当前位置:文档之家› 水力压裂裂缝暂堵转向机理与转向规律研究

水力压裂裂缝暂堵转向机理与转向规律研究

水力压裂裂缝暂堵转向机理与转向规律研究
水力压裂裂缝暂堵转向机理与转向规律研究

水力压裂裂缝暂堵转向机理与转向规律研究储层改造是页岩油气、致密油气等非常规油气开发的核心技术,通过水力压裂形成复杂裂缝网络,实现体积改造是水力压裂施工的目标。当储层可压性较差或应力差较大时,难以形成复杂裂缝网络,通过暂堵逼迫裂缝转向是增强缝网扩展复杂性的重要手段。

到目前为止,虽然现场实践已取得较好成效,但裂缝暂堵转向的力学机理、扩展规律和调控方法等尚处于探索阶段,迫切需要开展人工裂缝暂堵转向机理和规律研究。本文探索了新的实验方法,发展了水力压裂数值算法,通过岩芯测试、物理模拟和数值模拟研究,对非常规储层的可压性和转向能力、转向剂对裂缝的暂堵规律、裂缝转向扩展规律进行了研究,主要取得成果如下:(1)致密储层成缝能力测试与评价。

储层成缝能力(可压性)是裂缝转向的基础和重要影响因素。实验发现:(1)页岩存在强微观非均质性,并与矿物成分、天然裂隙和TOC含量等一起,是影响页岩储层成缝能力的重要因素。

(2)流体对页岩的岩石力学性质具有显著影响,并与页岩储层的超低含水饱和度、粘土含量、TOC和微纳米孔隙有关。(3)基于基质脆性、天然裂隙密度和声发射活动性,建立了综合评价致密储层成缝能力的新方法。

油田现场应用说明此方法是可行的。(2)裂缝转向机理和规律的真三轴模拟实验研究。

利用真三轴水力压裂物模实验装置,研究了纤维暂堵裂缝的转向扩展规律,得出裂缝转向的主要控制因素为储层成缝能力及其非均质性、水平主应力差、天然裂缝分布、初级裂缝宽度、纤维浓度、粘度与排量等,得到了暂堵形成的条件

与图版,并给出了裂缝发生转向时的临界应力差;并以人工裂缝倾角、地应力差、成缝能力和缝内流压为主要参数,建立了裂缝转向能力的评价模型。(3)基于PGD 法(Proper Generalized Decomposition),针对水力压裂裂缝转向和网络化扩展数值模拟需要,建立并求解了完全耦合条件下水力压裂裂缝扩展模型,PGD算法

适合于高效、快速求解以非线性、瞬态、耦合为特征的水力压裂问题,计算速度明显快于传统的有限元方法。

(4)应用PGD算法进行了裂缝转向的模拟,结论与真三轴物理模拟结果一致。裂缝转向主要控制因素为储层性质、水平主应力差、缝间干扰、裂缝暂堵效率、粘度与排量等。

在低应力差、较短裂缝间距条件下,缝间干扰强,裂缝端部较容易发生转向;天然裂缝剪切滑移对裂缝转向具有明显影响,在剪应力和流体压力联合作用下,裂缝更易转向;在转向处裂缝宽度和净压力发生突变,缝宽变窄,净压力降低。本文研究成果将为非常规油气转向压裂改造提供理论依据和技术支持。

转向压裂

第一章概述 (2) 第二章技术原理 (4) 一、暂堵转向重复压裂技术原理: (4) 二、破裂机理研究 (5) 三、重复压裂裂缝延伸方式 (8) 第三章重复转向压裂时机研究 (11) 1、影响重复压裂效果因素 (11) 2、选井选层原则 (11) 3、压裂时机确定 (12) 第四章暂堵剂(转向剂) (12) 1、堵剂性能要求: (12) 2、堵剂体系 (12) 3、水溶性高分子材料堵剂 (13) 4、配套的压裂液 (15) 第五章转向压裂配套工艺技术 (16) 1、缝内转向压裂工艺技术 (16) 2. 缝口转向压裂工艺技术 (18) 3、控制缝高压裂技术 (19) 4、端部脱砂压裂技术 (20) 第六章工艺评价 (21) 1.裂缝监测 (21) 2.施工压力 (21) 3.产能变化 (21)

第一章概述 我国发现的油气藏中60%以上为低渗透油气藏,往往具有非连续、非均质、各向异性的特点。 低渗油藏必须进行压裂改造,才能获得较好的效果。随着开采程度的深入,老裂缝控制的原油已近全部采出,传统的平面水力裂缝设计方法和压裂技术已不能满足这类油藏开采的需求。可以实施暂堵转向重复压裂,在纵向和平面上开启新层,开采出老裂缝控制区以外的原油,有效的稳油控水、提高原油产量和油田采收率,实现油田的可持续发展。 目前,国内外的重复压裂实践主要有以下三种方式:①层内压

出新裂缝;②继续延伸原有裂缝;③转向重复压裂。 对于重复压裂中出现的裂缝转向,目前认为主要有三种不同方式:①地应力反转;②定向射孔诱导;③桥堵转向压裂工艺。 对于低渗储层,由于出现地应力场反转的难度较大,而采用定向射孔压裂造成裂缝转向,对储层伤害较大。近些年,利用桥堵作用堵塞裂缝,形成转向的新裂缝的压裂工艺(缝内转向与缝口转向),经过现场实践,增产显著,逐步成为低渗储层重复改造的首选工艺。 在大规模试验研究的基础上,经过工艺优化配套,建立了以缝内转向压裂工艺为主导的低渗透重复压裂新模式。它有效地在疏通原有人工主裂缝基础上形成了新的支裂缝,沟通了“死油区”,扩大油井泄油面积。 低渗透油田缝内转向压裂工艺的关键技术是缝内转向剂技术。依靠该技术产品,实现了裂缝延伸的暂时停止,达到了在缝内某一位置实现裂缝转向的目标。为证实缝内转向压裂沟通微裂缝和形成新裂缝,利用微地震法在施工时裂缝延伸进行动态监测。综合分析水力压裂裂缝延伸监测结果、重复压裂效果、施工压力特征,能证明缝内转向重复压裂在疏通原有裂缝的基础上,是否产生了沟通微裂缝或者形成新裂缝。 缝内转向压裂工艺在低渗透油田应用概况: 在老井上的应用概况: 2002-2007年,缝内转向压裂工艺在老井上推广应用487口井,增产效果明显。安塞油田应用332口井,日增油1.40t,陇东油田

最新压裂技术现状及发展趋势资料

压裂技术现状及发展趋势 (长城钻探工程技术公司) 在近年油气探明储量中,低渗透储量所占比例上升速度在逐年加大。低渗透油气藏渗透率、孔隙度低,非均质性强,绝大多数油气井必须实施压裂增产措施后方见产能,压裂增产技术在低渗透油气藏开发中的作用日益明显。 1、压裂技术发展历程 自1947年美国Kansas的Houghton油田成功进行世界第一口井压裂试验以来,经过60多年的发展,压裂技术从工艺、压裂材料到压裂设备都得到快速的发展,已成为提高单井产量及改善油气田开发效果的重要手段。压裂从开始的单井小型压裂发展到目前的区块体积压裂,其发展经历了以下五个阶段[1]:(1)1947年-1970年:单井小型压裂。压裂设备大多为水泥车,压裂施工规模比较小,压裂以解除近井周围污染为主,在玉门等油田取得了较好的效果。 (2)1970年-1990年:中型压裂。通过引进千型压裂车组,压裂施工规模得到提高,形成长缝增大了储层改造体积,提高了低渗透油层的导流能力,这期间压裂技术推动了大港等油田的开发。 (3)1990年-1999年:整体压裂。压裂技术开始以油藏整体为单元,在低渗透油气藏形成了整体压裂技术,支撑剂和压裂液得到规模化应用,大幅度提高储层的导流能力,整体压裂技术在长庆等油田开发中发挥了巨大作用。 (4)1999年-2005年:开发压裂。考虑井距、井排与裂缝长度的关系,形成最优开发井网,从油藏系统出发,应用开发压裂技术进一步提高区块整体改造体积,在大庆、长庆等油田开始推广应用。 (5)2005年-今:广义的体积压裂。从过去的限流法压裂到现在的直井细分层压裂、水平井分段压裂,增大储层改造体积,提高了低渗透油气藏的开发效果。 2、压裂技术发展现状 经过五个阶段的发展,压裂技术日趋完善,形成了三维压裂设计软件和压裂井动态预测模型,研制出环保的清洁压裂液体系和低密度支撑剂体系,配备高性能、大功率的压裂车组,使压裂技术成为低渗透油气藏开发的重要手段之一。 2.1 压裂工艺和技术

深层油气藏水力裂缝扩展数值模拟的方法与相关技术

图片简介: 本技术介绍了一种深层油气藏水力裂缝扩展数值模拟的方法,包括以下步骤,获取天然裂缝分布信息,生成离散天然裂缝系统几何模型,根据实际工程问题确定水力裂缝扩展模拟相关参数,建立深层油气藏水力裂缝扩展数学模型,基于所述模型开展数值计算,得到数值模拟结果,根据数值模拟结果进行压裂效果分析,本技术采用弹塑性本构方程描述深层油气藏压裂过程中的岩石非线性变形,耦合井筒内、裂缝内和基质中流体流动,实现深层油气藏水力裂缝扩展过程的精准模拟,并对压裂效果进行定量分析,为深层油气藏人工压裂的预测、评价和优化提供有效手段。 技术要求 1.一种深层油气藏水力裂缝扩展数值模拟的方法,其特征在于,包括以下步骤: S1.获取天然裂缝分布信息,生成离散天然裂缝系统几何模型; S2.确定所述水力裂缝扩展数值模拟的相关参数; S3.建立深层油气藏水力裂缝扩展数学模型,基于所述深层油气藏水力裂缝扩展数学模型开展数值计 算,得到数值模拟结果; S4.根据所述数值模拟结果进行压裂效果分析。 2.根据权利要求1所述一种深层油气藏水力裂缝扩展数值模拟的方法,其特征在于: 所述S1包括: 根据深层油气藏的实际地质数据和现有地质模型数据,获取在水平面上的所述天然裂缝分布信息,包括裂缝的中心点、长度、倾角信息; 根据所述天然裂缝分布信息,建立所述离散天然裂缝系统几何模型; 若地层中不发育有天然裂缝,则此步骤省略。

3.根据权利要求1所述一种深层油气藏水力裂缝扩展数值模拟的方法,其特征在于: S2所述相关参数包括: 岩石弹性力学参数,包括杨氏模量和泊松比; 岩石塑性力学参数,包括内摩擦角、膨胀角和粘聚力; 岩石断裂力学参数,包括抗拉强度和断裂能; 岩石天然裂缝性质,包括内聚力和摩擦角; 岩石物理参数,渗透率和孔隙度; 储层参数,储层厚度、孔隙压力和水平主应力; 压裂液参数,粘度、密度和注入速率。 4.根据权利要求1所述一种深层油气藏水力裂缝扩展数值模拟的方法,其特征在于: 所述S3包括: S3.1.构建岩石非线性变形模型; S3.2.构建流体流动模型; S3.3.构建全局嵌入式内聚区模型; S3.4.多物理场耦合求解。 5.根据权利要求4所述一种深层油气藏水力裂缝扩展数值模拟的方法,其特征在于: 所述构建岩石非线性变形模型包括构建应力平衡方程、几何方程和弹塑性本构方程; 所述岩石非线性变形,采用德鲁克-普拉格屈服准则和非相关联流动法则进行描述; 所述弹塑性本构方程,基于所述德鲁克-普拉格屈服准则和非相关联流动法则,根据增量塑性理论推导获得。 6.根据权利要求4所述一种深层油气藏水力裂缝扩展数值模拟的方法,其特征在于: 所述构建流体流动模型包括构建井筒内流体流动模型、裂缝内流体流动模型和基质内流体流动模型;所述井筒内流体流动,被简化为一维流动,其流动规律符合基尔霍夫定律;

高煤级煤储层水力压裂裂缝扩展模型研究_张小东

第42卷第4期 中国矿业大学学报 Vol.42No.42013年7月 Journal of China University of Mining &Technology Jul.2013高煤级煤储层水力压裂裂缝扩展模型研究 张小东1,2,张 鹏1,刘 浩1,苗书雷1 (1.河南理工大学能源科学与工程学院,河南焦作 454003; 2.中国矿业大学煤炭资源与安全开采国家重点实验室,北京 100083) 摘要:为了研究煤层气井水力压裂后的裂缝扩展规律,以沁水盆地南部煤层气井为例,基于区内煤储层的物性特征和水力压裂工程实践,根据水力压裂原理,采用数值分析的方法,探讨了研究区的煤层气井水力压裂后的裂缝形态与裂缝展布规律,提出了研究区煤层气井压裂过程中的综合滤失系数计算方法,构建了高煤级煤储层水力压裂的裂缝扩展模型,并进行了验证.研究结果表明:区内煤层气井压裂后形成的裂缝一般扩展到顶底板的泥岩中,且以垂直缝为主,裂缝形态符合KGD模型.区内常规压裂井的裂缝长为47.8~177.0m,平均90.6m.裂缝缝宽为0.013~0.049m,平均0.028m.模型计算结果与实测值、生产实践较为吻合. 关键词:高煤级煤;水力压裂;滤失系数;裂缝扩展模型 中图分类号:P 618.1文献标志码:A文章编号:1000-1964(2013)04-0573-07 Fracture extended model under hydraulic fracturing engineering for high rank coal reservoirs ZHANG Xiao-dong1,2,ZHANG Peng1,LIU Hao1,MIAO Shu-lei 1 (1.School of Energy Science and Engineering,Henan Polytechnic University,Jiaozuo 454003,China; 2.State Key Laboratory of Coal Resource and Safety Mining, China University of Mining &Technology,Beijing 100083,China) Abstract:In order to study the extended law of coal-bed gas well after hydraulic fracturing,this study took coal-bed gas well of Qinshui basin as a case in point.Based on the physics char-acteristics of coal reservoirs as well as the engineering practice of hydraulic fracturing,this re-search used the hydraulic fracturing principle and numerical analysis to investigate the fracturemorphology and fracture extended law of coal-bed gas well after hydraulic fracturing,and pro-pose the computing method of comprehensive filtration coefficient in the process of fracturing.Besides,this study also established fracture extended model for high rank coal reservoirs dur-ing hydraulic fracturing practice,and this model was further verified.The results show that:the fractures formed by hydraulic fracturing often extend to mudstone located in the roof andthe floor of coal seam,and the fractures are mainly vertical ones;the shapes of fractures con-form to KGD model;the fractures’lengths of normal hydraulic fracturing well vary from 47.8m to 177.0m,with an average of 90.6m;and the fractures’widths range from 0.013mto0.049m,and with an average of 0.028m.By the comparison,the calculation results obtainedin the paper fit well with the field measured value and the actual production practice. Key words:high rank coal reservoir;hydraulic fracturing;filtration coefficient;fracture exten- 收稿日期:2012-08-21 基金项目:国家自然科学基金项目(41072113);中国矿业大学煤炭资源与安全开采国家重点实验室开放基金项目(SKLCRSM10KFB01) 通信作者:张小东(1971-),男,河南省温县人,副教授,工学博士,从事煤地球化学、煤层气地质与工程方面的研究. E-mail:z_wenfeng@163.com Tel:0391-3987901

重复压裂

重复压裂技术综述 一重复压裂技术的发展历程 1.1 20实际50年代 受当时技术与认识水平的限制,一般认为,重复压裂是原有水力裂缝的进一步延伸或重新张开已经闭合的水力裂缝,且施工规模必须大于第一次压裂作业的2-4 倍,才能获得与前次持平的产量,否则重复压裂是无效的。这一时期重复压裂只是简单的增加施工规模,并未从机理方面深入研究,而且开展的并不多。 1.2 20实际80年代 随着油气价格的变化和现代水力压裂技术的发展,国外( 主要是美国) 又将重复压裂作为一项重要的技术研究课题,从重复压裂机制、油藏数值模拟、压裂材料、压裂设计、施工等方面进行研究攻关,获得的主要认识有:重复压裂的水力裂缝方位可能与第一次形成的裂缝方位有所不同,即重复压裂可能产生出新的水力裂缝;重复压裂应重新优选压裂材料;对于致密油气藏,重复压裂设计的原则是增加裂缝长度;对于高渗透性油气藏,则应提高裂缝的导流能力。 1.3 20实际90年代 因认识到转向重复压裂会接触到储层的剩余油区或未衰竭区而极大地提高产量和可采储量,这就更加激发了各国学者对转向重复压裂的研究。因为重复压裂裂缝延伸方式依然取决于储层应力状态,不以人们的主观意志为转移而受客观应力条件控制,因此最先发展起来的是重复压裂前储层就地应力场变化的预测技术,在这时期国外研制出可预测在多井( 包括油井和水井) 和变产量条件下就地应力场的变化模型。研究结果表明,就地应力场的变化主要取决于距油水井的距

离、整个油气田投人开发的时间、注采井别、原始水平主应力差、渗透率的各向异性和产注量等。距井的距离越小、投产投注的时间越长、原始水平主应力差越小、渗透率各向异性程度越小、产注量越大,则越容易发生就地应力方位的变化。 1.4 21世纪至今 进人21 世纪转向重复压裂技术进一步发展,有人提出了一种迫使裂缝转向的新技术,即堵老裂缝压新裂缝重复压裂技术:经过一段时间的开采,油田的低渗透层已处于高含水期,原有裂缝控制的原油产量已接近全部采出,裂缝成了水的主要通道,但某些井在现有采出条件下尚控制有一定的剩余可采储量,这时如果采取延伸原有裂缝的常规重复压裂肯定不会有好的效果。最好的办法是将原有裂缝堵死,重新压裂,在与原有裂缝呈一定角度方向上造新缝,这样既可堵水,又可增加采油量。即研究一种高强度的裂缝堵剂封堵原有裂缝,当堵剂泵入井内后有选择性地进人并封堵原有裂缝,但不能渗人地层孔隙而堵塞岩石孔隙,同时在井筒周围能够有效地封堵射孔孔眼;然后采用定向射孔技术重新射孔以保证在不同于原有裂缝的方位( 最佳方位是垂直于原有裂缝的方位) 重新定向射孔,以保证重复压裂时使裂缝转向,也即形成新的裂缝;从而采出最小主应力方向或接近最小主应力方向泄油面积的油气,实现控水增油。 二重复压裂理论 水力压裂是低渗透油气藏改造的主要措施,但经过水力压裂后的油气井,生产过程中由于压裂裂缝的闭合、油井产出过程中产出物对裂缝造成的堵塞、以及压裂后其它作业对近井地带的污染等原因,造成产量下降,甚至低于压裂前的水平。为了最大限度地改造剩余油富集区,最有效的措施是开展重复压裂。 2.1 压裂失效原因 不同井压裂失效的原因不同,通常主要有以下几种:

页岩储层水力压裂裂缝扩展模拟进展_潘林华 (1)

收稿日期:20131204;改回日期:20140519 基金项目:国家自然科学基金“页岩气储层低频脉冲水力压裂增渗机理研究”(51304258);“863计划”页岩气勘探开发新技术“页岩气压裂裂缝微地震监测技术研究” (2013AA064503)作者简介:潘林华(1982-), 男,工程师,2006年毕业于中国石油大学(北京)土木工程专业,2013年毕业于该校油气田开发工程专业,获博士学位,现主要从事岩石力学、地应力和压裂裂缝起裂和扩展等方面的研究工作。 DOI :10.3969/j.issn.1006-6535.2014.04.001 页岩储层水力压裂裂缝扩展模拟进展 潘林华 1,2,3 ,程礼军1,2,3,陆朝晖1,2,3 ,岳 锋 1,2,3 (1.国土资源部页岩气资源勘查重点实验室重庆地质矿产研究院,重庆400042;2.重庆市页岩气资源与勘查工程技术研究中心 重庆地质矿产研究院,重庆400042; 3.油气资源与探测国家重点实验室 重庆页岩气研究中心,重庆400042) 摘要:页岩储层低孔低渗,水平井多级压裂、重复压裂和多井同步压裂为主要的增产措施,压裂缝扩展和展布对于页岩压裂设计和施工、裂缝监测、产能评价至关重要。对大量相关文献进行了调研和分析,得出以下结论:①水力压裂室内实验是评价页岩复杂裂缝形态最直接的方法,但难以真实地模拟实际储层条件下的水力压裂过程;②扩展有限元、边界元、非常规裂缝扩展模型、离散化缝网模型、混合有限元法及解析和半解析模型为页岩气常用的复杂裂缝扩展模拟方法,但各种方法都有其优缺点和适用性,需要进一步改进和完善才能真实地模拟页岩复杂裂缝扩展;③天然裂缝分布和水平主应力差共同决定页岩复杂裂缝网络的形成,天然裂缝与水平最大主应力方向角度越小、水平主应力差越大,复杂裂缝网络形成难度越大;天然裂缝与水平最大主应力方向的角度越大、水平主应力差越小,越容易形成复杂裂缝网络。研究结果可以为页岩储层缝网压裂裂缝扩展模拟和水力压裂优化设计提供借鉴。 关键词:页岩气;水平井;水力压裂;压裂技术;裂缝扩展;室内实验;数值模拟中图分类号:TE357 文献标识码:A 文章编号:1006-6535(2014)04-0001-06 引言 页岩储层孔隙度、 渗透率极低,给页岩气的经济高效开发带来了极大的困难和挑战,长水平井段钻井和多段大排量水力压裂施工是页岩气开发的关键和核心技术 [1-2] ,能最大程度地增加压裂裂缝 的改造体积和表面积,最终达到提高产量和采收率的目的。页岩储层脆性大,天然裂缝和水平层理发育,压裂过程中容易发生剪切滑移和张性破坏 [3] , 压裂裂缝不再是单一对称的两翼缝,可能形成复杂的网状裂缝,给页岩水力压裂设计、裂缝监测及解释、压后产能预测等带来诸多不便。压裂裂缝的展布特征和裂缝形态可以通过室内实验和数值模拟方法进行评价。笔者广泛调研了目前页岩储层水平井压裂技术、复杂裂缝室内实验模拟和数值模拟方法的现状,分析了各种页岩水力压裂技术及压裂裂缝模拟方法的优缺点,对后续页岩储层水平井水 力压裂技术的选择以及压裂设计具有指导意义。 1页岩储层水力压裂技术 页岩储层水力压裂是个复杂的系统工程,用液 量大、施工车组多、耗时长、资金耗费量大。页岩储层水力压裂涉及压裂设计、压裂工艺选择、压裂液选择与配置、压裂设备和井下工具选择、压裂裂缝监测等问题,需要进行系统的考虑和处理。1.1 页岩储层水平井多级压裂技术 水平井多级压裂技术是页岩储层开发的关键技术,长水平井段、多级水力压裂使页岩储层能够形成多条压裂裂缝,可以增大页岩储层与井筒的渗流通道[4] 。目前常见的页岩水平井压裂主要有4 种。 (1)水平井多级可钻式桥塞封隔分段压裂技术 [5-6] 。该技术是国内外常用的页岩储层水力压

水力压裂裂缝暂堵转向机理与转向规律研究

水力压裂裂缝暂堵转向机理与转向规律研究储层改造是页岩油气、致密油气等非常规油气开发的核心技术,通过水力压裂形成复杂裂缝网络,实现体积改造是水力压裂施工的目标。当储层可压性较差或应力差较大时,难以形成复杂裂缝网络,通过暂堵逼迫裂缝转向是增强缝网扩展复杂性的重要手段。 到目前为止,虽然现场实践已取得较好成效,但裂缝暂堵转向的力学机理、扩展规律和调控方法等尚处于探索阶段,迫切需要开展人工裂缝暂堵转向机理和规律研究。本文探索了新的实验方法,发展了水力压裂数值算法,通过岩芯测试、物理模拟和数值模拟研究,对非常规储层的可压性和转向能力、转向剂对裂缝的暂堵规律、裂缝转向扩展规律进行了研究,主要取得成果如下:(1)致密储层成缝能力测试与评价。 储层成缝能力(可压性)是裂缝转向的基础和重要影响因素。实验发现:(1)页岩存在强微观非均质性,并与矿物成分、天然裂隙和TOC含量等一起,是影响页岩储层成缝能力的重要因素。 (2)流体对页岩的岩石力学性质具有显著影响,并与页岩储层的超低含水饱和度、粘土含量、TOC和微纳米孔隙有关。(3)基于基质脆性、天然裂隙密度和声发射活动性,建立了综合评价致密储层成缝能力的新方法。 油田现场应用说明此方法是可行的。(2)裂缝转向机理和规律的真三轴模拟实验研究。 利用真三轴水力压裂物模实验装置,研究了纤维暂堵裂缝的转向扩展规律,得出裂缝转向的主要控制因素为储层成缝能力及其非均质性、水平主应力差、天然裂缝分布、初级裂缝宽度、纤维浓度、粘度与排量等,得到了暂堵形成的条件

与图版,并给出了裂缝发生转向时的临界应力差;并以人工裂缝倾角、地应力差、成缝能力和缝内流压为主要参数,建立了裂缝转向能力的评价模型。(3)基于PGD 法(Proper Generalized Decomposition),针对水力压裂裂缝转向和网络化扩展数值模拟需要,建立并求解了完全耦合条件下水力压裂裂缝扩展模型,PGD算法 适合于高效、快速求解以非线性、瞬态、耦合为特征的水力压裂问题,计算速度明显快于传统的有限元方法。 (4)应用PGD算法进行了裂缝转向的模拟,结论与真三轴物理模拟结果一致。裂缝转向主要控制因素为储层性质、水平主应力差、缝间干扰、裂缝暂堵效率、粘度与排量等。 在低应力差、较短裂缝间距条件下,缝间干扰强,裂缝端部较容易发生转向;天然裂缝剪切滑移对裂缝转向具有明显影响,在剪应力和流体压力联合作用下,裂缝更易转向;在转向处裂缝宽度和净压力发生突变,缝宽变窄,净压力降低。本文研究成果将为非常规油气转向压裂改造提供理论依据和技术支持。

基于能量理论的水力裂缝扩展模型研究与应用

基于能量理论的水力裂缝扩展模型研究与应用 摘要:为了能够准确地描述裂缝扩展规律,本文通过能量分布状态规律,探讨了在裂缝扩展过程中能量的变化规律,在对裂缝扩展的建立方面给出了新的思路,并由此对裂缝扩展驱动力给出了相对应的表达式。提出了有关裂缝扩展驱动力的裂缝扩展准则,建立了关于裂缝扩展速率计算模型。实例计算结果表明,该模型计算结果与实际吻合较好。 abstract: in order to accurately describe the law of fracture propagation, the article, from the energy distribution, presents a new idea about establishing the criterion of crack propagation, explores the regulation of energy changes in the fracture propagation process and then obtains the relevant expression of driving force of fracture propagation. at the same time, the criterion of crack propagation with the expression of driving force of fracture propagation is put forward, and the calculation model of crack propagation rates is built. the calculating result is accurate and agrees well with practical ones. 关键词:水力压裂;裂缝扩展;能量守恒 key words: hydraulic fracturing;crack propagation;conservation of energy 中图分类号:te371 文献标识码:a 文章编号:1006-4311(2013)

定向水力压裂裂隙扩展动态特征分析及其应用_徐幼平

第21卷第7期2011年7月中国安全科学学报 China Safety Science Journal Vol.21No.7 Jul.2011 定向水力压裂裂隙扩展动态特征分析及其应用* 徐幼平1,2林柏泉1,2教授翟成1,2副教授李贤忠1,2孙鑫1,2李全贵1,2(1中国矿业大学煤炭资源与安全开采国家重点实验室,江苏徐州221116 2中国矿业大学安全工程学院,江苏徐州221116) 学科分类与代码:6203070(安全系统工程)中图分类号:X936文献标志码:A 基金项目:国家自然科学基金资助(51074161);国家重点基础研究发展计划资助(2011CB201205)。 煤炭资源与安全开采国家重点实验室自主研究课题(SKLCRSM08X03); 国家科技支撑计划项目(2007BAK00168-1)。 【摘要】为减少煤矿井下水力压裂卸压盲区,扩大压裂影响范围,提高卸压增透效果,在分析水力压裂起裂机理和裂隙发展特征的基础上,提出定向水力压裂技术,分析定向水力压裂过程中煤体的裂隙发展分布规律,并利用RFPA2D-Flow软件模拟了压裂的起裂、扩展和延伸过程,对定向压裂与非定向压裂的效果进行了比较。最后将定向水力压裂技术在平煤集团十二矿己 15 -31010工作面进行了现场应用,得出在27MPa的水压下,单孔压裂有效影响半径达6m;单孔瓦斯抽放平均浓度较未压裂时提高80%,平均流量上升了382%,取得了显著的效果,具有良好的推广应用价值。 【关键词】穿层;定向水力压裂;卸压增透;RFPA2D-Flow软件;声发射 Analysis on Dynamic Characteristics of Cracks Extension in Directional Hydraulic Fracturing and Its Application XU You-ping1,2LIN Bai-quan1,2ZHAI Cheng1,2LI Xian-zhong1,2SUN Xin1,2LI Quan-gui1,2(1State Key Laboratory of Coal Resources&Mine Safety,China University of Mining&Technology,Xuzhou Jiangsu221116,China2School of Safety Engineering,China University of Mining&Technology,Xuzhou Jiangsu221116,China) Abstract:In order to reduce roof-floor blind area of hydrofracture in underground mines,expand influ-enced range of fracturing,and improve the effect of hydrofracture,a directional hydraulic fracturing tech-nique was proposed on the basis of analyzing the mechanism of crack initiation and the characteristics of fracture development.And the process of crack starting,extending and elongating was simulated with RFPA2D-Flow.The effect of directional hydraulic fracturing and the effect of non-directional hydraulic frac- turing were compared.Finally the directional hydraulic fracturing technique was applied in the F 15 -31010 mining workface of the Twelfth Coal of Pingdingshan Coal Mining Group.The results show that single drill-hole fracturing effective radius rises to6m under the pressure of27MPa,and the average concentration of single-drillhole gas drainage promotes80%,average flow up382%than that it is not fractured.All these suggest that the technology obtains remarkable effect,and has a high application value. Key words:cross layer;directional hydraulic fracturing;pressure relief and permeability increase; RFPA2D-Flow software;acoustic emission *文章编号:1003-3033(2011)07-0104-07;收稿日期:2011-04-20;修稿日期:2011-05-20

暂堵压裂技术服务方案样本

八、技术服务方案 一. 暂堵重复压裂技术原理及特点 暂堵技术简介位于鄂尔多斯盆地陕北地区延长油藏大多数储油层都属于特低渗透、低压、低产油藏, 油层物性特别差, 非均质性很强, 油井自然产能也就相当低了。为了提高采收率, 绝大多数油井都进行过压裂改造, 可是由于各种原因, 油井产量还是下降的特别快, 油井依然处于低产低效的状态。因此, 为了达到进一步提高油井产量的目的, 我们必须做到以下两个方面的工作: 一、针对性的选择有开发前景的油井进行二次或者多次压裂改造, 以至于提高油井的单井产能; 二、由于我们在注水开发过程中, 注入水总是沿着老裂缝方向水窜, 导致大部分进行过压裂改造过的老井含水上升特别快, 水驱波及效率特别低。针对这部分老井, 如果还是采用常规重复压裂方法进行延伸老裂缝, 难以达到提高采收率的目的。为了探索这一部分老井的行之有效的增产改造措施, 我公司借鉴了国内许多其它大油田的暂堵重复压裂的成功的现场试验经验, 近两年来进行了多次油井暂堵压裂改造措施试验。现场施工结果表明: 在压裂施工前先挤入暂堵剂后, 人工裂缝压力再次上升的现象很明显, 部分老油井经过暂堵施工后, 其加沙压力大幅度上升, 暂堵重复压裂后, 产油量大幅度上升。为了确保有效的封堵老裂缝压开新裂缝, 并保持裂缝有较高的导流能力, 达到有较长时间的稳产期。该技术成果的成功研究与应用, 不但能够提高油井的单井 产量, 而且能够提高整个区块的开采力度, 从而为保持油田的增产稳产提供保障, 可取得可观的经济效益和社会效益。

堵老裂缝压新裂缝重复压裂技术, 即研究一种高强度的裂缝堵剂封堵原有裂缝, 当堵剂泵入井内后有选择性的进入并封堵原有裂缝, 但不能渗入地层孔隙而堵塞岩石孔隙, 同时在井筒周围能够有效地封堵射孔孔眼; 然后采用定向射孔技术重新射孔, 以保证重复压裂时使裂缝转向, 也即形成新的裂缝; 从而采出最小主应力方向或接近最小主应力方向泄油面积的油气, 实现控水增油。 水力压裂是低渗透油气藏改造的主要技术之一, 但经过水力压裂后的油气井, 在生产一段时间后, 会由于诸多原因导致压裂失效。另外, 还有些压裂作业实施后对产层造成污染, 也会使压裂打不到预期效果。对这类油气井, 想要增加产能, 多数必须采取重复压裂进行改造。 暂堵压裂技术主要用来解决油层中油水关系复杂、微裂缝十分发育的层位。注水油田经过一段时间的开采后, 大多数低渗透油层已处于高含水状态, 老裂缝控制的原油已接近全部采出, 裂缝成了主要出水通道, 但某些井在现有开采条件下尚控制有一定的剩余可采储量, 为了控水增油, 充分发挥油井的生产潜能, 我们采用暂堵重复压裂技术, 其实质是采用一种封堵剂有选择性地进入并有效封堵原有压裂裂缝和射孔孔眼, 再在新孔眼中进行压裂开新缝; 或部分封堵老裂缝, 在老裂缝封面再开新裂缝, 从而提供新的油流通道, 以保障重复压裂时使裂缝改向, 形成新的裂缝, 从而采出最小应力方向或接近最小主应力方向泄油面积的原油, 实现控水增油。 暂堵重复压裂技术就是重新构建泄油裂缝体系, 为提高油井的产量提供了一种技术手段, 最终的采油效果与所构建的新裂缝体系方向, 裂

采油井重复压裂裂缝失效原因分析及处理

采油井重复压裂裂缝失效原因分析及处理 摘要:传统的油田开发技术并不能有效地帮助采油工作的顺利进行,因此目前 很多的企业都使用了重复压裂的技术,虽然在一定程度上解决了采油的问题,但 是却又引发了产生了裂缝的问题,阻碍了采油的进程。本文主要描述了具体有哪 些原因是使用了重复压裂技术而导致的裂缝以及如何有效地解决这些问题的措施,让更多地人了解到裂缝对油田开发的不良影响。 关键词:采油井;重复压裂裂缝;失效原因;处理方式 前言:随着一些采油技术的不断更新,采油井重复压裂技术成为了目前使用 率最高的技术,同时也是具体实施效果最好的一项技术。可是由于一些外部与内 部的因素,如:堵塞问题等,使得此技术出现了失效问题,从而导致采油效果不佳,下文就主要描述了这些问题以及具体的处理方式。 一、失效的原因 (一)形成了很多污垢并沉积 由于采油的环境有所不同,可能处于酸性、碱性或者温度高低不一致的环境下,同时采油需要使用到很多的仪器,不仅仅是采油时的设施,还有运输和装载 的设备等,但是这些设备处于不同的环境中时会形成一些难溶物质并沉积下来, 这些污垢通常是在处理岩石裂缝等时产生的。由于外界环境与时间的影响,使得 这些沉淀物越来越多,同时和外界接触时间过长,还会发生一些反应,导致出现 一些腐蚀与堵塞问题,进而破坏了仪器设备的质量性。这些结垢的形成过程中, 会出现很多的变化,如:脱离水的溶解之后,表面会出现盐类分子等。 (二)微粒的影响 主要是会发生堵塞的问题,是由于哪些地面上的黏土会在泥质胶结储层形成 污垢物进而沉积下来。微粒的变化主要存在地层水中,这些水中含有一定的微量 元素,地层水以外的外界水又会影响这些元素,使得其本身的矿化度受到影响而 变化,水的酸碱度又会影响地层水中的正离子。因为水层周围的粒子不发生迁移 的现象,水中的一些粒子就会慢慢的累积到一起,进而产生堵塞的现象,直接影 响到地层水流动很缓慢。 (三)化学物质的影响 主要是会受到磷的影响。PH值等于数值7周围时最不低于磷在沉积物的释放,而水质处于酸性和碱性的环境下时有利于磷的释放。水中不免会生长植物,植物 进行光合作用时会吸收溶解于水的二氧化碳,从而减少水中的碳酸根和碳酸氢根 离子,就会使水的PH值大于7,水就容易呈碱性,富含更多的氢氧根离子,氢氧根会夺取磷酸盐中的磷,使得磷就会大量被释放出来。同时水中还有微生物和细菌,它们经过代谢之后,会产生酸性物质,那么水质整体的PH值又低于7,水再次呈现酸性,此时酸根离子会夺取沉积物中的磷,推动了磷在沉积物中的分解。 总之,水中过酸或者过碱都不利于环境的保护,都会使得沉积物中的磷得到释放,进而加大了水中磷沉积物的数量。 二、具体的解决方式 (一)采用物理解决方式 采用这种方式可以在一定程度上解决沉淀物的沉积问题,需要使用到其辐射 和催化两种功能,前一种需要使用的原材料是无机盐,主要是水中的物质,运用 无机盐增加大量的光量子被吸附掉而不是沉积下来,再通过催化的方式来改变其 自身结构,而这一过程所使用的仪器设施需要放到排放水的位置,这些能够帮助

相关主题
文本预览
相关文档 最新文档