当前位置:文档之家› 地脉动测试技术

地脉动测试技术

地脉动测试技术
地脉动测试技术

前言

工程抗震设计是地震区建筑物设计中的重要内容,通常除了测试场地土剪切波速,进行场地土类型划分、场地类别划分、场地地震反应分析外,测试场地脉动卓越周期也是一项重要工作。场地脉动卓越周期的测试除了防止特殊的地震效应发生,避免拟建建筑物自振周期与场地脉动卓越周期一致或接近,在地震发生时,地基与建筑物产生共振或类共振;还可依据场地脉动卓越周期作为工程抗震中场地土类型划分、场地类别划分的标准,以及估算地震动峰值加速度。

因此, 从地脉动出发研究地基土层构造与地脉动卓越周期的关系以及不同场地类别的卓越周期特征, 以便对地基土层场地准确评价,以及有针对性地选用基础结构与埋深等方面都具有重要的理论及现实意义。

1 地脉动简介

在一般情况下,任何时刻在地球表面的任何地点,都可以用高灵敏度的仪器观测到非地震引起的一种振幅很小的微弱震动噪声,其位移一般只有几微米到几十微米,把这种人体难以察觉到的微小振动称为地脉动。

地脉动是由场地周围自然震源(风、海浪等) 和人工震源(机器振动源、交通工具等) 所产生, 是地面的一种稳定的非重复性随机波动。通常情况下地脉动具有频率低、振幅小等特点。

从地震观测的角度,按周期长短把地脉动分为两类:一是短周期地脉动;二是长周期地脉动,长短周期地脉动有如下区别:

(1) 常时微动。为短周期地微动,一般为0. 1~1 s ,波长较短,是地微动信号中反映场地土动态特性的成分,主要是近距离的人类活动、交通运输、机械振动等人工振动源引起的。在理论上可用横波在土层中的多层反射理论解释。

(2) 脉动。为中长周期地微动,一般为1 s至几十秒,波长较长,是地微动中反映振源特性的分量,主要是由海浪、风雨、气候、雷电、火山、地震等自然现象变化引起的,由较远距离的振源或海洋波浪、大气环流及地球深部构造运动激发,可利用它研究地震、台风、火山及地球内部的其它运动,理论上可用面波传播特征解释。相对于常时微动而言,是一短期内的振动现象,故称之为“脉动”。

2 常时微动的成因

常时微动主要反映了场地结构的动力学特性,与振源关系不大,可以把它看成是由地下垂直入射的SH波,这种假设可以解释许多实际观测到的现象。

根据波传播理论,SH波从下伏基岩垂直入射覆盖土层中,在水平成层土中的传播可以用一维平面波在层状介质中的传播来模拟。在小应变范围,土层可以看作线弹性或粘弹性介质。从下伏基岩入射的波在基岩与覆盖土层的界面处会发生反射和透射,上行透射波在遇到土层内部的分层界面时还会发生反射和透射,自上层界面处反射向下的下行波也会在下界面处发生反射与透射,新的反射波和透射波又会在前进方向上的下一个界面处产生各自的反射波和透射波。振动经过多次的反射与透射到达地表。

3 测试仪器

图1武汉岩海基桩动测仪图2 中国地震局工程力学研究所891-4

拾振器

4 测试方法与信号处理

4.1 测试方法

常时微动测试根据工程需要、面积大小、地层复杂程度等确定测点数量,在同一土层中应至少布置3 个测点,每个测点按相互垂直的X 、Y 、Z 方向布置3 个拾振器,放置在平整密实的土层上,拾振器与土层之间垫上托板,3个拾振器之间距离尽可能靠近,应小于1m。

测点位置应选择在环境安静的地点,尽可能远离脉动源。现场测试应在深夜进行。地脉动测试一定要在同一点上,不同时间观测足够多的次数,以排除主振源因素,则所获得的频谱及参数才能真正反映该点地基的固有特性。

4.2 信号处理

地脉动信号通常采用功率谱函数来分析描述其频率特性。按频谱图中最大峰值所对应的频率确定为卓越频率,卓越频率的倒数即为卓越周期。

s

s f T 1

式中:s T 为卓越周期(s );s f 为卓越频率。

图3 某场地地脉动实测信号与分析示例s f =2.98Hz s T =0.34s

5 场地土特性对地脉动测试信号的影响

5.1 某高层建筑场地地脉动测试

该场地地形平坦, 岩土层结构单一, 自上而下分别为耕土 、砂质粘性土 以及燕山早期中~微风化花岗岩, 覆盖层深度约为16~19m 。地脉动测试结果:

说明在岩土层结构简单,覆盖层深度变化不大的场地, 地脉动卓越周期变化很小, 在不同位置的测试结果甚至可能相同。同时可以看出在这种场地下的功率变谱图波形也相对简单, 为单峰型,主峰突出,频带窄,谱面积小,卓越频率的判定也较准确。

5.2 某变电站场地地脉动测试

该场地地面平坦, 地貌上属于岩溶平原区。场地岩土层主要为新近人工堆积形成的素填土、第四系河流冲洪积形成的可塑状粉质粘土、稍密状中细砂、稍密状粗砂、稍密状粉土和稍密~松散状粉细砂层等,下伏基岩为泥盆系中下统( D2 )灰岩层, 基岩面起伏较大,覆盖层深度约为9~15m。地脉动测试结果:

说明在岩土层较多、结构较复杂, 覆盖层深度不均匀的场地, 地脉动卓越周期变化范围较大。同时可以看出在这种场地下的功率变谱图波形也相对复杂, 具有多样化, 为双峰或多峰型, 频带较宽, 能量较分散。

图4 高层建筑场地地脉动测试时、频图 图5 变电站场地地脉动测试时、频图

6 卓越周期的应用

6.1 抗震设计

地震发生时,当工程结构的自振周期与建筑场地的卓越周期相同或相近时,因其共振或类共振效应使之承受过大的荷载而破坏,故应避免产生。因此,通过地脉动的研究,测定场地得卓越周期,了解场地土的动态变化特征为工程抗震设计提供依据。

6.2 估算地震动峰值加速度

地震动峰值加速度是抗震设计中的一项重要基本参数。由于我国缺乏丰富的强震记录,通过强震记录推算地震动峰值加速度比较困难,再由于工程造价等原因,一般工程未必为计算地震动峰值加速度而进行场地地震反应分析。

在地基厚度相同时,地基越硬,卓越周期越短,地震动峰值加速度越小,对应的短周期刚性建筑物易损坏;地基越软,卓越周期越长,地震动峰值加速度越大,对应的长周期柔性建筑物易被破坏。

(1985年9月19日墨西哥近海地震在墨西哥市相距不远的A 、B 两地加速度记录的最大值为1. 982

/s m 和0. 392

/s m ,其中A 点的加速度仪布设在市中心附近的重灾区,地基为湖相的淤泥层; B 点的加速度仪布设在墨西哥国立自治大学校院内,地基坚硬。

1995年1月17日阪神地震后,日本研究人员分别在余震区神户药科大学和福池小学内布设了加速度仪,药科大学为硬地基,其加速度值分别为0. 182

/s m ( N —S)、0. 332

/s m ( E —W)、0.132

/s m ( U —D);相邻的福池小学为软地基,其加速度值分别为2. 12

/s m ( N —S)、1. 352

/s m ( E —W)、0. 722

/s m ( U —D)。)

据研究,场地脉动卓越周期、地震烈度和地震动峰值加速度之间有一定的关系。通过场地脉动卓越周期估算地震动峰值加速度是可行的。

日本学者金井清推导出场地脉动卓越周期s T 、地震列度MM I (MM 烈度)和地震动峰值加速度m ax a 的经验关系式

MM I S

T a 18.03

.1max 106.1??=-

我国学者彭远黔推导出场地脉动卓越周期s T 、地震列度MM I MM 烈度)和地震动峰值加速度m ax a 的经验关系式

MM

I S

T a 331.0124

.0max 1072.0??=

6.3 场地土类型划分

《建筑抗震设计规范》( GB50011 - 2001) 用卓越周期划分场地土类型的标准。

表1

6.4 场地类别划分

《场地微震动测量技术规程》CECE74—1995用卓越周期划分场地土类型的标准:表2

《地震区工程选址手册》用卓越周期划分场地土类型的标准:

表3

华中科技大学南二楼实验基地地脉动测试成果图

卓越频率3.48Hz,卓越周期0.29s 卓越频率3.72Hz,卓越周期0.27s

卓越频率3.72Hz,卓越周期0.27s 测试结果:二类场地,中硬土

岩土工程勘察报告

三河县某中学教学楼 岩土工程勘察报告 1、前言 1.1 工程概况 国盛房地产开发有限公司(甲方)拟在三河县某中学兴建教学楼。该项目由廊坊市××建筑设计院设计,委托我院对其进行岩土工程详细勘察工作。拟建工程由主楼组成。 根据国标《岩土工程勘察规范》(GB 50021-2001)、《建筑地基基础设计规范》(GB 50007-2002),岩土工程重要性等级为二级,场地等级为二级,地基等级为二级,岩土工程勘察等级为乙级,地基基础设计等级为乙级。 1.2 勘察目的及要求 根据设计单位提出的“岩土工程勘察委托书”,本次勘察目的及要求如下:1、查明场地和地基的稳定性、地层结构、持力层和下卧层的工程特性、土的应力历史和地下水条件以及不良地质作用等。 2、提供满足设计、施工所需的岩土参数,确定地基承载力,预测地基变形性状。 3、提出地基基础、基槽支护、工程降水和地基处理设计与施工方案的建议。 4、提出对建筑物有影响的不良地质作用的防治方案建议。 5、对于抗震设计防烈度等于或大于6度的场地,进行场地与地基的地震效应评价。 6、查明建筑范围内岩土层的类型、深度、分布、工程特性,分析和评价地基的稳定性、均匀性和承载力。 7、对需进行沉降计算的建筑物,提供地基变形计算参数,预测建筑物的变性特征。 8、查明埋藏的河道、沟浜、墓穴、防空洞、孤石等对工程不利的埋藏物。 9、判定水对建筑材料的腐蚀性。

10、钻孔布置原则上沿建筑物周边和建筑物主要控制线布置,最大孔距≤24米,当相邻两孔所揭露的持力层层面高差大于2米或土层性质变化较大,或存在较多孤石分布的情况时,应及时与设计院联系,共商是否适当加密勘查点示意。 11、在本工程部位应提出抗浮设计水位。 12、勘查报告应交由勘察审查所审查。 1.3 勘察依据 设计单位提出的“勘探点布置图”及“岩土工程勘察委托书”; 《岩土工程勘察规范》(GB 50021-2001); 《建筑抗震设计规范》(GB 50011-2001); 《建筑地基基础设计规范》(GB 50007-2002); 《建筑基槽技术规程》(JGJ120-99); 《土工试验方法标准》(GBT/50123-1999); 1.4 勘察工作量布置及完成情况 本次岩土工程勘察工作量是根据建设方及设计单位提供的“总平面规划图”、“岩土工程勘察委托书”,结合拟建建筑物规模及对场地岩土勘察的初步分析,参照现行规程、规范及邻近场地地质资料确定。 本次勘察按桩基勘察进行,勘探点按拟建物轮廓线及角点共布置钻孔10个(编号ZK1~ZK10),沿边线外10m处布置基槽钻孔12个(编号JK1~JK12),钻孔勘探点间距10~20m,勘探孔深39.0~41.0m(一般性钻孔进入强风化岩不小于10m,控制性钻孔进入中风化岩1~2m);基槽孔勘探点间距10~20m,勘探孔深大于20m,勘探深度均满足规范要求。 我院于2011年3月23日进场施工,至4月9日完成外业工作;在钻探过程中发现局部地段可作为桩基持力层的强风化砂岩的层面起伏较大(层面坡度>10%),

地质报告

目录 1、前言 2、场地工程地质条件 3、场地和地基地震效应分析评价 4、岩土工程分析及评价 5、地基基础方案分析与建议 6、地基变形特征及沉降变形预测 7、结论与建议 附图目录(附报告后)顺序号图号图名 1 1-1 勘探点平面位置图 2 2-1~2-2 3 工程地质剖面图 附表目录(附报告后)附表1:勘探点主要数据一览表 附表2:标贯试验成果表 附表3:重型动力触探试验成果表 附表4:地基土物理力学指标数理统计表 附表5:土工试验成果总表 附表6:水质分析报告表 附表7:土层固结压缩试验曲线 附表8:岩石抗压测试报告 附表9:抽水工艺综合柱状图 附件目录(附报告后)附件1:地基土剪切波速、地脉动测试报告 附件2:工程勘察任务委托书

1.前言 受平和中坊置业有限公司的委托,我公司承担了平和县锦锈柚都一期场地岩土工程一次性详细勘察任务。 1.1工程概况 拟建场地总用地面积为31827.85m2,总建筑面积为98981.60m2,建筑占地面积约为10030.40m2。拟建场地位于平和县城关,玉溪路东南侧。场地内已填土整平,地形较平缓,钻孔孔口高程为31.75~33.32米(黄海高程)。拟建锦锈柚都一期1#、7#、8#、9#住宅楼为高层建筑,拟建物对工程差异沉降敏感程度为敏感,建筑整体倾斜要求为0.003,平均沉降量200mm,基础埋置深度为设计标高以下5.00m,2~6#、10#住宅楼、超市、店铺、幼儿园为多层建筑,底层为1层超市、店铺相连,对工程差异沉降敏感程度为敏感,基础埋置深度为设计标高以下2.00m,地基变形允许值整体倾斜为0.004,相邻柱基的沉降差为0.002L。7#、8#、9#住宅楼、10#商住楼、幼儿园范围设一层地下室,地下室埋深为-4.50m,地下室面积为7696.00m2。2~6#、10#住宅楼、超市、店铺、幼儿园地基基础设计等级为丙级;1#、7#、8#、9#住宅楼地基基础设计等级为乙级。该项目由厦门市住宅设计院有限公司设计。拟建物特性具体情况见表1: 1.2 勘察目的与技术要求 本次勘察为一次性详勘,勘察目的是为地基基础设计提供岩土资料及相关技术参数。委托单位对本次勘察提出了具体的勘察技术要求如下: a、详细查明建筑物范围内的地层结构及均匀性,提供岩土物理力学性能指标、

结构动力特性测试方法及原理

结构动力特性的测试方法及应用(讲稿) 一. 概述 每个结构都有自己的动力特性,惯称自振特性。了解结构的动力特性是进行结构抗震设 计和结构损伤检测的重要步骤。目前,在结构地震反应分析中,广泛采用振型叠加原理的反 应谱分析方法,但需要以确定结构的动力特性为前提。n 个自由度的结构体系的振动方程如 下: [][][]{}{})()()()(...t p t y K t y C t y M =+? ?????+?????? 式中[]M 、[]C 、[]K 分别为结构的总体质量矩阵、阻尼矩阵、刚度矩阵,均为n 维矩阵; {})(t p 为外部作用力的n 维随机过程列阵;{})(t y 为位移响应的n 维随机过程列阵;{} )(t y &为速度响应的n 维随机过程列阵;{})(t y && 为加速度响应的n 维随机过程列阵。 表征结构动力特性的主要参数是结构的自振频率f (其倒数即自振周期T )、振型Y(i)和 阻尼比ξ,这些数值在结构动力计算中经常用到。 任何结构都可看作是由刚度、质量、阻尼矩阵(统称结构参数)构成的动力学系统, 结构一旦出现破损,结构参数也随之变化,从而导致系统频响函数和模态参数的改变,这种 改变可视为结构破损发生的标志。这样,可利用结构破损前后的测试动态数据来诊断结构的破损,进而提出修复方案,现代发展起来的“结构破损诊断”技术就是这样一种方法。其最 大优点是将导致结构振动的外界因素作为激励源,诊断过程不影响结构的正常使用,能方便 地完成结构破损的在线监测与诊断。从传感器测试设备到相应的信号处理软件,振动模态测 量方法已有几十年发展历史,积累了丰富的经验,振动模态测量在桥梁损伤检测领域的发展 也很快。随着动态测试、信号处理、计算机辅助试验技术的提高,结构的振动信息可以在桥 梁运营过程中利用环境激振来监测,并可得到比较精确的结构动态特性(如频响函数、模态 参数等)。目前,许多国家在一些已建和在建桥梁上进行该方面有益的尝试。 测量结构物自振特性的方法很多,目前主要有稳态正弦激振法、传递函数法、脉动测试 法和自由振动法。稳态正弦激振法是给结构以一定的稳态正弦激励力,通过频率扫描的办法 确定各共振频率下结构的振型和对应的阻尼比。 传递函数法是用各种不同的方法对结构进 行激励(如正弦激励、脉冲激励或随机激励等),测出激励力和各点的响应,利用专用的分 析设备求出各响应点与激励点之间的传递函数,进而可以得出结构的各阶模态参数(包括振 型、频率、阻尼比)。脉动测试法是利用结构物(尤其是高柔性结构)在自然环境振源(如 风、行车、水流、地脉动等)的影响下,所产生的随机振动,通过传感器记录、经谱分析, 求得结构物的动力特性参数。自由振动法是:通过外力使被测结构沿某个主轴方向产生一定 的初位移后突然释放,使之产生一个初速度,以激发起被测结构的自由振动。 以上几种方法各有其优点和局限性。利用共振法可以获得结构比较精确的自振频率和阻 尼比,但其缺点是,采用单点激振时只能求得低阶振型时的自振特性,而采用多点激振需较 多的设备和较高的试验技术;传递函数法应用于模型试验,常常可以得到满意的结果,但对 于尺度很大的实际结构要用较大的激励力才能使结构振动起来,从而获得比较满意的传递函 数,这在实际测试工作中往往有一定的困难。 利用环境随机振动作为结构物激振的振源,来测定并分析结构物固有特性的方法,是近 年来随着计算机技术及FFT 理论的普及而发展起来的,现已被广泛应用于建筑物的动力分 析研究中,对于斜拉桥及悬索桥等大型柔性结构的动力分析也得到了广泛的运用。斜拉桥或 悬索桥的环境随机振源来自两方面:一方面指从基础部分传到结构的地面振动及由于大气变 化而影响到上部结构的振动(根据动力量测结果,可发现其频谱是相当丰富的,具有不同的

地脉动测试技术Word版

前言 工程抗震设计是地震区建筑物设计中的重要内容,通常除了测试场地土剪切波速,进行场地土类型划分、场地类别划分、场地地震反应分析外,测试场地脉动卓越周期也是一项重要工作。场地脉动卓越周期的测试除了防止特殊的地震效应发生,避免拟建建筑物自振周期与场地脉动卓越周期一致或接近,在地震发生时,地基与建筑物产生共振或类共振;还可依据场地脉动卓越周期作为工程抗震中场地土类型划分、场地类别划分的标准,以及估算地震动峰值加速度。 因此, 从地脉动出发研究地基土层构造与地脉动卓越周期的关系以及不同场地类别的卓越周期特征, 以便对地基土层场地准确评价,以及有针对性地选用基础结构与埋深等方面都具有重要的理论及现实意义。 1 地脉动简介 在一般情况下,任何时刻在地球表面的任何地点,都可以用高灵敏度的仪器观测到非地震引起的一种振幅很小的微弱震动噪声,其位移一般只有几微米到几十微米,把这种人体难以察觉到的微小振动称为地脉动。 地脉动是由场地周围自然震源(风、海浪等) 和人工震源(机器振动源、交通工具等) 所产生, 是地面的一种稳定的非重复性随机波动。通常情况下地脉动具有频率低、振幅小等特点。 从地震观测的角度,按周期长短把地脉动分为两类:一是短周期地脉动;二是长周期地脉动,长短周期地脉动有如下区别: (1) 常时微动。为短周期地微动,一般为0. 1~1 s ,波长较短,是地微动信号中反映场地土动态特性的成分,主要是近距离的人类活动、交通运输、机械振动等人工振动源引起的。在理论上可用横波在土层中的多层反射理论解释。 (2) 脉动。为中长周期地微动,一般为1 s至几十秒,波长较长,是地微动中反映振源特性的分量,主要是由海浪、风雨、气候、雷电、火山、地震等自然现象变化引起的,由较远距离的振源或海洋波浪、大气环流及地球深部构造运动激发,可利用它研究地震、台风、火山及地球内部的其它运动,理论上可用面波传播特征解释。相对于常时微动而言,是一短期内的振动现象,故称之为“脉动”。

某商厦岩土工程勘察报告之场地地基土剪切波速地脉动测试报告-secret4766

**商厦 地基土剪切波速、地脉动测试报告 **勘察院有限公司 2007年5月

**广场 地基土剪切波速、地脉动测试报告 测试: 编写: 审核: **勘察院有限公司 2007年5月

一、概况 受业主的委托, 我院承担了**商厦的勘察钻孔的波速测试和地脉动测试工作。本次测试工作的目的是对拟建建筑场地进行场地土类型和场地类别的评判,并测试场地的卓越周期和振动幅值。测试工作依据《建筑抗震设计规范》(GB50011-2001)及《地基动力特性测试规范》(GB/T50269-97)中的有关规定进行。 我院分别对场地内的zk1#、zk8#钻孔采用单孔检层法进行剪切波波速测试,并在zk8#钻孔附近进行了地脉动测试。 二、仪器设备及测试方法 仪器设备:XG—I型多功能测试仪,仪器主要技术指标如下: 动态范围:96dB; 前放增益:18-60dB(8-1000倍); 道一致性:≤0.1ms; 通道数:1至3道可选; 采样间隔:0.02—4ms可调; 记录长度:512—16k可调; 剪切波测试方法:在距孔口约1.5m处放一块振板,上压大于400Kg重物,振板上安置检波器,检波器与XG—I测井仪触发孔连接,将探头放入孔中预定深度,用大于8磅大锤水平敲击振板,产生P、S波沿地层向下传播,由孔中的检波器接收沿井壁传播的P、S波振动信号并把P、S波的振动信号转换成电信号,通过电缆由主机记录显示存储。对信号进行数据处理后,计算P、S波传播速度。测试顺序自下而上逐点进行,测点深度基本间隔1.0m。

三、土层波速测试成果 经现场波速测试,场地内钻孔各测点的剪切波波速成果图见附图1-1~1-2。 四、建筑场地类别评判 1、土层的等效剪切波速计算 根据《建筑抗震设计规范》(GB50011-2001),建筑场地覆盖层厚度的确定,应符合下列要求: a 一般情况下,应按地面至剪切波速大于500m/s的土层顶面的距离确定。 b 当地面5m以下存在剪切波速大于相邻上层土剪切波速2.5倍的土层,且其下卧岩土的剪切波速均不小于400m/s时,可按地面到该土层顶面的距离确定。 c 剪切波速大于500m/s的孤石、透镜体,应视同周围土层。 d 土层中的火山硬夹层,应视为刚体,其厚度应从覆盖土层中扣除。 等效剪切波速V Se按下列公式计算:V Se=d0/t, n t= ∑(d i/V si), i=1 d0 ---计算深度(m),取覆盖层厚度和20m二者的较小值; t----剪切波在地面到计算深度之间的传播时间 d i ---计算深度内第I土层的厚度 V si---计算深度范围内第I土层的剪切波速(m/s)

某小区地质勘察报告

某小区地质勘察报告

1.前言 1.1场地位置及拟建工程概况 受某某房地产开发有限责任公司的委托,某某岩土工程勘测有限责任公司承担某某场地详细岩土工程勘察。 拟建场地位于 1.2 勘察目的、任务及依据的技术标准 1.2.1勘察目的 勘察目的:遵循国家现行有关技术规范、规程,对拟建工程场地进行详细岩土工程勘察,提供设计所需岩土工程地质参数。 1.2.2勘察任务 我公司对其拟建工程进行详勘阶段的岩土工程勘察工作,其目的是为建筑设计提供详细的岩土工程资料和设计、施工所需的岩土参数;对建筑地基作出岩土工程分析评价,并对地基类型、基础形式、地基处理、基坑支护、工程降水和不良地质作用的防治等提出建议。本次勘察主要任务是: 1搜集附有坐标和地形的建筑总平面图,场区的地面整平标高,建筑物的性质、规模、荷载、结构特点、基础形式、埋置深度,地基允许变形等资料; 2查明不良地质作用的类型、成因、分布范围、发展趋势和危害程度,提出整治方案建议;

3查明建筑范围内岩土层的类型、深度、分布、工程特性,分析和评价地基的稳定性、均匀性和承载力; 4对需进行沉降计算的建筑物,提供地基变形计算参数,预测建筑物的变形特征; 5查明埋藏的河道、沟浜、墓穴、防空洞、孤石等对工程不利的埋藏物; 6 查明地下水的埋藏条件,提供地下水位及其变化幅度; 7 在季节性冻土地区,提供场地土的标准冻结深度; 8 判定水和土对建筑材料的腐蚀性。 1.2.3依据的技术标准 (1)《岩土工程勘察规范》(GB50021-2001)2009版; (2)《高层建筑岩土工程勘察规程》(JGJ72-2004); (3)《建筑地基基础设计规范》(GB50007-2011); (4)《建筑抗震设计规范》(GB50011-2010); (5)《建筑桩基技术规范》(JGJ94-2008); (6)《建筑工程抗震设防分类标准》(GB50223-2008); (7)《建筑工程地质勘探与取样技术规程》(JGJ/T87-2012); (8)《土工试验方法标准》(GB/T50123-99); (9)《建筑基坑支护技术规程》(JGJ120—2012)等相关规范标准执行。 1.3岩土工程勘察等级 拟建住宅楼层数为13层,地下2层,总建筑面积56862.21㎡,根据《岩土工程勘察规范》(GB50021—2001)(2009年版)第3.1.1条~

土层剪切波速度测试报告

**民生产业基地 土层剪切波速度测试报告 深圳市**有限公司 二0一七年十月二十七日

**民生产业基地 土层剪切波速度测试报告 测试: 报告编写: 审核: 批准: 深圳市**有限公司 二0一七年十月二十七日 测试单位地址:深圳市**号邮编: 联系电话:联系人:

目录 1.前言 (1) 2.测试目的及执行标准 (1) 2.1测试目的 (1) 2.2执行标准 (1) 3.测试方法及仪器设备 (1) 3.1测试方法 (1) 3.2仪器设备 (2) 4.测试结果 (2) 5.地面脉动的卓越周期 (5)

1.前言 受深圳市**有限公司委托,我公司于2017年09月21日至017年09月29日对**民生产业基地场地进行了3个钻孔的土层剪切波速度测试工作。 波速测试孔附近场地内自上而下主要有如下岩土层:素填土、粉质黏土、全风化混合岩、强风化混合岩、中风化混合岩、微风化混合岩。 2.测试目的及执行标准 2.1测试目的 本次试验目的是提供地层剪切波波速,判定土的类型及建筑场地类别;提供场地卓越周期。 2.2执行标准 《岩土工程勘察规范》(GB 50021-2001)(2009年版) 《建筑抗震设计规范》(GB 50011-2010)(2016年版) 3.测试方法及仪器设备 3.1测试方法 本项目剪切波速度测试采用单孔检层法,将起振板置于距井口约1.0~1.5米处,并使其中点与井口的连线垂直于起振板,同时在其上面加压整体性较好的重物。然后,锤击起振板产生纵波和剪切波(记录时通过调节仪器采样率对纵波和剪切波分开采集),并通过置于井内的三分向拾振器将土的振动历程输入电脑分析,获得各测点纵波和剪切波的到时,并利用下式计算相应剪切波速: Vi =(h i -h i-1)/(t i sin αi -t i-1sin αi-1) (1) 22sin i i i i D h h +=α (2) i=1......N 其中h i ,t i 分别为第i 测点的深度和剪切波的走时,D 为起振板中点至孔口的垂直距离。 现场测试时,一般每一岩土层都有一个测点,每1~2米左右一测点。

建筑场地剪切波速及地脉动测试报告

武汉建科科技有限公司WA VE2000场地振动测试仪 (以下内容可根据实际情况进行增加,正式报告中须去掉本规定格式中的注释红字)建筑场地剪切波速及地脉动 测试报告 工程名称: 工程地点: 委托单位: 检测日期: 报告编号: ※省※研究院 ※年※月※日

※工程 单孔波速法地脉动测试报告测试人员: 负责人: 报告编写: 校核: 审核: 审定: ※省※研究院 (盖章) ※年※月※日

一、前言 受※的委托,※省※院于※年※月※日对※工程拟建场地进行单孔波速法、地脉动测试。该场地位于※路※号,根据场地条件及《建筑抗震设计规范》(GB50011-2001)等有关规定,本场地共完成K16#、K37#、K69#、K75#、K82#、K96#六个孔剪切波速及场地脉动测试工作。测试的目的是对拟建建筑场地土的类型及建筑场地类别进行划分,以确定建筑抗震有利、不利和危险地段。 本项目工作技术要求: 1、 测定场地20米以内的等效剪切波速; 2、 测定场地地脉动; 3、 确定场地土类型及建筑场地类别。 二、检测设备、基本原理 1、检测设备 检测设备采用武汉建科科技有限公司制造的W A VE2000场地振动测试仪,检测设备及现场联接见图1。 1-场地振动测试仪 2-重物 3-木板 4-外触发传感器 5-三分量探头 6-探头信号传输线 7-外触发传感器信号线 8-钢丝绳(或尼龙绳) 图1 单孔波速测试示意图 2、剪切波速及地脉动测试基本原理 单孔剪切波速法(检层法)测试基本原理: 用木锤或适宜的铁锤分别水平敲击水平放置孔口的木板两端,地表产生的剪切波经地层传播,由孔内三分量检波器的水平向检波器接收SH 波信号,然后读取正、反两方向的实测波形,找出波形交叉点,读取初至波传播时间,进而计算出各测点(层)剪切波速值及其它相关参数。 地脉动测试原理: 地脉动测试时应选择外界环境干扰极小的深夜进行。测试时将地脉动拾振器放置于平整场地地表土上,一般按东西向EW 、南北向SN 、垂直向VR 三个方向放置。测试时由三分量拾振器分别接收三个方向的脉动信号,信号再通过放大,采集仪记录,即可在时域曲线上分析信号幅值大小,从频率域曲线上分析其频率组成并确定场地卓越周期值。 土层的等效剪切波速,按下列公式计算: ∑=÷=÷=n i si i sc v d t t d v 10) (

尾矿坝勘察报告

第1章 勘察工作概述 工程概况 1.1.1 场地位置 XX 尾矿坝位于山东省莱芜市张家洼镇御驾泉村村北,距离张家洼镇约4公里,鲁中冶金矿业集团公司有专用公路直通尾矿坝,交通方便。 图片1 御驾泉尾矿坝交通位置图 尾矿坝概况 XX 尾矿坝由设计,采用上游法筑坝,设计总坝高94m ,总库容3590万m 3,属大中型库。主要由初期坝、尾矿堆积坝及排水系统组成。初期坝为滤水堆石坝(透水坝),高度29m ,堆积坝高度65m ,坝长1000m ,最终堆积标高350m 。尾矿坝汇水面积1.93km 2,坝内设7个周边多孔溢水塔,满足堆筑标高350m 以下的排水、排洪要求。 御驾泉尾矿坝 南 市 泰 安 市 淄 市 济 博 比例尺1:400000

1.1.3 尾矿坝现状 鲁中冶金矿业集团公司曾于1992年委托航空航天工业部航空工业勘察设计研究院对一、二、三期子坝(标高295m)进行了勘察。现已堆筑至第十期子坝,标高316m(见图片2)。由于原矿中含有大量红板岩,致使尾矿中矿泥含量大,放矿后形不成干滩,无法实现上游法筑坝。随着坝体的增高和逐渐向库内延伸,坝体随之座落在尾砂和矿泥上面,为了保证安全筑坝,曾采用了碎石堆筑、旋流器沉砂护坡、土工布防渗等措施,虽然在碎石堆筑过程中有挤泥和固结作用,但对坝体的安全稳定仍构成较大威胁。曾一度出现过坝体漏矿、滩面塌陷、外排水超标、子坝难以堆筑等一系列问题,严重影响坝体的安全和公司的生产。通过多年的试验研究,决定在316m水平改为中线法筑坝。为评价坝体的安全与稳定性,受鲁中冶金矿业集团公司委托,我公司承担并完成了尾矿堆积坝的岩土工程勘察工作。 勘察依据、目的及任务 1.2.1 勘察依据 本次勘察工作主要依据下列规范、规程及有关文件标准进行: 1、御驾泉尾矿坝岩土工程勘察委托书; 2、《上游法尾矿堆积坝工程地质勘察规程》(YBJ11-86); 3、《选矿厂尾矿设施设计规范》(ZBJ1-90); 4、《岩土工程勘察规范》(GB50021-2001); 5、《建筑工程地质钻探技术标准》(JGJ87-92); 6、《土工试验方法标准》(GB/T50123-1999); 7、《土工试验规程》(YBJ42-92)。

砂土液化判别

〈三〉地震效应分析 根据《建筑抗震设计规范》(GB50011-2001)的划分,并结合波速及地脉动测试报告可知:场地位于基本烈度Ⅶ度区,建筑物应按相应地震烈度进行抗震设防。设计基本地震加速度值为0.10g ,卓越周期变化范围为0.02s ~0.21s ,场地土类型整体为中硬土,局部区域为中软土,建筑场地类别为Ⅱ类,属于抗震不利地段。 〈四〉场地砂土液化判别 拟建场地位于基本烈度Ⅶ度区,依据《建筑抗震设计规范》(GB50011-2001)规范要求,须对场地内存在的饱和砂土进行液化判别。 根据勘察成果,场地地基土中2-3层为第四系冲洪积含粘性土中粗砂层,松散~稍密状,顶板埋深0.00~3.90m ,局部区域位于地下水位以上,未达饱和状态;按Ⅶ度区计算,该层大部份粘土含量达15%左右,故初步判别为不液化地层。 依据《建筑抗震设计规范》(GB50011-2001)规范要求,对位于地下水位以下呈饱和状态的砂土,结合标贯击数判别该层是否发生液化,对于可液化砂土层,再进一步计算液化指数,依据液化等级确定地基可能遭受的地质灾害危险性级别。 砂土液化判别公式如下: ()[]ρ o w s o cr d d N N 3 1.09.0-+= (适用于地面以下15m 以 内) [] ρ o s o cr d N N 3 1.04.2-= (适用于地面以下15~20m 以 内) 式中: d s —饱和土标准贯入点深度(m ); d w —地下水位深度(m ) ρo —粘粒含量百分率,小于3或为砂土时,取3。 N cr —饱和土液化临界标准贯入锤击数;

N o —饱和土液化判别的基准标准贯入锤击数。 对于可液化土层,按下式计算的液化指数(I ie )来确定液化等级; w d N N I i i n i cri i ie ) 1(1 ∑=- = 式中: I ie :液化指数; N i :饱和土层中i 点的实测标准贯入锤击数; N cri :相应于Ni 深度处的临界标准贯入锤击数; n :每个钻孔内15m 深度范围内饱和土层中标准贯入点总数; 并按表4的标准进行砂土液化等级划分。 表4 砂土液化等级分级标准 表 5)。冲洪积含粘性土中粗砂层(层序号2-3)液化指数I lE 为<0,均为无液化土层。因此综合判定本场地无可液化地层分布。

RS1616KP基桩动测仪操作方法

一、安全规定: 1、岩海产品绝大部分以直流供电为主,交流供电为辅,在接通交流市电使 用本产品之前,请将机壳接地端接地; 2、本公司产品应在规定的电压范围内使用,市电 AC220V±10%(个别 AC380V ±10%)、直流电 DC12V±5%(部分仪器 DC6V±5%),否则极易引起仪器故障; 3、工程测试,测试者应注意仪器及其附属物坠落伤人,或摔坏仪器;相 关 人员还应注意自身安全,进入工程现场应配戴安全帽及其它防护用品。特别提示: 本系统光电耦合旋钮和四热键可组成两套独立的指令输入系统互为替代 使用,也可灵活交叉使用,其中后一种方式能使阁下的操作更为快捷。 一、仪器面板说明 1、动测仪左侧面(图1-1) 图1-1 动测仪左侧面 * VEL:反射波法速度计接口; * ACC:反射波法加速度计接口。 2、动测仪右侧面(图1-2)

图1-2 动测仪右侧面 * DC IN:直流稳压电源输入接口; * ON-OFF:动测仪电源开关。 3、前面板(图1-3) 图1-3 动测仪前面板 * 电源能量指示光柱:用于动测仪供电电压(+12V)的能量指示。当能量指示光 柱只剩下最左边一格点亮时,表示动测仪内部的电池能量 即将用完,需要立即充电。 * 光电式旋转键盘开关:此开关可左旋、右旋和压下(立刻释放) 三种操作。类似 于计算机中的鼠标,借助于中文提示菜单,此旋转开关可 完成全部功能操作。 * 功能键:功能键有四个:F1、F2、F3和F4,其功能定义如 下: F1:光标左移;

F3:光标右移; F2:进入主菜单或确认当前操作; F4:进入磁盘操作或取消当前操作,四个功能键可以全部取代 光电式旋转开关的功能。 4、后面板(图1-4) * POWER:机内电池/外接电源切换开关;INSIDE表示使用机 内电池,OUTSIDE 表示使用外接电源。 * CHARGE:机内电池充电控制开关;充电时置为ON,不充电时置为OFF。 * PRINTER:打印机接口,并行通讯口。 * RS-232:串行通讯口。 * RS MODE:高应变RS模式接口。 * PDA MODE:高应变PDA模式接口(选配件)。 * EXT:外触发输入端子。 * :仪器接地端子。 图1-4 动测仪后面板 5、19芯短电缆 19芯短电缆是用来做其他工程物探使用的,譬如:剪切波、瑞利波、地脉动,也可以用 作多通道基桩低应变测量。 短电缆的一端为19芯孔式圆形插座,可与仪器后面板上的“RSMODE”高应变电缆插 座相连接;另一端有7个Q9插头,分别标注有A1、A2、A3、A4、E1、E2、E3字样。其中 A1~A4为低增益通道,可作为4通道基桩低应变测量使用,此时在“测量类型选择菜单”

结构动力特性测试方法及原理

结构动力特性的测试方法及应用(讲稿) 一. 概述 每个结构都有自己的动力特性,惯称自振特性。了解结构的动力特性就是进行结构抗震设 计与结构损伤检测的重要步骤。目前,在结构地震反应分析中,广泛采用振型叠加原理的反应谱分析方法,但需要以确定结构的动力特性为前提。n 个自由度的结构体系的振动方程如下: [][][]{}{})()()()(...t p t y K t y C t y M =+??????+?????? 式中[]M 、[]C 、[]K 分别为结构的总体质量矩阵、阻尼矩阵、刚度矩阵,均为n 维矩阵;{} )(t p 为外部作用力的n 维随机过程列阵;{})(t y 为位移响应的n 维随机过程列阵;{})(t y &为速度响应的n 维随机过程列阵;{})(t y && 为加速度响应的n 维随机过程列阵。 表征结构动力特性的主要参数就是结构的自振频率f (其倒数即自振周期T )、振型Y(i)与阻尼比ξ,这些数值在结构动力计算中经常用到。 任何结构都可瞧作就是由刚度、质量、阻尼矩阵(统称结构参数)构成的动力学系统,结构一旦出现破损,结构参数也随之变化,从而导致系统频响函数与模态参数的改变,这种改变可视为结构破损发生的标志。这样,可利用结构破损前后的测试动态数据来诊断结构的破损,进而提出修复方案,现代发展起来的“结构破损诊断”技术就就是这样一种方法。其最大优点就是将导致结构振动的外界因素作为激励源,诊断过程不影响结构的正常使用,能方便地完成结构破损的在线监测与诊断。从传感器测试设备到相应的信号处理软件,振动模态测量方法已有几十年发展历史,积累了丰富的经验,振动模态测量在桥梁损伤检测领域的发展也很快。随着动态测试、信号处理、计算机辅助试验技术的提高,结构的振动信息可以在桥梁运营过程中利用环境激振来监测,并可得到比较精确的结构动态特性(如频响函数、模态参数等)。目前,许多国家在一些已建与在建桥梁上进行该方面有益的尝试。 测量结构物自振特性的方法很多,目前主要有稳态正弦激振法、传递函数法、脉动测试法与自由振动法。稳态正弦激振法就是给结构以一定的稳态正弦激励力,通过频率扫描的办法确定各共振频率下结构的振型与对应的阻尼比。 传递函数法就是用各种不同的方法对结构进行激励(如正弦激励、脉冲激励或随机激励等),测出激励力与各点的响应,利用专用的分析设备求出各响应点与激励点之间的传递函数,进而可以得出结构的各阶模态参数(包括振型、频率、阻尼比)。脉动测试法就是利用结构物(尤其就是高柔性结构)在自然环境振源(如风、行车、水流、地脉动等)的影响下,所产生的随机振动,通过传感器记录、经谱分析,求得结构物的动力特性参数。自由振动法就是:通过外力使被测结构沿某个主轴方向产生一定的初位移后突然释放,使之产生一个初速度,以激发起被测结构的自由振动。 以上几种方法各有其优点与局限性。利用共振法可以获得结构比较精确的自振频率与阻尼比,但其缺点就是,采用单点激振时只能求得低阶振型时的自振特性,而采用多点激振需较多的设备与较高的试验技术;传递函数法应用于模型试验,常常可以得到满意的结果,但对于尺度很大的实际结构要用较大的激励力才能使结构振动起来,从而获得比较满意的传递函数,这在实际测试工作中往往有一定的困难。 利用环境随机振动作为结构物激振的振源,来测定并分析结构物固有特性的方法,就是近年来随着计算机技术及FFT 理论的普及而发展起来的,现已被广泛应用于建筑物的动力分析研究中,对于斜拉桥及悬索桥等大型柔性结构的动力分析也得到了广泛的运用。斜拉桥或悬索桥的环境随机振源来自两方面:一方面指从基础部分传到结构的地面振动及由于大气变化而影响到上部结构的振动(根据动力量测结果,可发现其频谱就是相当丰富的,具有不同的脉动卓越周期,反应了不同地区地质土壤的动力特性);另一方面主要来自过桥车辆的随机振动。

地脉动测试

一般规定 本章适用于周期在0.1~1.0s,振幅小于3μm的地脉动测试,为工程抗震和隔振设计提供场地的卓越周期和脉动幅值。 测试结果应包括下列内容: (1)测试资料的数据处理方法及分析结果; (2)脉动时程曲线; (3)富氏谱或功率谱图; (4)测试成果表。 设备和仪器 1、地脉动测试系统应符合下列要求: (1)通频带应选择为1 ~40HZ,信噪比应大于80dB; (2)低频特性应稳定可靠,系统放大倍数不应小于106; (3)测试系统应与数据采集分析系统相配接。 2、传感器除应符合本规范第4.2.3条外,也可采用频率特性和灵敏度等满足测试要求的加速度型传感器;对地下脉动测试用的速度型传感器、通频带应为1~25HZ,并应严格密封防水。 3、放大器应符合下列要求: (1)当采用速度型传感器时,放大器应符合本规范第4.2.4条的要求; (2)当采用加速度型传感器时,应采用读通道适调放大器。 4、信号采集与分析系统宜采用多通道,模数转换器(A/D)位 数不宜小于12位;曲线和图形显示不宜低于图像清晰度指标(VGA),并应具有抗混淆滤波功能,低通滤波宜为80dB/oct,计算机内存不应小于4.0MB,并应具有加窗功能和时域、频域分析软件。 5、测试仪器应每年在标准振台上进行系统灵敏度系数的标定,以确定灵敏度系数随频率变化的曲线。 测试方法 1、每个建筑场地的地脉动测点,不应少于2个;也可根据工程需要,增加测点数量。

2、当记录脉动信号时,在距离观测点100m范围内,应无人为振动干扰。 3、测点宜选在天然土地基上及波速测试孔附近,传感器应沿东西、南北、竖向三个方向布置。 4、地下脉动测试时,测点深度应根据工程需要进行布置。 5、脉动信号记录时,应根据所需频率范围设置低通道滤波频率和采样频率,采样频率宜取50 ~100HZ,每次记录时间不应少于15min,记录次数不得少于2次。 数据处理,宜作富氏谱或功率谱分析;每个样本数据宜采用1024个点;采样间隔宜取0.01~0.02s,并应按下列公式计算: 式中T——场地卓越周期(s); ?——卓越频率(HZ)。 3、卓越频率应按下列规定确定: (1)按谱图中最大峰值所对应的频率确定; (2)当谱图中出现多峰的峰值相差不大时,可在谱分析的同时,进行相关或互谱分析,以便对场地脉动卓越频率进行综合评价。 4、脉动幅值的确定应符合下列规定: (1)脉动幅值应取实测脉动信号的最大幅值; (2)确定脉动信号的幅值时,应排除人为干扰信号的影响。

中芯国际初步勘察方案

中芯国际 岩土工程初步勘察方案 武汉中科岩土工程有限责任公司 2013年9月5日

目录 ●目录 1.前言 2场地工程地质条件简述 3.勘察工作量的布置 4.岩土勘察报告书的编写 5.施工组织安排及进度计划 6.质量保证措施 7.安全保证体系 8.服务措施 ●附件部分 勘探点平面布置图

1.前言 1.1工程概况 1.1.1略 1.2勘察目的和要求 1.2.1初步勘察目的 对场地内建筑地段的稳定性和建设的适宜性作出评价,提出设计、施工 所需参数,为确定主要建筑物地基基础方案及不良地质现象的防治工程 方案提供工程地质资料。 1.2.2要求 (1)、合理布置钻孔位置,对地层分布不均的场地应适当增加钻孔数量,勘察孔距30~50米为宜; (2)、初步查明场地不良地质作用类型、成因、分布范围、发展趋势和危害程度;(3)、初步查明场区范围内岩土层的类型、深度、分布、工程特性变化规律,分析和评价地基的稳定性,均匀性和承载力; (4)、工程抗震设防烈度大于等于6度时,应对场地和地基的地震效应做出初步评价; (5)、查明地下水埋藏条件,初步判定地下水对建筑材料的腐蚀性; (6)、高层建筑初步勘察,应对可能的地基基础类型、基坑支护形式、降水方案进行初步的分析评价。 1.3方案编制依据 1.3.1《岩土工程勘察规范》(GB50021-2001)(2009年版); 1.3.2《建筑地基基础设计规范》(GB50007-2002); 1.3.3《建筑抗震设计规范》(GB50011-2001); 1.3.4《岩土工程勘察规程》(DB42/169—2003); 1.3.5《建筑地基基础技术规范(DB42/242-2003); 1.3.6《土工试验方法标准》(GB/T50123-1999);

场地土剪切波速测试报告

附件3:场地土剪切波速测试报告 报告编号:从1 工程名称:中铁五局(集团)有限公司科研培训中心 工程地点:广州市南沙区工业五路5号 主要检测人: 报告编写人: 报告审核人: 试验日期:2012年8月26日~2012年8月28日 中国有色金属长沙勘察设计研究院有限公司试验室 二○一二年九月 目录 1、前言 2、测试原理及仪器设备 3、野外测试方法 4、资料整理 5、测试成果

1、前言 我公司于2012年8月26日~2012年8月28日对拟建中铁五局(集团)有限公司科研培训中心场地进行了剪切波速测试。 执行标准: 《岩土工程勘察规范》(GB50021-2001)(2009年版); 《建筑抗震设计规范》(GB50011-2010); 《地基动力特性测试规范》(GB/T50269-97)。 本次测试共完成波速测试孔2个,钻孔编号ZK16、ZK17号。 2、测试原理及仪器设备 测试原理 通过人工激发产生的剪切波,穿过被测土层,被传感器接收转换成电讯号,输入仪器放大并记录下来。由激发点和接收点的相对位置,可知波的传播距离,由激发时间和波到接收点的初至时间,可知波的传播时间,因而便可计算出剪切波在被测土层中的传播速度。 仪器设备 采用武汉岩海公司生产的RS—1616J桩基动测仪及日本OYO公司生产的井中三分量检波器, 该仪器采用专门设计的电脑与大屏幕液晶显示器;通过键盘和液晶显示器进行人机对话,菜单式提示操作,可在强干扰环境中提取有用信息,准确测试波的传播时间。采用地面激发井中接收,测量点距1-3m ;工作中先将探头放入井底,然后自下而上逐点激振采样。对每个接收点均进行正反向水平激发并记录各激振波形。采样间隔100~400μs,记录长度100~400ms。 3、野外测试方法 采用单孔检层法:将激振板置于孔口附近地面,并使其中点与孔口的连线垂直于激振板,板上加压400公斤以上重物。用激振锤横向敲击激振板两端,产生剪切波向地下传播。将三分量检波器置于孔中不同深度处,接收剪切波输入仪器记录。由此测得剪切波到达不同地层的初至时间。方法原理见插图1示意。激震点距孔口距离为~1.6m。采用地面激发井中接收,测量点距1-3m ;

《地下工程测试技术》课程设计

《地下工程测试技术实习》

目录 1实习目的和要求 (1) 2实习内容 (1) 2.1试验一基桩低应变检测 (1) 2.1.1试验原理 (1) 2.1.2试验设备 (2) 2.1.3试验依据、判别标准 (3) 2.1.4试验步骤 (9) 2.1.5试验图表绘制 (9) 2.1.6试验结果汇总 (15) 2.1.7试验注意事项 (15) 2.2试验二地脉动测试 (16) 2.2.1试验原理 (16) 2.2.2试验设备 (16) 2.2.3试验步骤 (16) 2.2.4试验参数设置 (17) 2.2.5试验图表绘制 (17) 2.2.6试验结果汇总 (19) 2.2.7试验注意事项 (19) 3参考文献 (20)

《地下工程测试技术》课程实习报告 1实习目的和要求 (1)《地下工程测试技术》课程实习是学生在学完《地下工程测试技术》课程的基础上,综合应用所学知识的一项实习任务。其目的是培养我们的综合应用基础理论和专业知识在岩土工程检测监测中应用的能力。 (2)通过实习,要求我们对原位测试有全面的了解和掌握,深入掌握位移检测、桩基检测等内容。 (3)在教师指导下,要求我们独立完成任务书规定的全部内容,并撰写实习报告。实习报告要求内容完整、排版符合要求、文字通顺、图表正确、分析准确、结论可靠。 2实习内容 2.1试验一基桩低应变检测 2.1.1试验原理 基桩低应变检测即反射波法,指的是应力波在桩身中的传播反射特征为理论的一种方法。在应用这种方法的情况下,需要将桩看成是具有连续弹性的一维均质杆,同时不考虑周土体传播的应力波对沿桩身造成的一些影响。在测试过程中,在桩顶进行纵向振动,弹性波将会沿着桩身向下进行传播,一旦桩身出现较大的波阻抗变化波动或桩身截面积改变,就会发射反射波,将它进行相应的接收、滤波、放大以及数据的处理,根据接收到的信号就能够识别各个部位的反射信息,通过专业的数据软件对这些反射信号进行综合分析判断,就能够判断出桩身的完整性。 引起反射波变化的原因:桩底、截面发生变化、夹泥、离析、混凝土质量变化、土层变化等。 低应变可以检测到的现象有桩底、夹泥、空洞、断裂、离析、扩颈、缩颈、材料变化、土层变化等,如图2-1所示;低应变检测不到的现象有渐细、渐粗、弯曲、小缺陷、桩底沉渣,如图2-2所示。

地脉动台阵方法的有效性分析

第25卷第8期岩石力学与工程学报V ol.25 No.8 2006年8月Chinese Journal of Rock Mechanics and Engineering Aug.,2006地脉动台阵方法的有效性分析 师黎静1,陶夏新2,赵纪生1 (1. 中国地震局工程力学研究所,黑龙江哈尔滨 150080;2. 哈尔滨工业大学,黑龙江哈尔滨 150090) 摘要:通过在一工程场地进行的地脉动台阵观测和速度结构反演,从地脉动观测系统、面波频散曲线的提取和反演方法等关键环节探讨反演浅层速度结构的可能性。研究结果表明:(1) 用空间自相关法提取瑞利波频散曲线,进而借助基于遗传算法的混合智能算法反演的场地浅部剪切波速度结构与钻孔法测试结果的平均相对误差在20%左右。(2) 覆盖层平均波速的结果计算与频率–波数法的分析结果几乎完全相同,但频率–波数法对上部20 m土层只得到一平均波速。(3) 方法精度与目前国际同类研究——表面波谱分析方法的精度基本相当。在岩土工程和地震工程领域,波速结构测试最直接的目的是评价场地土层的动力性能。进一步从对地震地表反应影响的角度,用一维土层的等效线性化方法分析地脉动台阵方法的有效性。分析结果表明,使用地脉动反演波速结构模型的误差远小于仅用覆盖层平均等效波速的单层模型对地表反应谱影响。仅用一平均等效波速进行抗震设计是不够的,探测浅层速度结构是非常必要的,地脉动台阵方法有潜力作为探测场地浅部剪切波速度结构的一种有效手段。 关键词:地震工程;剪切波速结构;浅部;地脉动;台阵观测;场地反应 中图分类号:P 315;TU 435 文献标识码:A 文章编号:1000–6915(2006)08–1683–08 V ALIDATION OF MICROTREMORS ARRAY METHOD SHI Lijing1,TAO Xiaxin2,ZHAO Jisheng1 (1. Institute of Engineering Mechanics,China Earthquake Administration,Harbin,Heilongjiang 150080,China; 2. Harbin Institute of Technology,Harbin,Heilongjiang 150090,China) Abstract:By the microtremors array observation and velocity structure inversion in the field of an engineering project,the accuracy of microtremors array methods(MAM) for exploring the detailed shallow velocity structure is studied with observation system,dispersion curve extraction and inversion methods. The shallow S-wave velocity structure is inversed by the hybrid method of genetic algorithm(GA) and simplex algorithm(SA) from the surface wave dispersion curve,which is inferred by the spatial auto-correlation method(SAC) from microtremors array records. The studies show that the relative average error of each layer is about 20% compared with that detected by borehole method. The average velocity obtained by SAC method and frequency wave-number method(F-K) is almost the same. However,F-K method only gives an average velocity for the upper 20-meter layer. The accuracy is compared with that of spectral analysis of surface wave(SASW) method. In the fields of geotechnical engineering and earthquake engineering,the direct goal of velocity structure exploration is site dynamic characterization. From the viewpoint of site seismic responses,the accuracy of MAM is further validated by 1D equivalent linearized analysis. The analytical results show that the difference between the response spectra from inversed velocity structure and that measured in borehole is really acceptable,whereas that for the simplified single layer model with the average velocity is quite large. The study suggests that it is not a good idea in seismic 收稿日期:2005–04–25;修回日期:2005–07–20 基金项目:国家自然科学基金资助项目(50378032);地震科学联合基金资助项目(604034) 作者简介:师黎静(1976–),男,1998年毕业于兰州大学水文地质与工程地质专业,现为博士研究生、副研究员,主要从事岩土工程和防灾减灾工程方面的研究工作。E-mail:shljiem@https://www.doczj.com/doc/8514819578.html,

相关主题
文本预览
相关文档 最新文档