当前位置:文档之家› 圆锥曲线的综合性问题专题(一)及答案

圆锥曲线的综合性问题专题(一)及答案

圆锥曲线的综合性问题专题(一)及答案
圆锥曲线的综合性问题专题(一)及答案

圆锥曲线的综合性问题专题(一)

1.已知椭圆C:x2

a2+y2

b2=1(a>b>0)过点(1,

3

2),过右焦点且垂直于x轴的弦长是1.

(1)求椭圆C的标准方程;

(2)设A,B分别是椭圆C的左,右顶点,过(1,0)的直线l与椭圆交于M,N两点,证明:直线AM和直线BN交点的横坐标为定值.

2已知椭圆C:x2

a2+y2

b2=1(a>b>0)经过点(1,

6

2),且离心率等于

2

2,点A,B分别为椭圆C的左,右顶点,

M,N是椭圆C上非顶点的两点,且△OMN的面积等于 2.

(1)求椭圆C的方程;

(2)过点A作AP∥OM交椭圆C于点P,

求证:BP∥ON.

3.已知椭圆E:x2

a2+y2

b2=1(a>b>0)的两个焦点与短轴的一个端点是直角三角形的三个顶点,直线l:y=-x +3与椭圆E有且只有一个公共点T.

(1)求椭圆E的方程及点T的坐标;

(2)设O是坐标原点,直线l′平行于OT,与椭圆E交于不同的两点A,B,且与直线l交于点P.证明:存在常数λ,使得|PT|2=λ|P A|·|PB|,并求λ的值.

4.平面直角坐标系xOy 中,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率是32

,抛物线E :x 2=2y 的焦点F 是C 的一个顶点.

(1)求椭圆C 的方程;

(2)设P 是E 上的动点,且位于第一象限,E 在点P 处的切线l 与C 交于不同的两点A ,B ,线段AB 的中点为D .直线OD 与过P 且垂直于x 轴的直线交于点M .

①求证:点M 在定直线上;

②直线l 与y 轴交于点G ,记△PFG 的面积为S 1,△PDM 的面积为S 2,求S 1S 2

的最大值及取得最大值时点P 的坐标.

5.如图,在平面直角坐标系xOy 中,已知椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为22

,且右焦点F 到直线l :x =-a 2

c

的距离为3.

(1)求椭圆的标准方程;

(2)过F 的直线与椭圆交于A ,B 两点,线段AB 的垂直平分线分别交直线l 和AB 于点P ,C ,若|PC |=2|AB |,求直线AB 的方程.

答案解析

1.(1)解由题意知????? 1a 2+34b 2=1,a 2-b 2

a 2+14

b 2

=1, 解得?????

a 2=4,

b 2=1, 故椭圆C 的标准方程是x 24

+y 2=1. (2)证明由(1)知A (-2,0),B (2,0),设直线l :x =my +1,M (x 1,y 1),N (x 2,y 2).

由?????

x =my +1,x 24

+y 2=1消去x , 得(m 2+4)y 2+2my -3=0,

则直线AM :y =y 1x 1+2(x +2),直线BN :y =y 2x 2-2(x -2), 由??? y =y 1x 1+2(x +2),

y =y 2

x 1-2(x -2)消去y ,得

y 1x 1+2(x +2)=y 2x 2-2

(x -2), 解得x =2(x 1y 2+x 2y 1-2y 1+2y 2)x 1y 2-x 2y 1+2(y 1+y 2)=4my 1y 2-2y 1+6y 2y 1+3y 2

, 因为y 1+y 2=-2m m 2+4

, y 1y 2=-3m 2+4

, 所以y 1+y 2y 1y 2=2m 3

, 即2my 1y 2=3(y 1+y 2).

所以x =6(y 1+y 2)-2y 1+6y 2y 1+3y 2

=4. 故直线AM 和直线BN 交点的横坐标为定值4.

2.(1)解由题意得????? 1a 2+(62)2b 2=1,e =c a =22,a 2=b 2+c 2

, 解得?????

a 2=4,

b 2=2. 故椭圆C 的方程为x 24+y 2

2

=1. (2)证明 如图所示,当M ,N 在y 轴异侧时,不妨设M 在y 轴右侧,N 在y 轴左侧.设直线OM ,ON 的方程分别为y =k OM x ,y =k ON x ,

由?????

y =k OM x ,x 24+y 22

=1, 解得M (

21+2k 2OM ,2k OM 1+2k 2OM

), 同理可得N (-21+2k 2ON

, -2k ON 1+2k 2ON ). 作MM ′⊥x 轴于M ′,NN ′⊥x 轴于N ′,

S △OMN =S 梯形MM ′N ′N -S △OMM ′-S △ONN ′

=12

[(y M +y N )(x M -x N )-x M y M +x N y N ] =12

(x M y N -x N y M ) =12(-4k ON 1+2k 2OM 1+2k 2ON + 4k OM

1+2k 2OM 1+2k 2ON

) =2

(k OM -k ON )1+2k 2OM 1+2k 2ON .

圆锥曲线大题专题训练答案和题目

圆锥曲线大题专题训练 1.如图,曲线G 的方程为22(0)y x y =≥.以原点为圆心.以(0)t t >为半径的圆分别 与曲线G 和y 轴的正半轴相交于点A 与点B .直线AB 与x 轴相交于点C . (Ⅰ)求点A 的横坐标a 与点C 的横坐标 c 的关系式 (Ⅱ)设曲线G 上点D 的横坐标为2a +, 求证:直线CD 的斜率为定值. 1.解: (Ⅰ)由题意知,(A a . 因为OA t =,所以2 2 2a a t +=.由于0t > 由点(0)(0)B t C c ,,,的坐标知,直线BC 的方程为 1c t +=. 又因点A 在直线BC 上,故有 1a c +=,将(1)代入上式,得1a c =, 解得2c a =+ (Ⅱ)因为(2D a +,所以直线CD 的斜率为 1CD k = ===-. 所以直线CD 的斜率为定值. 2.设F 是抛物线2 :4G x y =的焦点. (I )过点(04)P -,作抛物线G 的切线,求切线方程; (II )设A B ,为抛物线G 上异于原点的两点,且满足0FA FB =u u u r u u u r g ,延长AF ,BF 分别交抛物线G 于点C D ,,求 四边形ABCD 面积的最小值. 2.解:(I )设切点2 004x Q x ?? ???,.由2x y '=,知抛物线在Q 点处的切线斜率为02x ,故所求切线方程为 2000()42x x y x x -=-. 即2 04 24x x y x =-. 因为点(0)P -4,在切线上. 所以2 044 x -=-,2 016x =,04x =±.所求切线方程为24y x =±-. (II )设11()A x y ,,22()C x y ,. 由题意知,直线AC 的斜率k 存在,由对称性,不妨设0k >.

文科圆锥曲线专题练习及问题详解

文科圆锥曲线 1.设12F F 是椭圆2222:1(0)x y E a b a b +=>>的左、右焦点,P 为直线32a x =上一点,12PF F ?是底角为30的等腰三 角形,则E 的离心率为( ) () A 12 () B 23 () C 3 4 () D 4 5 【答案】C 【命题意图】本题主要考查椭圆的性质及数形结合思 想,是简单题. 【解析】∵△21F PF 是底角为0 30的等腰三角形, ∴322c a = ,∴e =3 4 , ∴0260PF A ∠=,212||||2PF F F c ==,∴2||AF =c , 2.等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线x y 162=的准线交于,A B 两点,AB =;则C 的实轴长为( ) ()A ()B ()C 4 ()D 8 【命题意图】本题主要考查抛物线的准线、直线与双曲线的位置关系,是简单题. 【解析】由题设知抛物线的准线为:4x =,设等轴双曲线方程为:222x y a -=,将4x =代入等轴双曲线方程解 得y =||AB =a =2, ∴C 的实轴长为4,故选C. 3.已知双曲线1C :22 221(0,0)x y a b a b -=>>的离心率为2.若抛物线22:2(0)C x py p =>的焦点到双曲线1C 的渐近线的距 离为2,则抛物线2C 的方程为 (A) 2x y = (B) 2x y = (C)28x y = (D)216x y = 考点:圆锥曲线的性质 解析:由双曲线离心率为2且双曲线中a ,b ,c 的关系可知a b 3=,此题应注意C2的焦点在y 轴上,即(0,p/2)到直线x y 3=的距离为2,可知p=8或数形结合,利用直角三角形求解。 4.椭圆的中心在原点,焦距为4,一条准线为4x =-,则该椭圆的方程为 (A ) 2211612x y += (B )221128x y += (C )22184x y += (D )22 1124 x y += 【命题意图】本试题主要考查了椭圆的方程以及性质的运用。通过准线方程确定焦点位置,然后借助于焦距和准线求解参数,,a b c ,从而得到椭圆的方程。 【解析】因为242c c =?=,由一条准线方程为4x =-可得该椭圆的焦点在x 轴上县2 2448a a c c =?==,所以2 2 2 844b a c =-=-=。故选答案C 5.已知1F 、2F 为双曲线22 :2C x y -=的左、右焦点,点 P 在C 上,12||2||PF PF =,则12cos F PF ∠=

圆锥曲线综合试题(全部大题目)含答案

1. 平面上一点向二次曲线作切线得两切点,连结两切点的线段我们称切点弦.设过抛物线 22x py =外一点00(,)P x y 的任一直线与抛物线的两个交点为C 、D ,与抛物线切点弦AB 的交点为Q 。 (1)求证:抛物线切点弦的方程为00()x x p y y =+; (2)求证:112|||| PC PD PQ +=. 2. 已知定点F (1,0),动点P 在y 轴上运动,过点P 作PM 交x 轴于点M ,并延长MP 到点N ,且.||||,0PN PM PF PM ==? (1)动点N 的轨迹方程; (2)线l 与动点N 的轨迹交于A ,B 两点,若304||64,4≤≤-=?AB OB OA 且,求直线l 的斜率k 的取值范围. 3. 如图,椭圆13 4: 2 21=+y x C 的左右顶点分别为A 、B ,P 为双曲线134:222=-y x C 右支上(x 轴上方)一点,连AP 交C 1于C ,连PB 并延长交C 1于D ,且△ACD 与△PCD 的面积 相等,求直线PD 的斜率及直线CD 的倾斜角. 4. 已知点(2,0),(2,0)M N -,动点P 满足条件||||PM PN -=记动点P 的轨迹为W . (Ⅰ)求W 的方程;

(Ⅱ)若,A B 是W 上的不同两点,O 是坐标原点,求OA OB ?的最小值. 5. 已知曲线C 的方程为:kx 2+(4-k )y 2=k +1,(k ∈R) (Ⅰ)若曲线C 是椭圆,求k 的取值范围; (Ⅱ)若曲线C 是双曲线,且有一条渐近线的倾斜角是60°,求此双曲线的方程; (Ⅲ)满足(Ⅱ)的双曲线上是否存在两点P ,Q 关于直线l :y=x -1对称,若存在,求出过P ,Q 的直线方程;若不存在,说明理由。 6. 如图(21)图,M (-2,0)和N (2,0)是平面上的两点,动点P 满足: 6.PM PN += (1)求点P 的轨迹方程; (2)若2 ·1cos PM PN MPN -∠=,求点P 的坐标. 7. 已知F 为椭圆22221x y a b +=(0)a b >>的右焦点,直线l 过点F 且与双曲线 12 2 2=-b y a x 的两条渐进线12,l l 分别交于点,M N ,与椭圆交于点,A B . (I )若3 MON π∠= ,双曲线的焦距为4。求椭圆方程。 (II )若0OM MN ?=(O 为坐标原点),1 3 FA AN =,求椭圆的离心率e 。

最新高考数学二轮专题综合训练-圆锥曲线(分专题-含答案)

圆锥曲线综合训练题 一、求轨迹方程: 1、(1)已知双曲线1C 与椭圆2C :22 13649 x y +=有公共的焦点,并且双曲线的离心率1e 与椭 圆的离心率2e 之比为7 3,求双曲线1C 的方程. (2)以抛物线2 8y x =上的点M 与定点(6,0)A 为端点的线段MA 的中点为P ,求P 点的轨迹方程. (1)解:1C 的焦点坐标为(0, 27e = 由127 3 e e = 得13e =设双曲线的方程为2 2 221(,0)y x a b a b -=>则22222 13 139a b a b a ?+=??+=? ? 解得229,4a b == 双曲线的方程为 22194y x -= (2)解:设点00(,),(,)M x y P x y ,则00 62 2 x x y y +? =????=??,∴00262x x y y =-??=?. 代入2008y x =得:2 412y x =-.此即为点P 的轨迹方程. 2、(1)ABC ?的底边16=BC ,AC 和AB 两边上中线长之和为30,建立适当的坐标系求此三角形重心G 的轨迹和顶点A 的轨迹.(2)△ABC 中,B(-5,0),C(5,0),且sinC-sinB=5 3 sinA,求点A 的轨迹方程. 解: (1)以BC 所在的直线为x 轴,BC 中点为原点建立直角坐标系.设G 点坐标为()y x ,,由20=+GB GC ,知G 点的轨迹是以B 、C 为焦点的椭圆,且除去轴上两点.因10=a , 8=c ,有6=b ,故其方程为 ()0136 1002 2≠=+y y x .设()y x A ,,()y x G '',,则()013610022≠'='+'y y x . ①由题意有???????='='33 y y x x ,代入①,得A 的轨迹方程为 ()01324 9002 2≠=+y y x ,其轨迹是椭圆(除去x 轴上两点).

北大附中高考数学专题复习圆锥曲线练习

学科:数学 教学内容:圆锥曲线综合能力训练 【综合能力训练】 一、选择题 1.到定点的距离与到定直线的距离之比等于log 23的点的轨迹是( ) A .圆 B .椭圆 C .双曲线 D .抛物线 2.椭圆x 2+5y 2-4x+10y+4=0的准线方程是( ) A .x=± 25 B . x= - 21,x=29 C .x= -29,x=2 1 D .x= -23,x=2 7 3.双曲线4)1(2 x -8 2 y =1的渐近线方程是( ) A .y=±2x B .y=±2x C .y=±2(x-1) D .y=±2 (x-1) 4.以原点为顶点,椭圆C :42x +3 2 y =1的左准线为准线的抛物线交椭圆C 的右准线 于A 、B 两点,则|AB|等于( ) A .2 B .4 C .8 D .16 5.方程y 2=ax+b 与y=ax+b(a ≠0)表示的图形可能是( ) 6.中心在原点,焦点坐标为(0, ±52)的椭圆被直线3x-y-2=0截得的弦的中点的横坐标为 2 1 ,则椭圆方程为( ) A .2522x +7522 y =1 B .7522x +25 22 y =1

C .252x +75 2 y =1 D .752x +25 2 x =1 7.抛物线y 2=2px 与y 2=2q(x+h)有共同的焦点,则p 、q 、h 之间的关系是( ) A .2h=q-p B .p=q+2h C .q>p>h D .p>q>h 8.过定点P(0,2)作直线l ,使l 与曲线y 2=4(x-1)有且仅有1个公共点,这样的直线l 共有( ) A .1条 B .2条 C .3条 D .4条 9.已知方程1||2-m x +m y -22=1表示焦点在y 轴上的椭圆,则m 的取值范围是( ) A .m<2 B .10,m>b>0)的离心率互为倒数,那么 以a 、b 、m 为边长的三角形是( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .锐角或钝角三角形 二、填空题 13.圆锥曲线? ??=+=θθtan 31 sec 4y x 的焦点坐标是 。 14.某桥的桥洞呈抛物线形(如图10-9),桥下水面宽16米,当水面上涨2米后达到警 戒水位,水面宽变为12米,此时桥洞顶部距水面高度约为 米(精确到0.1米)

圆锥曲线练习题(附答案)

) 圆锥曲线 一、填空题 1、对于曲线C ∶1 42 2-+-k y k x =1,给出下面四个命题: ①由线C 不可能表示椭圆; ②当1<k <4时,曲线C 表示椭圆; ③若曲线C 表示双曲线,则k <1或k >4; ④若曲线C 表示焦点在x 轴上的椭圆,则1<k <2 5 其中所有正确命题的序号为_____________. ? 2、已知椭圆)0(122 22>>=+b a b y a x 的两个焦点分别为21,F F ,点P 在椭圆上,且满 足021=?PF PF ,2tan 21=∠F PF ,则该椭圆的离心率为 3.若0>m ,点?? ? ??25,m P 在双曲线15422=-y x 上,则点P 到该双曲线左焦点的距离为 . 4、已知圆22:6480C x y x y +--+=.以圆C 与坐标轴的交点分别作为双曲线的一个焦点和顶点,则适合上述条件的双曲线的标准方程为 . 5、已知点P 是抛物线24y x =上的动点,点P 在y 轴上的射影是M ,点A 的坐标是 (4,a ),则当||a >4时,||||PA PM +的最小值是 . 6. 在ABC 中,7 ,cos 18 AB BC B ==- .若以A ,B 为焦点的椭圆经过点C ,则该椭圆的离心率e = . 7.已知ABC ?的顶点B ()-3,0、C ()3,0,E 、F 分别为AB 、AC 的中点,AB 和AC 边上的中线交于G ,且5|GF |+|GE |=,则点G 的轨迹方程为 8.离心率3 5 = e ,一条准线为x =3的椭圆的标准方程是 .

9.抛物线)0(42<=a ax y 的焦点坐标是_____________; 10将抛物线)0()3(42≠-=+a y a x 按向量v =(4,-3)平移后所得抛物线的焦点坐标为 . ^ 11、抛物线)0(12 <=m x m y 的焦点坐标是 . 12.已知F 1、F 2是椭圆2 2 22)10(a y a x -+=1(5<a <10=的两个焦点,B 是短轴的一个端 点,则△F 1BF 2的面积的最大值是 13.设O 是坐标原点,F 是抛物线)0(22>=p px y 的焦点,A 是抛物线上的一点, 与x 轴正向的夹角为60°,则||为 . 14.在ABC △中,AB BC =,7 cos 18 B =-.若以A B ,为焦点的椭圆经过点 C ,则该椭圆的离心率e = . 二.解答题 15、已知动点P 与平面上两定点(A B 连线的斜率的积为定值1 2 -. . (Ⅰ)试求动点P 的轨迹方程C. (Ⅱ)设直线1:+=kx y l 与曲线C 交于M 、N 两点,当|MN |=3 2 4时,求直线l 的方程.

圆锥曲线综合练习试题(有答案)

圆锥曲线综合练习 一、 选择题: 1.已知椭圆221102 x y m m +=--的长轴在y 轴上,若焦距为4,则m 等于( ) A .4 B .5 C .7 D .8 2.直线220x y -+=经过椭圆22 221(0)x y a b a b +=>>的一个焦点和一个顶点,则该椭圆的离心率为( ) A B .12 C .2 3 3.设双曲线22 219 x y a -=(0)a >的渐近线方程为320x y ±=,则a 的值为( ) A .4 B .3 C .2 D .1 4.若m 是2和8的等比中项,则圆锥曲线2 2 1y x m +=的离心率是( ) A B C D 5.已知双曲线22 221(00)x y a b a b -=>>,,过其右焦点且垂直于实轴的直线与双曲线交于M N , 两点,O 为坐标原点.若OM ON ⊥,则双曲线的离心率为( ) A B 6.已知点12F F ,是椭圆2 2 22x y +=的两个焦点,点P 是该椭圆上的一个动点,那么12||PF PF +u u u r u u u u r 的最小值是( ) A .0 B .1 C .2 D .7.双曲线221259 x y -=上的点到一个焦点的距离为12,则到另一个焦点的距离为( ) A .22或2 B .7 C .22 D .2 8.P 为双曲线22 1916 x y -=的右支上一点,M N ,分别是圆22(5)4x y ++=和22(5)1x y -+= 上的点, 则||||PM PN -的最大值为( ) A .6 B .7 C .8 D .9 9.已知点(8)P a ,在抛物线24y px =上,且P 到焦点的距离为10,则焦点到准线的距离为( ) A .2 B .4 C .8 D .16 10.在正ABC △中,D AB E AC ∈∈,,向量12DE BC =u u u r u u u r ,则以B C ,为焦点,且过D E ,的双曲线离心率为( ) A B 1 C 1 D 1 11.两个正数a b ,的等差中项是92,一个等比中项是a b >,则抛物线2b y x a =-的焦点坐标是( ) A .5(0)16- , B .2(0)5-, C .1(0)5-, D .1 (0)5 , 12.已知12A A ,分别为椭圆22 22:1(0)x y C a b a b +=>>的左右顶点,椭圆C 上异于12A A ,的点P

(浙江专用)2020高考数学二轮复习专题五解析几何第3讲圆锥曲线中的综合问题专题强化训练

第3讲 圆锥曲线中的综合问题 专题强化训练 1.已知方程x 2 2-k +y 2 2k -1 =1表示焦点在y 轴上的椭圆,则实数k 的取值范围是( ) A.? ?? ??12,2 B .(1,+∞) C .(1,2) D.? ?? ??12,1 解析:选C.由题意可得,2k -1>2-k >0, 即? ????2k -1>2-k ,2-k >0,解得1

2020高考专题复习—圆锥曲线

一、2020年高考虽然推迟,但是一定要坚持多练习,加油! 二、高考分析 1、分值、题型、难度设置 圆锥曲线是高中数学的重要内容之一,分值约占14﹪,即20分左右,题型一般为二小一大,例如,2005年高考为一道选择题,一道填空题一道解答题。小题基础灵活,解答题一般在中等以上,一般具有较高的区分度。 考试内容:椭圆、双曲线、抛物线的定义,标准方程,简单的几何性质,椭圆的参数方程。 主要题型:(1)定义及简单几何性质的灵活运用;(2)求曲线方程(含指定圆锥曲线方程及轨迹方程);(3)直线与圆锥曲线的位置关系问题(交点、弦长、中点弦及斜率、对称问题),确定参数的取值范围;(4)在导数、不等式、函数、向量等知识网络交汇点上的问题。 2、命题方向 解析几何内容多,范围广,综合度高,其特点是:数形结合,形象思维,规律性强,运算量大,综合性好。主要考察运算能力,逻辑思维能力,以及分析问题和解决问题的综合能力。 涉及函数、方程、不等式、三角、向量和导数等方面的内容,以及数形结合、分类讨论、等价转化等数学思想方法。 要注意一些立意新,角度好,有创意的题目,特别要关注在向量和解析几何交汇点上的命题趋势,两者通过坐标自然融合,既考查基

础知识、基本方法,又平淡之中见功夫,强化区分功能,突出对能力的考查,从不同的思维层次上考察能力,有较好的思维价值。 三、 专题复习 2.1考查直线和圆锥曲线方程等有关基础知识和基本方法,要特别重视圆锥曲线定义的灵活应用,反映思维品质。 例1.1)如图,在正方体ABCD D C B A -111的侧 面1AB 内有 动点P 到直线AB 与直线11C B 距离相等,则动点P 所在的曲线的形状为: ( ) 1 11 A B 1 (A) (B) 1A B 1 A 1 B (C) B A B 1 (D) 分析:本题主要考查抛物线定义,线面垂直关系及点到直线的距离等概念,情景新,角度好,有创意,考查基础知识和基本方法。 ∵11C B ⊥面1AB ,1PB ∴即为点P 到直线11C B 的距离,故动点P 的轨迹应为过B B 1中点的抛物线,又点1A 显然在此抛物线上,故选C 。 2)已知F 1、F 2是双曲线)0,0(122 22>>=-b a b y a x 的两焦点,以线段F 1F 2为边作 正三角形MF 1F 2,若边MF 1的中点在双曲线上,则双曲线的离心率是( ) A .324+ B .13- C . 2 1 3+ D .13+ 2.2 求曲线的方程,考查坐标法的思想和方法,从不同思维层次上反映数学能力。

高中数学《圆锥曲线》解答题解法全归纳

高中数学圆锥曲线解答题解法 题型一:数形结合确定直线和圆锥曲线的位置关系 题型二:弦的垂直平分线问题 题型三:动弦过定点的问题 题型四:过已知曲线上定点的弦的问题 题型五:向量问题 题型六:面积问题 题型七:弦或弦长为定值、最值问题 问题八:直线问题 问题九:对称问题 问题十、存在性问题:(存在点,存在直线y=kx+m ,存在实数,存在图形:三角形(等比、等腰、直角),四边形(矩形、菱形、正方形),圆) 题型一:数形结合确定直线和圆锥曲线的位置关系(简单题型未总结) 题型二:弦的垂直平分线问题 例题1、过点T(-1,0)作直线l 与曲线N :2 y x =交于A 、B 两点,在x 轴上是否存在一点E(0x ,0),使得 ABE ?是等边三角形,若存在,求出0x ;若不存在,请说明理由。 解:依题意知,直线的斜率存在,且不等于0。 设直线:(1)l y k x =+,0k ≠,11(,)A x y ,22(,)B x y 。 由2 (1)y k x y x =+?? =?消y 整理,得2222 (21)0k x k x k +-+= ① 由直线和抛物线交于两点,得2 2 4 2 (21)4410k k k ?=--=-+> 即2 1 04 k << ② 由韦达定理,得:212221,k x x k -+=-121x x =。则线段AB 的中点为22 211 (,)22k k k --。 线段的垂直平分线方程为:

221112()22k y x k k k --=--令y=0,得021122x k =-,则2 11(,0)22 E k - ABE ?Q 为正三角形,∴2 11 ( ,0)22 E k -到直线AB 的距离d 为32AB 。 2 2 1212()()AB x x y y =-+-Q 22 2141k k k -= +g 212k d k += 222 314112k k k k -+∴+=g 解得3913k =±满足②式此时0 53 x =。 【涉及到弦的垂直平分线问题】 这种问题主要是需要用到弦AB 的垂直平分线L 的方程,往往是利用点差或者韦达定理........产生弦AB 的中点坐标M ,结合弦AB 与它的垂直平分线L 的斜率互为负倒数,写出弦的垂直平分线L 的方程,然后解决相关问题,比如:求L 在x 轴y 轴上的截距的取值范围,求L 过某定点等等。有时候题目的条件比较隐蔽,要分析后才能判定是有关弦AB 的中点问题,比如:弦与某定点D 构成以D 为顶点的等腰三角形(即D 在AB 的垂直平分线上)、曲线上存在两点AB 关于直线m 对称等等。 例题分析1:已知抛物线y=-x 2 +3上存在关于直线x+y=0对称的相异两点A 、B ,则|AB|等于 解:设直线AB 的方程为y x b =+,由22123 301y x x x b x x y x b ?=-+?++-=?+=-?=+?,进而可求出AB 的中点11(,)22M b -- +,又由11 (,)22 M b --+在直线0x y +=上可求出1b =,∴220x x +-=,由弦长公式可求出2 21114(2)32AB =+-?-=. 题型三:动弦过定点的问题 例题2、已知椭圆C :22 221(0)x y a b a b +=>>的离心率为32, 且在x 轴上的顶点分别为A 1(-2,0),A 2(2,0)。 (I )求椭圆的方程; (II )若直线:(2)l x t t =>与x 轴交于点T,点P 为直线l 上异于点T 的任一点,直线PA 1,PA 2分别与椭圆交于M 、N 点,试问直线MN 是否通过椭圆的焦点?并证明你的结论 解:(I )由已知椭圆C 的离心率3c e a ==,2a =,则得3,1c b ==。从而椭圆的方程为 2 214 x y +=

圆锥曲线大题练习1(供参考)

1.已知动直线l 与椭圆C: 22 132 x y +=交于P ()11,x y 、Q ()22,x y 两不同点,且△OPQ 的面积OPQ S ?= 6 2 ,其中O 为坐标原点. (Ⅰ)证明2212x x +和22 12y y +均为定值; (Ⅱ)设线段PQ 的中点为M ,求||||OM PQ ?的最大值; (Ⅲ)椭圆C 上是否存在点D,E,G ,使得6 2 ODE ODG OEG S S S ???===?若存在,判断△DEG 的形状;若不存在,请说明理由. 2.如图,已知椭圆C1的中心在原点O ,长轴左、右端点M ,N 在x 轴上,椭圆C2的短轴为MN ,且C1,C2的离心率都为e ,直线l ⊥MN ,l 与C1交于两点,与C2交于两点,这四点按纵坐标从大到小依次为A ,B ,C ,D. (I )设1 2 e = ,求BC 与AD 的比值; (II )当e 变化时,是否存在直线l ,使得BO ∥AN ,并说明理由 3.设λ>0,点A 的坐标为(1,1),点B 在抛物线y x 2 =上运动,点Q 满足QA BQ λ=,经过Q 点与x 轴垂直的直线交抛物线于点M ,点P 满足MP QM λ=,求点P 的轨迹方程。 4.在平面直角坐标系xOy 中,已知点A(0,-1),B 点在直线y = -3上,M 点满足MB//OA , MA ?AB = MB ?BA ,M 点的轨迹为曲线C 。 (Ⅰ)求C 的方程; (Ⅱ)P 为C 上的动点,l 为C 在P 点处得切线,求O 点到l 距离的最小值。

5.在平面直角坐标系xOy 中,点(,)P a b (0)a b >>为动点,12,F F 分别为椭圆22 221 x y a b +=的左右焦点.已知△12F PF 为等腰三角形. (Ⅰ)求椭圆的离心率e ; (Ⅱ)设直线2PF 与椭圆相交于,A B 两点,M 是直线2PF 上的点,满足2AM BM ?=-,求点M 的轨迹方程. 6.已知抛物线1C :2 x y =,圆2C :2 2 (4)1x y +-=的圆心为点M (Ⅰ)求点M 到抛物线1c 的准线的距离; (Ⅱ)已知点P 是抛物线1c 上一点(异于原点),过点P 作圆2c 的两条切线,交抛物线1c 于A ,B 两点,若过M ,P 两点的直线l 垂直于AB ,求直线 l 的方程 7.如图7,椭圆)0(1:22 221>>=+b a b y a x C 的离心率为23,x 轴被曲线 b x y C -=22:截得的线段长等于1C 的长半轴长. ()I 求1C ,2C 的方程; ()II 设2C 与y 轴的交点为M ,过坐标原点O 的直线 l 与2C 相交于点A ,B ,直线MA ,MB 分别与1 C 相交于点 D , E . (ⅰ)证明: ME MD ⊥; (ⅱ)记MAB ?,MDE ?的面积分别为21,S S ,问:是否存在直线l ,使得32 17 21=S S ?请说明理由.

圆锥曲线试题及答案

椭圆 一、选择题 1.(2012·高考大纲全国卷)椭圆的中心在原点,焦距为4,一条准线为x =-4,则该椭圆的方程为( ) A. x 216+y 2 12 =1 B. x 2 12 +y 28 =1 C.x 28+y 24=1 D.x 2 12+y 2 4=1 解析:选C.由题意知椭圆的焦点在x 轴上, 故可设椭圆方程为x 2a 2+y 2 b 2=1(a >b >0). 由题意知????? 2c =4,a 2 c =4,∴? ???? c =2, a 2 =8, ∴b 2 =a 2 -c 2 =4,故所求椭圆方程为x 28+y 2 4 =1. 2.(2011·高考浙江卷)已知椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)与双曲线C 2:x 2 -y 24 =1有公共 的焦点,C 2的一条渐近线与以C 1的长轴为直径的圆相交于A ,B 两点,若C 1恰好将线段AB 三等分,则( ) A .a 2=132 B .a 2 =13 C .b 2=12 D .b 2 =2 解析:选C.由题意知,a 2=b 2+5,因此椭圆方程为(a 2-5)x 2+a 2y 2+5a 2-a 4 =0,双曲 线的一条渐近线方程为y =2x ,联立方程消去y ,得(5a 2-5)x 2+5a 2-a 4 =0, ∴直线截椭圆的弦长d =5×2a 4-5a 25a 2 -5=2 3 a , 解得a 2=112, b 2 =12 . 3.椭圆x 2a 2+y 2 b 2=1(a >b >0)的右焦点为F ,其右准线与x 轴的交点为A ,在椭圆上存在点 P 满足线段AP 的垂直平分线过点F ,则椭圆离心率的取值范围是( ) A .(0, 2 2 ] B .(0,1 2] C .[2-1,1) D .[1 2 ,1) 解析:选D.设P (x 0,y 0),则|PF |=a -ex 0.又点F 在AP 的垂直平分线上,∴a -ex 0= a 2 c -c ,因此x 0=a ac -a 2+c 2 c 2 . 又-a ≤x 0

圆锥曲线大题练习1.doc

1. 已知动直线 l 与椭圆 C: x 2 y 2 1 交于 P x 1 , y 1 、 Q x 2 , y 2 两不同点,且△ OPQ 的 3 2 面积 S OPQ = 6 , 其中 O 为坐标原点 . 2 (Ⅰ)证明 x 12 x 22 和 y 12 y 2 2 均为定值 ; (Ⅱ)设线段 PQ 的中点为 M ,求 |OM | | PQ | 的最大值; (Ⅲ)椭圆 C 上是否存在点 D,E,G ,使得 S ODE S ODG S OEG 6 ?若存在,判断△ 2 DEG 的形状;若不存在,请说明理由 . 2. 如图,已知椭圆 C1 的中心在原点 O ,长轴左、右端点 M ,N 在 x 轴上,椭圆 C2 的短轴为 MN ,且 C1, C2的离心率都为 e ,直线 l ⊥MN , l 与 C1 交于两点,与 C2 交于两点,这四点按纵坐标从大 到小依次为 A , B , C , D. (I )设 e 1 ,求 BC 与 AD 的比值; 2 (II )当 e 变化时,是否存在直线 l ,使得 BO ∥ AN ,并说明理由 3. 设 ,点 A 的坐标为( 1,1 ),点 B 在抛物线 y x 上 运动,点 Q 满足 BQ QA ,经过 Q 点与 x 轴垂直的直线 交抛物线于点 M ,点 P 满足 QM MP , 求点 P 的轨迹 方程。 4. 在平面直角坐标系 xOy 中,已知点 A(0,-1) ,B 点在直线 y = -3 上, M 点满足 MB//OA , MA ?AB = MB?BA , M 点的轨迹为曲线 C 。 (Ⅰ)求 C 的方程; (Ⅱ) P 为 C 上的动点, l 为 C 在 P 点处得切线,求 O 点到 l 距离的最小值。

圆锥曲线综合训练一

圆锥曲线综合训练一Revised on November 25, 2020

圆锥曲线综合训练一 一、选择题(本题共10小题,每小题5分,共50分) 1. 若点O 和点F 分别为椭圆22 143 x y + =的中心和左焦点,点P 为椭圆上的任意一点,则OP FP 的最大值为 A .2 B .3 C .6 D .8 2. 若直线b x y +=与曲线243x x y --=有公共点,则b 的取值范围是 A .[1-+ B .[1 C .[11 -+, D .[1- 3. 设抛物线28y x =上一点P 到y 轴的距离是4,则点P 到该抛物线焦点的距离是 A . 4 B . 6 C . 8 D .12 4.设抛物线28y x =的焦点为F ,准线为l ,P 为抛物线上一点,PA ⊥l ,A 为垂 足,如果直线AF PF = (A )(B )8 (C ) (D )16 5.设双曲线的一个焦点为F ,虚轴的一个端点为B ,如果直线FB 与该双曲线的一条渐近线垂直,那么此双曲线的离心率为 C 1 2 D 1 2 6.已知椭圆22 22:1(0)x y C a b a b +=>>,过右焦点F 且斜率为 (0)k k >的直线与C 相交于A 、B 两点,若3AF FB =,则k = A . 1 B . C .. 2 7.已知抛物线22(0)y px p =>的准线与圆22670x y x +--=相切,则p 的值为 A 1 2 B 1 C 2 D 4

8.已知双曲线E的中心为原点,(30) F,是E的焦点,过F的直线l与E相交于A,B两点,且AB的中点为(1215) N--,,则E的方程为 A 22 1 36 x y -=B 22 1 45 x y -= C 22 1 63 x y -= D 22 1 54 x y -= 9.设O为坐标原点,F1,F2是双曲线 2 2 x a - 2 2 y b =1(a>0,b>0)的焦点,若 在双曲线上存在点P,满足∠F1PF2=60°,OP a,则该双曲线的渐近线方程为 A x=0 x±y=0 C x y=0 D x±y=0 10.若点O和点(20) F-,分别为双曲线 2 2 2 1(0) x y a a -=>的中心和左焦点,点P为 双曲线右支上的任意一点,则OP FP ?的取值范围为 ( ) A.[3) -+∞B.[3) ++∞ C. 7 [) 4 -+∞ , D. 7 [) 4 +∞, 二.填空题(本小题共5小题,每小题5分,共25分) 11. 若双曲线 2 4 x - 2 2 y b =1(0 b>)的渐近线方程为 1 2 y x =±,则b等 于. 12. 在平面直角坐标系xOy中,已知双曲线 22 1 412 x y -=上一点M的横坐标为 3,则点M到双曲线的右焦点的距离为. 13. 已知F是椭圆C的一个焦点,B是短轴的一个端点,线段BF的延长线交C 于点D, 且2 =,则C的离心率为. 14. 已知圆C过点(1,0),且圆心在x轴的正半轴上,直线1 :- =x y l被该圆所截得的弦长为2 2,则圆C的标准方程为.

圆锥曲线专题复习.doc

锥曲线专题训练 一、定义 【焦点三角形】 1、已知椭圆一 +八=1的左右焦点为E、F2, P为椭圆上一点, 9 4 (1) 若NRPF2=90°,求△EPF?的面积 (2) 若ZF1PF2=60°,求的面积 2 2 2、已知双曲线土-匕=1的左右焦点为E、F2, P为双曲线上一点, (1) 若NRPF2=90°,求△EPF?的面积 (2) 若ZF1PF2=60°,求Z^PF?的面积 2 2 3、鸟,氏是椭圆二+七=1(〃>。>0)的两个焦点,以鸟为圆心且过椭圆中心的 a~ b~ 圆与椭圆的一个交点为M。若直线&M与圆鸟相切,求该椭圆的离心率。 Y2 v2 4、椭圆瓦+ *_ = 1的焦点为与、「2。点P为其上的动点,当PF2为钝角时。点P横坐标的取值范围为多少? V-2 V2V-2 V2 5、椭圆—+ J(。>。>0)和双曲线、- —(m, n> 0)有公共的焦点F】(- 。,0)、 a~ b~〃广 F2(C,0),P为这两曲线的交点,求|商|?|户尸2|的值. 二、方程 已知圆亍+y2=9,从圆上任意一点P向X轴作垂线段PPL点M在PP,上,并且两=2布,求点M的轨迹。 2.3【定义法】(与两个定圆相切的圆心轨迹方程) :—动圆与两圆:『+ ,,2 =]和尤2 * ,2 _8x+]2 = 0都外切,#1勃圆的圆心 的轨迹方程是什么?AA

题型1:求轨迹方程例1. (1) 一动圆与圆J + y2+6x+5 = 0外切,同时与圆x2 + r-6x-91 = 0内切,

求动圆圆心M的轨迹方程,并说明它是什么样的曲线。. (2)双曲线y-/ =1有动点、P,月,%是曲线的两个焦点,求APgE的重心M的轨迹方程。 3、给出含参数的方程,说明表示什么曲线。 已知定圆G: x2 + y2 =9,圆C2:x2+6x+y2 =0 三、直线截圆锥曲线得相交弦(求相交弦长,相交弦的中点坐标)(结合向量)直线与圆锥曲线相交的弦长计算(1)要熟练利用方程的根与系数关系来计算弦 长.弦长公式: (2)对焦点弦要懂得用焦半径公式处理;对中点弦问题,还要掌握“点差法”. 3. 圆锥曲线方程的求法有两种类型:一种是已知曲线形状,可以用待定系数法求解;另一种是根据动点的几何性质,通过建立适当的坐标系来求解,一般是曲线的类型未知.主要方法有: ?直接法、定义法、相关点法、参数法、几何法、交轨法等.在求轨迹方程中要仔细检查“遗漏”和“多余”. 4. 圆锥曲线是用代数方法来研究几何问题,也就是说,它是处于代数与几何的交汇处,因此要处理好其综合问题,不仅要理解和掌握圆锥曲线的有关概念、定理、公式,达到灵活、综合运用,还要善于综合运用代数的知识和方法来解决问题,并注意解析法、数形结合和等价化归的数学思想的应用. 1、已知椭圆= i,过左焦点k倾斜角为£的直9 6 线交椭圆于A、8两点。求:弦48的长,左焦点K到48 中点〃的长。 2、椭圆以2+如2=1与直线对尸住0相交于爪8两点,C是线段花的中点.若

圆锥曲线历年高考题(整理)附答案

数学圆锥曲线测试高考题 一、选择题: 1. (2006全国II )已知双曲线x 2a 2-y 2b 2 =1的一条渐近线方程为y =4 3x ,则双曲线的离心率为( ) (A )53 (B )43 (C )54 (D )32 2. (2006全国II )已知△ABC 的顶点B 、C 在椭圆x 23+y 2 =1上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点 在BC 边上,则△ABC 的周长是( ) (A )2 3 (B )6 (C )4 3 (D )12 3.(2006全国卷I )抛物线2 y x =-上的点到直线4380x y +-=距离的最小值是( ) A . 43 B .75 C .8 5 D .3 4.(2006广东高考卷)已知双曲线2239x y -=,则双曲线右支上的点P 到右焦点的距离与点P 到右准线的距离之比等于( ) B. C. 2 D. 4 5.(2006辽宁卷)方程22520x x -+=的两个根可分别作为( ) A.一椭圆和一双曲线的离心率 B.两抛物线的离心率 C.一椭圆和一抛物线的离心率 D.两椭圆的离心率 6.(2006辽宁卷)曲线 221(6)106x y m m m +=<--与曲线22 1(59)59x y m m m +=<<--的( ) (A)焦距相等 (B) 离心率相等 (C)焦点相同 (D)准线相同 7.(2006安徽高考卷)若抛物线2 2y px =的焦点与椭圆22 162 x y +=的右焦点重合,则p 的值为( ) A .2- B .2 C .4- D .4 8.(2006辽宁卷)直线2y k =与曲线2222 918k x y k x += (,)k R ∈≠且k 0的公共点的个数为( ) (A)1 (B)2 (C)3 (D)4 二、填空题: 9. (2006全国卷I )双曲线2 2 1mx y +=的虚轴长是实轴长的2倍,则m = 。 10. (2006上海卷)已知在平面直角坐标系xOy 中的一个椭圆,它的中心在原点,左焦点为(F ,右顶点为(2,0)D ,设点11, 2A ?? ??? ,则求该椭圆的标准方程为 。 11. (2011年高考全国新课标卷理科14) 在平面直角坐标系xOy 中,椭圆C 的中心为原点,焦点12,F F 在 x 轴上,

圆锥曲线基础测试题及答案

圆锥曲线基础测试 1. 已知椭圆116 252 2=+y x 上的一点P 到椭圆一个焦点的距离为3,则P 到另一焦点距离为 ( ) A .2 B .3 C .5 D .7 A .116922=+y x B .1162522=+y x C .1162522=+y x 或125 162 2=+y x D .以上都不对 3.动点P 到点)0,1(M 及点)0,3(N 的距离之差为2,则点P 的轨迹是 ( ) A .双曲线 B .双曲线的一支 C .两条射线 D .一条射线 4.设双曲线的半焦距为c ,两条准线间的距离为d ,且d c =,那么双曲线的离心率e 等于( ) A .2 B .3 C .2 D .3 5.抛物线x y 102 =的焦点到准线的距离是 ( ) A . 25 B .5 C .2 15 D .10 6.若抛物线28y x =上一点P 到其焦点的距离为9,则点P 的坐标为 ( ) A .(7, B .(14, C .(7,± D .(7,-± 7.若椭圆22 1x my +=的离心率为2 ,则它的长半轴长为_______________. 8.双曲线的渐近线方程为20x y ±=,焦距为10,这双曲线的方程为_______________。 9.若曲线22 141x y k k +=+-表示双曲线,则k 的取值范围是 。 10.抛物线x y 62=的准线方程为 . 11.椭圆552 2=+ky x 的一个焦点是)2,0(,那么=k 。 12.k 为何值时,直线2y kx =+和曲线22236x y +=有两个公共点?有一个公共点?没有公共点? 13.在抛物线24y x =上求一点,使这点到直线45y x =-的距离最短。 14.双曲线与椭圆有共同的焦点12(0,5),(0,5)F F -,点(3,4)P 是双曲线的渐近线与椭圆的一个交点, 求渐近线与椭圆的方程。 15.若动点(,)P x y 在曲线22 21(0)4x y b b +=>上变化,则22x y +的最大值为多少?

相关主题
文本预览
相关文档 最新文档