/h时,同时使用系数取0.75~0.8 以上原则中所提到的循环水量是指各装置所需水量的累计值,把此值乘以同时使用系数即可得到系统实际所需的总循环水量,并以此作为循环水泵、冷却塔的选型参数以及循环水总管径确定的依据。 四、系统形式 水源热泵水路系统通常采用一次泵系统,运行简单、管理也比较方便。考虑到整个系统的运行可靠,系统中必须设置备用泵。 水系统的循环泵建议多台并联。 为保证每一台水源热泵机组都得到所需水流量,其水系统一般建议采用同程式;每一个分支管路上最好加上平衡阀。考虑到建筑物的特点,为了配管方便,有时也可采取直接回水的异程式方案。 五、循环水管设计 ⒈确定循环水管的管径时,需要保证能输送设计水流量,使摩擦损失和水流噪音最小,以获得经济合理的效果。 ⒉循环管径越小,流速越高,相应摩擦损阻力变大,水流噪音也大。 ⒊当确定管径时,对于50mm直径的水管,极限水流速度为1.5~2 m/s,在极限水流速以下

汽轮机各种工况TRLTHTMCRVWO等定稿版

汽轮机各种工况 T R L T H T M C R V W O等 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】

一、汽机 1.额定功率(铭牌功率TRL)是指在额定的主蒸汽及再热蒸汽参数、背压11.8KPa绝对压力,补给水率3%以及回热系统正常投入条件下,考虑扣除非同轴励磁、润滑及密封油泵等所耗功率后,制造厂能保证在寿命期内任何时间都能安全连续地在额定功率因素、额定氢压(氢冷发电机)下发电机输出的功率。此时调节阀应仍有一定裕度,以保证满足一定调频等需要。在所述额定功率定义条件下的进汽量称为额定进汽量。 2.最大连续功率(T-MCR)是指在1.额定功率条件下,但背压为考虑年平均水温等因素确定的背压,(设计背压)补给水率为0%的情况下,制作厂能保证在寿命期内安全连续在额定功率因素、额定氢压(氢冷发电机)下发电机输出的功率。该功率也可作为保证热耗率和汽耗率的功率。保证热耗率考核工况:系指在上述条件下,将出力为额定功率时的热耗率和汽耗率作为保证,此工况称为保证热耗率的考核工况。 3.阀门全开功率(VWO)是指汽轮机在调节阀全开时的进汽量以及所述T-MCR定义条件下发电机端输出的功率。一般在VWO下的进汽量至少应为额定进汽量的1.05倍。此流量应为保证值。上述所指是由主汽轮机机械驱动或由主汽轮机供汽给小汽轮机驱动的给水泵,所需功率不应计算在额定功率中,但进汽量是按汽动给水泵为基础的,如果采用电动给水泵时,所需功率应自额定功率中减除(但在考核热耗率和汽耗率时是否应计入所述给水泵耗工,可由买卖双方确定)。 二、锅炉 1.锅炉额定蒸发量,即是汽轮机在TRL工况下的进汽量。对应于:汽轮机额定功率TRL,指在额定进汽参数下,背压11.8KPa,3%的补给水量时,发电机端带额定电功率MVA。

水源热泵空调系统简介

水源热泵空调系统简介 一、背景 环境污染和能源危机已成为当今社会的两大难题,如何在享受的同时付出最少的代价逐渐成为人类的共识,在这种背景下以环保和健康为主要特征的绿色建筑应运而生。尽可能少地消耗能源为建筑物创造舒适环境已经成为空调的发展方向,开发利用天然的冷/热源能够为空调带来节能和环保双重效益,因而越来越受到人们的重视。地下水是一个巨大的天然资源,其热惰性极大,全年的温度波动很小,一般说来,埋藏于地表50m以下的深井水可常年维持在该地区年平均温度左右,是一种理想的天然冷热源。 二、水源热泵简介 水源中央空调系统是一种从地下水资源中提取热量的高效、节能、环保、可再生的供热(冷)系统。该系统是成熟的热泵技术、暖通空调技术配套地质勘察成井技术于一体,在地下50~100米相对稳定的水体温度下高效、稳定、经济的运行。水源中央空调系统是由末端(室内空气处理末端等)系统、水源中央空调主机(又称为水源热泵)系统和水源水系统三部分组成。为用户供热时,水源中央空调系统从水源中提取低品位热能,通过电能驱动的水源中央空调主机(热泵)“泵”送到高温热源,以满足用户供热需求。为用户供冷时,水源中央空调系统将用户室内的余热通过水源中央空调主机(制冷)转移到水源水中,以满足用户制冷需求。 用户(室内末端等)系统由用户侧水管系统、循环水泵、水过滤器、静电水处理仪、各种末端空气处理设备、膨胀定压设备及相关阀门配件等组成。 水源中央空调主机系统由压缩机、蒸发器、冷凝器、膨胀阀、各种制冷管道

配件和电器控制系统等组成。 水源水系统由取水装置、取水泵、各种水处理设备、水源水管系统和阀门配件等组成。 制冷工况的实现只需通过合理地设计用户系统和水源水系统管道和阀门,切换阀门来实现进蒸发器的水源水改进冷凝器,进冷凝器的用户系统循环水改进入蒸发器,以达到制冷的目的。(反之则为供热工况) 水源热泵是利用了地球水体所储藏的太阳能资源作为冷热源,进行能量转换的冷暖空调系统。地表土壤和水体不仅是一个巨大的太阳能集热器,收集了47%的太阳辐射能量,比人类每年利用能量的500倍还多(地下的水体是通过土壤间接的接受太阳辐射能量),而且是一个巨大的动态能量平衡系统,地表的土壤和水体自然地保持能量接受和发散相对的均衡。这使得利用储存于其中的似乎无限的太阳能或地能成为可能。所以说,水源热泵是利用可再生能源的一种有效途径。 三、水源热泵中央空调系统的工作原理图 在上图中,供水井的地下水通过潜水泵进入机组并进行能量提取后回灌入回水井,构成井水循环系统。机组提取地下水中的低位能量并将其聚变为高位能量,然后输送给冷暖水循环系统(用户末端)。整个系统仅消耗电能,无任何污染。由于地下水循环使用.因此也不会造成地层沉降。主机占地面积比传统方式大大减少,可放置在地下室等空间。

第三章 汽轮机的变工况特性-第一节 喷嘴的变工况特性

第三章 汽轮机的变工况特性 汽轮机的热力设计就是在已经确定初终参数、功率和转速的条件下,计算和确定蒸汽流量,级数,各级尺寸、参数和效率,得出各级和全机的热力过程线等。汽轮机在设计参数下运行称为汽轮机的设计工况。由于汽轮机各级的主要尺寸基本上是按照设计工况的要求确定的,所以一般在设计工况下汽轮机的内效率达最高值,因此设计工况也称为经济工况。 汽轮机运行时所发出的功率,将根据外界的需要而变化,汽轮机的初终参数和转速也有可能变化,从而引起汽轮机的蒸汽流量和各级参数、效率等变化。汽轮机在偏离设计参数的条件下运行,称为汽轮机的变工况。 , 汽轮机工况变动时,各级蒸汽流量、压力、温度、比焓降和效率等都可能发生变化,零、部件的受力、热膨胀和热变形也都有可能变化。为了保证汽轮机安全、经济地运行,就必须弄清汽轮机的变工况特性。 电站汽轮机是固定转速汽轮机,限于篇幅,这里仅讨论等转速汽轮机的变工况。主要讨论蒸汽流量变化和初终参数变化时的变工况,其中也就包含了功率变化问题。汽轮机变工况是以级的交工况和喷嘲、动叶的变工况为基础的,因此,必须首先介绍喷嘴、动叶的变工况。 第一节 喷嘴的变工况特性 缩放嘴嘴的交工况已由流体力学介绍道了,其中一个重要概念,就是缩放喷嘴背压逐渐高于设计值时,将先在喷嘴出口处,后在喷嘴渐放段内产生冲波(或称激波)。超音速汽流经过冲波,流速大为降低,损失很大。所以,缩放喷嘴处于背压高于设计值的工况下运行时效率很低。 缩放喷嘴的速度系数?与压比n ε、膨胀度f 的关系如图3.1.1所示。膨 胀度c n A A f =,表示缩放喷嘴出口而积n A ,与喉部临界截面而积c A 之比。每条 曲线上?最高的点(图示a,b,c,d)是该缩放喷嘴的设计工况点。由图可见,缩放喷嘴设计压比n ε越小,膨胀度f 越大,而f 越大的缩放喷嘴在实际压比1n ε增大时, ?降得越多,因而喷嘴效率也降得越多。

螺杆水源热泵机组

螺杆水源热泵机组 机组概述 水(地)源热泵机组利用地球表面浅层水源如地下水、河流和湖泊等地下浅层地能为主要能源,并采用热泵原理,通过少量的高位点能输入,实现低位热能向高位热能转移的一种机组。供热时,水源中央空调从水源中提取低品位热能,通过电能驱动的水源中央空调主机(热泵)“泵”送到高温热源,以满足用户供热需求。供冷时,水源中央空调将室内的余热通过水源中央空调主机转移到水源中,以满足制冷需求。 机组使用场合 本系列水源热泵机组拥有结构紧凑,环保节能,智能控制等多项优势,该系列机组可运用水源热泵可应用于宾馆、商场、办公楼、学校等建筑及运用于化工、注塑、电子电器、机械等工艺冷却领域。 机组特征

螺杆压缩机 ●采用耐氟电机,效率和可靠性极高,电机由低温制冷剂冷却,散热佳且无泄露可能。 ●阴阳转子经高精度转子研磨机加工而成,具有容积率高、噪声低、振动小、运转平稳可靠等特点。 ●电机直接驱动,运转部件和易损件少,机械效率高。 ●压差供油,无需油泵。 可靠的保护系统 ●高低压力,排立温度,运行电流,水温的实时监测控制,可以保证机组的安全运行。 ●水流,防冻,低压及水温监测等多道保护完全避免蒸发管冻裂可能。 简便的安装调试 ●接管方向可以根据用户要求自由对换。 ●随机安装式控制柜可节省客户端额外支出。 ●出厂时已经充注制冷剂和润滑油,现场只需要连接水管和动力电源即可以使用。 方便的用户设定 ●用户可根据实际运行条件进行参数设定,以取得最佳运行效果。 ●设定方法简单直观。 完善的控制系统

●采用PLC控制器和人性化操作界面。 ●具有多重保护功能,确保机组安全可靠运行。 ●具有状态显示,参数设定,能量控制,故障查询等多项控制功能。 ●机组容量能在较宽的范围内调节,以匹配实际空调负载,提高部分负载工作性能。

汽轮机变工况课程设计

《汽轮机原理》课程设计 一、目的及任务 汽轮机课程设计是对在汽轮机课程中所学到的理论知识的系统总结、巩固和加深,要求掌握汽轮机热力计算及变工况下热力计算的原则、方法和步骤。 课程设计的任务是针对200MW 或300MW 汽轮机额定功率的50%、55%、60%、65%、70%、75%、80%、85%、90%、95%工况,首先计算并绘制出调节级特性曲线、而对调节级进行变工况热力计算,再对其余压力级进行变工况热力计算,同时求出各级的内功率、相对内效率等全部特征参数,并与设计工况作对比分析。 二、内容及要求 1、变工况进汽量估算过程。 2、做出所有压力级变工况计算的汇总表,并把调节级、以及其它级中任一级的详细热力计算过程书面写出。 3、绘出整机中各级热力过程线,同时绘出各级速度三角形。 三、设计步骤 3.1 汽轮机变工况进汽量D 0的初步估算 D 0=3600P e m /()mac t ri g m h D ηηη?+?(kg/h ) 式中,P e 为变工况功率(kW )。 △h t mac 为汽轮机整机理想比焓降,对于本设计采用中间再热的汽轮机,中压缸入口状态点应按再热后温度计算。 m 为考虑回热抽汽进汽量增大的系数,其与回热级数、给水温度及机组参数和容量有关,通常取m =1.15-1.25,对于本设计200MW 、300MW 汽轮机,取m =1.19-1.22。 △D 为考虑前轴封及阀杆漏汽以保证发出经济功率的蒸汽裕量,通常△D =(3-5)%D 0(kg/h )。 机组的整机相对内效率ηri 、发电机效率ηg 和机械效率ηm 的选取,参考同类型、同容量的汽轮发电机组。 由于整机相对内效率ηri 取决于汽轮机内部各项损失,这些损失又与蒸汽流量及通流部分的几何参数有关,因此只能初步估计(ηri ),求出进汽量后进行变工况试算,试算完成后再进行校核。 表1 汽轮发电机组的各种效率范围

第三章 汽轮机的变工况特性-第七节 初终参数变化对汽轮机工作的影响

第七节 初终参数变化对汽轮机工作的影响 一、初终参数变化过大对安全性的影响 1.蒸汽初压0p 、再热压力r p 变化过大对安全性的影响 1 ) 初温不变,初压升高过多,将使主蒸汽管道、主汽门、调节汽门、导管及汽缸等承压部件内部应力增大。若调节汽门开度不变,则0p 增大,致使新汽比容减小、蒸汽流量增大、功率增大、零件受力增大。各级叶片的受力正比于流量而增大。特别是末级的危险性最大,因为流量增大时末级比治、焓降增大得最多,而叶片的受力正比于流量和比焓降之积,故对应力水平已很高的末级叶片的运行安全性可能带来危险。第一调节汽门刚全开而其他调节汽门关闭时,调节级动叶受力最大,若这时初压0p 升高,则调节级流量增大,比焓降不变,叶片受力更大,影响远行安全性。此外,初压0p 升高、流量增大还将使轴向推力增大。 因此未经核算之前,初压 0p 不允许超过制造厂规定的高限数值。我国姚孟 电厂的法国阿尔斯通生产的亚临界320MW 汽轮机规定初压 0p 应小于等于l05% 额定值。当达到l05%额定韧压时,高压旁路调节阀自动开启,通过旁路排汽降低汽轮机的 0p 。如果旁路投入后0p 仍不能降低,则只允许0p 瞬时超过l05%额 定汽压,但不能超过112%额定汽压。同理,再热蒸汽压力Pr 也不能超过制造厂规定的高限数值。 2 ) 初温0t 不变、初压0p 降低一般不会带来危险。如滑压运行时0p 的下降,并未影响安全。然而P 。降低时,若所发功率不减小,甚至仍要发出额定功率,那么必将使全机蒸汽流量超过额定值,这时若各监视段压力超过最大允许值,将使轴向推力过大,这是危险的,不能允许的。因此蒸汽初压P 0降低时,功率必须相应地减小。对于 0p =8.83MPa 的高压机组,即使0p 降到3.0MPa ,也不会使 凝汽式机组的排汽过热,也就不会使汽缸和凝汽器过热 2.蒸汽初温0t 和再热汽温r t 变化过大对安全性的影响 1) 0p 与r p 不变,0t 与r t 升高将使锅炉过热器和再热器管壁,新汽和再热

【专业资料】汽轮机试验各工况的解释

汽轮机试验各工况的解释 作为汽轮机试验的从业人员,一开始对汽轮机各工况如TRL、TMCR、THA、VWO工况是不太清楚的,工作几年以后,实践出真知,自然十分清晰了。我下面以最通俗的说法解释这几个工况的含义和意义。希望看完文档后,能有恍然大悟的感觉。 (1)THA工况 THA是turbine heat acceptance的缩写。汽轮机考核工况,用于汽轮机性能的验收和评价。在汽轮机额定功率(发电量)下,额定排汽压力下(全年平均背压),额定进汽参数下,无补水时机组的热耗率。此工况即为THA工况,也称验收工况。 解释完THA工况,才有资格再去看TRL和TMCR工况。 (2)TRL工况 TRL是turbine rated load的缩写(锅炉TRL蒸发量对应)。汽轮机排汽压力和环境温度有很大关系,若排汽压力升高,机组主汽流量必然增大。对汽轮机、锅炉的安全性都有影响。此工况目的在于考核机组夏季炎热时候,机组是否具备发出额定功率的能力。 TRL工况要求在额定进汽参数下,机组高背压(湿冷机组11.8kPa,空冷机组33kPa)下,补水率3%,额定进汽参数条件下,机组发额定功率时的热耗率。 请注意,此时TRL对应的主汽流量比THA工况下高出不少。 (3)TMCR工况 TMCR为turbine maximum continue rate的缩写。与TRL工况、锅炉BRL 工况对应。汽轮机最大连续运行工况。TMCR工况为TRL进汽流量下,THA工况背压下,在额定进汽参数下,机组的热耗率。额定进汽参数条件下,无补水机组的热耗率。 注意,TMCR工况下,机组的功率高出THA和TRL不少。 (4)VWO工况 VWO是valve wide open的缩写。所有阀门全开工况。与锅炉BMCR工况对应。汽轮机在锅炉最大蒸发量下,机组在额定进汽参数,额定排汽压力,无补水时机组的热耗率。VWO工况除进汽流量与THA不同外,其他参数条件要求与THA 一致。 锅炉侧工况比较简单,一般只记住额定和最大两个工况即可,百度上介绍的一般没有问题。 ——光辉岁月1661制作

螺杆式水源热泵机组

螺杆式水源热泵机组 水/地源热泵水-水螺杆式机组是以地能即地下水(井水、地埋管或其他地表水)为主要能源辅以电能,通过先进的设备将地下取之不竭但不易利用的低品位再生能源开发利用,使其变为高品位能源。由于采用了地能,所以不受室外环境和气候的影响,运行稳定,没有风冷热泵机组的除霜和小区热岛效应等问题。 高效低噪:Mammoth水源热泵专用压缩机,具有高效低噪音,低振动,宽运行工况等特点。 规格齐全:从70冷吨到1000冷吨的冷量分布,可满足各种场合的冷量需求。高效换热:换热铜管采用内外加强大螺纹设计,大大提高换热系数。 优化设计:可选内置四通换向阀,简化水系统设计施工,制冷/制热内部切换。结构紧凑:管板支撑设计,减小机房占用空间。 使用方便:所有保护开关均已设定,现场只需接驳管路和布线即可开机使用。保护周全:提供全系列安全保护,报警时显示故障原因。 多种控制:采用PLC控制技术,提供楼宇自控系统接口可实现集中或远程控制。

1.制冷模式 2.制热模式 3.制冷+余热回收 4.制冷+全热回收 5.制热+余热回收 6.单热回收(生活热水) 机组通过在个模式之间的切换,以及相应管路阀门的切换,可以满足夏季,冬季,过渡季节供冷, 供热和生活热水的使用需求。 上海协和国际学校(上海) “浦江智谷”商务楼(上海)

杭州信步闲庭公寓(浙江杭州)苏州绿宝广场一期(江苏苏州) 沭阳县人民医院迁建项目(江苏宿迁)苏州新火车站站房北区(江苏苏州) 清河新城(北京)深圳东部华侨城茵特拉根五星级大酒店(广东深圳) 山西省晋中市人民检查院办公楼(山西晋 中) 合肥大剧院(安徽合肥)

燃气轮机性能分析报告3——透平特性的计算

动力与能源工程学院 燃气轮机性能分析 (报告三) 学号: 专业:动力机械及工程 学生姓名: 任课教师: 2010年4月

透平特性的计算 一、透平特性计算的意义 目前,燃气轮机已广泛应用于航空、船舶、发电等诸多领域,提高燃气轮机的性能已成为人们关注的焦点。透平变工况通常是指转速、入口压力、温度以及出口压力的变化。上述参数的变化将会导致级间热降的重新分配、速度三角形的变化以及流动损失的改变,最终引起涡轮级综合参数(流量、效率以及功率)的变化。 讨论变工况可以更好的了解已设计好的透平在工况变动时性能的变化(如功率、效率、扭矩等)和各参数的变化规律。使运行时能情况明了。一个好的透平,应该在设计工况和变工况下都是工作良好的。在设计时,就要预先考虑变工况的性能,对于变工况运行时间较长的机组,尤其要注意到这点。工况变动的多少,要视具体任务而定。如机车的燃气轮机,在拖动平原地区长途特快客车时,工况就变得少,如果是站内调度车厢之用,工况就变动得多。此外,讨论透平变工况还可以为整个装置的变动工况计算及调节控制系统设计提供必要的数据。 二、特性线获取的方法概述 变工况特性曲线的决定方法分实验和计算两种。实验法可以得到比较准确的数据,也是校核计算法是否准确的客观标准。但实验法要有一定的设备和消耗,在机器未制造出来以前,也无法进行。整台透平试验,要有足够大的风源,只有专门的科研生产机构才能实现。当然,也可根据相似原理,做缩小比例的模型试验,此时就要做模型。总之,试验费用是昂贵的。实验法是好,但不易办到。计算法虽准确度差点,却容易实观。 计算的方法较多,把用经验公式或类似机组的比拟方法除外,则现存的计算法基本原理都差不多。把透平看成一个流道,以平均直径处基元级代替级,在各轴向间隙(即前述之特征截面)处满足基本方程(即连续方程、能量方程、运动方程和状态方程),就可推算出各不同相似准则数下(如膨胀比和折合转速),其它准则数(如效率、折合流量等)为多少。各种方法的不同大致是由计算时选用的叶栅损失模型、简化假定和计算技巧不同造成的。一般地说,所作假定越符合实际,计

汽轮机原理习题(作业题答案)

第一章 级的工作原理 补 1. 已知某喷嘴前的蒸汽参数为p 0=3.6Mpa ,t 0=500℃,c 0=80m/s ,求:初态滞止状态下的音速和其在喷嘴中达临界时的临界速度c cr 。 解: 由p 0=3.6Mpa ,t 0=500℃查得: h 0=3349.5; s 0=7.1439 0002 1 c h h h ?+ =* =3349.5+3.2=3452.7 查得0*点参数为p 0* =3.6334;v 0*=0.0956 ∴音速a 0*=* 0*0v kp =671.85 (或a 0*=* 0kRT =681.76 ; 或a 0*=* 0)1(h k *-=1017.7) c cr = * *1 2a K +=626.5 12题. 假定过热蒸汽作等熵流动,在喷嘴某一截面上汽流速度c=650m/s ,该截面上的音速a=500m/s ,求喷嘴中汽流的临界速度 c cr 为多少?。 解: 2222) 1(212112121cr cr cr cr cr cr c k k c v p k k c h c h -+=+-=+=+ )2 1 1(1)1(222c k a k k c cr +-+-=∴=522 23题. 汽轮机某级蒸汽压力p 0=3.4Mpa ,初温t 0=435℃,该级反动度Ωm =0.38,级后压力p 2=2.2Mpa ,该级采用减缩喷嘴,出口截面积A n =52cm 2,计算: ⑴通过喷嘴的蒸汽流量 ⑵若级后蒸汽压力降为p 21=1.12Mpa ,反动度降为Ωm =0.3,则通过喷嘴的流量又是多少? 答:1):17.9 kg/s; 2):20.5kg/s

美意水源热泵机组资料_secret

目录 水源热泵机组 (4) 水源热泵系统原理 (6) 水源热泵系统优点 (10) 水源热泵系统应用……………………………………………… 水源热泵系统与其它形式系统的比较……………………… 水源热泵系统设计步骤……………………………………… 水源热泵系统设计要点……………………………………… 中央控制箱……………………………………………………… 美意(Mammoth)水源热泵产品………………………………… 美意(Mammoth)水源热泵安装注意事项……………………… 常见问题解答………………………………………………… 实例……………………………………………………………

水源热泵机组 水源热泵机组是一种以水作为冷热源侧载热介质的供冷供热机组,机组带有一套可逆式的制冷循环系统,是一种可全年运转的空调设备。机组内部包含了制冷循环的四大件:压缩机、冷凝器、膨胀阀、蒸发器以及换向阀。 水源热泵机组外观图 机组形式多样,有卧式、立式、整体式、分体式、水—水式等,其工作原理为:

(一)制冷工况 压缩机把低压冷媒蒸汽压缩后成为高压冷媒气体进入冷凝器,在冷凝器中通过与水的热交换器而使冷媒冷凝为高压液体,经毛细管的节流膨胀后进入蒸发器,从而对负荷侧载热介质进行冷却。 (二)制热工况 通过四通阀的切换,使制冷工况时的冷凝器在这时变为蒸发器,而制冷工况时的蒸发器这时变为冷凝器,通过蒸发器吸收水的热量,在热泵循环过程中,从冷凝器向负荷侧热量载体放热。

水源热泵机组根据负荷需要分散布置于建筑内各区域,它以电作为动力,只要具备温度处于-4--43℃之间,一定水量的水源就可以正常运转,满足建筑内的空调采暖要求。 水源热泵系统原理 水源热泵系统是一种采用水源热泵机组作为系统运行主机的高效节能的空调系统,系统主要包括三个部分:水源热泵机组、负荷侧室内系统以及水源侧水环路系统。根据负荷侧的载热介质来分,可分为水-空气式水源热泵机组和水-水式水源热泵机组两大类。 采用水-空气式水源热泵机组时室内采用风系统,冷(热)风通过独立的风管送到室内各区域,回风经门下缝隙,辅助房间及走道返回机组,也可以由回风管道返回机组,由安装在室内的恒温器控制机组的启停以调节室温。采用水-水式水源热泵机组时室内通常采用风机盘管系统,由风机盘管温控器调节室内温度。 水源侧水环路系统为水源热泵机组提供冷热源,根据水源侧环路的 形式的不同,水源热泵系统可以划分为以下几种类型:地下水(地表

相关主题
文本预览
相关文档 最新文档