当前位置:文档之家› 盾构机参数设定

盾构机参数设定

盾构机参数设定
盾构机参数设定

土压平衡式盾构机控制原理与参数设置

随着地下空间的开发,盾构技术已广泛地应用于地铁、隧道、市政管道等工程领域。在我国的各项施工中,盾构机的种类越来越多,其中土压平衡式盾构机在上海、南京、广州等地铁施工中有着较为出色的表现,笔者以日本小松公司Φ6340盾构机为例,结合施工中的一点经验与理解,对其控制原理和参数设置等做简要总结。

控制原理

土压平衡式盾构机的土压控制是PID自动调节控制,切削刀盘切下的弃土进入土仓,形成土压,土压超过预先设定值时,土仓门打开,部分弃土通过螺旋机排出土仓,从而保持土仓内土压平衡,土仓内的土压反作用于挖掘面,防止地层的坍塌。

土压的平衡控制是通过装在盾构机土仓隔壁上的土压计对掘进中的土压进行实时监视,土压计监测到的数值传送到PLC,PLC计算出测量值与设定值之间的差值E,通过PID控制,自动调整螺旋机转速,使E值趋向于零,当E值大于零时,PLC发出指令,增加螺旋机转速,提高出土量直至土仓内土压重新达到新的平衡状态,反之当E值小于零时,PLC 会降低螺旋机转速,以减少偏差。以保持土仓内土压平衡,使盾构机正常掘进。

主要参数

抽样周期:PID 演算处理的时间间隔,周期越短,动作越连续,但增加了单位时间的处理次数,因此PID以外的控制变慢,不需要细微变动时,可延长周期。

过滤系数:用来除去输入模拟值上的高频成分,数值越大,则过滤效果越强,系统反应

也就越迟钝。

比例常数P:为了提高系统灵敏度,使土压保持在一定范围,把计测值与设定值的差值E 乘以一个系数,所得结果再与目标值相比较,这个系数就是比例常数P,P 值越大,调控效

果越好。

积分时间I:系统引入比例常数后,PLC调控螺旋机的输出操作量mv=P*E,也就是偏差被放大了P倍,这样当系统产生偏差时,可能会使螺旋机转速突然增大或减小了许多,形成超调现象,于是又反过来调整,这就引起螺旋机转速忽大忽小,形成振荡。为了消除振荡,引入积分环节,使操作量mv 在积分时间内逐渐完成,即螺旋机转速平稳变化,直到消除

偏差。积分时间越小,调控效果越好。

微分时间:根据偏差变化率de/dt 的大小,提前给出一个相应的调节动作,从而缩短了调节时间,可以克服因积分时间太长而使恢复滞后的缺点。

参数设定

参数设置分为两步,第一步是在设备组装完毕,无负荷的状态下进行的一次调试,第二步是在掘进开始,土层稳定后,根据土层状况和操作习惯进行的微调。

1、无负荷调试

(1)比例系数P,首先不执行I和D,I调至数值上限,D设定为0,这样系统只执行比例动作P,变动土压目标值,制造约0.01 -0.03Mpa 的系统偏差,接下来逐渐增大P 值,使螺旋机转速逐渐增大,当P 值上升到一定值时,螺旋机的旋转速度会出现大幅度地反复升降,即系统形成振荡,我们把出现振荡时P 值的85% -90% 设定为系统的比例系数。

(2)积分时间I,比例系数确定后,调节积分时间I,变动土压目标值,制造一个系统偏差,观察螺旋机回转速度以怎样的速度变化,继续加一定的偏差时,系统向偏差减小的方

向增加或减小操作量,操作量的变化程度随积分时间I的变化而变化,此时可以根据操作人员的操作习惯来确定积分时间,一般来说,I在数值上为P值的70% 左右。

(3)微分时间D,在盾构机PID 控制中,管理对象是土仓内的土压,如果掘进速度一定,则土压与切削土量减排土量之差的时间累积成正比,另一方面,系统的控制对象是螺旋机转速,而螺旋机转速同单位时间的排土量成正比,这样从系统输入来看,系统的输出是以时间微分的形式使用,所以盾构机PID控制中可以不执行微分动作,把D值设置为0。

2、土层掘进时的调整

(1)过滤系数,进入土层后,如果腔内土压、螺旋机的输入信号在短周期内大幅振荡的话,可以慢慢增大过滤系数,在短周期内如果再次出现小的振荡,不需要再增大过滤系数,即使在长周期内出现较大幅度的振荡,也只需略微增大过滤系数。

(2)比例系数P,掘进中,把I值和D值固定,按每次0.5%的幅度调节P值,P值一变,控制整体的增益就发生变化,相对于同一土压偏差的操作量的大小也发生变化,观察螺

旋机转速变化量,直到满意即可固定P值。

(3)积分时间I,与积分时间相对应的是操作量增减时的梯度,掘进中对现有I值不满意可以调整,固定P值和D值,如果希望操作量增加更快时,减小I值,反之增大I值,每次增减的幅度以1-3秒为宜,如果I值过小,可能会引起振荡,调整时注意掌握。

(4)微分时间,原则上,土压平衡式盾构机不需要设置微分时间,但有些大口径盾构机对偏差反应会比较迟钝,这种情况下,使用微分环节,可以改善盾构机对偏差的初始反应,

但D 值限于2ms 之间。

常见问题

在盾构机各参数设定完毕,正常掘进以后,常见故障往往出现在外围设备之中,现简要

说明设备各主要环节及常见故障处理。

1、刀盘电机,刀盘电机即驱动刀盘所用电机,单机功率一般在55KW左右,最常见的控制方式为PLC控制变频器,变频器拖动电动机,这一环节最易出现故障的就是变频器。变

频器在布线时应考虑以下两点:

——变频器如果要长电缆运行时,此时要采取措施抑制长电缆对地耦合电容的影响,避免变频器出力不足,所以在这种情况下,变频器容量要放大一档或者在变频器的输出端安装

输出电抗器。

——电机电缆应独立于其它电缆走线,其最小距离为500mm。同时应避免电机电缆与其它电缆长距离平行走线,这样可以减少变频器输出电压快速变化而产生的电磁干扰。如果控制电缆和电源电缆交叉,应尽可能使它们按90°角交叉。与变频器有关的模拟量信号线与主回路线分开走线,即使在控制柜中也要如此。

变频器常见故障有如下三点:

——过流故障:过流故障可分为加速、减速、恒速过电流。其可能是由于变频器的加减速时间太短、负载发生突变、负荷分配不均,输出短路等原因引起的。这时一般可通过延长加减速时间、减少负荷的突变、外加能耗制动元件、进行负荷分配设计、对线路进行检查。

如果断开负载变频器还是过流故障,说明变频器逆变电路损坏,需要更换变频器。

——过载故障:过载故障包括变频过载和电机过载,可能是加速时间太短,电网电压太低、负载过重等原因引起的。一般可通过延长加速时间、延长制动时间、检查电网电压等。负载过重,所选的电机和变频器不能拖动该负载,也可能是由于机械润滑不好引起。如前者则必须更换大功率的电机和变频器;如后者则要对生产机械进行检修。

——欠压:说明变频器电源输入部分有问题,需要查检主电源,排除故障后方可运行。

2、拼装机,拼装机是拼装管片之用,是由油泵通过电磁阀控制相应油缸来完成收缩、扩张、压紧等动作,这个环节最易出现故障的是电磁阀,在熟悉图纸的基础上,拼装机摇控器上哪个按键对应的动作没有反应,就查相应电磁阀及其相关电缆是否正常。另外摇控器受信头,由于使用频率很高,偶尔也会出现故障。

3、双梁电动葫芦,双梁电动葫芦的作用是将电机车运送进来的管片吊运至管片拼装机,这个环节最易出问题的是电缆,要经常检查电缆有无受拉损坏,滑环是否正常等,另外接触器因为频繁动作也是易损部件,出现问题时可作为重点排查对象。

综上所述,掌握了盾构机的基本控制原理和参数的设置要点,就可以根据土层情况及操作人员的操作习惯,逐渐把盾构机调试到最佳状态。关于盾构机常见故障,还需维修人员结

合图纸,在工作中积累经验。

盾构机自动加气系统的使用与参数调整

海瑞克盾构机空气自动加气系统用于保持土仓内空气压力接近恒定值,是一种压力自动控制系统。要使控制系统达到预期的控制效果,必须对影响系统动态性能的PI(比例积分)调节器参数进行正确设定。同时盾构机工作在恶劣的环境中,加气系统的弹簧疲劳、膜片老化等将引起调节器参数的变化,导致系统控制失常,因此在使用中要经常调整调节器的参数。

1.自动加气系统工作原理

自动加气系统控制原理如图1所示。

压力变送器1将土仓内实际的空气压力转换成标准的气压信号X(0.02 ~0.1MPa)送往调节器4。

调节器把变送器送来的测量值X与设定值W (0.02~0.1MPa)进行比较得出偏差,根据偏差大小及变化趋势,按P1调节器控制规律进行运算后,输出相应的控制信号Y给定位器3。

定位器将从调节器送来的调节信号Y (0.02~0.1MPa)与从调节阀送来的阀门位置信号相比较,判断它们是否与预期的关系相匹配。如果匹配,则定位器将使调节阀开度保持不变,否则将通过定位器内部放大器的作用,使通往调节阀2的气压发生大的变化,以克服阀杆的摩擦并消除调节阀不平衡力的影响,使调节阀动作直至两个信号相匹配,从而保证阀门位置按调节器发出的信号正确定位。

2.使用方法

自动加气系统控制模块(见图2)包括显示面板和手动操作站等。手动操作站、调节器等使用的是德国(Samson Type422, Type 423)产品。手动操作站和调节器之间的管路连接见图3所示,显示面板上的X,W值和调节器上的X、W值是不同的,调节器上的X,W值是标准气压信号( 0.02~0. 1MPa ),而面板上的X, W值分别是调节器上的X,W值经过波纹管和杠杆机械转换后显示出的土仓实际压力值和期望的土仓压力设定值。

使用步骤可归纳为:

(1)打开相关气路,检查图1中减压阀5和气动三联件6出口压力是否分别为0.14 MPa±0.01 MPa和0.4 MPa±0.01 MPa ,确保管路无泄漏、堵塞现象。

(2) 检查Wint/Weat选择开关是否处在Wint位,如果是,表明调节器的设定值W由图2中的旋钮5调定,处在W,位则表明调节器的设定值W由操作站外部给定,本系统中设定值W由旋钮5调定。

(3)将手动/自动开关打到手动操作位:

(4)调整图2中旋钮7,使控制系统开始工作,调整YH值直至实际值指示针(红色)慢慢靠近设定值(绿针)。

(5)在调整YH过程中,自动操作输出信号YA也在慢慢上升,当YA=YH时,将手动/自动开关打到自动操作位,这样可减少系统冲击。

(6)观察系统动态响应特性,如果实际值是在设定值的范围内波动,则表明系统已处在正常的工作状态,否则僻要重新调整PI调节器的控制参数。

3.参数调整方法

自动加气系统控制目标是保持土仓压力恒定,同时要求系统对扰动的抑制能力较高,因此没有采用微分控制,仅采用PI(比例积分)控制方式。调节器参数调整,是指在控制规律已经确定为PI形式时,通过调整PI调节器的参数,使得控制回路的动态特性满足期望的指标要求,达到理想的控制目标。

可以使用试凑法调定PI参数。根据经验公式和自动加气系统的特性对参数实行下述先比例后积分的调定步骤。

首先调定比例部分,即先将积分时间Tn设为最大(20 min),然后由小变大逐步改变比例系数Kp,同时观察调节器输出信号和被调整参数的变化情况。如果调节过程是衰减振荡的,则应使Kp续减小;如果调节过程是增幅振荡的,则应使Kp增大,这样调整直至调节过程成为等幅振荡为止。由于此时系统仍有静差,且静差仍在一个较大的范围内,所以单用比例调节器还不能达到控制目的,应进入下一步积分调节。

调定积分系统。首先设皿Tn为一个较小的值,并将第一步调整得到的Kp略微缩小,如缩小为原值的0.8倍。然后逐步增大Tn,观察系统响应曲线,使系统在保持良好动态性能的情况下,静差得到消除。在此过程中,可根据响应曲线的好坏反复改变Kp和Tn,以期得到反应快、超调小的响应曲线。

主题: AMESim液压系统应用的几篇论文

摘要:厨询蠹斡迪凌厘霭物弱国浙江大学流体传动及控制国家重点实验室郑久强龚国芳胡国良杨华勇术摘要:设计了盾构刀盘变转速液压驱动系统。采用AMESim仿真工具对该系统进行了仿真建模分析。仿真结果表明刀盘变转速液压驱动系统能够实现泵输出流量随系统负载改变而改变,即负载适应。该系统液压刚路简单,噪声低,调速范围宽,节能效果好。有望在盾构刀盘驱动系统中得到广泛应用。关键词:变转速盾构刀盘仿真盾构掘进机是一种用于地下隧道工程开挖的复杂机电系统,具有开挖切削土体、输送土渣、拼装隧道衬砌、测量导向纠偏等功能。近年来,随着城市化进程加快,我国城市市政工程建设的规模越来越大。北京、上海、广州与深圳等主要城市都己相继开始了地铁工程的建设。在城市地铁隧道施工中,由于受到施工场地、道路交通等城市环境因素的限制,传统的施工方法难以胜任,只能依赖对城市正常机能影响较小的隧道施工方法~盾构施工法。因此,盾构隧道施工及盾构技术越来越受到关注。可以预见,盾构隧道施工及盾构掘进机产业在我国的发展前景非常广阔I”。刀盘是盾构掘进机的重要组成部分,是进行掘进作业的主要工作机构。盾构刀盘驱动系统具有功率大、功率变化范围宽的特点。负载是随断面的土质状况变化的,切削硬岩和切削软土所需的切削力矩及转速的变化很大。如果采用阀控马达系统的形式,系统功率必然按所需的最大功率设计,在遇到欠负载工况时,系统效率低下,大量的功率将通过热的形式耗散,使系统发热严重。若采用变频电动机直接驱动刀盘系统,则设备费用高,控制技术复杂。采用传统的变排量泵控马达刀盘液压驱动系统,存在变排量控制机构复杂、对介质要求较高、噪声大、小流量时电机和泵仍作高速运转及调速范围有限等问题。回路存在较大的溢流损失和节流损失,液压系统的功率效率很低。本文设计的盾构刀盘变转速液压驱动系统综合了变频电动机直接驱动刀盘系统与变排量泵控马达系统两者的优点。即利用变频器驱动的负载敏感节能效果与泵控马达驱动的传递功率大、控制精度高、安装空间小与能源消耗低,适用于运动复杂、工作环境恶劣等情况的特点。因此该系统具有结构简单,节能效果明显等特点。1 盾构刀盘变转速液压驱动系统原理变转速刀盘液压驱动系统是一种通过改变电动机的转速来改变泵输出流量而达到调速的方式。它与改变变量泵排量方式不同,是通过交流变频调速实现执行元件的调速。在这种调速

方式中,液压泵可以选用价格低廉、可靠性高的定量泵。变转速刀盘液压驱动系统原理简图如图l所示。本系统主要由变频器、电动机1、定量泵2、阀块组6、管路、驱动液压马达7、减速机、速度传感器8、大小齿轮、A/D转换器、控制器、D/A转换器、主轴承及密封件等组成。1.电动机2.主驱动泵3.溢流阀4.过滤器5岸向阀6庖磁换向阀7.马达8.转速传感器图1 盾构刀盘变转速液压驱动系统原理筒图国家杰出青年基金资助项目号504255~8)N[]家“863”高技术研究发展计划资助项目(编号2003AA420120) 一36~工{fi缸献2006(4) 维普资讯https://www.doczj.com/doc/845951057.html, 三相电源接入变频器的输入侧,经过变频器的控制信号,将特定频率特定电压的正弦电压信号供给异步电动机1,电动机1带动主驱动泵2旋转,主驱动泵2输出一定流量的压力油,压力油经过滤清器4、单向阀5及换向阀6驱动双向定量马达7做回转运动,从而驱动刀盘的转动。马达7的输出轴上安装有转速传感器8,其采集到的转速信号经过A/D转换后输入到控制器,在控制器里对采集到的转速信号进行分析处理,根据给定的曲线计算输出信号(即变频器的输入信号),通过变频器信号改变驱动泵的电动机的转速,从而实现泵输出流量随系统负载改变而改变,即负载适应。由图1可知,变转速泵控马达调速系统中没有液压调速元件,与传统的节流调速回路或容积调速回路相比,液压回路得到了简化,成本也得到相应降低[6-8]。2 系统仿真建模本系统采用AMESim仿真工具进行仿真建模。AMESim (Advanced Modeling Environment for per— forming Simulation of engineering systems)是法国Imagine公司于1995年推出的基于键合图的液压/机械系统建模、仿真及动力学分析软件。它为用户提供了一个时域仿真建模环境,可使用已有的模型和(或)建立新的子模型元件,构建优化设计所需的实际原型;采用易于识别的标准ISO 图标和简单直观的多端口框图;方便用户建立复杂系统及用户所需的特定应用实例;可修改模型和仿真参数,进行稳态及动态仿真、绘制曲线并分析仿真结果。界面比较友好、操作非常方便姗。系统仿真模型如图2所示。定量泵1排量为260 mL/r,异步电机2最高转速I 500 r/min;变频器3 选用三菱变频调速器,控制方式为磁连追踪型PWM 控制技术;溢流阀6设为24 MPa;电磁换向阀8采用4WEH 32 G6X/6AG24NTS2B08,用于控制双向马达的正反转;双向马达9排量为45,6 mL/r,最大转速为6 200 r/min;减速机10减速比设值为476.8;模拟负载13分为硬岩、软岩两种工况,主要按刀具切削转矩、刀盘土腔内的搅动力矩、刀盘的推力载荷产生的旋转转矩、刀盘圆周面上的摩擦力矩和刀盘前表面上的摩擦力矩等进行计算。其转动惯量为15 kg·mz;其中变频器3、电磁换向阀8、模拟负载13因工缸拭2006(4) 系统仿真是在液压油的粘温系数A为0.043,油液动力粘度肛l0为0.0282 Pa·S,参考温度为40℃下进行的。图3、图4为刀盘系统在软岩工况下的转速与转矩曲线;图5、图6为刀盘系统在硬岩工况下的转速与转矩曲线;由图所示,当刀盘系统在软岩工况时,输出转矩加大,马达开口关小,系统压力增大,流量减小,输出转速低;当刀盘系统在硬岩工况时,输出转矩减小,马达开El变大,系统压力减小,流量增大,输出转速高。整个系统可实现两种工况,即软岩工况时的低速大转矩和硬岩工况时的高速小转矩,满足刀盘系统在不同土质工况下的转速要求。该系统刀盘转速响应快,没有超调,系统稳定性能好,输出功率始终与负载所需功率相适应,能够使刀盘液压驱动控制系统适应掘进中的复杂工况,从而达~37—维普资讯https://www.doczj.com/doc/845951057.html, 星一辩时间(s) 图3 模拟负载在软岩工况时刀盘转速曲

线童’窨一嘲辞时川(s) 图5 模拟负载在硬岩工况时刀盘转速曲线到节能效果。4

结束语将电机变频调速技术用于盾构刀盘液压驱动系统,能够较好地做到液压系统提供的功率和负载所需要的功率相匹配,减少了液压系统的能量损失,提高整个系统的效率。达到节能的目的。它是一种全局型的新型节能液压驱动方式。有望在盾构中得到广泛应用。参考文献1庄欠伟.土压平衡式盾构电液控制系统集成技术及其应用[硕士论文】.浙江大学,2005 2邢彤,龚国芳,胡国良,杨华勇.盾构刀盘驱动液压系统设计.液压与气动,2005(4) 3彭天好.变频泵控马达调速及补偿特性的研究[博士论文】.杭州:浙江大学,2003 4吴根茂,邱敏秀,王庆丰等.新编实用电液比例技术.杭州:浙江大学出版社。2004 — 38

一弓弓:瞬时间(s) 图4 模拟负载在软岩工况时刀盘转矩曲线时I硼(s) 图6 模拟负载在软岩工况时刀盘转矩曲线5 彭天好,杨华勇,徐兵.变频液压技术发展及研究综述.浙江大学学报,2004(2) 6 路甬祥.液压气动技术手册.北京:机械工业出版社,2002 7 杨华勇,龚国芳.盾构掘进机及其液压技术的应用.液压气动与密封,2004(1) 8 Hu Guoliang,Gong Guofang,Yang Huayong,etc.Electro-h~ draulic Con~ol System of Shied Tunnel Boring M chine for Simulator Stand.The Sixth Interational Conference on Fluid Power Transmission and Control fICFP-2005).Hang—zhou:2005 9秦家升,游善兰.AMESim软件的特征及其应用.工程机械,2oo4(12) 10李谨,邓卫华.AMESim与MATLAB/Simullink联合仿真技术及应用.情报指挥控制系统与仿真技术,2004(5) 通信地址:浙江大学流体传动及控制国家重点实验窒(310027) (收稿日期:2005—10—15) 'l[ 杠拭2006(4) 维普资讯

https://www.doczj.com/doc/845951057.html,

abcdefghijk

助理工程师

精华0

积分61

帖子31

水位61

技术分0

盾构钻进法(微型隧道施工法)

盾构也称为隧道钻掘机,会上展示的属中、小型盾构,直径在1~3 m。

德国的HERRENKNECHT公司展出2种盾构。一种是属AVT型φ3 m盾构,

回转头安装的是盘形滚刀,岩渣靠螺旋排到后面的传送带上,再运到竖井

内,提到地面。回转头和螺旋分别由两个液压马达驱动。盾构头和螺旋出

渣管都有密封机构可防止地层水涌入盾构内。装有ELS导向系统中的ELS

靶体,接收和反馈各种数据信号。还有各执行元件和冷却、润滑管汇等。

另一种是AVN型φ1.8 m微型盾构。它属于土压平衡式、泥浆循环出渣的

微型结构。盾构内设置有进、排泥浆管汇,用液控截门调控泥浆排量、压

力,以达到土压平衡钻进。泥浆进回转刀盘有多个喷口,提高冲洗、冷却

效果。回转头用液压马达驱动,其方向控制和调整靠3个油缸作执行元件,

盾构内也有防涌水的密封机构。AVN型盾构采用该公司研制的电子激光

ELS导向系统,导向系统由ELS靶体、ELSPCA接收器和ELSTPP软件3

部分组成,监视并以图像方式显示隧道掘进的全过程,从而进行精确导向。

另外,展品中还有一种φ1 m左右的土压平衡式微型盾构,其结构类同AVN型盾构。上述几种盾构回转头上的切削具有盘式滚刀、刮刀、截

齿或由几种刀具组合以适应不同地层的掘进。

JXKKD

助理工程师

精华0

积分64

帖子31

水位64

技术分0

国内外发展趋势

盾构施工法于上一世纪由英国发明,本世纪开始在英、美、苏等国家推广应用,60年代日本的盾构技术迅速发展。目前世界上直径最大、最

先进的盾构是日本于1998年建成通车的东京弯道路隧道工程中采用的直

径为14.14m的泥水加压平衡盾构掘进机。具有自动导向系统、监控系统、

自动管片拼装系统。日本已开发出矩形、椭圆形、马蹄形的盾构掘进机,

还开发和应用了双圆、三圆、多圆形的盾构掘进机并已应用。

我国自90年代以来,已成功地研制了直径3.8~6.34m的土压平衡盾构掘进机,技术水平接近国际先进水平;在隧道导向技术、监控技术方

面的研究也达到了国际先进水平。最近,上海已研制了国内第一台

3.8m×3.8m组合刀盘土压平衡式矩形盾构,使我们在异形隧道的开发研

究方面跨入世界先进行列。

目前欧美和日本等发达的工业化国家,相继开发了多种新工法和新的基础施工设备,其中灌注桩施工机械的发展尤为迅速。

包括回转斗施工法: 国外生产的回转斗钻孔机最大钻孔直径为3m,最大回转扭矩为134kN.m,最大钻孔深度可达71m。

大直径全套管全回转钻孔机:国际上该种设备的最大钻孔直径为3m,最大钻孔深度为73m,最大回转扭矩可达到4280kN.m,它的垂直钻孔

精度可达1/500。

TRD地下连续墙成槽机: 该设备的最大成槽深度为35.5m,最大壁厚为100cm。

水平轴双轮铣成槽机: 该机种可进行最大壁厚3.2m,最大槽宽为

3.2m,最大深度为150m的壁式地下连续墙施工。

长螺旋式钻孔机: 我国生产的长螺旋式钻孔机最大钻孔直径为800mm,最大钻深为20m,最大扭矩为12kN.m。

钻杆伸缩式大直径钻孔机: 我国生产的钻杆伸缩式大直径钻孔机最大钻孔直径为1.5m,最大扩孔直径为3m,最大钻孔深度为80m,最大

钻孔扭矩105kN.m。

转盘式钻孔机:我国生产的转盘式钻孔机最大钻孔直径为3.5m,最大钻孔深度为130m,最大钻孔扭矩为214kN.m。

地下连续墙成槽机:我国生产的地下连续墙多头钻机目前最大钻孔直径为1.25m,最大钻孔深度为50m,钻头数量最多为5个,最大扭矩为

45kN.m;生产的地下连续墙液压抓斗最大挖掘宽度为1.2m,最大挖掘

深度为50m,最大抓斗容积为1.2m3。

地下工程机械的开发重点和主要工作任务

“十五”期间我国将有十余座城市建设地铁,线路长度至少150km,采用盾构掘进机进行施工将是必然的选择。日前已知拟建的深圳地铁和南京

地铁将采用盾构掘进区间隧道,广州地铁2号线、上海地铁4号线、北京

地铁5号线均将采用盾构法施工,地铁盾构的需求量约达30余台。“十

五”期间地下工程机械的开发重点应是:(1)土压平衡盾构的产品化、系

列化开发;(2)混合型盾构掘进机的研制和应用;(3)异形断面盾构掘进

机的研究;(4)专用履带底盘、动力头驱动、伸缩式钻杆、多功能大直径

钻孔机;(5)大直径全套管、全回转硬岩工程钻孔机;(6) TRD工法地下

连续墙成槽机;(7) 水平轴双轮铣地下连续墙成槽机。

15年远景发展设想

(1) 盾构掘进机的国产化率达70%以上,能制造各种机型和超大直径的盾构掘进机,国产盾构能适应各种地质条件和深埋隧道的掘进,与盾构配套的液压元件、导向系统和监控系统达到国外同类产品先进水平。

(2) 能够制造异形断面盾构,满足不同截面隧道掘进的需求。

(3) 研制双圆、三圆盾构掘进机,用于地铁隧道、交通隧道和市政隧道工程。

(4) 研制超大直径(小于14m)盾构,用于过江过海的水底公路隧道工程。

2008-1-5 04:56 #3

lthua

助理工程

精华0

积分91

帖子45

水位89

技术分0

重达550吨成都地铁首台盾构机抵蓉组装/组图

虽然寒意渐浓,但在成都地铁1号线一期工程的火车南站地铁站却一片热腾。

昨(2)日,成都地铁的首台盾构机正式运抵该站,待整机12月30日组装调试

完成后,即由南(火车南站)至北(省体育馆)掘进。这台盾构机由德国海瑞克

公司生产,身价达6000多万元人民币。

庞然大物运了25天

在火车南站地铁站施工现场,刚刚运抵成都的盾构机分体部件显然就是庞然大

物。“它们分别通过水陆运输来到这里的,前后花了25天左右时间。”中铁隧道

集团成都地铁盾构项目经理部高级工程师杨书江介绍,这台盾构机先在广州南沙

盾构机修造厂完成了配套组装,然后经广州―上海―乐山到达成都。

工人们正加紧在盾构始发井下铺设轨线。在工地朝北方向,盾构机后部设备桥、

后配套拖车、主机的盾尾和管片安装机全部到位。本月上旬,主机需要的刀盘、

前体和中体将同步到场。届时,盾构机的三大组成部分:后部设备桥、后配套拖

车、主机将开始在深15米的始发井下组装调试。

据了解,这台盾构机组装完成后全长为68米,重量500多吨。为配合组装这

台庞然大物,中铁隧道集团成都地铁盾构项目经理部还特别“请”来一台重达260

吨的履带吊和一台16吨的龙门吊。

预计每天挖六七米

火车南站地铁站是成都地铁盾构4标所在位置,本月内盾构机组装调试完成后

同步开始掘进,2008年6月掘进完毕。据介绍,火车南站地铁站有两台盾构机,

另一台盾构机将于明年6月到达,同年10月掘进完毕。

“我们从3月份就开始进场进行盾构安装及方案的装备。”指着一节呈“U”型的部

件,盾构项目部副经理程瑞明介绍,“那就是后配套拖车”。他说,拖车主要给主

机提供动力,让刀盘掘进更加有力。同时,它还可以起到传输砂浆和相关配套作

用。

在拖车内,能看到一间控制室,里面只需两个人操作。程瑞明说,机器的自动

化程度相当高,盾构施工的80%作业都由它来完成,在盾构施工时,最多10―12

人就可以进行作业。

由于成都地铁首次采用盾构施工,考虑到施工经验问题,每天只能掘进六七米,

一个月180―200米,“北京地铁施工,一个月能掘进600多米。”程瑞明特别强

调,考虑到地质结构,估算每300米就会检查一次刀盘,同时更换刀片。

施工时抖动非常小

“本月底组装调试完成后,就开始地下施工。”程瑞明说,由于盾构施工区间基

本处于人民南路下方,而该路段又是成都的主干道,加上施工还要穿越南站铁路,

因此会采取相应的“应急”措施。不过,盾构施工对地面的影响不大,抖动非常小,

不会影响到市民的日常生活。

据介绍,月底开始掘进的盾构机掘进线路为:火车南站―桐梓林站―倪家桥站―

省体育馆站。

在省体育馆站―倪家桥站区间,将穿过化八院、建委大楼、二环路人南立交桥;桐梓林站―火车南站区间,穿过锦绣花园、成都信息港、美力国际俱乐部、机场立交桥、火车南站轨道等。

盾构区间基本处于人民南路下层,盾构路线会带些曲线。特别是在盾构下穿火车南站的下端时,项目方会对铁路进行加固。程瑞明说,届时会把铁路两边用特制钢架梁支撑起来,起到桥的作用,火车上面通过,桥下可以继续施工。

专家解读盾构如何施工

据施工方负责人介绍,安装这台体型庞大的盾构机时,将一节一节下井,整台机器全部采用全自动操作。盾构法施工采用的是用刀盘进行切削,从开挖到施工一次性完成。盾构机的机头安装有直径6米以上的刀盘,上面有很多刀头,通过加压、旋转,把地层的卵石、黏土破碎后,由传送带把渣土清运出去,然后用拼装好的预制件在隧洞中支护。

除盾构4标以外,成都地铁1号线二标段,即从人民北路站至天府广场区间,也将采用盾构法施工,其总长度约2.5公里。

新闻资料盾构机的由来

1818年,英国工程师布伦诺尔设计出一种挖掘机,在泰晤士河底下挖掘隧道。他观察过一种名叫凿船虫的蛀木软体动物,发现这种虫子利用圆管形硬壳支撑孔洞四周向前钻进,于是受到启发,制造了一个箱形铁壳(称为盾构)。1825年至1841年间,利用布伦诺尔的设计,世界第一台盾构机凿通了从韦平到罗瑟海斯的世界第一条水下隧道,长约1100米。

2008-1-

6 01:53

#

4

hnhm

y

工程师

精华0

积分1

16

帖子5

7

水位1

16

技术分

盾构动力头图片

2008-1

-7

08:29

#

6

heavystorm

工程师

精华 0 积分 115 帖子 57 水位 115 技术分 0 盾构动力头

盾构主要参数的计算和确定

盾构主要参数的计算和确定 1、盾构外径: 盾构外径D=管片外径D S+2(盾尾间隙δ+盾尾壳体厚度t) 盾尾间隙δ--为保证管片安装和修复蛇行,以及其他因素的最小富余量,一般取25—40mm; 结合五标地质取多少? 2、刀盘开挖直径: 软土地层,一般大于前盾0—10mm,砂卵石地层或硬岩地层,一般大于前顿外径30mm,五标刀盘开挖直径如何确定的? 3、盾壳长度 盾壳长度L=盾构灵敏度ξx盾构外径D 小型盾构D≤3.5M,ξ=1.2—1.5;中型3.5M<D≤9M,ξ=0.8—1.2; 大型盾构D>9M;ξ=0.7—0.8; 4、盾构重量 泥水盾构重量=(45---65)D2,由于本线路存在线下溶土洞的可能,再掘进中能否通过此核算,盾构主机是否沉陷? 5、盾构推力 盾构总推力F e=安全储备系数AX盾构推进总阻力F d 安全储备系数A---一般取1.5---2.0。 盾构推进总阻力F d=盾壳与周边地层间阻力F1+刀盘面板推进阻力F2+管片与盾尾间摩擦力F3+ 切口环贯入地层阻力F4+转向阻力F5+牵引后配套拖车阻力F6 盾壳与周边地层间阻力F1计算中,静止土压力系数或土的粘聚力取盾体范围内的何点的? 刀盘面板推进阻力F2,对于泥水盾构或土压盾构土仓压力如何确定的? 管片与盾尾间摩擦力F3中,盾尾刷与管片的摩擦系数取偏大好吗?盾尾刷内的油脂压力如何定? 计算中土压力计算是按郎肯土压公式或库仑土压计算? 6、刀盘扭矩 刀盘设计扭矩T=刀盘切削扭矩T1+刀盘自重形成的轴承旋转反力矩T2+刀盘轴向推力形成的旋 转反力矩T3+主轴承密封装置摩擦力矩T4+刀盘前面摩擦扭矩T5+刀盘圆周摩擦反力矩T6+刀盘 背面摩擦力矩T7+刀盘开口槽的剪切力矩T8 刀盘切削扭矩T1中的切削土的抗压强度q u如何确定? 刀盘轴向推力形成的旋转反力矩T3 计算中土压力计算是按郎肯土压公式或库仑土压计算? , 刀盘圆周摩擦反力矩T6计算中,土压力计算是按郎肯土压公式或库仑土压计算? 刀盘背面摩擦力矩T7中土仓压力P W如何确定? 7、主驱动功率 主驱动工率储备系数一般为1.2---1.5,主驱动系统的效率η如何确定? 8、推进系统功率 推进系统功率W f=功率储备系数A W X最大推力FX最大推进速度VX推进系统功率ηW 功率储备系数A W一般取1.2---1.5, 最大推力F、最大推进速度V如何定? 推进系统功率ηW=推进泵的机械效率X推进泵的容积率X连轴器的效率 9、同步注浆能力 每环管片理论注浆量Q=0.25X(刀盘开挖直径D2—管片外径D S2)X管片长度L 推进一环的最短时间t=管片长度L/最大推进速度v 理论注浆能力q=每环管片理论注浆量Q/推进一环的最短时间t 额定注浆能力q p=地层的注浆系数λX理论注浆能力q/注浆泵效率η 地层的注浆系数λ因地层而变一般取1.5---1.8。

盾构掘进主要参数计算方式

目录 1、纵坡 (1) 2、土压平衡盾构施工土压力的设置方法 (1) 2.1深埋隧道土压计算 (3) 2.2浅埋隧道的土压计算 (3) 2.2.1主动土压力与被动土压力 (3) 2.2.2主动土压力与被动土压力计算: (4) 2.3地下水压力计算 (4) 2.4案例题 (5) 2.4.1施工实例1 (5) 2.4.2施工实例2 (7) 3、盾构推力计算 (9) 4、盾构的扭矩计算 (9) 1、纵坡 隧道纵坡:隧道底板两点间数值距离除以水平距离 如图所示:隧道纵坡=(200-100)/500=2‰ 注:规范要求长达隧道最小纵坡>=0.3%,最大纵坡=<3.0% 2、土压平衡盾构施工土压力的设置方法 根据上述对地层土压力、水压力的计算原理分析,笔者总结出在土压平衡盾构的施工过程中,土仓内的土压力设置方法为:

a、根据隧道所处的位置以及隧道的埋深情况,对隧道进行分类,判断出隧道是属于深埋隧道还是浅埋隧道(一般来说埋深在2倍洞径以下时,算作是浅埋段,2倍以上算深埋); b、根据判断的隧道类型初步计算出地层的竖向压力; c、根据隧道所处的地层以及隧道周边地地表环境状况的复杂程度,计算水平侧向力; d、根据隧道所处的地层以及施工状态,确定地层水压力; e、根据不同的施工环境、施工条件及施工经验,考虑0.010~0.020Mpa 的压力值作为调整值来修正施工土压力; f、根据确定的水平侧向力、地层的水压力以及施工土压力调整值得出初步的盾构施工土仓压力设定值为: σ初步设定=σ水平侧向力+σ水压力+σ调整 式中, σ初步设定-初步确定的盾构土仓土压力; σ水平侧向力-水平侧向力; σ水压力-地层水压力; σ调整--修正施工土压力。 g、根据经验值和半经验公式进一步对初步设定的土压进行验证比较,无误时应用施工之中; h、根据地表的沉降监测结果,对施工土压力进行及时调整,得出比较合理的施工土压力值。

海瑞克φ8800mm土压平衡盾构机参数书讲解

TABLE OF CONTENTS TECHNICAL DATA E D I T I O N 09/2010V E R S I O N 001S -591/592 G U A N G D O N G I N T E R C I T Y R A I L W A Y L O T 3I I - 1 D O C U M E N T : 7686-001 II. Technical Data 1. Tunnel boring machine general. . . . . . . . . . . . . . . . . . . . . . . . . .II - 3 1.1Tunnel boring machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II - 31.2Tunnel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II - 31.3Segments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II - 4 2. Shield general . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .II - 5 2.1Steel construction shield . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II - 52.2Tailskin articulation cylinder. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II - 52.3Advance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II - 52.4Man lock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II - 62.5Screw conveyor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II - 6 3. Cutting wheel general. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .II - 7 3.1Steel construction cutting wheel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II - 7 4. Drive general . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .II - 8

盾构机结构详解

盾构机技术讲座 一.盾构机结构(EPB总体结构图) 盾构是一个具备多种功能于一体的综合性隧洞开挖设备,它集和了盾构施工过程中的开挖、出土、支护、注浆、导向等全部的功能,目前,盾构机已成为地下交通工程及隧道建设施工的首选设备被广泛使用。其优点如下: 1. 不受地面交通、河道、航运、季节、气候等条件的影响。 2. 能够经济合理地保证隧道安全施工。 3. 盾构的掘进、出土、衬砌、拼装等可实行自动化、智能化和施工运输控制信息化。 4. 掘进速度较快,效率较高,施工劳动强度较低。 5. 地面环境不受盾构施工的干扰。 其缺点为: 1. 盾构机械造价较高。 2. 在饱和含水的松软地层中施工地表沉陷风险大。 3. 隧道曲线半径过小或埋深较浅时难度较大。 4. 设备的转移、运输、安装及场地布置等较复杂。 盾构作为一种保护人体和设备的护体,其外形(断面形状)随所建的工程要求不同有圆形、双圆形、三圆形、矩形、马蹄形、半圆形等。(如:人行道方形能最大限度的利用空间、过水洞马蹄形符合流体力学、公路隧道半圆形利用下玄跑车)。而因圆形断面受力好、圆形盾构设备制造相对简单及成本相对低廉,绝大部分盾构还是采用传统的圆形。 为适应各种不同类型土质及盾构机工作方式的不同,盾构机可分为三种类型、四种模式:

三种类型: (1)软土盾构机; (2)硬岩盾构机; (3)混合型盾构机。 四种模式: (4)开胸式; (5)半开胸式(半闭胸式、欠土压平衡式); (6)闭胸式(土压平衡式); (7)气压式。 软土盾构机适应于未固结成岩的软土、某些半固结成岩及全风化和强风化围岩。刀盘只安装刮刀,无需滚刀。 硬岩盾构机适应于硬岩且围岩层较致密完整,只安装滚刀,不需要刮刀。 混合盾构机适应于以上两种情况,适应更为复杂多变的复合地层。可同时安装滚刀和刮刀。 气压盾构是在加气压状态下的施工模式,即可用于泥水加压式盾构机,也可用于土压平衡式盾构机。

海瑞克土压平衡式盾构机分析

海瑞克土压平衡式盾构机分析 盾构机的工作原理 1.盾构机的掘进 液压马达驱动刀盘旋转,同时开启盾构机推进油缸,将盾构机向前推进,随着推进油缸的向前推进,刀盘持续旋转,被切削下来的碴土充满泥土仓,此时开动螺旋输送机将切削下来的渣土排送到皮带输送机上,后由皮带输送机运输至渣土车的土箱中,再通过竖井运至地面。 2.掘进中控制排土量与排土速度 当泥土仓和螺旋输送机中的碴土积累到一定数量时,开挖面被切下的渣土经刀槽进入泥土仓的阻力增大,当泥土仓的土压与开挖面的土压力和地下水的水压力相平衡时,开挖面就能保持稳定,开挖面对应的地面部分也不致坍坍或隆起,这时只要保持从螺旋输送机和泥土仓中输送出去的渣土量与切削下来的流人泥土仓中的渣土量相平衡时,开挖工作就能顺利进行。 3.管片拼装 盾构机掘进一环的距离后,拼装机操作手操作拼装机拼装单层衬砌管片,使隧道—次成型。 盾构机的组成及各组成部分在施工中的作用 盾构机的最大直径为6.28m,总长65m,其中盾体长8.5m,后配套设备长56.5m,总重量约406t,总配置功率1577kW,最大掘进扭矩5300kN?m,最大推进力为36400kN,最陕掘进速度可达8cm/min。盾构机主要由9大部分组成,他们分别是盾体、刀盘驱动、双室气闸、管片拼装机、排土机构、后配套装置、电气系统和辅助设备。 1.盾体 盾体主要包括前盾、中盾和尾盾三部分,这三部分都是管状简体,其外径是6.25m。 前盾和与之焊在一起的承压隔板用来支撑刀盘驱动,同时使泥土仓与后面的工作空间相隔离,推力油缸的压力可通过承压隔板作用到开挖面上,以起到支撑和稳定开挖面的作用。承压隔板上在不同高度处安装有五个土压传感器,可以用来探测泥土仓中不同高度的土压力。 前盾的后边是中盾,中盾和前盾通过法兰以螺栓连接,中盾内侧的周边位置装有30个推进油缸,推进油缸杆上安有塑料撑靴,撑靴顶推在后面已安装好的管片上,通过控制油缸杆向后

海瑞克盾构机基本参数

海瑞克土压6.3m盾构基本参数 名称技术参数备注 管片设计 外径6米 内径5.4米 管片宽度1.5米 数量5+1 盾体 前体 6.25x6.25x2.9米86.5吨 中体 6.24x6.24x2.58米80吨 前盾数量1个 中盾数量1个 直径6.25米不计耐磨堆焊层 长度(前体和中体) 4.68米螺栓连接并带密封盾构类型土压平衡 300米 盾构最小水平转弯 半径 最大工作压力3BAR 土压传感器(数量) 5个 气闸连接法兰1个 1个 螺旋输送机连接法 兰 盾尾 6.23x6.23x3.61米30吨 盾尾数量1个 型式绞接 长度3.61米 密封3排钢丝刷 注浆口4个DN50,单管 推进油缸液压 数量30个10组双缸+10组单缸分组数量4组 推力34 210KN 最大300BAR 行程2米 工作压力300BAR 伸出速度80mm/min 所有油缸 绞接油缸 类型被动式 数量14个 行程150 mm 刀盘 6.28x6.25x2.6米65吨 数量1个 形式装配有滚刀式 直径6.28米

旋转方向左/右 刀具配置4把17寸中心双刃滚刀,32把17寸单刃滚刀,28把齿刀(250 mm 宽),8组边刮刀(1组两把)。 8个 刀盘上泡沫喷嘴数 量 中心回转体1个 刀盘驱动 数量1个 形式液压驱动 液压马达数量9个 额定转矩6000KNm 最大脱困扭矩7150KNm 转速0~4.5转/分 功率945KW 3x315KW 主轴承形式固定式 人闸 数量1个 形式双仓 直径1.6米 工作压力3BAR 测试压力4.5BAR 额定人数(容纳)3+2 主仓/副仓 管片安装器 管片安装器及行走 5.0x4.0x3.8米22吨 梁 数量1个 形式中心回转式 抓紧系统机械式 自由度6个 旋转角度+/—200度比例控制 管片宽度1.2/1.5米 纵向移动行程2米比例控制 控制装置无线、有线控制 螺旋输送机 形式双螺旋转、有轴式 1号螺旋输送机13.4x1.2x1.4米23吨 长度13.4米 直径800mm 功率160KW 最大扭矩198 KNm 拖困扭矩225 KNm 转速1~22转/分无级调速 285方/时100%充满时 最大出土量(理论 值)

盾构机操作及参数控制

盾构机操作及参数控制 目前,住总集团大多采用德国海瑞克盾构机、日本小松及日立盾构机,现就其小松盾构机操作情况及参数控制作如下总结: 1 开机前准备 1) 检查延伸水管、电缆连接是否正常; 2) 检查供电是否正常; 3) 检查循环水压力是否正常; 4) 检查滤清器是否正常; 5) 检查皮带输送机、皮带是否正常; 6) 检查空压机运行是否正常; 7) 检查油箱油位是否正常; 8) 检查脂系统油位是否正常; 9) 检查泡沫原液液位是否正常; 10)检查注浆系统是否已准备好并运行正常; 11)检查后配套轨道是否正常; 12)检查出碴系统是否已准备就绪; 13)检查盾构操作面板状态:开机前应使螺旋输送机前门应处于开启状态,螺旋输送机的螺杆应伸出,管片安装模式应无效,无其它报警指示; 14)检查测量导向系统是否工作正常; 若以上检查存在问题,首先处理或解决问题,然后再准备开机。 15)请示技术负责人并记录有关盾构掘进所需要的相关参数,如掘进模式,土仓保持压力,线路数据,注浆压力等; 16)请示设备机修负责人并记录有关盾构掘进的设备参数; 17)若需要则根据技术负责人和设备机修负责人的指令修改盾构参数; 2 开机 1)确认外循环水已供应,启动内循环水泵; 2)确认空压机冷却水阀门处于打开状态,启动空压机; 3)根据工程要求选择盾尾油脂密封的控制模式,即选择采用行程控制还是采用压力控制模式;

4)在“报警系统”界面,检查是否存在当前错误报警,若有,首先处理; 5)将面版的螺旋输送机转速调节旋扭、刀盘转速调节旋扭、推进油缸压力调节旋扭、盾构推进速度旋扭等调至最小位; 6)启动前后液压泵站冷却循环泵,并注意泵启动是否正常,包括其启动声音及振动情况等。以下每一个泵启动情况均需注意其启动情况; 7)依次启动润滑脂泵(EP2)、齿轮油泵、HBW 泵、内循环水泵; 8)依次启动推进泵及辅助泵; 9)选择手动或半自动或自动方式启动泡沫系统; 10)启动盾尾油脂密封泵,并选择自动位;至此,盾构的动力部分已启动完毕,下面根据不同的工序进一步进行说明。 3掘进 1)启动皮带输送机 2)启动刀盘 根据测量系统面版上显示的盾构目前旋转状态选择盾构旋向按钮,一般选择能够纠正盾构转向的旋转方向; 选择刀盘启动按扭,当启动绿色按钮常亮后。并慢慢右旋刀盘转速控制旋钮,使刀盘转速逐渐稳定在 2rpm 左右。严禁旋转旋钮过快,以免造成过大机械冲击,损机械设备。此时注意主驱动扭矩变化,若因扭矩过高而使刀盘启动停止,则先把电位器旋钮左旋至最小再重新启动; 3)启动螺旋输送机 慢慢开启螺旋输送机的后门; 启动螺旋输送机按钮,并逐渐增大螺旋输送机的转速; 4)按下推进按钮,并根据 ZED 屏幕上指示的盾构姿态调整四组油缸的压力至适当的值,并逐渐增大推进系统的整体推进速度; 5)至此盾构开始掘进; 4土仓压力调整 1)如果开挖地层自稳定性较好采用敞开式掘进,则不用调正压力,以较大开挖速度为原则; 2) 如果开挖地层有一定的自稳性而采用半敞开式掘进,则注意调节螺旋输送机的转速,使土仓内保持一定的渣土量,一般约保持 2/3左右的渣土。

盾构选型及参数计算方法

盾构选型及参数计算方法 1.1、序言 盾构是一种专门用于隧道工程的大型高科技综合施工设备,它具有一个可以移动的钢结构外壳(盾壳),盾构内装有开挖、排土、拼装和推进等机械装置,进行土层开挖、碴土排运、衬砌拼装和盾构推进等系列操作,使隧道结构施工一次完成。它具有开挖快、优质、安全、经济、有利于环境保护和降低劳动强度的优点,从松散软土、淤泥到硬岩都可应用,在相同条件下,其掘进速度为常规钻爆法的4~10倍。较长地下工程的工期对经济效益和生态环境等方面有着重大影响,而且隧道工程掘进工作面又常常受到很多限制,面对进度、安全、环保、效益等这些问题,使用盾构机无疑是最好的选择。些外,对修建穿越江、湖、海底和沼泽地域隧道,采用盾构法施工,也具有十分明显的技术和经济优势。 采用盾构法施工,盾构的选型及配置是隧道施工中关键环节之一,盾构选型应根据工程地质水文情况、工期、经济性、环境保护、安全等综合考虑。盾构的选型及配置是一种综合性技术,涉及地质、工程、机械、电气及控制等方面。 1.2盾构机选型主要原则 1.2.1盾构的选型依据 盾构选型主要应考虑以下几个因素: 1)工程地质、水文条件及施工场地大小。 2)业主招标文件中的要求。

3)管片设计尺寸与分块角度。 4)盾构的先进性、适应性与经济性。 5)盾构机厂家的信誉与业绩。 6)盾构机能否按期到达现场。 1.2.2 盾构的型式 1)敞开式型盾构 敞开式型盾构是指盾构内施工人员可以直接和开挖面土层接触,对开挖面工况进行观察,直接排除开挖面发生的故障。这种盾构适用于能自立和较稳定的土层施工,对不稳定的土层一般要辅以气压或降水,使土层保持稳定,以防止开挖面坍塌。有人工开挖盾构、半机械开挖盾构、机械开挖盾构。 2)部分敞开式型盾构 部分敞开式型盾构是在盾构切口环在正面安装挤压胸板或网格切削装置,支护开挖面土层,即形成挤压盾构或网格盾构,施工人员可以直接观察开挖面土层工况,开挖土体通过网格孔或挤压胸板闸门进入盾构。根据以往大量工程经验,通常都将挤压胸板和网格切削装置组合在一起安装在盾构上,形成网格挤压盾构。这种盾构适用于不能自立、流动性在的松软粘性土层、尤其是对隧道沿线地面变形无严格要求的工程。当盾构采用网格开挖时,应将安装在网格后面的挤压胸板部分或大部分拆除,利用网格孔对土层的摩擦力或粘结力对开挖面土层进行支护,当盾构向前推进时(一般是盾构穿越江湖、海底或沼泽地区),应将挤压胸板装上,盾构向前推进时,可将土体全部

海瑞克盾构机技术说明

目录 隧道掘进机的技术说明 5.1 概述 (3) 5.2 功能(EPB盾构) (4) 5.2.1 土料挖掘 / 推进 (5) 5.2.2 控制 (6) 5.2.3 管环拼装周期 (7) 5.3 技术数据/总览 (8) 5.4 操作步骤 (16) 5.4.1 进入开挖室 (16) 5.4.2 人行气闸 (19) 准备和注意事项 (19) 加压 (21) 加压步骤 (22) 加压图 (24) 通过通道室加压(加压附加人员) (26) 附加人员加压图 (27) 卸压 (28) 卸压步骤: (29) 卸压图 (31) 对一个人员的紧急卸压图 (33) 紧急情况下,通道室和主室内应分别采取的措施 (36) 紧急情况卡卡样 (37) 5.4.3 将开挖工具送入压力室 (39) 5.4.4 拼装管环 (40) 5.4.5 回填 (42) 通过尾部机壳进行回填 (42) 灌浆泵的工作原理 (43) 5.4.6 压缩空气供给 (45) 工业用空气 (45) 压缩空气调节 (46) 5.4.7 发泡设备说明 (47) 安装设计 (47) 设备功能 (48)

高压聚合物系统 (48) 5.5 隧道掘进机各部件 (49) 5.5.1 盾构 (50) 概述 (50) 前部盾构 (50) 中间盾构 (51) 尾部机壳 (51) 推力缸 (51) 盾构关节油缸 (52) 5.5.2 人行气闸 (53) 5.5.3 刀盘驱动装置 (55) 原理 (55) 旋转工作机构系统,主轴承 (55) 齿轮润滑 (55) 密封系统 (56) 5.5.4 拼装机 (57) 技术说明 (57) 支架梁 (57) 行走机架 (58) 旋转机架 (58) 带抓取头的横向行走装置 (59) 旋转机架的动力提供 (60) 安全设备 (60) 5.5.5 螺旋输送机 (61) 一般说明 (61) 伸缩缸 (61) 前部闸阀 (61) 前部闸阀 (62) 驱动装置 / 密封系统 (63) 安全装置 (63) 5.5.6 后援装置 (64) 一般说明 (64) 桥 (65) 龙门架1 (66) 龙门架2 (67) 龙门架3 (69) 龙门架4 (70) 龙门架5 (72)

盾构机参数

随着地下空间的开发,盾构技术已广泛地应用于地铁、隧道、市政管道等工程领域。在我国的各项施工中,盾构机的种类越来越多,其中土压平衡式盾构机在上海、南京、广州等地铁施工中有着较为出色的表现,笔者以日本小松公司Φ6340盾构机为例,结合施工中的一点经验与理解,对其控制原理和参数设置等做简要总结。 控制原理 土压平衡式盾构机的土压控制是PID自动调节控制,切削刀盘切下的弃土进入土仓,形成土压,土压超过预先设定值时,土仓门打开,部分弃土通过螺旋机排出土仓,从而保持土仓内土压平衡,土仓内的土压反作用于挖掘面,防止地层的坍塌。 土压的平衡控制是通过装在盾构机土仓隔壁上的土压计对掘进中的土压进行实时监视,土压计监测到的数值传送到PLC,PLC计算出测量值与设定值之间的差值E,通过PID 控制,自动调整螺旋机转速,使E值趋向于零,当E值大于零时,PLC发出指令,增加螺旋机转速,提高出土量直至土仓内土压重新达到新的平衡状态,反之当E值小于零时,PLC 会降低螺旋机转速,以减少偏差。以保持土仓内土压平衡,使盾构机正常掘进。 主要参数 抽样周期:PID 演算处理的时间间隔,周期越短,动作越连续,但增加了单位时间的处理次数,因此PID以外的控制变慢,不需要细微变动时,可延长周期。 过滤系数:用来除去输入模拟值上的高频成分,数值越大,则过滤效果越强,系统反应也就越迟钝。 比例常数P:为了提高系统灵敏度,使土压保持在一定范围,把计测值与设定值的差值E 乘以一个系数,所得结果再与目标值相比较,这个系数就是比例常数P,P 值越大,调控效果越好。 积分时间I:系统引入比例常数后,PLC调控螺旋机的输出操作量mv=P*E, 也就是偏差被放大了P倍,这样当系统产生偏差时,可能会使螺旋机转速突然增大或减小了许多,形成超调现象,于是又反过来调整,这就引起螺旋机转速忽大忽小,形成振荡。为了消除振荡,引入积分环节,使操作量mv 在积分时间内逐渐完成,即螺旋机转速平稳变化,直到消除偏差。积分时间越小,调控效果越好。 微分时间:根据偏差变化率de/dt 的大小,提前给出一个相应的调节动作,从而缩短了调节时间,可以克服因积分时间太长而使恢复滞后的缺点。 参数设定 参数设置分为两步,第一步是在设备组装完毕,无负荷的状态下进行的一次调试,第二步是在掘进开始,土层稳定后,根据土层状况和操作习惯进行的微调。 1、无负荷调试 (1)比例系数P,首先不执行 I和D,I调至数值上限,D设定为 0,这样系统只执行比例动作P,变动土压目标值,制造约0.01 - 0.03Mpa 的系统偏差,接下来逐渐增大 P 值,使螺旋机转速逐渐增大,当 P 值上升到一定值时,螺旋机的旋转速度会出现大幅度地反复升降,即系统形成振荡,我们把出现振荡时P 值的 85% - 90% 设定为系统的比例系数。 (2)积分时间I,比例系数确定后,调节积分时间I,变动土压目标值,制造一个系统偏差,观察螺旋机回转速度以怎样的速度变化,继续加一定的偏差时,系统向偏差减小的方向增加或减小操作量,操作量的变化程度随积分时间I的变化而变化,此时可以根据操作人员的操作习惯来确定积分时间,一般来说,I在数值上为P值的70% 左右。 (3)微分时间D,在盾构机PID 控制中,管理对象是土仓内的土压,如果掘进速度一定,则土压与切削土量减排土量之差的时间累积成正比,另一方面,系统的控制对象是螺旋机转速,而螺旋机转速同单位时间的排土量成正比,这样从系统输入来看,系统的输出是

盾构机司机操作流程及参数控制

盾构机操作流程及参数控制1开机前准备 1) 检查延伸水管、电缆连接是否正常; 2) 检查供电是否正常; 3) 检查循环水压力是否正常; 4) 检查滤清器是否正常; 5) 检查皮带输送机、皮带是否正常; 6) 检查空压机运行是否正常; 7) 检查油箱油位是否正常; 8) 检查脂系统油位是否正常; 9) 检查泡沫原液液位是否正常; 10)检查注浆系统是否已准备好并运行正常; 11)检查后配套轨道是否正常; 12)检查出碴系统是否已准备就绪; 13)检查盾构操作面板状态:开机前应使螺旋输送机前门应处于开启状态,螺旋输送机的螺杆应伸出,管片安装模式应无效,无其它报警指示; 14)检查ZED导向系统是否工作正常; 若以上检查存在问题,首先处理或解决问题,然后再准备开机。 15)请示土木工程师并记录有关盾构掘进所需要的相关参数,如掘进模式(敞开式、半敞开式或土压平衡式等),土仓保持压力,线路数据,注浆压力等; 16)请示机械工程师并记录有关盾构掘进的设备参数; 17)若需要则根据土木工程师和机械工程师的指令修改盾构参数; 2 开机 1)确认外循环水已供应,启动内循环水泵; 2)确认空压机冷却水阀门处于打开状态,启动空压机; 3)根据工程要求选择盾尾油脂密封的控制模式,即选择采用行程控制还是采用压力控制模式; 4)在“报警系统”界面,检查是否存在当前错误报警,若有,首先处理;

5)将面版的螺旋输送机转速调节旋扭、刀盘转速调节旋扭、推进油缸压力调节旋扭、盾构推进速度旋扭等调至最小位; 6)启动前后液压泵站冷却循环泵,并注意泵启动是否正常,包括其启动声音及振动情况等。以下每一个泵启动情况均需注意其启动情况; 7)依次启动润滑脂泵(EP2)、齿轮油泵、HBW 泵、内循环水泵; 8)依次启动推进泵及辅助泵; 9)选择手动或半自动或自动方式启动泡沫系统; 10)启动盾尾油脂密封泵,并选择自动位;至此,盾构的动力部分已启动完毕,下面根据不同的工序进一步进行说明。 3掘进 1)启动皮带输送机 2)启动刀盘 ?根据ZED 面版上显示的盾构目前旋转状态选择盾构旋向按钮,一般选择能够纠正盾构转向的旋转方向; ?选择刀盘启动按扭,当启动绿色按钮常亮后。并慢慢右旋刀盘转速控制旋钮,使刀盘转速逐渐稳定在2rpm 左右。严禁旋转旋钮过快,以免造成过大机械冲击,损机械设备。此时注意主驱动扭矩变化,若因扭矩过高而使刀盘启动停止,则先把电位器旋钮左旋至最小再重新启动; 3)启动螺旋输送机 ?慢慢开启螺旋输送机的后门; ?启动螺旋输送机按钮,并逐渐增大螺旋输送机的转速; 4)按下推进按钮,并根据ZED 屏幕上指示的盾构姿态调整四组油缸的压力至适当的值,并逐渐增大推进系统的整体推进速度; 5)至此盾构开始掘进; 4土仓压力调整 1)如果开挖地层自稳定性较好采用敞开式掘进,则不用调正压力,以较大开挖速度为原则;

海瑞克盾构机电气系统概述

海瑞克盾构机电气系统概述

————————————————————————————————作者:————————————————————————————————日期:

海瑞克盾构机电气控制系统概述 李剑祥 (中铁六局集团有限公司深圳地铁2号线项目部广东深圳 518056) 摘要:对海瑞克土压平衡盾构机电气控制系统进行概述,并分别对其配电系统、可编程控制系统和计算机控制及数据采集分析系统三个部分的设计进行总结,以加深对其整个电气控制系统原理的理解。 关键词:电气系统配电系统可编程控制系统计算机控制及数据采集分析系统 0 海瑞克盾构机电气系统简介 盾构机是一种集机械、液压、电气和自动化控制于一体、专用于地下隧道工程开挖的技术密集型重大工程装备,其技术先进、结构庞大。如果把机械部分比喻成人的四肢,那么液压系统比喻成人的血液系统,则电气控制系统就是人的神经系统。当前盾构机电气控制系统均采用世界上最先进、可靠的技术以保证系统稳定可靠地运行。海瑞克盾构机电气控制系统分为配电系统、可编程控制系统和计算机控制及数据采集分析系统三个部分。下面对该三个部分进行介绍。 1 配电系统 盾构施工是参考工厂式的流程化作业施工,盾构机的配电系统设计原则也是参照工厂供配电原理设计的。配电系统分为高压系统和低压系统,其用电设备列表如下: 序号用电设备设备容量备注 1 刀盘驱动945kW 2 超挖刀7.5kW 3 推进系统75kW 4 管片安装机45kW 5 螺旋输送机250kW 6 皮带输送机22kW 7 注浆泵30kW 8 砂浆储存罐的搅拌器7.5kW 9 液压油过滤泵11kW 10 主轴承润滑4kW 11 管片吊机2x2kW 12 排水泵12kW 13 冷却水系统7.5kW 14 二次通风机11kW 15 空压机110kW

土压平衡盾构机技术规格及要求

土压平衡盾构机技术规格及要求 1.土压平衡盾构机(以下简称盾构机)技术要求的说明 1.1盾构机技术要求以南昌轨道交通工程、周边环境及地质条件要求,兼顾满足南昌轨道交通其他线路区间、周边环境及地质条件要求及各项施工条件。 1.2本技术要求为南昌轨道交通3号线盾构区间掘进的盾构机最低技术规格和施工要求。 1.3本技术要求对盾构机部件结构不作具体的规定,但其必须满足本标准对盾构机所需的功能、性能、配置等要求。 1.4本技术要求仅限于主要部件、总成、系统的功能、性能、配置等,未描述部分应自动满足南昌轨道交通3号线工程、周边环境及地质条件。 2.新机技术规格要求 2.1整机 盾构机技术规格必须满足南昌轨道交通3号线工程、周边环境及地质条件要求,兼顾满足南昌轨道交通其他线路区间、周边环境及地质条件要求及各项施工条件。 盾构机的各项安全性能指标必须满足国家及南昌地区相关安全使用和施工规范要求。 盾构机应满足南昌地铁三号线管片规格:外径Φ6000mm,内径Φ5400mm,宽度1200/1500mm,纵向螺栓分度36°。 盾构机最大推进速度应≤80mm/min。 盾构机最小掘进转弯半径应≤250m;适用隧道纵向坡度应≥±45‰。 盾构机最大工作压力应≥0.5Mpa。 盾构机主要部件及总成使用寿命应≥10km或10000小时。 盾构机主要部件应采用世界知名厂商品牌及产品。 盾构机主要结构件材料应采用国内知名厂商品牌及产品。 2.2刀盘 2.2.1基本结构 刀盘支腿数量≥4个,≤6个。 宜采用复合式刀盘,刀盘开口率应≥30%。 复合式刀盘滚刀的安装刀座宜采用单楔块方式。软岩刀具的安装可采用螺栓紧固或销轴安装方式。

盾构机掘进技术(基础)(含参数)

盾构机掘进技术培训总结 一、掘进参数的选择 1、掘进参数的选择依据:①地质情况判断②盾构机当前姿态③地面监测结果反馈④盾构机状况; 地质情况的判断依据:①地质资料及补勘资料②掘进参数变化③渣土状态。 也就是说,盾构机目前要在什么样的地层中施工,是硬岩、软岩、沙层,还是断层等;目前盾构机的中心线是不是与隧道设计中心线相吻合,有偏差,怎样的偏差?地表面是不是有沉降?沉降了多少?建筑物是否有影响?盾构机目前的刀具状况怎样的?各系统是不是完好?等等 由于盾构机的可操作性很强,掘进参数的选择不能一概而定,需根据不同的实际情况选择相应的掘进参数。如:在地质条件较破碎的地质情况下应采用低速掘进,但刀具磨损较快时,应考率调整刀盘准速和掘进速度已获得最佳的贯入度;又如:盾构机栽头且偏离中线较大时,应考虑蛇行纠偏,防止过急纠偏造成管片开裂、错台或渗水等问题;所以掘进中一定要根据现场实际情况,灵活正确地选择掘进参数。 2、影响掘进的主要参数:掘进模式、土仓压力、刀盘扭矩、刀盘转速、推进力、推进速度、螺旋输送机扭矩、铰接油缸的行程、泡沫注入率等 二、掘进模式的选择 1、土压平衡式盾构机的掘进有三种模式:①敞开模式②半敞开模式③土压平衡模式 采取何种掘进模式关键在于地层的自稳性和地下水含量决定的。 a 、敞开模式 该模式适用于能够自稳、地下水少的地层。该掘进模式类似于TBM掘进,盾构机切削下来的碴土进入土仓内即刻被螺旋输送机排出,土仓内仅有极少量的碴土,土仓基本处于清空状态,掘进中刀盘所受反扭力较小。由于土仓内压力为大气压,故不能支撑开挖面地层和防止地下水渗入。

b 、半敞开模式 半敞开式有的又称为局部气压模式,该掘进模式适用于具有一定自稳能力和地下水压力不太高的地层。其防止地下水渗入的效果主要取决于压缩空气的压力。掘进中土仓内的碴土未充满土仓,尚有一定的空间,通过向土仓内输入压缩空气与碴土共同支撑开挖面和防止地下水渗入。 c 、土压平衡模式 该掘进模式适用于不能稳定的软土和富水地层。土压平衡模式是将刀盘切削下来的碴土充满土仓,并通过推进操作产生与土压力和水压力相平衡的土仓压力来稳定开挖面地层和防止地下水的渗入。该掘进模式主要通过控制盾构推进速度和螺旋输送机的排土量来产生压力,并通过测量土仓内土压力来随时调整、控制盾构推进速度和螺旋输送机转速。在该掘进模式下,刀盘所受的反扭力较大。 2、土压平衡的建立 通过对掘进速度、出土速度的控制实现盾构机的土仓压力与掌子面的土压和水压平衡防止地层坍塌。 即掌子面的压力控制因素:①盾构机的掘进速度②螺旋输送机的转速③螺旋输送机的开度

盾构机技术参数

TB 880E隧道掘进机 一、概述 TB 880E型隧道掘进机由德国维尔特(Wirth)公司制造。TBM 880E型隧道掘进机为开敞式硬岩掘进机,适用于硬岩的一次成型开挖。隧道掘进机的英文为“Tunnel Boring Machine”,所以隧道掘进机又简称为“TBM”。TBM集机、电、液、气、仪于一体,采用微电脑全程监控操作。采用TBM施工,无论是在隧道的一次成型、施工进度、施工安全、施工环境、工程质量等方面,还是在人力资源的配置方面都比传统的施工工法有了质的飞跃,实现了隧道施工工厂化作业。该机曾用于18.46km的西康铁路秦岭隧道施工,最高月进度达528.1m。在6113m长的西安南京铁路磨沟岭隧道的施工中,创造最高日掘进达41.3m,最高月掘进达573.9m的国内新记录。 TBM具有优良操作性能,其主要特点是使用可靠性的内外凯(Kelly)机架。TBM主机主要由刀盘、刀盘护盾、主轴承与刀盘驱动器、辅助液压驱动、主轴承密封与润滑、内部凯式、外部凯式与支撑靴、推进油缸、后支撑、液压系统、电气系统、操作台、变压器、行走装置等组成。外凯机架上装有X型支撑靴;内凯机架的前面安装主轴承与刀盘驱动,后面安装后支撑。刀盘与刀盘驱动由可浮动的仰拱护盾、可伸缩的顶部护盾、两侧的防尘护盾所包围并支承着。刀盘驱动安装于前后支撑靴之间,以便在刀盘护盾的后面提供尽量大的空间来安装锚杆钻机和钢拱架安装器。刀盘是中空的,其上安装许多刮板和铲斗,将石碴送到置于内凯机架中的输送机上。后配套系统为双线轨道及加利福尼亚道岔系统,装有主机的供给设备与装运系统,石碴的运输通过矿车运出。后配套系统由若干个平台拖车和一个皮带桥组成,皮带桥用来联接平台拖车与主机,平台拖车摆放在仰拱上的轨道上。前进时皮带桥被TBM后端拉着,在掘进过程中后配套平台拖车是固定的,在掘进结束时被两个液压油缸牵引。在后配套系统上,装有TBM液压动力系统、配电盘、变压器、总断电开关、电缆卷筒、除尘器、通风系统、操纵台、皮带输送系统、混凝土喷射系统、注浆系统、供水系统等。另外在TBM拖车上还安装有钢拱架安装器、仰拱块吊装机、超前探测钻机、锚杆钻机、风管箱、辅助风机、除尘器、通风冷却系统、机器通讯系统、数据处理系统、导向系统、瓦斯监测仪、注浆系统、混凝土喷射系统、高压电缆卷筒、应急发电机、空压机、水系统、电视监视系统等辅助设备。 二、TBM技术参数 1、外形尺寸 掘进机型号TBM 880E 掘进直径8800mm 扩孔直径8900mm 外形尺寸(主机)25530×8800×8800mm(其中后部斜坡1680mm长)掘进速度 1.0m/h(饱和抗压强度260MPa时) 3.5m/h(饱和抗压强度100~120MPa时) 主机重量780000 kg 2、主轴承

盾构机参数设定

土压平衡式盾构机控制原理与参数设置 随着地下空间的开发,盾构技术已广泛地应用于地铁、隧道、市政管道等工程领域。在我国的各项施工中,盾构机的种类越来越多,其中土压平衡式盾构机在上海、南京、广州等地铁施工中有着较为出色的表现,笔者以日本小松公司Φ6340盾构机为例,结合施工中的一点经验与理解,对其控制原理和参数设置等做简要总结。 控制原理 土压平衡式盾构机的土压控制是PID自动调节控制,切削刀盘切下的弃土进入土仓,形成土压,土压超过预先设定值时,土仓门打开,部分弃土通过螺旋机排出土仓,从而保持土仓内土压平衡,土仓内的土压反作用于挖掘面,防止地层的坍塌。 土压的平衡控制是通过装在盾构机土仓隔壁上的土压计对掘进中的土压进行实时监视,土压计监测到的数值传送到PLC,PLC计算出测量值与设定值之间的差值E,通过PID控制,自动调整螺旋机转速,使E值趋向于零,当E值大于零时,PLC发出指令,增加螺旋机转速,提高出土量直至土仓内土压重新达到新的平衡状态,反之当E值小于零时,PLC 会降低螺旋机转速,以减少偏差。以保持土仓内土压平衡,使盾构机正常掘进。 主要参数 抽样周期:PID 演算处理的时间间隔,周期越短,动作越连续,但增加了单位时间的处理次数,因此PID以外的控制变慢,不需要细微变动时,可延长周期。 过滤系数:用来除去输入模拟值上的高频成分,数值越大,则过滤效果越强,系统反应 也就越迟钝。 比例常数P:为了提高系统灵敏度,使土压保持在一定范围,把计测值与设定值的差值E 乘以一个系数,所得结果再与目标值相比较,这个系数就是比例常数P,P 值越大,调控效 果越好。 积分时间I:系统引入比例常数后,PLC调控螺旋机的输出操作量mv=P*E,也就是偏差被放大了P倍,这样当系统产生偏差时,可能会使螺旋机转速突然增大或减小了许多,形成超调现象,于是又反过来调整,这就引起螺旋机转速忽大忽小,形成振荡。为了消除振荡,引入积分环节,使操作量mv 在积分时间内逐渐完成,即螺旋机转速平稳变化,直到消除 偏差。积分时间越小,调控效果越好。 微分时间:根据偏差变化率de/dt 的大小,提前给出一个相应的调节动作,从而缩短了调节时间,可以克服因积分时间太长而使恢复滞后的缺点。 参数设定 参数设置分为两步,第一步是在设备组装完毕,无负荷的状态下进行的一次调试,第二步是在掘进开始,土层稳定后,根据土层状况和操作习惯进行的微调。 1、无负荷调试 (1)比例系数P,首先不执行I和D,I调至数值上限,D设定为0,这样系统只执行比例动作P,变动土压目标值,制造约0.01 -0.03Mpa 的系统偏差,接下来逐渐增大P 值,使螺旋机转速逐渐增大,当P 值上升到一定值时,螺旋机的旋转速度会出现大幅度地反复升降,即系统形成振荡,我们把出现振荡时P 值的85% -90% 设定为系统的比例系数。 (2)积分时间I,比例系数确定后,调节积分时间I,变动土压目标值,制造一个系统偏差,观察螺旋机回转速度以怎样的速度变化,继续加一定的偏差时,系统向偏差减小的方

海瑞克盾构机中英文对照表

海瑞克盾构设备-英汉对照英文汉语 proportional valve block 流量阀 brake valve闸阀 double prestress valve 流量阀 proportional valve block 流量阀 valve 闸阀 valve 闸阀 ball valve球阀 ball valve w/lever/ 球阀 shuttle valve闸阀 ball valve球阀 check valve sae11/2 闸阀 valve 闸阀 ball valve球阀 nozzle 喷嘴 proportional valve流量阀 pressure reducing valve 减压阀 plate 连接块 plate 连接块 erector 管片安装机 cutting wheel drive 刀盘主驱动 tank 水箱 cylinder 液压油缸 waggon 运输料槽 jack 千斤顶 thrust jacks unit+stroke meas 主推进油缸 planetary gear齿轮箱 gear oil cooler齿轮油冷却器 thermometer0-80degrees c温度计 ball valve球阀 valve 闸阀 control block接线板 plate 连接块 mechanical directional control 方向控制器 pressure control valve 流量阀 control block接线板 slide block滑动轴承阻挡块 hydraulik block液压阀组 pressure reducing valve 减压阀 non return valve止回阀 one-way restrictor zp 闸门 directional control valve流量阀 pressure reducing valve zp 流量阀

相关主题
文本预览
相关文档 最新文档