当前位置:文档之家› 基本函数求导公式

基本函数求导公式

基本函数求导公式
基本函数求导公式

基本初等函数求导公式

(1) 0)(='C (2)

1)(-='μμμx x

(3) x x cos )(sin ='

(4) x x sin )(cos -='

(5)

x x 2

sec )(tan =' (6)

x x 2

csc )(cot -=' (7) x x x tan sec )(sec ='

(8) x x x cot csc )(csc -='

(9)

a a a x

x ln )(=' (10) (e )e x

x '=

(11)

a x x a ln 1

)(log =

'

(12)

x x 1)(ln =

',

(13)

211)(arcsin x x -=

' (14)

211)(arccos x x --

=' (15)

21(arctan )1x x '=

+

(16)

21(arccot )1x x '=-

+

函数的和、差、积、商的求导法则 设)(x u u =,)(x v v =都可导,则

(1) v u v u '±'='±)( (2) u C Cu '=')((C 是常数)

(3) v u v u uv '+'=')(

(4) 2

v v u v u v u '-'=

'

??? ??

反函数求导法则

若函数)(y x ?=在某区间y I 内可导、单调且0)(≠'y ?,则它的反函数)(x f y =在对应

区间

x

I 内也可导,且

)(1)(y x f ?'=

' 或 dy dx dx dy 1

=

复合函数求导法则

设)(u f y =,而)(x u ?=且)(u f 及)(x ?都可导,则复合函数)]([x f y ?=的导数为

dy dy du dx du dx =

或()()y f u x ?'''=

2. 双曲函数与反双曲函数的导数.

双曲函数与反双曲函数都是初等函数,它们的导数都可以用前面的求导公式和求导法则求出.

可以推出下表列出的公式:

在第二章第六节中我们已经提出了隐函数的概念,并且指出了不经过显化直接由方程

),(y x f =0 (1) 求它所确定的隐函数的方法。现在介绍隐函数存在定理,并根据多元复合函数的求导法来导出隐函数的导数公式.

隐函数存在定理1 设函数),(y x F 在点

),(00y x P 的某一邻域内具有连续的偏导数,

0),(00=y x F ,

, 0),(00≠y x F y ,则方程),(y x F =0在点),(00y x 的某一邻域内恒能唯

一确定一个单值连续且具有连续导数的函数)(x f y =,它满足条件)(00

x f y =,并有

y x F F dx dy

-= (2)

公式(2)就是隐函数的求导公式

这个定理我们不证。现仅就公式(2)作如下推导。 将方程(1)所确定的函数)(x f y =代入,得恒等式 0))(,(≡x f x F ,

其左端可以看作是x 的一个复合函数,求这个函数的全导数,由于恒等式两端求导后仍然恒等,即得

,0=??+??dx dy y F x F

由于y

F 连续,且

),(00≠y x F y ,所以存在(x 0,y 0)的一个邻域,在这个邻域内

≠y F ,于是

.y x F F dx dy

-=

如果),(y x F 的二阶偏导数也都连续,我们可以把等式(2)的两端看作x 的复合函数而再一次求导,即得

dx

dy F F y F F x dx y d y x y x ???? ??-??+???? ??-??=

22

.

23

2222y x yy y x xy y xx y x y x yy y xy y x

yz y xx F F F F F F F F F F F F F F F F F F F F +--=????

?

?-----=

例1 验证方程

0122=-+y x 在点(0,1)的某一邻域内能唯一确定一个单值且有连续导数、当x =0时,1=y 的隐函数)(x f y =,并求这函数的一阶和二阶导数在x =0的值。

解 设=),(y x F 122-+y x ,则y F x F y x 2,2==,0

2)1,0(,0)1,0(≠==y F F .因此由

定理1可知,方程012

2=-+y x 在点(0,1)的某邻域内能唯一确定一个单值且有连续导数、当x =0时,1=y 的隐函数)(x f y =。

下面求这函数的一阶和二阶导数

y x F F dx dy -==y x -, 0

==x dx dy

;

22dx y d =

,1)

(332222y y x y y y x

x y y y x y -=+-=---='--

1

22-==x dx y

d 。

隐函数存在定理还可以推广到多元函数.既然一个二元方程(1)可以确定一个一元隐函数,那末一个三元方程

F (z y x ,,)=0 (3)

就有可能确定一个二元隐函数。

与定理1一样,我们同样可以由三元函数F (z y x ,,)的性质来断定由方程F (z y x ,,)=0所确定的二元函数z =),(y x 的存在,以及这个函数的性质。这就是下面的定理。

隐函数存在定理2 设函数F (z y x ,,)在点

),,(000z y x P 的某一邻域内具有连续的偏导数,且

0),,(000=z y x F ,0),,(000≠z y x F z ,则方程F (z y x ,,)=0在点),,(000z y x 的某

一邻域内恒能唯一确定一个单值连续且具有连续偏导数的函数),(y x f z =,它满足条件

),(000y x f z =,并有

x z ??=

z x F F -,y z ??=z y

F F -. (4)

这个定理我们不证.与定理1类似,仅就公式(4)作如下推导. 由于 F (y x ,, f ),(y x )≡0, 将上式两端分别对x 和y 求导,应用复合函数求导法则得

x F +z F x z

??=0, y F +z F y z ??=0。

因为z F 连续,且0),,(000≠z y x F z ,所以存在点),,(000z y x 的一个邻域,在这个邻域内z

F ≠0,于是得

x z ??=

z x F F -,y z ??=z y

F F -。

例2 设04222=-++z z y x ,求.22x z

??

解 设F (z y x ,,) =

z z y x 42

22-++,则x F =2x , z F =42-z .应用公式(4),得

x z

??=z x -2。

再一次x 对求偏导数,得

2

2x z ??2

)2()2(z x

z x z -??+-=

.)2()2()2(2)2(3

222z x z z z x x z -+-=-?

??

??-+-=

二、方程组的情形

下面我们将隐函数存在定理作另一方面的推广。我们不仅增加方程中变量的个数。而且增加方程的个数,例如,考虑方程组

??

?==.0),,,(,

0),,,(z u y x G v u y x F (5)

这时,在四个变量中,一般只能有两个变量独立变化,因此方程组(5)就有可能确定两个二元函数。在这种情形下,我们可以由函数F 、G 的性质来断定由方程组(5)所确定的两个二元函数的存在,以及它们的性质。我们有下面的定理。

隐函数存在定理3 设函数),,,(v u y x F 、),,,(v u y x G 在点),,,(00000v u y x P 的某一邻

域内具有对各个变量的连续偏导数,又

0),,,(0000=v u y x F ,0),,,(0000=v u y x G ,且偏导

数所组成的函数行列式(或称雅可比(Jacobi)式):

=J ),(),(v u G F ??=v G u

G

v F u

F ????????

在点

),,,(00000v u y x P 不等于零,则方程组0),,,(=v u y x F ,0),,,(=v u y x G 在点

),,,(0000v u y x 的某一邻域内恒能唯一确定一组单值连续且具有连续偏导数的函数),(),,(y x v v y x u u ==,它满足条件),(),,(000000u x v v y x u u ==,并有

x u

??-=),(),(1v x G F J ??-=,

v

u

v u

v x

v x G G

F F

G G F F

x v

??-=),(),(1x u G F J ??-

=,

v

u

v u x u

x u G G F F G G F F (6)

y u ??-=),()

,(1v y G F J ??-=,

v

v

v u v y

v y G G

F F

G G F F

y v ??-=J 1),()

,(y u G F ??-=.

u y u

y u v u

v

F F

G G F F G

G

这个定理我们不证.

例3 设1,0=+=-xv yu yv xu ,求x u ??,y u ??,x v ??和y v

??.

解 此题可直接利用公式(6),但也可依照推导公式(6)的方法来求解。下面我们利用后一种方法来做。

将所给方程的两边对x 求导并移项,得

?????-=??+??-=??-??.

,v x v x x u y u x v y x u

x

22≠+=-=

y x x

y

y x J 的条件下,

.,222

2y

x xv yu x

y y x v y u

x x v y x yv xu x

y y x x v y

u x u +-=---=??++-=----=??

将所给方程的两边对y 求导,用同样方法在

02

2≠+=y x J 的条件下可得

,22y x yu xv y u +-=?? .22y x yv xu y v ++-=??

(整理)基本初等函数求导公式

基本初等函数求导公式 (1) 0)(='C (2) 1 )(-='μμμx x (3) x x cos )(sin =' (4) x x sin )(cos -=' (5) x x 2 sec )(tan =' (6) x x 2csc )(cot -=' (7) x x x tan sec )(sec =' (8) x x x cot csc )(csc -=' (9) a a a x x ln )(=' (10) (e )e x x '= (11) a x x a ln 1 )(log = ' (12) x x 1)(ln = ', (13) 211)(arcsin x x -= ' (14) 211)(arccos x x -- =' (15) 21(arctan )1x x '= + (16) 21(arccot )1x x '=- + 函数的和、差、积、商的求导法则 设)(x u u =,)(x v v =都可导,则 (1) v u v u '±'='±)( (2) u C Cu '=')((C 是常数) (3) v u v u uv '+'=')( (4) 2v v u v u v u '-'=' ??? ?? 反函数求导法则 若函数)(y x ?=在某区间y I 内可导、单调且0)(≠'y ?,则它的反函数)(x f y =在对应 区间 x I 内也可导,且 )(1)(y x f ?'= ' 或 dy dx dx dy 1= 复合函数求导法则

设)(u f y =,而)(x u ?=且)(u f 及)(x ?都可导,则复合函数)]([x f y ?=的导数为 dy dy du dx du dx =g 或()()y f u x ?'''=g 2. 双曲函数与反双曲函数的导数. 双曲函数与反双曲函数都是初等函数,它们的导数都可以用前面的求导公式和求导法则求出. 可以推出下表列出的公式: sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) =tanAtanB -1tanB tanA + tan(A-B) =tanAtanB 1tanB tanA +- cot(A+B) =cotA cotB 1 -cotAcotB + cot(A-B) =cotA cotB 1 cotAcotB -+ 倍角公式 tan2A =A tan 12tanA 2- Sin2A=2SinA?CosA Cos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A

基本初等函数的导数公式表

导数基本知识汇总试题 基本知识点: 知识点一、基本初等函数的导数公式表(须掌握的知识点) 1、=c '0 2、 =n n x nx -1'() (n 为正整数) 3、 ln =x x a a a '() =x x e e '() 4、ln =a long x x a 1'() 5、ln =x x 1 '() 6、sin cos =x x '() 7、 cos sin =-x x '() 8、=-x x 211'() 知识点二:导数的四则运算法则 1、v =u v u '''±±() 2、 =u v uv v u '''+() 3、(=Cu Cu '' ) 4、u -v =u v u v v 2'''() 知识点三:利用函数导数判断函数单调性的法则 1、如果在(,)a b ,()f x '>0,则()f x 在此区间是增区间,(,)a b 为()f x 的单调增区间。 2、如果在(,)a b ,()f x '<0,则()f x 在此区间是减区间,(,)a b 为()f x 的单调减区间。 一、计算题 1、计算下列函数的导数; (1)y x 15= (2) )-y x x 3=≠0( (3))y x x 54=0 ( (4))y x x 23=0 ( (5))-y x x 23 =0 ( (6)y x 5=

(7)sin y x = (8)cos y x = (9)x y =2 (10)ln y x = (11)x y e = 2、求下列函数在给定点的导数; (1)y x 1 4= ,x =16 (2)sin y x = ,x π =2 (3)cos y x = ,x π=2 (4)sin y x x = ,x π =4 (5)3y x = ,11 28(,) (6)+x y x 2=1 ,x =1 (7)y x 2 = ,,24()

常用基本初等函数求导公式积分公式.doc

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) , (13) (14) (15) (16) 函数的和、差、积、商的求导法则 设,都可导,则 ( 1)( 2)(是常数) ( 3)( 4) 反函数求导法则 若函数在某区间内可导、单调且,则它的反函数在对应区间内也可导,且 或 复合函数求导法则 设,而且及都可导,则复合函数的导数为 或 2. 双曲函数与反双曲函数的导数. 双曲函数与反双曲函数都是初等函数,它们的导数都可以用前面的求导公式和求导法则求出.

可以推出下表列出的公式: 常用积分公式表·例题和点评 ⑴kdx kx c ( k 为常数) ⑵x dx( 1) 1 x 1 c 1 特别, 1 dx 1 c , x d x 2 x23 c , 1 dx 2 x c x 2 x 3 x ⑶1 dx ln | x | c x ⑷ a x d x a x c , 特别,e x d x e x c ln a

⑸ sin x dx cos x c ⑹ cos x d x sin x c ⑺ 1 d x csc 2 x dx cot x c sin 2 x ⑻ 1 d x sec 2 x dx tan x c cos 2 x ⑼ 1 dx x c ( a 0) , 特别, a 2 x 2 arcsin a ⑽ 1 dx 1 x c (a 0) , 特别, a 2 x 2 arctan a a ⑾ 1 1 a x a 2 x 2 d x 2a ln a x c ( a 0) 或 1 1 x a x 2 a 2 dx 2a ln x a c ( a 0) ⑿ tan x dx ln cos x c ⒀ cot x dx ln sin x c 1 arcsin x c 1 d x x 2 1 1 x 2 dx arctan x c 1 ln csc x cot x c ⒁ csc x d x x dx ln tan c sin x 2 1 ln sec x tan x c ⒂ secx d x x dx c cos x ln tan 4 2 1 ( a 0) x 2 a 2 ⒃ a 2 dx ln x c x 2 ⒄ a 2 x 2 dx ( a 0) a 2 x x a 2 x 2 c arcsin 2 2 a ⒅ x 2 2 (a 0) x x 2 a 2 a 2 ln x x 2 a 2 c a d x 2 2

1.基本初等函数求导公式

1. 基本初等函数求导公式 (1) 0)(='C (2) 1 )(-='μμμx x (3) x x cos )(sin =' (4) x x sin )(cos -=' (5) x x 2 sec )(tan =' (6) x x 2csc )(cot -=' (7) x x x tan sec )(sec =' (8) x x x cot csc )(csc -=' (9) a a a x x ln )(=' (10) (e )e x x '= (11) a x x a ln 1 )(log = ' (12) x x 1)(ln = ', (13) 211)(arcsin x x -= ' (14) 211)(arccos x x -- =' (15) 21(arctan )1x x '= + (16) 21(arccot )1x x '=- + 函数的和、差、积、商的求导法则 设)(x u u =,)(x v v =都可导,则 (1) v u v u '±'='±)( (2) u C Cu '=')((C 是常数) (3) v u v u uv '+'=')( (4) 2v v u v u v u '-'=' ??? ?? 反函数求导法则 若函数)(y x ?=在某区间y I 内可导、单调且0)(≠'y ?,则它的反函数)(x f y =在对应 区间 x I 内也可导,且 )(1)(y x f ?'= ' 或 dy dx dx dy 1= 复合函数求导法则

设)(u f y =,而)(x u ?=且)(u f 及)(x ?都可导,则复合函数)]([x f y ?=的导数为 dy dy du dx du dx =g 或()()y f u x ?'''=g 2. 双曲函数与反双曲函数的导数. 双曲函数与反双曲函数都是初等函数,它们的导数都可以用前面的求导 公式和求导法则求出.可以推出下表列出的公式: 三、基本初等函数的微分公式与微分运算法则 从函数的微分表达式: d ()d y f x x '= 可以看出,要计算函数的微分,只要计算函数的导数,再乘以自变量的微分.因此,可得如下的微分公式和微分运算法则. 1. 基本初等函数的微分公式 由基本初等函数的导数公式,可以直接写出基本初等函数的微分公式.为了便于对照,列表于下:

基本初等函数的导数公式表

导数基本知识汇总试题 基本知识点: 知识点一、基本初等函数的导数公式表(须掌握的知识点) 1、"0 2、 (乂7二心I (n 为正整数) 3、 Ca x y=a x \na Ce x y=e x (long a xy=-^— 4、 xina (lnxX=- 5、 x 6、 (sin Q 二 cos x 7 (cos x )‘二-sin x '(ly=-± 8. x 对 知识点二:导数的四则运算法则 1、 ("土 v y=u ± v r 2、 (nv )r =u F v + //v r 3、 (Cu7=Cu 4、 v 知识点三:利用函数导数判断函数单调性的法则 1. 如果在广(力>°,则/a )在此区间是增区间,为/(X )的单调增区间。 2、如果在(""),广(x )v0,则/(x )在此区间是减区间,(心)为/(X )的单调减区 间。 一、计算题 1. 计算下列函数的导数: (1) y = x 15 (2) y = x* (XH O) (3) 5 y = x 4 (x a 0) (4) 2 y = x^ (XA O) (5) 2 y = x 3 (X A 0) (6) y = x 5

(7) >,=v2 , 24) (7) y = sin x (8) y = cos x (9) y=r (10) y = In x (11) y = e x 2、求下列函数在给泄点的导数: 2 (1)尸存,“16 7T . X =— (4) y = xsinx , 4 x y = --- (6) 1+F ,兀=1 (2) y = sinx (3)y = cosx x = 2TT 3 (5) >,=v

基本函数求导公式

基本函数求导公式

基本初等函数求导公式 (1) 0)(='C (2) 1 )(-='μμμx x (3) x x cos )(sin =' (4) x x sin )(cos -=' (5) x x 2 sec )(tan =' (6) x x 2csc )(cot -=' (7) x x x tan sec )(sec =' (8) x x x cot csc )(csc -=' (9) a a a x x ln )(=' (10) (e )e x x '= (11) a x x a ln 1 )(log = ' (12) x x 1)(ln = ', (13) 211)(arcsin x x -= ' (14) 211)(arccos x x -- =' (15) 21(arctan )1x x '= + (16) 21(arccot )1x x '=- + 函数的和、差、积、商的求导法则 设)(x u u =,)(x v v =都可导,则 (1) v u v u '±'='±)( (2) u C Cu '=')((C 是常数) (3) v u v u uv '+'=')( (4) 2v v u v u v u '-'=' ??? ?? 反函数求导法则 若函数)(y x ?=在某区间y I 内可导、单调且0)(≠'y ?,则它的反函数)(x f y =在对应 区间 x I 内也可导,且 )(1)(y x f ?'= ' 或 dy dx dx dy 1= 复合函数求导法则

隐函数存在定理 1 设函数),(y x F 在点),(0 0y x P 的 某一邻域内具有连续的偏导数,且0),(0 =y x F ,, ),(00≠y x F y ,则方程),(y x F =0在点),(0 y x 的某一邻域内 恒能唯一确定一个单值连续且具有连续导数的函数)(x f y =,它满足条件) (00 x f y =,并有 y x F F dx dy -= (2) 公式(2)就是隐函数的求 导公式 这个定理我们不证。现仅就公式(2)作如下推导。 将方程(1)所确定的函数)(x f y =代入,得恒等式 ))(,(≡x f x F , 其左端可以看作是x 的一个复合函数,求这个函数的全导数,由于恒等式两端求导后仍然恒等,即得 ,0=??+??dx dy y F x F 由于y F 连续,且0),(0 ≠y x F y ,所以存在(x 0,y 0)的一个

基本初等函数的导数公式

基本初等函数的导数公式 学习目标: 掌握初等函数的求导公式; 学习重难点: 用定义推导常见函数的导数公式. 一、复习 1、导数的定义; 2、导数的几何意义; 3、导函数的定义; 4、求函数的导数的流程图。 (1)求函数的改变量()(x f x x f y -?+=? (2)求平均变化率 x y = ?? (3)取极限,得导数/y =()f x '=x y x ??→?0 lim 本节课我们将学习常见函数的导数。首先我们来求下面几个函数的导数。 (1)、y=x (2)、y=x 2 (3)、y=x 3 问题:1-=x y ,2-=x y ,3-=x y 呢? 问题:从对上面几个幂函数求导,我们能发现有什么规律吗? 二、学习过程 1、基本初等函数的求导公式: ⑴ ()kx b k '+= (k,b 为常数) ⑵ 0)(='C (C 为常数) ⑶ ()1x '= ⑷ 2()2x x '= ⑸ 32()3x x '= ⑹ 2 1 1()x x '=- ⑺ '= 由⑶~⑹你能发现什么规律? ⑻ 1()x x ααα-'= (α为常数) ⑼ ()ln (01)x x a a a a a '=>≠, ⑽ a a 11(log x)log e (01) x xlna a a '= = >≠,且 ⑾ x x e )(e =' ⑿ x 1)(lnx =' ⒀ cosx )(sinx =' ⒁ sinx )(cosx -=' 从上面这一组公式来看,我们只要掌握幂函数、指对数函数、正余弦函数的求导就可以了。

例1、求下列函数导数。 (1)5-=x y ( 2)x y 4= (3)x x x y = (4)x y 3log = (5)y=sin(2 π +x) (6) y=sin 3 π (7)y=cos(2π-x) 例2.若直线y x b =-+为函数1y x = 图象的切线,求b 的值和切点坐标. 变式1.求曲线y=x 2 在点(1,1)处的切线方程. 总结切线问题:找切点 求导数 得斜率 变式2:求曲线y=x 2过点(0,-1)的切线方程 变式3:已知直线1y x =-,点P 为y=x 2 上任意一点,求P 在什么位置时到直线距离最短. 三:课堂练习. 1.求下列函数的导数 (1)3y x = (2)y = (3)2 1y x = (4)3x y = (5)2log y x = (6)cos y x = 四、小结 (1)基本初等函数公式的求导公式 (2)公式的应用 随堂检测: 1. 已知3()f x x =,则'(1)f = 。 2.设y = ,则它的导函数为 。 3.过曲线3y x -=上的点1 (2,)8 的切线方程为 。 4.求下列函数的导函数 (1)2y x -= (2)y = (3)41y x = (4)2x y = (5)4log y x = (6)ln y x = (7)sin()2y x π=- (8)3cos()2 y x π =+ 5.求曲线x y e =在0x =处的切线方程。

基本初等函数求导公式

基本初等函数求导公式The final revision was on November 23, 2020

基本初等函数求导公式 (1) 0)(='C (2) 1 )(-='μμμx x (3) x x cos )(sin =' (4) x x sin )(cos -=' (5) x x 2 sec )(tan =' (6) x x 2csc )(cot -=' (7) x x x tan sec )(sec =' (8) x x x cot csc )(csc -=' (9) a a a x x ln )(=' (10) (e )e x x '= (11) a x x a ln 1 )(log = ' (12) x x 1 )(ln = ', (13) 2 11 )(arcsin x x -= ' (14) 2 11 )(arccos x x -- =' (15) 21 (arctan )1x x '= + (16) 21 (arccot )1x x '=- + 函数的和、差、积、商的求导法则 设)(x u u =,)(x v v =都可导,则 (1) v u v u '±'='±)( (2) u C Cu '=')((C 是常数) (3) v u v u uv '+'=')( (4) 2v v u v u v u '-'=' ??? ?? 反函数求导法则 若函数)(y x ?=在某区间y I 内可导、单调且0)(≠'y ?,则它的反函数)(x f y =在对应 区间 x I 内也可导,且 )(1)(y x f ?'= ' 或 dy dx dx dy 1= 复合函数求导法则 设)(u f y =,而)(x u ?=且)(u f 及)(x ?都可导,则复合函数)]([x f y ?=的导数为 dy dy du dx du dx = 或

一般常用求导公式

四、基本求导法则与导数公式 1. 基本初等函数的导数公式和求导法则 基本初等函数的求导公式和上述求导法则,在初等函数的基本运算中起着重要的作用,我们必须熟练的掌握它,为了便于查阅,我们把这些导数公式和求导法则归纳如下: 基本初等函数求导公式 (1) 0)(=' C (2) 1 )(-='μμμx x (3) x x cos )(sin =' (4) x x sin )(cos -=' (5) x x 2 sec )(tan =' (6) x x 2 csc )(cot -=' (7) x x x tan sec )(sec =' (8) x x x cot csc )(csc -=' (9) a a a x x ln )(=' (10) (e )e x x '= (11) a x x a ln 1 )(log = ' (12) x x 1)(ln = ', (13) 2 11)(arcsin x x -= ' (14) 2 11)(arccos x x -- =' (15) 2 1(arctan )1x x '= + (16) 2 1(arc cot )1x x '=- + 函数的和、差、积、商的求导法则 设 )(x u u =,)(x v v =都可导,则 (1) v u v u ' ±'='±)( (2) u C Cu ' =')((C 是常数) (3) v u v u uv ' +'=')( (4) 2 v v u v u v u '-'=' ??? ?? 反函数求导法则 若函数)(y x ?=在某区间 y I 内可导、单调且 0)(≠'y ?,则它的反函数 )(x f y =在对应区间 x I 内也可导,且

数学 基本初等函数的导数公式及导数的运算法则教案

§则 教学目标: 1.熟练掌握基本初等函数的导数公式; 2.掌握导数的四则运算法则; 3.能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数。 教学重点:基本初等函数的导数公式、导数的四则运算法则 教学难点: 基本初等函数的导数公式和导数的四则运算法则的应用 教学过程: 一.创设情景 四种常见函数y c =、y x =、2y x =、1y x = 的导数公式及应用 二.新课讲授 (一)基本初等函数的导数公式表 (二)导数的运算法则 导数运算法则 1.[]'''()()()()f x g x f x g x ±=± 2.[]' ''()()()()()()f x g x f x g x f x g x ?=± 3.[] ' ''2()()()()()(()0)()()f x f x g x f x g x g x g x g x ??-=≠???? (2)推论:[]''()()cf x cf x = (常数与函数的积的导数,等于常数乘函数的导数) 三.典例分析 函数 导数 函数 导数

例1.假设某国家在20年期间的年均通货膨胀率为5%,物价p (单位:元)与时间t (单位:年)有如下函数关系0()(15%)t p t p =+,其中0p 为0t =时的物价.假定某种商品的 01p =,那么在第10个年头,这种商品的价格上涨的速度大约是多少(精确到0.01) 解:根据基本初等函数导数公式表,有'() 1.05ln1.05t p t = 所以'10(10) 1.05ln1.050.08p =≈(元/年) 因此,在第10个年头,这种商品的价格约为0.08元/年的速度上涨. 例2.根据基本初等函数的导数公式和导数运算法则,求下列函数的导数. (1)323y x x =-+ (2)y =x x --+1111; (3)y =x · sin x · ln x ; (4)y = x x 4 ; (5)y =x x ln 1ln 1+-. (6)y =(2 x 2-5 x +1)e x (7) y =x x x x x x sin cos cos sin +- 【点评】 ① 求导数是在定义域内实行的.② 求较复杂的函数积、商的导数,必须细心、耐心. 例3日常生活中的饮水通常是经过净化的.随着水纯净度的提高,所需净化费用不断增加.已知将1吨水净化到纯净度为%x 时所需费用(单位:元)为 求净化到下列纯净度时,所需净化费用的瞬时变化率:(1)90% (2)98% 解:净化费用的瞬时变化率就是净化费用函数的导数. (1) 因为'2 5284(90)52.84(10090)c ==-,所以,纯净度为90%时,费用的瞬时变化率是52.84元/吨. (2) 因为'2 5284(98)1321(10090)c ==-,所以,纯净度为98%时,费用的瞬时变化率是1321元/吨. 函数()f x 在某点处导数的大小表示函数在此点附近变化的快慢.由上述计算可知,''(98)25(90)c c =.它表示纯净度为98%左右时净化费用的瞬时变化率,大约是纯净度为90%左右时净化费用的瞬时变化率的25倍.这说明,水的纯净度越高,需要的净化费用就越

基本初等函数的导数公式的推导过程

基本初等函数的导数公式推导过程 一、幂函数()f x x α=(α∈Q *)的导数公式推导过程 命题 若()f x x α=(α∈Q *),则()1f x x αα-'=. 推导过程 ()f x ' ()()()()()()000112220 011222011222011220 lim lim C C C C lim C C C C lim C C C lim lim C C C x x x x x x f x x f x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x αα αααααααααααααααααααααααα ααααααα?→?→--?→--?→--?→--?→+?-=?+?-=?+?+?++?-=?-+?+?++?=??+?++?=?=+?++L L L L ()11 11 C x x x ααααααα---?== 所以原命题得证. 二、正弦函数()sin f x x =的导数公式推导过程 命题

若()sin f x x =,则()cos f x x '=. 推导过程 ()f x ' ()() ()()()()0000020lim sin sin lim sin cos cos sin sin lim cos sin sin cos sin lim cos sin sin cos 1lim cos 2sin cos sin 12sin 1222lim x x x x x x f x x f x x x x x x x x x x x x x x x x x x x x x x x x x x x x ?→?→?→?→?→?→+?-=?+?-=??+?-=??+?-=??+?-=???????????+?-- ? ????????=2 00002sin cos cos 2sin sin 222lim 2sin cos cos sin sin 222lim 2sin cos 22lim sin 2lim cos 22x x x x x x x x x x x x x x x x x x x x x x x x x ?→?→?→?→????????- ???=???????- ???=?????+ ???=?????????=+??? ???????? 当0x ?→时,sin 22 x x ??=,所以此时sin 212x x ?=?. 所以()0lim cos cos 2x x f x x x ?→???'=+= ??? ,所以原命题得证. 三、余弦函数()cos f x x =的导数公式推导过程 命题 若()cos f x x =,则()sin f x x '=-.

基本函数求导公式

基本初等函数求导公式 (1) (C)' = o (2) (时)'=小妇 (3) (sinx)' = cosx (4) (cosx)' = -sinx ⑸ (tan x)9 = sec 2 x (6) (cot xY = -esc 2 X (7) (secx)' = sec x tan x (8) (cscx)' = -cscxcotx ⑼ {a x Y = a x In a (10) (e x r = e v (log“x)一 . (lnx)z =— (11) x In a (12) X 1 , ? 、, _ 1 v di v b in A ) , ------ \UIvvOb A) , ------ (13) Vl-X 2 (14) Vl-X 2 (arctan x\ = — z 、, 1 (arc cot x) = 一 ---- T (15) 1 + ?T (16) l + ?r 函数的和、差、积、商的求导法则 设⑴,心心)都可导,则 ⑴ (w±v)/ = z/,±v z (2) ?j = C/(C 是常数) ⑶ (")'=心 + “” (4) [叮 V 反函数求导法则 若函数x = 0()')在某区间4内可导、单调且则它的反函数)'=/3)在对应 区间八内也可导,且 dy _ 1 dx 一 dx 复合函数求导法则 设)' = /("),而u =(p (x )且/伽)及0(x )都可导,则复合函数y = f [(p (x )]的导 数为

dy _ dy du dx du dx或y = 2.双曲函数与反双曲函数的导数. 双曲函数与反双曲函数都是初等函数,它们的导数都可以用前面的求导公式和求导法则求出?可以推出下表列出的公式: 在第二章第六节中我们已经提出了隐函数的概念,并且指出了不经过显化直接由方程 "3)=0 ⑴ 求它所确定的隐函数的方法。现在介绍隐函数存在定理,并根据多元复合函数的求导法来导出隐函数的导数公式. 隐函数存在定理1设函数在点P"。,)'。)的某一邻域内具有连续的偏导数,且5),),0)= 0一气则方程尸(2)二0在点CE。)的某一邻域内恒能唯—确定一个单值连续且具有连续导数的函数)'=/(工),它满足条件)'。=/"。),并有 空=_旦 dx气⑵ 公式(2)就是隐函数的求导公式

初等函数基本求导、积分公式

初等函数基本求导公式 (1)0) (='c (2)αααα()(1-='x x 为任意实数) (3)a a a x x ln )(= ' (4)x x e e = ')( (5)a x x a ln 1)(log =' (6)x x 1)(ln =' (7)x x cos )(sin =' (8)x x sin )(cos -=' (9)x x 2sec )(tan =' (10)x x 2csc )(cot -=' (11)x x x tan sec )(sec =' (12)x x x cot csc )(csc -=' (13)211 )(arcsin x x -=' (14)211 )(arccos x x --=' (15)211)(arctan x x +=' (16)211)cot (x x arc +-='

初等函数基本积分公式(《应用统计》必备知识,要求记住) (1)C kx kdx +=?(k 是常数) (2)C x dx x ++=+?111μμμ (3)C x dx x +=?||ln 1 (4)C e dx e x x +=? (5)C a a dx a x x +=?ln (6)C x xdx +=?sin cos (7)C x xdx +-=?cos sin (8)C x xdx dx x +==?? tan sec cos 122 (9)C x xdx dx x +-==??cot csc sin 1 22 (10)C x dx x +=+? arctan 112 (11)C x dx x +=-?arcsin 11 2 (12)C x xdx x +=?sec tan sec (13)C x dx x +-=?csc cot csc (14)C x dx x +=?ch sh (15)C x dx x +=?sh ch (16)C x xdx +-=?|cos |ln tan (17)C x xdx +=?|sin |ln cot (18)C x x xdx ++=?|tan sec |ln sec

1.2.2基本初等函数的导数公式及导数的运算法则一

1.2.2基本初等函数的导数公式及导数的运算法则(一) 教学目的:1熟练掌握基本初等函数的导数公式。 2掌握导数的四则运算法则; 3能利用给出的公式和法则求解函数的导数。 教学重点难点 重点:基本初等函数的导数公式、导数的四则运算法则 难点: 基本初等函数的导数公式和导数的四则运算法则的应用 教学安排:两课时 教学过程: 引入:复习巩固导数的基本公式,及其基本运算规律。 且 ()()f x c f x ''+=???? ()()Af x Af x ''=???? ()()()()f x g x f x g x '''+=+???? 知识讲解: 一:基本初等函数的导数公式 为了方便我们将可以直接使用的基本初等函数的导数公式表如下:

关于表特别说明: 1 常数函数 () y f x c == 的导 数是0;即()0 c'= 2幂函数 ()n y f x x == 的导数是以对应幂函 数的指数为系数和该幂函数降一次的幂的乘积。即: ()n y f x x == 3正弦函数 ()sin y f x x == 的导数是余弦函数。即: () sin cos x x '= 余弦函数 ()cos y f x x == 的导数是正弦函数的相反数。 () cos sin x x '=- 从图像上来看,正弦函数在区间上单调递增,瞬时变化率为正,和 余弦函数在该区间的正负是一致的, 余弦函数在区间上是单调递减,瞬时变化率为负, 和正弦函数在该区间的正负是相反的,故 有一个负号。 4 指数函数 ()x y f x a == 的导数是指数函数 x a 与 ln a 的乘积。特别的函

基本求导公式

这是基本求导公式,只能根据导数的定义来求。 导数的定义就是给X一个增Δx,求出ΔY,然后求ΔY/Δx的极限(当Δx→0时)。 函数是Y=X^n ΔY=(X+Δx)^n-X^n 把(X+Δx)^n展开(按n为正整数),展开式写起来很麻烦,我给你叙述一下,你应能理解。 展开式中,第一项是X^n,最末项是(Δx)^n,中间的项中,X是降幂,Δx是升幂,系数是前后对称,如n=2,系数是1,2,1;n=3,系数是1,3,3,1;等等。注意,n是几,第二项的系数就是几。 只需考虑展开式中的前两项。 第一项是X^n,它将会与ΔY=(X+Δx)^n-X^n中的-X^n项抵消。 第二项是[nX^(n-1)]*Δx,其后的项中,Δx的方次都比1大。 现在来考虑比值ΔY/Δx,前边说过,第一项已消失,第二项除以Δx后为[nX^(n-1)],其后各项除以Δx后都还剩有Δx因子。因此,当Δx→0取极限时,就只剩下[nX^(n-1)],其后的项都成为0了。 这就是你要证的求导公式。 (顺便说一下,上述是以n为正整数来证明的,n为任意实数时也是成立的。) (X+Δx)^n的展开式在纸上写起来也并不太麻烦,只是在这里写起来,为避免误会,需加的括号太多,就显得麻烦了。 第一项系数是1,第二项系数是n, 第三项系数是[n(n-1)]/(1*2) 10~12是利用函数的商的求导法则。如(secx)'=secx*tanx。 (secx)'=(1/cosx)'=-(cosx)'/(cosx)^2=sinx/(cosx)^2=secx*tanx 13~16是利用反函数的求导法则:y=f(x)的反函数是x=g(y),则dx/dy=1/(dy/dx)。 如(arcsinx)'=1/√(1-x^2)。 y=arcsinx的反函数是x=siny。已知dx/dy=(siny)'=cosy=√(1-x^2)。 所以dy/dx=1/(dx/dy)=1/√(1-x^2)。即(arcsinx)'=1/√(1-x^2) f(x)=c, 则f '(x)=0 f(x)=x^n,则f '(x)=nx^n-1 f(x)=sinx,则f '(x)=cosx f(x)=cosx,则f '(x)=-sinx f(x)=a^x,则f '(x)=a^xlna(a>0) f(x)=e^x,则f '(x)=e^x f(x)=logax,则f '(x)=1/xlna(a>0且a不等于1) f(x)=lnx,则f '(x)=1/x

基本初等函数求导公式

(1) 0)(='C (2) 1 )(-='μμμx x (3) x x cos )(sin =' (4) x x sin )(cos -=' (5) x x 2 sec )(tan =' (6) x x 2csc )(cot -=' (7) x x x tan sec )(sec =' (8) x x x cot csc )(csc -=' (9) a a a x x ln )(=' (10) (e )e x x '= (11) a x x a ln 1 )(log = ' (12) x x 1)(ln = ', (13) 211)(arcsin x x -= ' (14) 211)(arccos x x -- =' (15) 21(arctan )1x x '= + (16) 21(arccot )1x x '=- + 函数的和、差、积、商的求导法则 设)(x u u =,)(x v v =都可导,则 (1) v u v u '±'='±)( (2) u C Cu '=')((C 是常数) (3) v u v u uv '+'=')( (4) 2 v v u v u v u '-'= ' ??? ?? 反函数求导法则 若函数)(y x ?=在某区间y I 内可导、单调且0)(≠'y ?,则它的反函数)(x f y =在对应 区间 x I 内也可导,且 )(1)(y x f ?'= ' 或 dy dx dx dy 1 = 复合函数求导法则 设)(u f y =,而)(x u ?=且)(u f 及)(x ?都可导,则复合函数)]([x f y ?=的导数为

dy dy du dx du dx = 或 2. 双曲函数与反双曲函数的导数. 双曲函数与反双曲函数都是初等函数,它们的导数都可以用前面的求导公式和求导法则求出. 可以推出下表列出的公式:

2.基本初等函数导数公式练习题

1 2、基本初等函数的导数 一、选择题 1.函数f (x )=-10的导数是( ) A .0 B .负数 C .正数 D .不确定 2.若f (x )=3x ,则3f ′(1)等于( ) A .0 B.13 C .1 D.32 3.若函数f (x )=x ,则f ′(1)等于( ) A .0 B .-12 C .2 D.12 4.质点沿直线运动的路程和时间的关系是s =5t ,则质点在t =4时的速度为( ) A.12523 B.110523 C.25523 D.110523 5.若函数f (x )=ax 4+bx 2+c 满足f ′(1)=2,则f ′(-1)=( ) A .-1 B .-2 C .2 D .0 6.若对任意的x ,有f ′(x )=4x 3 ,f (1)=-1,则此函数解析式为( ) A .f (x )=x 4 B .f (x )=x 4-2 C .f (x )=x 4+1 D .f (x )=x 4-1 7.设函数f (x )=cos x 则??? ?f ????π2′等于( ) A .0 B .1 C .-1 D .以上均不正确 8.设函数f (x )=sin x ,则f ′(0)等于( ) A .1 B .-1 C .0 D .以上均不正确 9.若y =ln x ,则其图象在x =2处的切线斜率是( ) A .12 B .0 C .2 D.1 10.若y =sin x ,则y ′|x =π3 =( ) A.12 B .-12 C.32 D .-32 11.下列各式中正确的是( ) A .(3x )′=3x ln3 B .(log a x )′=ln10x C .(3x )′=3x D .(log a x )′=1x 二、填空题 12.物体的运动方程为s =t 3,则物体在t =1时的速度为________,在t =4时的速度为________. 13.若函数y =cos t ,则y ′|t =6π=____________.

基本函数求导公式

基本函数求导公式 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

基本初等函数求导公式 (1) 0)(='C (2) 1 )(-='μμμx x (3) x x cos )(sin =' (4) x x sin )(cos -=' (5) x x 2sec )(tan =' (6) x x 2csc )(cot -=' (7) x x x tan sec )(sec =' (8) x x x cot csc )(csc -=' (9) a a a x x ln )(=' (10) (e )e x x '= (11) a x x a ln 1 )(log = ' (12) x x 1 )(ln = ', (13) 2 11 )(arcsin x x -= ' (14) 2 11 )(arccos x x -- =' (15) 21(arctan )1x x '= + (16) 21 (arccot )1x x '=- + 函数的和、差、积、商的求导法则 设)(x u u =,)(x v v =都可导,则 (1) v u v u '±'='±)( (2) u C Cu '=')((C 是常数) (3) v u v u uv '+'=')( (4) 2v v u v u v u '-'=' ??? ?? 反函数求导法则 若函数)(y x ?=在某区间y I 内可导、单调且0)(≠'y ?,则它的反函数)(x f y =在对应 区间 x I 内也可导,且 )(1)(y x f ?'= ' 或 dy dx dx dy 1= 复合函数求导法则 设 )(u f y =,而)(x u ?=且)(u f 及)(x ?都可导,则复合函数)]([x f y ?=的导数为 dy dy du dx du dx = 或()()y f u x ?'''= 2. 双曲函数与反双曲函数的导数.

相关主题
文本预览
相关文档 最新文档