当前位置:文档之家› kan新型乙肝压电免疫传感器的研制

kan新型乙肝压电免疫传感器的研制

kan新型乙肝压电免疫传感器的研制
kan新型乙肝压电免疫传感器的研制

压电式加速度传感器

HEFEI UNIVERSITY OF TECHNOLOGY 《传感器原理及应用》课程 考核论文 题目压电式加速度传感器班级机设七班 学号 20111488 姓名孙国强 成绩 机械与汽车工程学院机械电子工程系 二零一四年五月

压电式加速度传感器 摘要:现代工业和自动化生产过程中,非电物理量的测量和控制技术会涉及大量的动 态测试问题。所谓动态测试是指量的瞬时值以及它随时间而变化的值的确定,即被测量为变量的连续测量过程。振动与冲击测量的核心是传感器,常用压电加速度传感器来获取冲击和振动信号。压电式传感器是基于某些介质材料的压电效应,当材料受力作用而变形时,其表面会有电荷产生,从而实现非电量测量。其中,压电式加速度传感器是以压电材料为转换元件,将加速度输入转化成与之成正比的电荷或电压输出的装置,具有结构简单、重量轻、体积小、耐高温、固有频率高、输出线性好、测量的动态范围大、安装简单的特点。 一、传感器物理效应及工作原理 压电效应:某些材料在受力时所产生的电极化现象。正压电效应:某些电介质在受到某一方向的机械力而变形时,在一定表面上产生电荷,若外力变向,电荷极性随之而变;当撤除外力后,又重新回到不带电状态。逆压电效应:当在电介质的极化方向施加电场,电场力使其在一定方向上产生机械变形或机械应力;当撤除外加电场时,变形或应力随之消失,又称电致伸缩效应。 压电材料:石英晶体是目前广泛应用成本较低的人造石英晶体,有很大的机械强度和稳定的机械性能,温度稳定性好,但灵敏度低,介电常数小,因此逐渐被其他压电材料所代替,至今石英仍是最重要的也是用量最大的振荡器、谐振器和窄带滤波器等元件的压电材料。除此之外,压电陶瓷有较高的压电系数和介电常数,灵敏度高,但机械强度不如石英晶体好。 压电式加速度传感器又称为压电加速度计,它是典型的有源传感器,利用某些物质如石英晶体、人造压电陶瓷的压电效应,在加速度计受振时,质量块加在压电元件上的力也随之变化。压电敏感元件是力敏元件,在外力作用下,压电敏感元件的表面上产生电荷,从而实现非电量电测量的目的。 压电加速度传感器的原理框图如图1所示,原理如图2所示。

常用压力传感器原理分析

常用压力传感器原理分析 振膜式谐振压力传感器 振膜式压力传感器结构如图(a)所示。振膜为一个平膜片,且与环形壳体做成整体结构,它和基座构成密封的压力测量室,被测压力 p经过导压管进入压力测量室内。参考压力室可以通大气用于测量表压,也可以抽成真空测量绝压。装于基座顶部的电磁线圈作为激振源给膜片提供激振力,当激振 频率与膜片固有频率一致时,膜片产生谐振。没有压力时,膜片是平的,其谐振频率为 f0;当有压力作用时,膜片受力变形,其张紧力增加,则相应的谐振频率也随之增加,频率随压力变化且为单值函数关系。 在膜片上粘贴有应变片,它可以输出一个与谐振频率相同的信号。此信号经放大器放大后,再反馈给激振线圈以维持膜片的连续振动,构成一个闭环正反馈自激振荡系统。如图(b)所示 压电式压力传感器 某些电介质沿着某一个方向受力而发生机械变形(压缩或伸长)时,其内部将发生极化现象,而在其某些表面上会产生电荷。当外力去掉后,它又会重新回到不带电 的状态,此现象称为“压电效应”。常用的压电材料有天然的压电晶体(如石英晶体)和压电陶瓷(如钛酸钡)两大类,它们的压电机理并不相同,压电陶瓷是人造 多晶体,压电常数比石英晶体高,但机械性能和稳定性不如石英晶体好。它们都具有较好特性,均是较理想的压电材料。 压电式压力传感器是利用压电材料的压电效应将被测压力转换为电信号的。由压电材料制成的压电元件受到压力作用时产生的电荷量与作用力之间呈线性关系: Q=kSp 式中 Q为电荷量;k为压电常数;S为作用面积;p为压力。通过测量电荷量可知被测压力大小。 图1为一种压电式压力传感器的结构示意图。压电元件夹于两个弹性膜片之间,压电元件的一个侧面与膜片接触并接地,另一侧面通过引线将电荷量引出。被测压力 均匀作用在膜片上,使压电元件受力而产生电荷。电荷量一般用电荷放大器或电压放大器放大,转换为电压或电流输出,输出信号与被测压力值相对应。 除在校准用的标准压力传感器或高精度压力传感器中采用石英晶体做压电元件外,一般压电式压力传感器的压电元件材料多为压电陶瓷,也有用高分子材料(如聚偏二氟乙稀)或复合材料的合成膜的。

QCM免疫传感器检测雌二醇的研究

目录 第一章前言 (1) 1.1电化学传感器 (1) 1.1.1电化学生物传感器的基本原理 (1) 1.1.2电化学免疫传感器的基本原理及分类 (1) 1.1.3 基于QCM及EIS的电化学免疫传感器 (5) 1.1.4 QCM技术在电化学免疫传感器中的应用 (9) 1.1.5 电化学免疫传感器的发展前景 (10) 1.2雌二醇的概述 (11) 1.2.1雌二醇化学结构及其性质 (11) 1.2.2雌二醇的对人体的影响 (11) 1.2.3 当前对于雌二醇的主要的检测手段 (12) 1.3本论文研究的目的及意义 (12) 1.4参考文献 (13) 第二章本论文研究的目的及步骤 (20) 2.1 研究目的 (20) 2.2 研究步骤 (20) 2.3 实验方法 (20) 第三章QCM传感器对雌二醇的静态检测 (22) 3.1 前言 (22) 3.2 实验部分 (22) 3.2.1 仪器与试剂 (22) 3.2.2 QCM芯片上抗体的固定化 (23) 3.2.3 组装完成的电极的相关电化学表征 (23) 3.2.4 QCM免疫传感器的稳定性和选择性 (24) 3.2.5化妆品样中雌二醇的检测 (24) 3.3 结果与讨论 (25) 3.3.1 QCM免疫传感器的表征 (25)

3.3.2 实验条件的优化以及QCM免疫传感器的性能 (27) 3.3.3 雌二醇响应的标准曲线 (30) 3.3.4 雌二醇免疫传感器的稳定性与选择性 (32) 3.3.5对化妆品样品的检测 (34) 3.4 实验小结 (35) 3.5 参考文献 (35) 第四章QCM传感器对雌二醇的动态检测 (39) 4.1 前言 (39) 4.2 实验部分 (40) 4.2.1 仪器与试剂 (40) 4.2.2 抗体在QCM芯片表面的固定 (40) 4.2.3 修饰完成的芯片电极的电化学表征 (40) 4.2.4 QCM动态检测雌二醇的标准曲线 (40) 4.2.5 化妆品样品中雌二醇的检测 (41) 4.3 结果与讨论 (41) 4.3.1 免疫传感器制备过程的QCM表征 (41) 4.3.2 实验条件的优化 (43) 4.3.3 雌二醇响应的标准曲线 (43) 4.3.4 化妆品样品中雌二醇的检测 (45) 4.4 实验小结 (46) 4.5 参考文献 (46) 已完成的著作、论文 (50) 致谢 (51)

加速度传感器的选择

加速度传感器选型 压电加速度传感器因其频响宽、动态范围大、可靠性高、使用方便,受到广泛应用。在一般通用振动测量时,用户主要关心的技术指标为:灵敏度、频率范围,内部结构、内置电路型与纯压电型的区别,现场环境与后续仪器配置等。 一、灵敏度的选择 制造商在产品介绍或说明书中一般都给出传感器的灵敏度和参考量程范围,目的是让用户在选择不同灵敏度的加速度传感器时能方便地选出合适的产品,最小加速度测量值也称最小分辨率,考虑到后级放大电路噪声问题,应尽量远离最小可用值,以确保最佳信噪比。最大测量极限要考虑加速度传感器自身的非线性影响和后续仪器的最大输出电压。 估算方法:最大被测加速度×传感器电荷(电压)灵敏度,其数值是否超过配套仪器的最大输入电荷(电压)值。建议如已知被测加速度范围可在传感器指标中的“参考量程范围”中选择(兼顾频响、重量),同时,在频响、质量允许的情况下,尽量选择高灵敏度的传感器,以提高后续仪器输入信号,提高信噪比。在兼顾频响、质量的同时,可参照以下范围选择传感器灵敏度:以电荷输出型压电加速度传感器为例: 1、土木工程和超大型机械结构的振动在0.1g-10g (1g=9.81m/s2)左右,可选电荷灵敏度在300pC/ms-2~ 30pC/ms-2的压电加速度传感器,属于电荷输出型压电加速度传感器 2、特殊的土木结构(如桩基)和机械设备的振动在100ms-2~1000ms-2,可选择20pC/ms-2~2pC/ms-2的加速度传感器。 3、冲击,碰撞测量量程一般10000ms-2~1000000ms-2,可选则传感器灵敏度是0.2pC/ms-2~ 0.002pC/ms-2的加速度传感器。 二、频率选择 制造商给出的加速度传感器的频响曲线是用螺钉刚性连接安装的。 一般将曲线分成二段:谐振频率和使用频率。使用频率是按灵敏度偏差给出的,有±10%、±5%、±3dB。谐振频率一般是避开不用的,但也有特例,如轴承故障检测。选择加速度传感器的频率范围应高于被测试件的振动频率。有倍频分析要求的加速度传感器频率响应应更高。土木工程一般是低频振动,加速度传感器频率响应范围可选择0.2Hz~1kHz,机械设备一般是中频段,可根据设备转速、设备刚度等因素综合估算振动频率,选择0.5Hz~ 5kHz 的加速度传感器。如发电机转速在3000rms 时,除以60s 此时它的主频率为50Hz。碰撞、冲击测量高频居多。 加速度传感器的安装方式不同也会改变使用频响(对振动值影响不大)。 安装面要平整、光洁,安装选择应根据方便、安全的原则。我们给出同一只AD500S 加速度传感器不同安装方式的使用频率:螺钉刚性连接(±10%误差)10kHz;环氧胶或“502”粘接安装6kHz;磁力吸座安装 2kHz;双面胶安装1kHz。由此可见,安装方式的不同对测试频率的响应影响很大,应注意选择。加速度传感器的质量、灵敏度与使用频率成反比,灵敏度高,质量大,使用频率低,这也是选择的技巧。 三、内部结构 内部结构是指敏感材料晶体片感受振动的方式及安装形式。有压缩和剪切两大类,常见的有中心压缩、平面剪切、三角剪切、环型剪切。 中心压缩型频响高于剪切型,剪切型对环境适应性好于中心压缩型。如配用积分型电荷放大器测量速度、位移时,最好选用剪切型产品,这样所获得的信号波动小,稳定性好。 四、内置电路 内置的概念是将放大电路置于加速度传感器内,成为具有电压输出功能的传感元件。它可分双电源(四线)和单电源(二线、带偏置,又称ICP) 两种,下面所指内装电路专指ICP

压力传感器工作原理

压力传感器是工业实践、仪器仪表控制中最为常用的一种传感器,并广泛应用于各种工业自控环境,涉及水利水电、铁路交通、生产自控、航空航天、军工、石化、油井、电力、船舶、机床、管道等众多行业,下面就简单介绍一些常用传感器原理及其应用。 力学传感器的种类繁多,如电阻应变片压力传感器、半导体应变片压力传感器、压阻式压力传感器、电感式压力传感器、电容式压力传感器、谐振式压力传感器及电容式加速度传感器等。但应用最为广泛的是压阻式压力传感器,它具有极低的价格和较高的精度以及较好的线性特性。下面我们主要介绍这类传感器。 1、应变片压力传感器原理与应用: 在了解压阻式力传感器时,我们首先认识一下电阻应变片这种元件。电阻应变片是一种将被测件上的应变变化转换成为一种电信号的敏感器件。它是压阻式应变传感器的主要组成部分之一。电阻应变片应用最多的是金属电阻应变片和半导体应变片两种。金属电阻应变片又有丝状应变片和金属箔状应变片两种。通常是将应变片通过特殊的粘和剂紧密的粘合在产生力学应变基体上,当基体受力发生应力变化时,电阻应变片也一起产生形变,使应变片的阻值发生改变,从而使加在电阻上的电压发生变化。这种应变片在受力时产生的阻值变化通常较小,一般这种应变片都组成应变电桥,并通过后续的仪表放大器进行放大,再传输给处理电路(通常是A/D转换和CPU)显示或执行机构。 1.1、金属电阻应变片的内部结构:它由基体材料、金属应变丝或应变箔、绝缘保护片和引出线等部分组成。根据不同的用途,电阻应变片的阻值可以由设计者设计,但电阻的取值范围应注意:阻值太小,所需的驱动电流太大,同时应变片的发热致使本身的温度过高,不同的环境中使用,使应变片的阻值变化太大,输出零点漂移明显,调零电路过于复杂。而电阻太大,阻抗太高,抗外界的电磁干扰能力较差。一般均为几十欧至几十千欧左右。 1.2、电阻应变片的工作原理:金属电阻应变片的工作原理是吸附在基体材料上应变电阻随机械形变而产生阻值变化的现象,俗称为电阻应变效应。金属导体的电阻值可用下式表示: 式中:ρ——金属导体的电阻率(Ω·cm2/m) S——导体的截面积(cm2) L——导体的长度(m)

压电式传感器的发展与应用

HEFEI UNIVERSITY 自动检测技术报告 题目压电式传感器的应用与发展 系别 ***级自动化 班级 **班 姓名 ********************** 指导老师***** 完成时间 2011-11-28

前言:压电式传感器是以某些电介质的压电效应为基础,在外力作用下,在电介质的表面上产生电荷,从而实现非电量测量。压电传感元件是力敏感元件,所以它能测量最终能变换为力的那些物理量,例如力、压力、加速度等。压电式传感器具有响应频带宽、灵敏度高、信噪比大、结构简单、工作可靠、重量轻等优点。近年来,由于电子技术的飞速发展,随着与之配套的二次仪表以及低噪声、小电容、高绝缘电阻电缆的出现,使压电传感器的使用更为方便。因此,在工程力学、生物医学、石油勘探、声波测井、电声学等许多技术领域中获得了广泛的应用。本文重点介绍压电式传感器的工作原理,在航空发动机中的应用及发展趋势。 关键字:传感器压电效应测振 正文:压电式传感器的发展及应用压电式传感器是一种自发电式和机电转换式传感器。它的敏感元件由压电材料制成。压电材料受力后表面产生电荷。此电荷经电荷放大器和测量电路放大和变换阻抗后就成为正比于所受外力的电量输出。压电式传感器用于测量力和能变换为力的非电物理量。它的优点是频带宽、灵敏度高、信噪比高、结构简单、工作可靠和重量轻等。缺点是某些压电材料需要防潮措施,而且输出的直流响应差,需要采用高输入阻抗电路或电荷放大器来克服这一缺陷。 压电效应可分为正压电效应和逆压电效应。正压电效应是指:当晶体受到某固定方向外力的作用时,内部就产生电极化现象,同时在某两个表面上产生符号相反的电荷;当外力撤去后,晶体又恢复到不带电的状态;当外力作用方向改变 时,电荷的极性也随之改变;晶体受力所产生的电荷量 与外力的大小成正比。压电式传感器大多是利用正压电 效应制成的。逆压电效应是指对晶体施加交变电场引起 晶体机械变形的现象,又称电致伸缩效应。用逆压电效 应制造的变送器可用于电声和超声工程。压电敏感元件 的受力变形有厚度变形型、长度变形型、体积变形型、 厚度切变型、平面切变型5种基本形式(见图)。压电 晶体是各向异性的,并非所有晶体都能在这5种状态下产生压电效应。例如石英晶体就没有体积变形压电效应,但具有良好的厚度变形和长度变形压电效应。 压电效应是压电传感器的主要工作原理,压电传感器不能用于静态测量,因为经过外力作用后的电荷,只有在回路具有无限大的输入阻抗时才得到保存。实际的情况不是这样的,所以这决定了压电传感器只能够测量动态的应力。 压电传感器主要应用在加速度、压力和力等的测量中。压电式加速度传感器是一种常用的加速度计。它具有结构简单、体积小、重量轻、使用寿命长等优异的特点。压电式加速度传感器在飞机、汽车、船舶、桥梁和建筑的振动和冲击测量中已经得到了广泛的应用,特别是航空和宇航领域中更有它的特殊地位。压电式传感器也可以用来测量发动机内部燃烧压力的测量与真空度的测量。也可以用于军事工业,例如用它来测量枪炮子弹在膛中击发的一瞬间的膛压的变化和炮口的冲击波压力。它既可以用来测量大的压力,也可以用来测量微小的压力。 压电式传感器也广泛应用在生物医学测量中,比如说心室导管式微音器就是由压电传感器制成的,因为测量动态压力是如此普遍,所以压电传感器的应用就非常广泛。

免疫传感器研究进展

第21卷第6期长春大学学报Vol.21No.6 2011年6月JOURNAL OF CHANGCHUN UNIVERSITY June2011 免疫传感器研究进展 艾民1,张文艳2 (1.长春大学特殊教育学院,长春130022; 2.吉林省妇幼保健院,长春130061) 摘要:免疫传感器是将高灵敏的传感技术与特异性免疫反应结合起来,用以监测抗原抗体反应的生物传感器,具有快速、灵敏、选择性高、操作简便等特点,已广泛地应用在临床各个领域。随着传感器的发展,出现了压电免疫传感器、脂质体免疫传感器、表面等离子体共振免疫传感器、光导纤维免疫传感器等新型免疫传感器。近年来,纳米技术逐步进入电化学免疫传感器领域,并引发突破性的进展。纳米材料因其具有独特的性质,被广泛应用于研制和发展具有超高灵敏度、超高选择性的免疫传感器。本文就新型免疫传感器及其临床应用做一综述。 关键词:免疫传感器;临床;生物传感器 中图分类号:TP212.2文献标志码:A文章编号:1009-3907(2011)06-0083-03 1压电免疫传感器 自从1972年,Shons等[1]首次在石英晶体表面涂覆一层塑料薄膜以吸附蛋白质,成功制备了用于测定牛血清白蛋白抗体的压电晶体免疫传感器,从而使压电现象用于免疫测试的想法成为现实。压电免疫传感器作为一种新型生物免疫检测系统,因其具有高特异性、高灵敏度、响应快、小型简便等特点,,得到了飞速的发展,人们已经用它对多种抗原或抗体进行快速的定量测定及反应动力学进行研究。 Shen等[2]研制了直接检测癌胚(CEA)的压电免疫传感器,为提高传感器的灵敏度,将蛋白A用定向固定化方法与免疫反应催化剂聚乙烯二醇(PEG)结合来放大传感器频率信号。CEA的检测线性范围为66.7 466.7nmol/I。Zeng等[3]研制出用于急性白血病临床免疫分型的压电免疫阵列,白血病单克隆抗体通过纳米金,蛋白A固定在晶体表面,传感器能在5min内检测出白血病样品,并能动态地监测免疫反应过程,与荧光免疫分析方法比较,两者无显著差异。 Minunni等[4]将人免疫缺陷病毒(HIV)某抗原表位的人工合成肽固定于石英晶体电极表面,检测体液标本中的HIV抗体。 Yao C等[5]研制了一种新型的压电石英微阵列免疫传感器,可用于乙肝病毒的测定。这种微阵列传感器的检测速率快,能在50分钟内完成检测,而且抗干扰能力强,临床特异性达到94.44,对乙肝病毒的检测极限为8.6pg/L。 Thomas W等[6]研制了压电免疫传感器用于流感病毒的直接检测,检测线为4virus particles/mL。Y Ding等[7]发展了检测甲胎蛋白的新型压电免疫传感器,检测限15.3-600.0ng/ml。笔者应用循环伏安研究了水相中琉基苯并咪哇的电化学氨化过程,并应用电化学石英晶体微天平监测了此氧化成膜的过程。 2脂质体免疫传感器 脂质体免疫传感器(LIS)是将脂质体应用于免疫传感器而建立起来的一类新型生物传感器。不仅保持了传统免疫传感器高度的专一性和高效性的优点,并且极大地增强了响应信号。当抗原(或抗体)与脂质体结合后,传感器只对抗原与抗体的特异性吸附进行检测,避免了非特异性吸附的干扰,从而提高了脂质体传感器的灵敏度。脂质体免疫传感器为临床诊断学提供了一种新型的、快速的、高效的分析技术,具有十分广阔的应用前景。 将脂质体应用于免疫传感器,利用其包埋的大量信号物质放大免疫响应信号,可以极大提高传感器的灵敏度并使免疫传感器免受非特异性连接干扰。目前已开发出各类新型的脂质体免疫传感器,如脂质体电化 收稿日期:2010-03-14 作者简介:艾民(1968-),女,吉林长春人,副教授,硕士,主要从事临床教学与研究。

PE和IEPE加速度传感器的比较.doc

P E和I E P E加速度传感器的比较 PE是指电荷输出型压电式加速度传感器,IEPE是指内置处理电路的压电式加速度传感器,本文将要讨论二者各自的特点。 压电效应 压电式加速度传感器的工作原理是以某些物质的压电效应为基础的。当这些物质在某一方向上因受到拉力或压力的作用而产生变形时,其表面上会产生电荷;当去掉外力时,它们又会回到不带电的状态,这种现象就是压电效应。常用的压电材料有石英、钛酸钡、锆钛酸铅等等。实际上,当压电材料受到剪切力、横向拉力或压力时,也会产生压电效应。 PE加速度传感器 PE压电式加速度传感器的工作原理是:将质量块的加速度转换为其对压电材料所施加的力,通过测得该力的大小从而换算出加速度的值。 压电式加速度传感器的结构原理如下图所示。两片压电片组成了其压电元件,表面有镀银层,中间夹有一金属片,并焊有输出引线,另一输引线直接与基座相连。压电片上放有一个比重较大的质量块,并用一硬弹簧或螺栓对其施加预载荷。整个组件封装在一个金属壳体内部,基座一般较为厚重且刚度大。 测量时,传感器与被测物刚性固定在一起,当被测物振动时,传感器与基座也会产生相同的振动。由于质量块的质量相对较小,而弹簧的刚度相对很大,所以可认为质量块的惯性很小。因此质量块感受到与传感器基座相同的振动,并受到与加速度方向相反的惯性力的作用。于是,质量块就有一正比于加速度的交变力作用在压电片上,使其两个表面产生交变电荷。当振动频率远低于传感器的固有频率时,传感器的输出电荷与作用力成正比,亦即与被测物的加速度成正比。 由于PE传感器的输出量为电荷,因此其后端必须与电荷放大器或电压放大器连接,才能将电荷信号转换为电压信号,此电压信号经过后级放大、滤波等调理电路即可送入示波器等设备。由于PE传感器的输出阻抗较高,易受输出的电荷信号易受噪声干扰,因此必须使用特殊的低噪声电缆。 IEPE加速度传感器 由于PE加速度传感器有必须配接外部电荷放大器使用,并且信号在长距离传输过程中容易受干扰等一些缺点,因此出现了IEPE加速度传感器。 IEPE压电式加速度传感器的结构原理如上图所示,它其实就是将PE加速度传感器所需的处理电路集成到传感器内部,这样就可以直接输出一个高电平、低阻抗的电压信号,也有

压电式加速度传感器及其应用备课讲稿

压电式加速度传感器 及其应用

压电式加速度传感器及其应用 一、 压电式加速度传感器原理 压电式加速度传感器又称压电加速度计。它也属于惯性式传感器。它是利用某些物质如石英晶体的压电效应,在加速度计受振时,质量块加在压电元件上的力也随之变化。当被测振动频率远低于加速度计的固有频率时,则力的变化与被测加速度成正比。 由于压电式传感器的输出电信号是微弱的电荷,而且传感器本身有很大内阻,故输出能量甚微,这给后接电路带来一定困难。 为此,通常把传感器信号先输到高输入阻抗的前置放大器。经过阻抗变换以后,方可用于一般的放大、检测电路将信号输给指示 仪表或记录器。 二、压电式加速度传感器构成元件 常用的压电式加速度计的结构形式如图所示,是由预压弹簧,质量块,基座,压电元件和外壳组成。图中为环形剪切型,结构简单,能做成极小型、高共振频率的加速度计,环形质量块粘到装在中心支柱上的环形压电元件上。由于粘结剂会随温度增高而变软,因此最高工作温度受到限制。 预压弹簧压电元件外壳质量 块基座

三、压电式加速度传感器幅频特性 图1 压电式加速度计的幅频特性曲线 加速度 限频率取决于幅频曲线中的共振频率图(图1)。一般小阻尼(z<=0.1)的加速度计,上限频率若取为共振频率的 1/3,便可保证幅值误差低于1dB(即12%);若取为共振频率的1/5,则可保证幅值误差小于0.5dB(即6%),相移小于30。但共振频率与加速度计的固定状况有关,加速度计出厂时给出的幅频曲线是在刚性连接的固定情况下得到的。实际使用的固定方法往往难于达到刚性连接,因而共振频率和使用上限频率都会有所下降。 四、压电式加速度传感器的灵敏度 压电式加速度计的灵敏度压电加速度计属发电型传感器,可把它看成电压源或电荷源,故灵敏度有电压灵敏度和电荷灵敏度两种表示方法。前者是加速度计输出电压(mV)与所承受加速度之比;后者是加速度计输出电荷与所承受加速度之比。加速度单位为m/s2,但在振动测量中往往用标准重力加速度g作单位,1g= 9.80665m/s2。对给定的压电材料而言,灵敏度随质量块的增大或压电元件的增多而增大。一般来说,加速度计尺寸越大,其固有频率越低。因此

压电式压力传感器原理及应用

压电式压力传感器原理及应用 自动化研1302班王民军 压电式压力传感器是工业实践中最为常用的一种传感器。而我们通常使用的压力传感器主要是利用压电效应制造而成的,这样的传感器也叫压电式压电传感器。压电式压力传感器可以用来测量发动机内部燃烧压力的测量与真空度的测量。也可以用于军事工业,例如用它来测量枪炮子弹在膛中击发的一瞬间的膛压的变化和炮口的冲击波压力。它既可以用来测量大的压力,也可以用来测量微小的压力。 一、压电式传感器的工作原理 1、压电效应 For personal use only in study and research; not for commercial use 某些离子型晶体电介质(如石英、酒石酸钾钠、钛酸钡等)沿着某一个方向受力而发生机械变形(压缩或伸长)时,其内部将发生极化现象,而在其某些表面上会产生电荷。当外力去掉后,它又会重新回到不带电的状态,此现象称为“压电效应”。压电式传感器的原理是基于某些晶体材料的压电效应。 2、压电式压力传感器的特点 压电式压力传感器是基于压电效应的传感器。是一种自发电式和机电转换式传感器。它的敏感元件由压电材料制成。压电材料受力后表面产生电荷。此电荷经电荷放大器和测量电路放大和变换阻抗后就成为正比于所受外力的电量输出。压电式压力传感器用于测量力和能变换为力的非电物理量,如压力、加速度等(见

压电式压力传感器、加速度计)。压电式压力传感器是利用压电材料的压电效应将被测压力转换为电信号的。由压电材料制成的压电元件受到压力作用时产生的电荷量与作用力之间呈线性关系:Q=k*S*p。 For personal use only in study and research; not for commercial use 式中Q为电荷量;k为压电常数;S为作用面积;p为压力。通过测量电荷量可知被测压力大小。 压电式压力传感器的工作原理与压电式加速度传感器和力传感器基本相同,不同的是弹性元件是由膜片等把压力转换成集中力,再传给压电元件。为了保证静态特性及稳定性,通常多采用压电晶片并联。在压电式压力传感器中常用的压电材料有石英晶体和压电陶瓷,其中石英晶体应用得最为广泛。 For personal use only in study and research; not for commercial use 二、压电压力传感器等效电路和测量电路 在校准用的标准压力传感器或高精度压力传感器中采用石英晶体做压电元件外,一般压电式压力传感器的压电元件材料多为压电陶瓷,也有用高分子材料

压电式加速度传感器的信号输出形式

电荷输出型 传统的压电加速度计通过内部敏感芯体输出一个与加速度成正比的电荷信号。实际使用中传感器输出的高阻抗电荷信号必须通过二次仪表将其转换成低阻抗电压信号才能读取。由于高阻抗电荷信号非常容易受到干扰,所以传感器到二次仪表之间的信号传输必须使用低噪声屏蔽电缆。由于电子器件的使用温度范围有限,所以高温环境下的测量一般还是使用电荷输出型。北智BW-Sensor采用进口陶瓷的加速度计可在温度-40oC~250oC范围内长期使用。 低阻抗电压输出型(IEPE) IEPE型压电加速度计即通常所称的ICP型压电加速度计。压电传感器换能器输出的电荷通过装在传感器内部的前置放大器转换成低阻抗的电压输出。IEPE型传感器通常为二线输出形式,即采用恒电流电压源供电;直流供电和信号使用同一根线。通常直流电部分在恒电流电源的输出端通过高通滤波器滤去。IEPE型传感器的最大优点是测量信号质量好、噪声小、抗外界干扰能力强和远距离测量,特别是新型的数采系统很多已配备恒流电压源,因此,IEPE传感器能与数采系统直接相连而不需要任何其它二次仪表。在振动测试中IEPE传感器已逐渐取代传统的电荷输出型压电加速度计。 传感器的灵敏度,量程和频率范围的选择 压电型式的加速度计是振动测试的最主要传感器。虽然压电型加速度计的测量范围宽,但因市场上此类加速度计品种繁多,所以给正确的选用带来一定的难度。 艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。 如需进一步了解图尔克、奥托尼克斯、科瑞、山武、倍加福、邦纳、亚德客、施克等各类传感器的选型,报价,采购,参数,图片,批发信息,请关注艾驰商城https://www.doczj.com/doc/841297276.html,/

压电式测力传感器

压电式测力传感器的原理及应用 摘要:伴随着电子工程、机械工程、物理学及生物学的发展和需求,传感器微电子技术也逐步的成熟起来,成为一个独立的,设计生物、物理、化学、材料、工程学等领域的新学科。它也将延伸到我们生活的各行各业、方方面面。由于传感器技术的空前发展,其应用领域也不断深入,人们对这方面知识的需求愈显迫切,各种特性,功能各异的传感器也应运而生,例如生物传感器,红外传感器,压电式传感器……,对于这形色功能各异的传感器我们怎样去认识、熟悉它也是一个需要解决的难题,本文将带领我们进入这个新奇的世界,…… 关键词:微电子技术,传感器,压电式测力传感器 1引言:生活中的声控开关、商场中的智能大门、时下正热的红外遥感技术,对这一切就 时时刻刻发生我们身边和应用到我们生活中的随口拖出的“神秘”东西,对于这些智能的生活用具到底怎样工作的呢?在这之中我们不得不提到一个重要的幕后操纵者——传感器,什么是传感器,传感器的工作原理及其性能是什么,……,本文将通过介绍传感器中的一种压电式传感器带领我们进入这个神秘的世界,并通过实例的解析去认识它 2 传感器的综述 2.1 传感器的专业术语及系统介绍 传感器:(广义)凡能外界信息并按一定规律转换成便于测量和控制的信息的装置;(狭义)只有将外界信息按一定规律转换成电量的装置。 传感器的总特性:主要指传感器以及被测对象和后接仪器组成的测量系统的输入和输出的匹配、传感器的机械特性以及其工作特性。 静态特性:表示传感器在被测量各值处于稳定状态时的输入-输出的关系,其指标是灵敏度、线性度、稳定度迟滞等。 动态特性:指输入随时间变化的特性,它表示传感器对随时间变化的输入量的响应特性。它取决于传感器本身,另外与被测量的形式有关。 传感器的组成:通常,传感器由敏感元件,传感元件和其他辅助件组成,又是也将信号调节与转换电路、辅助电源作为传感器的组成部分。如下图: 敏感元件:直接感受被测量(一般为非电量),并输出与被测量成确定关系的其他量(一般为电量)的元件。如应变式压力传感器的弹性膜片、热电偶等都为敏感元件。 传感元件:又称变换器,它一般情况下不直接感受被测量,而是将敏感元件的输出量转换为电量输出的元件。如应变式传感器中的应变片等。 信号调节与辅助电路:能把传感元件输出的电信号转换为便于显示、记录、处理和控制的有

常用加速度传感器有哪几种分类

1、常用加速度传感器有哪几种分类各有什么特点 答:加速度传感器按工作原理可分为压电式、压阻式和电容式。 压电式传感器是通过利用某些特殊的敏感芯体受振动加速度作用后会产生与之成正比的电荷信号的特性,来实现振动加速度的测量的,这种传感器一般都具有测量频率范围宽、量程大、体积小、重量轻、结构简单坚固、受外界干扰小以及产生电荷信号不需要任何外界电源等优点,它最大的缺点是不能测量零频率信号。 压阻式传感器的敏感芯体为半导体材料制成电阻测量电桥来实现测量加速度信号,这种传感器的频率测量范围和量程也很大,体积小重量轻,但是缺点也很明显,就是受温度影响较大,一般都需要进行温度补偿。 电容式传感器中一般有个可运动质量块与一个固定电极组成一个电容,当受加速度作用时,质量块与固定电极之间的间隙会发生变化,从而使电容值发生变化。它的优点很突出,灵敏度高、零频响应、受环境(尤其是温度)影响小等,缺点也同样突出,主要是输入输出非线形对应、量程很有限以及本身是高阻抗信号源,需后继电路给予改善。 相比之下,压电式传感器应用更为广泛一些,压阻式也有一定程度的应用,而电容式主要专用于低频测量。 2、压电式传感器又分哪几种 答:压电式传感器有多种分类方式。 按敏感芯体材料分为压电晶体(一般为石英)和压电陶瓷两类。压电陶瓷比压电晶体的压电系数要高,而且各项机电系数随温度时间等外界条件的变化相对较小,因此一般更常用的是压电陶瓷。 按敏感芯体结构形式分为压缩式、剪切式和弯曲变形梁式。压缩式结构最简单,价格便宜,但是不能有效排除各种干扰;剪切式受干扰影响最小,目前最为常用,但是制造工艺要求较高,所以价格偏高;弯曲变形梁式比较少见,其结构能够产生较大的电荷输出信号,但是测量频率范围较低,受温度影响易产生漂移,因此不推荐使用。 按信号输出的方式分为电荷输出式和低阻抗电压输出式(ICP)。电荷输出式直接输出高阻抗电荷信号,必须通过二次仪表转换成低阻抗电压读取,而高阻抗电荷信号较容易受干扰,所以对测试环境、连接线缆等的要求较高; 而ICP型传感器内部安装了前置放大器,直接转换成电压信号输出,所以相对有信号质量好、噪声小、抗干扰能力强、能实现远距离测量等优点,目前正逐步取代电荷输出式传感器。 3、选择压电式加速度传感器时有哪些基本原则 答:选择一般应用场合的压电式加速度传感器时,要从三个方面全面考虑: ①振动量值的大小②信号频率范围③测试现场环境。 作为一般的原则,灵敏度高的传感器量程范围小,反之灵敏度低的量程范围大,而且一般情况下,灵敏度越高,敏感芯体的质量块越大,其谐振频率也越低,如果谐振波叠加在被测信号上,会造成失真输出,因此选择时除

压力传感器原理【详解】

压力传感器原理 内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理!更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展. 一.压力传感器原理 一些常用传感器原理及其应用: 1、应变片压力传感器原理与应用 力学传感器的种类繁多,如电阻应变片压力传感器、半导体应变片压力传感器、压阻式压力传感器、电感式压力传感器、电容式压力传感器、谐振式压力传感器及电容式加速度传感器等。但应用最为广泛的是压阻式压力传感器,它具有极低的价格和较高的精度以及较好的线性特性。下面我们主要介绍这类传感器。 在了解压阻式力传感器时,我们首先认识一下电阻应变片这种元件。电阻应变片是一种将被测件上的应变变化转换成为一种电信号的敏感器件。它是压阻式应变传感器的主要组成部分之一。电阻应变片应用最多的是金属电阻应变片和半导体应变片两种。金属电阻应变片又有丝状应变片和金属箔状应变片两种。通常是将应变片通过特殊的粘和剂紧密的粘合在产生力学应变基体上,当基体受力发生应力变化时,电阻应变片也一起产生形变,使应变片的阻值发生改变,从而使加在电阻上的电压发生变化。这种应变片在受力时产生的阻值变化通常较小,一般这种应变片都组成应变电桥,并通过后续的仪表放大器进行放大,再传输给处理电路(通常是A/D转换和CPU)显示或执行机构。

金属电阻应变片的内部结构 1、应变片压力传感器原理 如图1所示,是电阻应变片的结构示意图,它由基体材料、金属应变丝或应变箔、绝缘保护片和引出线等部分组成。根据不同的用途,电阻应变片的阻值可以由设计者设计,但电阻的取值范围应注意:阻值太小,所需的驱动电流太大,同时应变片的发热致使本身的温度过高,不同的环境中使用,使应变片的阻值变化太大,输出零点漂移明显,调零电路过于复杂。而电阻太大,阻抗太高,抗外界的电磁干扰能力较差。一般均为几十欧至几十千欧左右。 电阻应变片的工作原理 金属电阻应变片的工作原理是吸附在基体材料上应变电阻随机械形变而产生阻值变化的现象,俗称为电阻应变效应。金属导体的电阻值可用下式表示: 式中:ρ——金属导体的电阻率(Ω?cm2/m) S——导体的截面积(cm2) L——导体的长度(m) 我们以金属丝应变电阻为例,当金属丝受外力作用时,其长度和截面积都会发生变化,从上式中可很容易看出,其电阻值即会发生改变,假如金属丝受外力作用而伸长时,其长

加速度传感器选用

工程振动量值的物理参数常用位移、速度和加速度来表示。由于在通常的频率范围内振动位移幅值量很小,且位移、速度和加速度之间都可互相转换,所以在实际使用中振动量的大小一般用加速度的值来度量。常用单位为:米/秒2 (m/s2),或重力加速度(g)。 描述振动信号的另一重要参数是信号的频率。绝大多数的工程振动信号均可分解成一系列特定频率和幅值的正弦信号,因此,对某一振动信号的测量,实际上是对组成该振动信号的正弦频率分量的测量。对传感器主要性能指标的考核也是根据传感器在其规定的频率范围内测量幅值精度的高低来评定。 最常用的振动测量传感器按各自的工作原理可分为压电式、压阻式、电容式、电感式以及光电式。压电式加速度传感器因为具有测量频率范围宽、量程大、体积小、重量轻、对被测件的影响小以及安装使用方便,所以成为最常用的振动测量传感器。 传感器的种类选择 ·压电式- 原理和特点 压电式传感器是利用弹簧质量系统原理。敏感芯体质量受振动加速度作用后产生一个与加速度成正比的力,压电材料受此力作用后沿其表面形成与这一力成正比的电荷信号。压电式加速度传感器具有动态范围大、频率范围宽、坚固耐用、受外界干扰小以及压电材料受力自产生电荷信号不需要任何外界电源等特点,是被最为广泛使用的振动测量传感器。虽然压电式加速度传感器的结构简单,商业化使用历史也很长,但因其性能指标与材料特性、设计和加工工艺密切相关,因此在市场上销售的同类传感器性能的实际参数以及其稳定性和一致性差别非常

大。与压阻和电容式相比,其最大的缺点是压电式加速度传感器不能测量零频率的信号。 ·压阻式 应变压阻式加速度传感器的敏感芯体为半导体材料制成电阻测量电桥,其结构动态模型仍然是弹簧质量系统。现代微加工制造技术的发展使压阻形式敏感芯体的设计具有很大的灵活性以适合各种不同的测量要求。在灵敏度和量程方面,从低灵敏度高量程的冲击测量,到直流高灵敏度的低频测量都有压阻形式的加速度传感器。同时压阻式加速度传感器测量频率范围也可从直流信号到具有刚度高,测量频率范围到几十千赫兹的高频测量。超小型化的设计也是压阻式传感器的一个亮点。需要指出的是尽管压阻敏感芯体的设计和应用具有很大灵活性,但对某个特定设计的压阻式芯体而言其使用范围一般要小于压电型传感器。压阻式加速度传感器的另一缺点是受温度的影响较大,实用的传感器一般都需要进行温度补偿。在价格方面,大批量使用的压阻式传感器成本价具有很大的市场竞争力,但对特殊使用的敏感芯体制造成本将远高于压电型加速度传感器。 ·电容式 电容型加速度传感器的结构形式一般也采用弹簧质量系统。当质量受加速度作用运动而改变质量块与固定电极之间的间隙进而使电容值变化。电容式加速度计与其它类型的加速度传感器相比具有灵敏度高、零频响应、环境适应性好等特点,尤其是受温度的影响比较小;但不足之处表现在信号的输入与输出为非线性,量程有限,受电缆的电容影响,以及电容传感器本身是高阻抗信号源,因此电容传感器的输出信号往往需通过后继电路给于改善。在实际应用中电容式加速度传感器较多地用于低频测量,其通用性不如压电式加速度传感器,且成本也比压电式加速度传感器高得多。

压力传感器的工作原理

压力传感器的工作原理 您需要登录后才可以回帖登录|注册发布 压力传感器是工业实践、仪器仪表控制中最为常用的一种传感器,并广泛应用于各种工业自控环境,涉及水利水电、铁路交通、生产自控、航空航天、军工、石化、油井、电力、船舶、机床、管道等众多行业。 力学传感器的种类繁多,如电阻应变片压力传感器、半导体应变片压力传感器、压阻式压力传感器、电感式压力传感器、电容式压力传感器、谐振式压力传感器及电容式加速度传感器等。但应用最为广泛的是压阻式压力传感器,它具有极低的价格和较高的精度以及较好的线性特性。下面我们主要介绍这类传感器。 压阻式压力传感器原理与应用: 压阻式压力传感器是利用单晶硅材料的压阻效应和集成电路技术制成的传感器。压阻式传感器常用于压力、拉力、压力差和可以转变为力的变化的其他物理量(如液位、加速度、重量、应变、流量、真空度)的测量和控制。 压阻效应 当力作用于硅晶体时,晶体的晶格产生变形,使载流子从一个能谷向另一个能谷散射,引起载流子的迁移率发生变化,扰动了载流子纵向和横向的平均量,从而使硅的电阻率发生变化。这种变化随晶体的取向不同而异,因此硅的压阻效应与晶体的取向有关。硅的压阻效应不同于金属应变计,前者电阻随压力的变化主要取决于电阻率的变

化,后者电阻的变化则主要取决于几何尺寸的变化(应变),而且前者的灵敏度比后者大50~100倍。 压阻式压力传感器结构 压阻式压力传感器采用集成工艺将电阻条集成在单晶硅膜片上,制成硅压阻芯片,并将此芯片的周边固定封装于外壳之内,引出电极 引线。压阻式压力传感器又称为固态压力传感器,它不同于粘贴式应变计需通过弹性敏感元件间接感受外力,而是直接通过硅膜片感受被测压力的。硅膜片的一面是与被测压力连通的高压腔,另一面是与大气连通的低压腔。硅膜片一般设计成周边固支的圆形,直径与厚度比约为20~60。在圆形硅膜片(N型)定域扩散4条P杂质电阻条,并接 成全桥,其中两条位于压应力区,另两条处于拉应力区,相对于膜片中心对称。硅柱形敏感元件也是在硅柱面某一晶面的一定方向上扩散制作电阻条?,两条受拉应力的电阻条与另两条受压应力的电阻条构 成全桥。 电子血压计中压力传感器的原理应用及常见故障 压力传感器是工业生应用中最为常见的一种传感器,其广泛应 用于各种工业自控环境,在医用中常见于电子血压计,下面,便来为您简单介绍一些压力传感器原理应用及常见故障。 电子血压计压力传感器的工作原理及应用 压力传感器一般有电容式的和压阻式的。电容式的利用两片金 属间的电容变化来对应压力值,压阻式利用电阻值变化来对应压力值。 电子血压计压力传感器的常见问题

压电传感器的应用

压电传感器的应用 摘要:传感器是获取自然和生产领域中信息的主要途径与手段。在现代工业生产尤其是自动化生产过程中,要用各种传感器来监视和控制生产过程中的各个参数,使设备工作在正常状态或最佳状态,并使产品达到最好的质量。传感器的种类非常广泛,其中压电传感器是基于材料的压电效应而制成的器件,其有较长的发展历史。压电材料的种类由最初的压电晶体发展到压电陶瓷、进而发展到压电聚合物及其复合材料。随着物理学、材料科学与各个学科的交叉发展,压电材料被用以研制成了多种用途的传感器,被广泛应用于工程技术各领域,在测量技术中被用来测量力和加速度。 Abstract:Sensor is the main ways and means to obtain information in the field of natural and production . In modern industrial production, especially automated production process, useing a variety of sensors to monitor and control the production process of various parameters,which enable the device to work in a normal state or the best condition, and to achieve the best quality products. Types of sensors is very broad, of which the piezoelectric sensor is based on the piezoelectric effect devices made of material which has a long history of development. Types of piezoelectric material from the initial development of the piezoelectric ceramic piezoelectric crystal, and thus the development of piezoelectric polymers and their composites. With the development of cross-physics, materials science and various disciplines, piezoelectric materials are used for research into a variety of uses sensors are widely used in various

相关主题
文本预览
相关文档 最新文档