当前位置:文档之家› 蛛丝蛋白的研究现状和进展

蛛丝蛋白的研究现状和进展

蛛丝蛋白的研究现状和进展
蛛丝蛋白的研究现状和进展

蛛丝蛋白的研究现状和进展

摘要:蛛丝蛋白是一种很特殊的纤维蛋白。由于其高度重复的一级结构、特殊的溶解特性

和分子折叠行为以及具有形成非凡力学特性丝纤维的能力而引人注目。本文主要对蛛丝蛋白的结构、特点以及目前对其研究比较多的应用和新型的合成方法进行综述,同时也对将来蛛丝蛋白的研究方向以及在研究中可能会遇见的问题进行分析。通过本文的介绍希望可以在其蛋白质的结构上有更深刻的理解和认识,同时也为蛛丝蛋白的研究和应用提供一个很好的参考和依据。

关键词:蛛丝蛋白;结构;基因合成;弹性、韧性材料

前言:蛛丝蛋白是一种很特殊的纤维蛋白,它是由节肢动物门昆虫纲、蛛形纲和多足纲中

某些类群的特殊腺体产生的。蛛丝主要包括拖丝和捕捉丝, 其中拖丝主要用于构成蜘蛛网的牵丝和轮状网面, 捕捉丝则用来粘附昆虫并在昆虫挣扎时提供强大的弹性, 以免由于强大的动能导致反弹, 将捕捉到的食物弹出去。因此,蛛丝蛋白的结构性能以及其强大的力学特性值得深入的研究。另外,尽管某些具有优良力学特性的蛛丝可以被开发为有潜力的、应用价值高的新型生物材料,但在人工条件下大规模、高密度地养殖蜘蛛以获得蛛丝的现实困难迫使人们寻求另外的途径生产蛛丝蛋白来满足研究、开发和应用的需要。因此,高效的合成和生产方法变得也不可忽视。纵观近十年的研究史,大多数好的研究技术也逐渐走向成熟。比如近来从蜘蛛丝腺cDNA文库中克隆蛛丝蛋白基因或通过化学合成编码蛛丝蛋白的人工基因用于重组蛛丝蛋白基因工程生产已成为制备蛛丝蛋白的一个主要方法。蛛丝蛋白基因克隆和表达的成功为人们初步了解各种类型蛛丝蛋白分子的结构、折叠行为和功能之间的内在联系及各种类型蛛丝各自独特力学特性的分子基础提供了良好的开端。与上述蛛丝蛋白的结构与性能的研究深入,它的应用也逐渐发展起来。比如研究人员首先通过转基因技术培育出了一种山羊,这种山羊能够生产出具有蛛丝蛋白的羊奶。在羊奶中加入一种特殊的溶剂后,就能提取到大量的蛛丝纤维。这种蛛丝纤维甚至比著名的凯夫拉尔纤维还结实,强度是钢的10 倍。将这些纤维纺纱编织就能制成所需要的“超强布料”。同时,蛛丝蛋白在其结构性能和应用方面的研究同时也面临着众多的问题等待解决。

一、蛛丝蛋白的结构和功能

1、总体认识:蛛丝蛋白具有典型的蛋白质二级结构,即蜘蛛丝由α-螺旋和β-片层共同

组成。

特点:1、规则的β-片层被不规则的α-螺旋和β-弯曲所包围。

2、β-片层赋于丝力度α-螺旋赋于丝弹性。

蛛丝主要包括拖丝和捕捉丝。针对这两种蜘蛛蛋白丝的不同功能, 首先对它们的蛋白质结构展开了深入的研究。观察到两种丝在氨基酸组成和空间结构上均有极大的相似性和同源性。氨基酸序列分析结构表明, 拖丝蛋白主要由甘氨酸和丙氨酸组成, 其中甘氨酸占氨基酸总量的37%,丙氨酸占18%;而捕捉丝丝蛋白主要氨基酸是甘氨酸和脯氨酸, 甘氨酸占氨基酸总量的44%,脯氨酸占21%。此外其它如谷氨酸, 丝氨酸, 亮氨酸, 酪氨酸和缬氨酸等, 在这两种丝蛋白中也占有一席之地。由于蛛丝蛋白的结构中缺乏长的侧链, 因而其蛋白质结构趋向于紧密堆砌, 并与不定型的富含甘氨酸区形成半结晶状态, 再通过若干不同的残基重复片段得到强化。利用核磁共振方法研究蛛丝蛋白的空间结构, 发现它主要由一个松弛部分和一个紧密部分构成: 紧密部分主要由8- 10 个丙氨酸残基序列组成, 并形成反向平行的β- 折叠, 多个β- 折叠构成的紧密部分成为结晶状态; 非结晶状态的松弛部分则由24- 35 个富含甘氨酸的单链多肽构成, 它们形成α- 螺旋起着连接晶体部分的作用。这样β折叠片层之间以β- 转角相连, 而α- 螺旋构成的松弛部分将各β- 折叠连成一个线状整体, 其直径约4 微米。利用固相核磁共振技术研究证明, 尽管在成型的蛛丝蛋白中多为反向的- 折叠结构,但处于液态的蛛丝蛋白则通常是以α- 螺旋形式存在的。这些重复的蛋白质片段, 每隔一段距离形成一个转角, 扭结成一个分子弹簧, 最终整个丝蛋白构成一个弹簧似的结构, 这种结构的要领就在于多肽链残基n 的CO 基与残基n+ 3 的NH 形成氢键,因而多肽链可以急剧地改变其方向。

2、温度和某些化学试剂与蛋白质结构有关。在体外较高温度下, 可以诱导蛛丝蛋白多

肽序列形成β- 折叠; 2, 2, 2- 三氟乙醇则可诱导α- 螺旋的形成。V ollrath 等还发现蜘蛛壶腹腺内有一些中空的纤维管, 其管壁由具有透析作用的半透膜组成。这种结构可以加速水流并改变其离子成分, 从而起到一个阀门和动力泵的作用, 它可以促进断丝的连接和纺丝, 以保证丝蛋白以最优化的方式进行自装配。这对于我们研究、了解蛛丝蛋白的自装配行为并加以利用是具有重要的现实意义的。

3、同种或不同种的蜘蛛拖丝蛋白的弹性、强度、断裂张力与蜘蛛的体重有相关性。

一般来说, 断裂张力为其体重的2 倍, 弹性则为其体重的6 倍。这说明适当调整某些氨基酸序列可以优化蛛丝蛋白的某些性质。而且就同种蛛丝来讲, 当蜘蛛处于不同的生活状态下,例如饥饿时, 所抽出的丝也会表现出不同的特性。蜘蛛纺丝或人工抽丝速度也会影响蛛丝的性质,Madsen 提出抽丝速度的增加会导致断裂长度的降低和断裂强度的升高以及初期晶体模数的增加。。针对各种蛛丝蛋白的不同结构和功能, Hayasi 等[ 8] 提出假说: 从分子结构上来讲, 张力强度与丙氨酸富含区和晶体的模数相关; 脯氨酸富含区则和弹性、伸展性相关。由于蛛丝蛋白具有这样的结构特征, 因而呈现一些独特的物理化学性质是不足为奇的: (1)强度高;

(2)韧性大;

(3)具有独特的三维空间网状结构;

(4)具有一定的热稳定性, 在250 C高温下它能保持稳定, 只有在250 C 以上时才会分解;

(5)耐疲劳性;

(6)具可降解性, 在一定的酸性条件或者紫外线照射情况下会发生降解。

二、蛛丝蛋白的合成

1、蛛丝蛋白的天然合成过程

通过查阅相关文献了解到蜘蛛和家蚕产生蛛丝蛋白的过程和机理大致如在:

蜘蛛和家蚕丝腺的部位和来源不同,但有一个共同点,就是在丝腺内溶于水的高分子量的丝蛋白被排出体外后转变成为不溶于水的丝纤维,这个转变过程涉及到二硫键的形成、阳离子相互作用、糖基化以及其他的化学和物理过程。另外丝蛋白分子中富含丙氨酸的重复片段在一定程度上可自发折叠或自发组装成为B一折叠二级结构,将来在丝纤维中成为晶体结构。家蚕丝腺在产丝过程中其生理内环境如酸碱度和盐离子浓度在不断改变,这可能有助于丝蛋白溶液在通过腺管流向喷丝头的过程中尽管丝蛋白浓度不断增大但仍能保持在水溶液中的溶解性。在自然产丝过程中腺管壁的剪切力直接促成了可溶性的丝蛋白到不溶性的丝纤维的转变。。蜘蛛和家蚕都有左右成对的丝腺,一对丝腺最终共同形成一条丝纤维;每个丝腺腺管包括前(盲端)、中、后(通向喷丝头)三个部分。家蚕丝蛋白在丝腺腺管前段管壁腺细胞中合成并分泌丝素蛋白到腺管中;中段腺管管腔大、主要储存丝素蛋白溶液,管腔内丝素蛋白浓度可达20~30%,同时中段管壁细胞还合成丝胶;靠近喷丝头附近的后段腺管中丝蛋白浓度更高。

总之,蜘蛛丝蛋白分子由于一级结构的特征决定了其分子内或分子问能自发形成p一折叠二级结构而具有产生固态分子聚合体的自发倾向,蜘蛛丝腺的结构及内环境成功地调控了蛛丝蛋白分子形成B一折叠二级结构的时机和程序。。目前蜘蛛大壶状腺丝形成的过程和机理研究得最清楚。单个的大壶状腺是一端为盲端、另一端为开KI的管道,依次为盲端的腺体部、腺漏斗、腺管、腺阀、阀后腺管和喷丝头等几个部分。腺体部由管径较小的盲尾和管径膨大的腺囊两部分构成。

他们认为,有两个关键因素促使蛛丝蛋白水溶液在温和的生理条件下向固态蛛丝的转变。首先是从腺囊开始一直到喷丝头管径越来越小,其中在腺漏斗和腺管后段两个部位管径急剧缩小,管壁的剪切力迫使线性的蛛丝蛋白分子逐渐向平行于腺管的轴向排列方式转变,即向液晶状态转变;其次是蛛丝蛋白水溶液从腺体部向喷丝头方向流动的过程中脱水的趋势。

2、蛛丝蛋白的人工合成

由于蛛丝的特殊的机械特性在工业和医药方面存在着巨大的应用前景, 但是蜘蛛又非常难以驯化,所以人们把目光投向了利用生物工程的方法来人工合成这种纤维。

通过相关文献总结为:最先是利用大肠杆菌和酵母来表达蜘蛛丝蛋白。最近几年正在研究利用山羊乳腺细胞、家蚕表达系统以及植物马铃薯和烟草来生产蜘蛛丝蛋白。

由于这些蛋白质序列的高度重复性和它的二级结构的特殊性, 在细菌和酵母中合成这种重组蛋白质时表达蛋白质的分子量较小、表达量也较低困。因此, 人们把目光转向了利用真核细胞进行表达, 在转基因植物中已经能够生产分子量在10 kD 以上的蛛丝融合蛋白单体(M as pl)[7」。由于植物细胞与动物细胞存在着较大的差异, 现在研究的重点还是集中在利用哺乳动物细胞进行蛛丝蛋白的表达。利用蚁酸作为溶媒抽丝获得的蛛丝纤维不具备天然蛛丝的机械性能, 所以当前正在进行人造蛛丝方面工作的几个实验室大都建立了以水为溶媒的抽丝工艺。下面对目前比较有效的方法进行详细的阐述:

1、蜘蛛丝蛋白基因的合成及其串联体在大肠杆菌中的表达

其主要的过程和步骤为:

1、相关菌类和质粒的培养。主要有克隆受体菌和表达受体菌,克隆质粒和表达质粒。

2、蜘蛛丝蛋白基因的设计和合成

利用Maspl的部分序列和Masp2序列以及鞭毛丝蛋白Flag的序列,结合蜘蛛丝蛋白序列模块的结构和功能特性,另外还考虑到引物设计等问题,通过Vector NTI等分子生物学软件,优化设定新的蜘蛛丝蛋白的基因序列。

3、蜘蛛丝蛋白基因的克隆和表达载体构建

4、蜘蛛丝蛋白基因的诱导表达

5、重组蜘蛛丝蛋白的纯化

2、利用哺乳动物进行蛛丝蛋白的合成

目前。实验中,研究人员首先通过转基因技术培育出了一种山羊,这种山羊能够生产出具有蛛丝蛋白的羊奶。在羊奶中加入一种特殊的溶剂后,就能提取到大量的蛛丝纤维。这种蛛丝纤维甚至比著名的凯夫拉尔纤维还结实,强度是钢的10 倍。将这些纤维纺纱编织就能制成所需要的“超强布料”。

3、利用植物来生产

利用植物来生产蜘蛛丝蛋白,是将能生产蜘蛛丝蛋白的基因移植给植物,如花生、烟草和土豆等作物,使这些植物能大量生产类似于蜘蛛丝蛋白的蛋白质,然后将蛋白质提取出来作为生产仿蜘蛛丝的原料。例如:德国植物遗传与栽培研究所将能复制M ila clavipes蜘蛛拉索丝的蜘蛛丝蛋白的合成基因移植给烟草和土豆,所培植出的转基因烟草和土豆含有数量可观的类似于蜘蛛丝蛋白的蛋白质,90%以上的蛋白质分子长度在420~3 600个氨基酸之间,其基因编码与蜘蛛丝蛋白相似。这种经基因重组的蜘蛛丝蛋白含于烟草和土豆的叶子中,也含于土豆的块茎中。由于这种经基因重组的蛋白质有极好的耐热性,使其提纯与精制手续简单而有效。

4、利用转基因蚕生产蛛丝

我国国家863计划生物高科技项目“应用蛋白质工程改进蚕丝性能研究”负责人陆长德研究员介绍,历经5 a的工作,他们解决了转基因家蚕基因导人、活体基因鉴定、传代育种等一系列关键技术。为了便于识别和鉴定,又将绿色荧光蛋白基因融入了蜘蛛拖丝基因中,并已得到了具有绿色荧光的蚕茧。沈阳农业大学构建了家蚕杆状病毒载体表达系统,以及中国科技大学构建了含1.4 kb元件片段的蚕表达载体,说明对于家蚕表达系统的基因定向导入已有了长足的进展,为定向将蜘蛛丝基因导人家蚕产丝基因打下基础。

三、蛛丝蛋白的应用与展望

“荷兰的科学家日前通过基因工程技术用蛛丝蛋白制成了一种高强度人造皮肤,这种“皮肤”甚至能够抵御子弹的射击而不被穿透。”通过这一条消息我们不难发现,蛛丝蛋白将会在高强度材料和绿色生物材料方面将会大显身手。

蛛丝蛋白的应用前景:

1、人造皮肤

影响人造皮肤和烧伤包被层性能最大的影响因素是水气的通透性。丝类纤维的通透性与天然皮肤非常接近而且, 作为生物材料, 丝类纤维与皮肤的相像性很好, 又具有比较发达的伸展性, 非常适合人造皮肤的要求。

2、生物大分子的固定材料

丝类蛋白组织系统特殊分子结构赋予它比例适中的亲水性和疏水性, 同时水溶性的丝类蛋白可开发加工成各种形态及形状的材料以供不同用途。例如, 固定在丝蛋白薄膜中的葡萄糖氧化酶就被用来作为检测血液中葡萄糖浓度的传感器。

3、生物传感器

固定了特异抗原的丝类纤维膜可以用作检测相关疾病的生物传感器, 被固定的抗原物质与体内产生的特异抗体相作用形成固定在纤维上的抗原抗体复合物, 而这种特异的结合反应可以通过电讯号的形式被检测到。

4、人工肌健

医疗领域的一大难题是没有合适的材料来替代损坏的肌腿。丝类纤维可以吸附到骨骼的主要成分经磷灰石形成坚固的晶体外层而且蛛丝本身还具有高强度、韧性以及良好的柔性和可塑性, 这一切都使其成为适宜替代肌腔的前景材料。

5、军事及民用防护领域

由前面的分析可以看出, 蛛丝在理化性质方面与目前军事及民用防护领域所用的Kelver等材料相当, 甚至略优越一些。更重要的是蛛丝本身的重量要轻得多,而且柔性和通气性要远远优于上述材料, 因此蛛丝在防护领域将有非常乐观的发展前景。

四、在蛛丝蛋白的研究过程中遇到的问题:

首先,从蛋白质的结构上看。蛛丝蛋白质是一个具有特殊空间结构的生物大分子。由于其分子量较大因此这就给我们对其氨基酸序列的检测带来较大的困难。更重要的是空间结构较为复杂,这为我们对其的认识和合成上带来更大的困难。

其次,从人工合成蛛丝纤维和天然合成的蛛丝纤维的合成过程比较来看, 人工合成蛛丝纤维需要经过抽丝、抽丝后的牵拉等几道工序,而天然合成的蛛丝纤维却是一步合成的, 这可能预示着在天然蛛丝的合成过程中还存在着某种未知的因素在发挥作用, 这还有待于对其进行进一步的研究。

最后,在蛛丝蛋白的应用方面也由很多的技术问题需要解决。比如,在人造皮肤的应用上如何将其与人类的特性联系在一起,如何消除人类免疫对其的攻击等等。但是,我认为,这些问题随着人类技术的发展,总有一天会取得成功的。

结论:1、结构决定性质。蛛丝蛋白典型的二级结构决定了蛛丝蛋白良好的韧性和弹性

等优良的性质。

2、由于蛛丝蛋白是由天然生物产生的。因此我们可以通过了解蜘蛛等生物的天然合成过程来为我们的人工合成过程做指导。

总结:通过这次对文献的查阅和总结,使我对蛛丝蛋白的认识更加深刻。充分的认识

到了蛋白质二级结构的特点,以及蛋白质合成的过程和一般的方法步骤,同时对结果决定性质这一基本理论有了更深刻的认识和了解。同时经过查阅前沿的研究成果,我对生物科学产生了浓厚的兴趣和爱好。我相信我们的生物科学在未来将会有非常大的发展和应用。

参考文献:

[1] 张前军《生物工程进展》 2001

[2] 王晓辉《蛛丝蛋白的研究进展》 2002

[3] 潘鸿春《蛛丝蛋白的研究现状》蛛形学报 2006

[4] 李中奎《蛛丝蛋白研究及其应用前景》生命的化学 2002

[5] 许箐,潘志娟《蜘蛛丝蛋白的人工合成及人造蜘蛛丝》苏州大学学报 2005

[6] 周培等蜘蛛丝蛋白基因的合成及其串联体在大肠杆菌中的表达中国农业科技导报 2007

[7] 姚清华基因重组蛛丝蛋白仿生纤维的制备研究自然科学版 2009

[8] RUAN Chao Ran 《Construction, Fermentation and Purification of High Polymer Spider Dragline Silk Protein Containing RGDPeptide》 Chinese Journal of Biotechnology 2007

蛋白质组学的应用研究进展

蛋白质组学的应用研究进展 蛋白质组学的应用研究进展 尹稳1 伏旭2 李平1 (1. 兰州大学第二医院,兰州 730030 ;2. 兰州大学第二医院急救中心,兰州730030) 摘要:蛋白质组学(Proteomics)是一门大规模、高通量、系统化的研究某一类型细胞、组织或体液中的所有蛋白质组成 及其功能的新兴学科。虽然基因决定蛋白质的水平,但是基因表达的水平并不能代表细胞内活性蛋白的水平,蛋白质组学分析是对蛋白质翻译和修饰水平等研究的一种补充,是全面了解基因组表达的一种必不可少的手段。蛋白质组学相关技术的发展极大地推动了蛋白质组学的研究进展,使其在各研究领域得到了广泛的应用。对蛋白质组学相关技术及其在各领域的应用进行了综述,最后对蛋白质组学的发展趋势和应用前景作出展望。 关键词:蛋白质组学双向凝胶电泳 质谱 生物信息学 应用现状 Application Research Progress of Proteomics (1. Lanzhou University Second Hospital,Lanzhou 730030 ;2. Department of Emergency,Lanzhou University Second Hospital,Lanzhou 730030) Abstract: Proteomics is an emerging discipline for studying proteins composition and function in a type of cell, tissue or body fluids in a large-scale, high-throughput and systematic level. While genes determine the level of protein, but the level of gene expression can not represent the intracellular reactive protein levels. Proteomic analysis is a complement to the study of translation and modification and also an indispensable tool for a comprehensive understanding of genome expression. The development of proteomic technologies has greatly promoted the progress of proteomic research, and it has been widely used in various research fields.This paper revieweded the proteomic technologies and the applications in various fields are also briefly reviewed. Finally, some future issues are presented.

蛋白质结构与功能的研究进展

《生物化学》课程论文 姓名:曹SS 学号:11310300SS 专业:SS教育 成绩: SS学院生命科学学院 2015年 1 月 1 日

文献综述 蛋白质结构与功能的研究进展 学生:曹SS 指导老师:杜SS 【摘要】人类基因组计划即将完成。虽然基因组的序列作为信息库拥有大量的、重要的生物信息资源,但并不是基因本身,而是基因组所编码的蛋白质才能够直接参与和指导绝大多数的生物学过程。毫无疑问,只有阐明蛋白质的作用机理,才能够真正理解基因的功能。蛋白质结构与功能关系的揭示将有助于人类对于如生殖、发育、疾病等生命活动的基本机理的了解。同时,将对于人类疾病的防治和药物的发明具有重要的指导意义。 【关键词】蛋白质;结构;功能 1.引言 在人类进人21世纪新纪元之际,生命科学也迎来一个崭新的时代,即“后基因组时代(Post一genome era)”。在这一时代中,生命科学的中心任务是揭示基因组及其所包含的全部基因的功能,并在此基础上阐明遗传、发育、进化、功能调控等基本生物学问题,以及进一步解决与医学、环境保护、农业密切相关的问题。由于基因的功能最终总是通过其表达产物—蛋白质来实现的,因此,要了解基因组全部功能活动,最终也必须回到蛋白质分子上来。现已知道,以蛋白质为主体的生物大分子的功能主要决定于它们的三维结构,所以也有人认为当代生物学研究已经进人了“结构基因组时代(structural genomics era)”。目前,我们还不可能只用基因组DNA的一维序列去确定生命活动的机理(mechanism)和途径(path-way),也难以仅用基因的信息去解释疾病发生与发展的分子机理。显然,在人类基因组之后的时代,在有关生命活动整合知识的指导下,以蛋白质及其复合物、组装体为主体的生物大分子的精细三维结构及其在分子、亚细胞、细胞和整体水平上的生物学功能的研究是生命科学的重大前沿课题,也是当前生物学领域中最具有挑战性的任务之一,在后基因组时代生物学发展中处于战略性的关键地位。因此,在从现在到今后的5到15年中,我国在重点基础研究发展的战略性规划中,不失时机地组织精干的结构生物学研究队伍,开展对重要功能基因表达产物—蛋白质及其复合物、组装体的结构与功能的研究具有重要的科学意义,是推动我国生物学研究在21世纪生物学领域占据一席之地的必要措施[1]。 另外,以蛋白质为主体的生物大分子及其复合物和组装体三维结构与功能关系研究是生

蛋白质组学研究方法选择及比较

蛋白质组学研究方法选择及比较 目前研究蛋白组学的主要方法有蛋白质芯片及质谱法,本文将从多方面对两种研究方法进行了解与比较; 蛋白质芯片(Protein Array) 将大量不同的蛋白质有序地排列、固定于固相载体表面,形成微阵列。利用蛋白质分子间特异性结合的原理,实现对生物蛋白质分子精准、快速、高通量的检测。 主要类型: ●夹心法芯片(Sandwich-based Array) ●标记法芯片(Label-based Array) ●定量芯片(Quantitative Array) ●半定量芯片(Semi-Quantitative Array) 质谱(Mass Spectrometry) 用电场和磁场将运动的离子按它们的质荷比分离后进行检测,测出离子准确质量并确定离子的化合物组成,即通过对样品离子质荷比的分析而实现对样品进行定性和定量的一种方法。 主要类型:

●二维电泳+质谱(2D/Mass Spectrometry, MS) ●表面增强激光解吸电离飞行时间质谱(Surface-enhanced laser desorption/ionization- time of flight, SELDI) ●同位素标记相对和绝对定量(Isobaric tags for relative and absolute quantitation, iTRAQ) Protein Array or Mass Spectrometry? 如何选择合适的研究方法?以下将从六个方面进行比较与推荐: 1.筛查蛋白组学表达差异 建议选择:RayBiotech(1000个因子的芯片)+质谱 a)不同的方法学有不同的特点:对于质谱,可以筛查到未知的蛋白,但是对于分子量大、 低丰度的蛋白质,质谱的灵敏度和准确性有一定的限制。 b)不同的方法能筛查到的目标不同:根据Proteome Analysis of Human Aqueous Humor 一文中报道,质谱筛查到的差异蛋白集中在小分子与代谢物。而用RayBiotech芯片筛查到的结果,多是集中在细胞因子、趋化、血管、生长等等。 c)质谱筛查到355个蛋白,而RayBiotech抗体芯片也筛查到328个蛋白,且用定量芯片 验证25个蛋白有差异,这些蛋白是质谱找不到的。目前RayBiotech夹心法抗体芯片已经可以检测到1000个蛋白,采用双抗夹心法,尤其是对于低丰度蛋白,有很好的灵敏度和特异性,很多的低丰度蛋白是抗体芯片可以检测出来,而质谱检测不到的,且样品不经过变性和前处理,保持天然状态的样品直接检测,对于蛋白的检测准确度高。 d)质谱的重复性一直是质谱工作者纠结的问题,不同操作者的结果,不同样品处理条件, 峰值的偏移等影响因素都会产生大的影响;RayBiotech的夹心法芯片重复性高。

蛋白质组学的应用研究进展_尹稳

?综述与专论? 2014年第1期 生物技术通报 BIOTECHNOLOGY BULLETIN 随着基因组计划的完成,生命科学研究开始进入以基因组学、蛋白质组学、营养组学、代谢组学等“组学”为研究标志的后基因组时代。蛋白质组(proteome)一词最早是由澳大利亚科学家Wilkins 和Williams 于1994年提出[1],1995年7月最早见诸于Electrophoresis 杂志[2],意指一个细胞或组织中由基因组表达的全部蛋白质。蛋白质组学(proteomics)是一门大规模、高通量、系统化的研究某一类型细胞、组织、体液中的所有蛋白质组成、功能及其蛋白之间的相互作用的学科。 虽然基因决定蛋白质的水平,mRNA 只包含了转录水平的调控,其表达水平并不能代表细胞内活 收稿日期:2013-09-05基金项目:甘肃省科技计划基金资助项目(0708NKCA129),兰州大学第二医院医学研究基金项目(YJ2010-08)作者简介:尹稳,女,硕士,研究方向:蛋白质组学;E -mail :yinwen0508@https://www.doczj.com/doc/839479847.html, 通讯作者:伏旭,男,硕士,研究方向:生物化学与分子生物学;E -mail :fuxu0910@https://www.doczj.com/doc/839479847.html, 蛋白质组学的应用研究进展 尹稳1 伏旭2 李平1 (1.兰州大学第二医院,兰州 730030;2.兰州大学第二医院急救中心,兰州 730030) 摘 要: 蛋白质组学(Proteomics)是一门大规模、高通量、系统化的研究某一类型细胞、组织或体液中的所有蛋白质组成及其功能的新兴学科。虽然基因决定蛋白质的水平,但是基因表达的水平并不能代表细胞内活性蛋白的水平,蛋白质组学分析是对蛋白质翻译和修饰水平等研究的一种补充,是全面了解基因组表达的一种必不可少的手段。蛋白质组学相关技术的发展极大地推动了蛋白质组学的研究进展,使其在各研究领域得到了广泛的应用。对蛋白质组学相关技术及其在各领域的应用进行了综述,最后对蛋白质组学的发展趋势和应用前景作出展望。 关键词: 蛋白质组学 双向凝胶电泳 质谱 生物信息学 应用现状 Application Research Progress of Proteomics Yin Wen 1 Fu Xu 2 Li Ping 1 (1. Lanzhou University Second Hospital ,Lanzhou 730030;2. Department of Emergency ,Lanzhou University Second Hospital ,Lanzhou 730030) Abstract: Proteomics is an emerging discipline for studying proteins composition and function in a type of cell, tissue or body fluids in a large -scale, high -throughput and systematic level. While genes determine the level of protein, but the level of gene expression can not represent the intracellular reactive protein levels. Proteomic analysis is a complement to the study of translation and modification and also an indispensable tool for a comprehensive understanding of genome expression. The development of proteomic technologies has greatly promoted the progress of proteomic research, and it has been widely used in various research fields.This paper revieweded the proteomic technologies and the applications in various fields are also briefly reviewed. Finally, some future issues are presented. Key words: Proteomics Two -dimensional gel electrophoresis Mass spectrometry Bio -informactics Application status 性蛋白的水平[3],且转录水平的分析不能反应翻译后对蛋白质的功能和活性起至关重要作用的蛋白修饰过程[4],如酰基化、泛素化、磷酸化或糖基化等。而蛋白质组学除了能够提供定量的数据以外,还能提供包括蛋白定位和修饰的定性信息。只有通过对生命过程中蛋白质功能和蛋白质之间的相互作用以及特殊条件下的变化机制进行研究,才能对生命的复杂活动具有深入而又全面的认识。近年来,蛋白质组学技术取得了长足的发展,随着新技术的不断涌现,其应用范围也不断扩大。本文对蛋白质组学相关技术及其在各研究领域的应用进行了简要的归纳和评述,并对蛋白质组学的发展趋势和应用前景

蛋白质工程及其应用研究进展

蛋白质工程及其应用研究进展 摘要:蛋白质工程是生物工程中五大工程之一,本文对蛋白质工程作了简要概述,介绍了蛋白质工程的特点,并从蛋白质结构分析结构、功能的设计和预测、蛋白的创造和改造等方面对蛋白质工程研究内容进行详细论述,并以实例作了蛋白工程的应用。 关键词:蛋白质工程特点;研究内容;实际应用;展望 蛋白质是生命的体现者,离开了蛋白质,生命将不复存在。可是,生物体内存在的天然蛋白质,有的往往不尽人意,需要进行改造。由于蛋白质是由许多氨基酸按一定顺序连接而成的,每一种蛋白质有自己独特的氨基酸顺序,所以改变其中关键的氨基酸就能改变蛋白质的性质。而氨基酸是由三联体密码决定的,只要改变构成遗传密码的一个或两个碱基就能达到改造蛋白质的目的。蛋白质工程的一个重要途径就是根据人们的需要,对负责编码某种蛋白质的基因重新进行设计,使合成的蛋白质变得更符合人类的需要。这种通过造成一个或几个碱基定点突变,以达到修饰蛋白质分子结构目的的技术,称为基因定点突变技术。 蛋白质工程是在基因重组技术、生物化学、分子生物学、分子遗传学等学科的基础之上,融合了蛋白质晶体学、蛋白质动力学、蛋白质化学和计算机辅助设计等多学科而发展起来的新兴研究领域。其内容主要有两个方面:根据需要合成具有特定氨基酸序列和空间结构的蛋白质;确定蛋白质化学组成、空间结构与生物功能之间的关系。在此基础之上,实现从氨基酸序列预测蛋白质的空间结构和生物功能,设计合成具有特定生物功能的全新的蛋白质,这也是蛋白质工程最根本的目标之一。 目前,蛋白质工程尚未有统一的定义。一般认为蛋白质工程就是通过基因重组技术改变或设计合成具有特定生物功能的蛋白质。实际上蛋白质工程包括蛋白质的分离纯化,蛋白质结构和功能的分析、设计和预测,通过基因重组或其它手段改造或创造蛋白质。从广义上来说,蛋白质工程是通过物理、化学、生物和基因重组等技术改造蛋白质或设计合成具有特定功能的新蛋白质。 1概念 按人们意志改变蛋白质的结构和功能或创造新的蛋白质的过程。包括在体外改造已有的蛋白质,化学合成新的蛋白质,通过基因工程手段改造已有的或创建新的编码蛋白质的基因去合成蛋白质等。为获得的新蛋白具备有意义的新性质或新功

比较蛋白质组学研究中的稳定同位素标记技术

进展评述 比较蛋白质组学研究中的稳定同位素标记技术 刘新1,2 应万涛1,2 钱小红1,23 (1军事医学科学院放射与辐射医学研究所 北京 100850;2北京蛋白质组研究中心 北京 102206) 摘 要 比较蛋白质组学是指在蛋白质组学水平上研究正常和病理情况下细胞或组织中蛋白质表达变化,以期发现具有重要功能的生物标识物,为疾病的早期诊断提供依据。近年来它正成为蛋白质组学研究的热点和发展趋势。比较蛋白质组学的研究方法和策略有多种,本文就最近几年来稳定同位素标记技术(体内代谢标记技术和体外化学标记技术)在比较蛋白质组学研究中的进展进行综述。 关键词 比较蛋白质组学 稳定同位素标记 体内代谢标记 体外化学标记 Application of Stable Isotope Labeling in Comparative Proteomics Liu X in1,2,Y ing Wantao1,2,Qian X iaohong1,23 (1Beijing Institute of Radiation Medicine,Beijing100850; 2Beijing Proteome Research Center,Beijing102206) Abstract C omparative proteomics is the research of protein expression changing between normal and pathological cell or tissue on the proteome level.P otential biomarkers w ould be discovered from the research by comparative proteomics, which will be helpful to the diagnosis and therapy of diseases.In the recent years,it has been becoming the hot spot of the proteomics research and many strategies used in comparative proteomics have been developed.During those approaches,the strategies based on stable is otopic labeling coupled with mass spectrometry have been extensively used and lots of success ful applications have been reported.In contrast to the traditional radioactive is otope labeling method,stable is otope labeling technique was not radioactive and the operation is simple.Metabolic labeling in viv o and chemical labeling in vitro are tw o parts of stable is otope labeling technique,which both have various advantages and disadvantages.This paper reviewed the progress of stable is otope labeling technique in comparative proteomics. K ey w ords C omparative proteomics,S table is otope labeling,Metabolic labeling in viv o,Chemical labeling in vitro 随着人类基因组精确图谱的公布,基因组功能的阐明已经成为生命科学研究中一项极重要的任务[1]。蛋白质是基因的最终产物同时也是基因功能的最终执行体,因而人类基因的表达及其功能有待于在蛋白水平上揭示。蛋白质组学的研究目的是分离和鉴定组织或细胞中的所有蛋白质。生物体在生长发育过程中,基因组是相对稳定的,而蛋白表达是高度动态变化的,并且具有严格调控的时间和空间特异性[2]。为了研究生物体在不同状态下表达的所有蛋白质的动态变化,比较蛋白质组学应运而生,即在蛋白组学水平上,研究在正常生理和病理状态,或受到不同的外部环境刺激下,或在突变等因素影响下,蛋白质表达的变化情况,以期发现生物体内关键的调控分子及与疾病相关的蛋白质标志物,最终为疾病的防诊治、新型疫苗的研发等提供理论依据。 为了研究蛋白质表达的动态变化,基因表达检测技术,如微阵列法[3]、DNA(脱氧核糖核酸)芯片法[4]等曾被广泛使用。这些方法虽然能够实现对mRNA(信使核糖核酸)进行定性和定量分析,但 刘新 男,27岁,博士生,现从事比较蛋白质组学研究。 3联系人,E2mail:qianxh1@https://www.doczj.com/doc/839479847.html, 国家自然科学基金(20505019、20505018)、国家重点基础研究发展规划项目(2004C B518707)和北京市科技计划重大项目(H030230280190)资助项目 2006207220收稿,2006209221接受

蛋白质结构解析研究进展作业

《蛋白质结构解析研究进展》 一、蛋白质结构分类 人类对于进化的认识及蛋白质结构相似性比较的研究使蛋白质结构分类成为可能,而且近年来取得的研究进展表明,大部分蛋白质可以成功的分入到适当数目的家族中。目前国际上流行的蛋白质结构分类数据库基本上采取两种不同的思路,一种是数据库中储存所有结构两两比较的结果;第二种思路是致力于构建非常正式的分类体系。由于所有分类方法反映了各研究小组在探究这个重要领域的不同角度,所以这些方法是同等有效的。目前,被广泛应用的四种分类标准是:手工构造的层次分类数据库SCOP,全自动分类的MMDB和FSSP,和半手工半自动的CATH。 蛋白质结构自动分类问题可以被纳入机器学习的范畴,通过提取分析蛋白质结构的关键特征,构造算法来学习蕴含于大量已知结构和分类的数据中的专家经验知识,来实现对未知蛋白质结构的分类预测。目前,对蛋白质结构的不同层次分类,结果比较好的机器学习方法是:神经网络多层感知器、支持向量机和隐马尔可夫模型。支持向量机应用于分类问题最终归结于求解一个最优化问题。上世纪90 年代中期,隐马尔可夫模型与其他机器学习技术结合,高效地用于多重比对、数据挖掘和分类、结构分析和模式发现。多层感知器即误差反向传播神经网络,它是在各种人工神经网络模型中,在机器学习中应用最多且最成功的采用BP学习算法的分类器。 二、蛋白质结构的确定 蛋白质三维空间结构测定方法主要包括X射线晶体学分析、核磁共振波谱学技术和三维电镜重构,这三种方法都可以完整独立地在原子分辨水平上测定出蛋白质的三维空间结构。蛋白质数据库PDB中80%的蛋白质结构是由X射线衍射分析得到的,约15%的蛋白质结构是由核磁共振波谱学这种新的结构测定方法得到。 1、X射线晶体学

质谱技术在蛋白质组学研究中的应用

第35卷 第1期2011年1月 南京林业大学学报(自然科学版) Journa l o fN anji n g Forestry Un i v ersity (Natural Sc ience Ed ition) V o.l 35,N o .1Jan .,2011 htt p ://www.n l dxb .com [do :i 10.3969/.j issn .1000-2006.2011.01.024] 收稿日期:2009-12-31 修回日期:2010-10-26 基金项目:国家自然科学基金项目(31000287);江苏省高校自然科学基础研究项目(10KJ B220002) 作者简介:甄艳(1976)),副教授,博士。*施季森(通信作者),教授。E-m ai:l js h @i n jfu .edu .cn 。 引文格式:甄艳,施季森.质谱技术在蛋白质组学研究中的应用[J].南京林业大学学报:自然科学版,2011,35(1):103-108. 质谱技术在蛋白质组学研究中的应用 甄 艳,施季森 * (南京林业大学,林木遗传与生物技术省部共建教育部重点实验室,江苏 南京 210037) 摘要:随着蛋白质组学研究的迅速发展,质谱技术已成为应用于蛋白质组学研究中的强有力工具和核心技术。质谱技术的先进性在于为蛋白质组学研究提供的通量和分子信息。笔者重点概述了基于质谱路线的蛋白质组学研究,介绍了基于质谱的定量蛋白质组学﹑翻译后修饰蛋白质组学、定向蛋白质组学、功能蛋白质组学以及基于串联质谱技术的蛋白质组学数据解析的研究 进展。 关键词:质谱;蛋白质组学;定量蛋白质组学;翻译后修饰;定向蛋白质组学;功能蛋白质组学中图分类号:Q81 文献标志码:A 文章编号:1000-2006(2011)01-0103-06 Application of m ass spectro m etry i n proteo m ics studies Z HEN Yan ,SH I Jisen * (K ey Labo ra t o ry o f F orest G eneti cs and B i o techno l ogy M i n istry o f Educati on , N an ji ng Forestry U n i versity ,N an ji ng 210037,Chi na) Abstrac t :W ith the rap i d develop m ent o f pro teo m i cs ,m ass spec trom etry i s m aturi ng to be a po w erfu l too l and core tech -nology fo r proteo m ics st udies dur i ng the recen t years .The super i or ity o fm ass spectrom etry lies i n providi ng the through -pu t and the m olecu lar infor m ati on ,w hich no other techno logy can be m a tched i n proteom ics .In th i s rev ie w,w e m ade a g lance on the outli ne o fm ass spectrome try -based proteo m ics .A nd then w e addressed on t he advances o f data ana l y si s o f m ass spec trom etry -based proteom ics ,quantitati ve m ass spectro m etry -based pro teom i cs ,post -translati onal m odificati ons based m ass spectrom etry ,targeted proteo m ics and functiona l proteo m ics based -mass spectrome try .K ey word s :m ass spectrome try;proteo m ics ; quantitative pro teom i cs ; post -trans l ation m odifica ti on ; targ eted pro - teo m i cs ;f uncti ona l proteom ics 蛋白质组学(Pr o teo m ics)是从整体水平上研究细胞内蛋白质的组成、活动规律及蛋白质与蛋白质的相互作用,是功能基因组学时代一门新的学科。 目前蛋白质组学的研究主要有两条路线:一是基于双向电泳的蛋白质组学;二是基于质谱的蛋白质组学,其中基于双向电泳的蛋白质组学研究路线最终也离不开质谱技术的应用。自20世纪80年代末,两种质谱软电离方式即电喷雾电离(electro spray ion izati o n,ESI )和基质辅助激光解析离子化(m a -tri x assisted laser desorpti o n i o nization ,MALD I)的发明和发展解决了极性大、热不稳定蛋白质和多肽分 析的离子化和分子质量大的测定问题[1] ,蛋白质组学研究中常用的质谱分析仪包括离子阱(ion trap ,I T),飞行时间(ti m e of fli g h,t TOF),串联飞行时间(TOF -TOF),四级杆/飞行时间(quadr upo le /TOF hybrids),离子阱/轨道阱(I T /orbitrap hybri d )和离子阱/傅里叶变换串联质谱分析仪(I T /Four i e r transfor m ioncyclotron resonance m ass spectro m eters hybr i d s ,I T /FT M S),这些质谱仪具有不同的灵敏度、分辨率、质量精确度和产生不同质量的M S /M S 谱[2] 。质谱作为蛋白质组学研究的一项强有力的工具日趋成熟,并作为样品制备及数据分析的信息学工具被广泛地应用。因此,有学者指出质谱技术 已在蛋白质组学研究中处于核心地位[3] 。目前在通量及所包含的分子信息内容上,基于质谱的蛋白质组学技术在细胞生物学研究中可以鉴定和量化

蛋白质互作技术

蛋白质与蛋白质之间相互作用构成了细胞生化反应网络的一个主要组成部分,蛋白-蛋白互作网络与转录调控网络对调控细胞及其信号有重要意义。本文对蛋白质相互作用方法进行总结。 一、酵母双杂交系统 酵母双杂交系统是当前广泛用于蛋白质相互作用组学研究的一种重要方法。其原理是当靶蛋白和诱饵蛋白特异结合后,诱饵蛋白结合于报道基因的启动子,启动报道基因在酵母细胞内的表达,如果检测到报道基因的表达产物,则说明两者之间有相互作用,反之则两者之间没有相互作用。将这种技术微量化、阵列化后则可用于大规模蛋白质之间相互作用的研究。在实际工作中,人们根据需要发展了单杂交系统、三杂交系统和反向杂交系统等。Angermayr等设计了一个SOS蛋白介导的双杂交系统。可以研究膜蛋白的功能,丰富了酵母双杂交系统的功能。此外,酵母双杂交系统的作用也已扩展至对蛋白质的鉴定。 二、噬茵体展示技术 在编码噬菌体外壳蛋白基因上连接一单克隆抗体的DNA序列,当噬菌体生长时,表面就表达出相应的单抗,再将噬菌体过柱,柱上若含目的蛋白,就会与相应抗体特异性结合,这被称为噬菌体展示技术。此技术也主要用于研究蛋白质之间的相互作用,不仅有高通量及简便的特点,还具有直接得到基因、高选择性的筛选复杂混合物、在筛选过程中通过适当改变条件可以直接评价相互结合的特异性等优点。目前,用优化的噬菌体展示技术,已经展示了人和鼠的两种特殊细胞系的cdna文库,并分离出了人上皮生长因子信号传导途径中的信号分子。 三、等离子共振技术 表面等离子共振技术(Surface Plasmon Resonance,SPR)已成为蛋白质相互作用研究中的新手段。它的原理是利用一种纳米级的薄膜吸附上“诱饵蛋白”,当待测蛋白与诱饵蛋白结合后,薄膜的共振性质会发生改变,通过检测便可知这两种蛋白的结合情况。SPR技术的优点是不需标记物或染料,反应过程可实时监控。测定快速且安全,还可用于检测蛋白一核酸及其它生物大分子之间的相互作用。 四、荧光能量转移技术 荧光共振能量转移(FRET )广泛用于研究分子间的距离及其相互作用; 与荧光显微镜 结合,可定量获取有关生物活体内蛋白质、脂类、DNA 和RNA 的时空信息。随着绿色荧光蛋白(GFP)的发展,FRET 荧光显微镜有可能实时测量活体细胞内分子的动态性质。提出了一种定量测量FRET效率以及供体与受体间距离的简单方法,仅需使用一组滤光片和测量一个比值,利用供体和受体的发射谱消除光谱间的串扰。该方法简单快速,可实时定量测量FRET 的效率和供体与受体间的距离,尤其适用于基于GFP 的供体受体对。 五、抗体与蛋白质阵列技术

质谱技术在蛋白质组学研究中的应用_甄艳

第35卷 第1期2011年1月 南京林业大学学报(自然科学版) J o u r n a l o f N a n j i n g F o r e s t r y U n i v e r s i t y (N a t u r a l S c i e n c e E d i t i o n ) V o l .35,N o .1 J a n .,2011 h t t p ://w w w .n l d x b .c o m [d o i :10.3969/j .i s s n .1000-2006.2011.01.024]  收稿日期:2009-12-31 修回日期:2010-10-26  基金项目:国家自然科学基金项目(31000287);江苏省高校自然科学基础研究项目(10K J B 220002) 作者简介:甄艳(1976—),副教授,博士。*施季森(通信作者),教授。E -m a i l :j s h i @n j f u .e d u .c n 。  引文格式:甄艳,施季森.质谱技术在蛋白质组学研究中的应用[J ].南京林业大学学报:自然科学版,2011,35(1):103-108. 质谱技术在蛋白质组学研究中的应用 甄 艳,施季森 * (南京林业大学,林木遗传与生物技术省部共建教育部重点实验室,江苏 南京 210037) 摘要:随着蛋白质组学研究的迅速发展,质谱技术已成为应用于蛋白质组学研究中的强有力工具和核心技术。质谱技术的先进性在于为蛋白质组学研究提供的通量和分子信息。笔者重点概述了基于质谱路线的蛋白质组学研究,介绍了基于质谱的定量蛋白质组学﹑翻译后修饰蛋白质组学、定向蛋白质组学、功能蛋白质组学以及基于串联质谱技术的蛋白质组学数据解析的研究 进展。 关键词:质谱;蛋白质组学;定量蛋白质组学;翻译后修饰;定向蛋白质组学;功能蛋白质组学中图分类号:Q 81 文献标志码:A 文章编号:1000-2006(2011)01-0103-06 A p p l i c a t i o n o f m a s s s p e c t r o m e t r y i n p r o t e o m i c s s t u d i e s Z H E NY a n ,S H I J i s e n * (K e y L a b o r a t o r y o f F o r e s t G e n e t i c s a n d B i o t e c h n o l o g y M i n i s t r y o f E d u c a t i o n , N a n j i n g F o r e s t r y U n i v e r s i t y ,N a n j i n g 210037,C h i n a ) A b s t r a c t :W i t ht h e r a p i d d e v e l o p m e n t o f p r o t e o m i c s ,m a s s s p e c t r o m e t r y i s m a t u r i n g t o b e a p o w e r f u l t o o l a n dc o r e t e c h -n o l o g y f o r p r o t e o m i c s s t u d i e s d u r i n g t h e r e c e n t y e a r s .T h e s u p e r i o r i t y o f m a s s s p e c t r o m e t r y l i e s i n p r o v i d i n g t h e t h r o u g h -p u t a n d t h e m o l e c u l a r i n f o r m a t i o n ,w h i c hn o o t h e r t e c h n o l o g y c a n b e m a t c h e di np r o t e o m i c s .I nt h i s r e v i e w ,w e m a d e a g l a n c e o n t h e o u t l i n e o f m a s s s p e c t r o m e t r y -b a s e d p r o t e o m i c s .A n dt h e nw e a d d r e s s e d o n t h e a d v a n c e s o f d a t a a n a l y s i s o f m a s s s p e c t r o m e t r y -b a s e dp r o t e o m i c s ,q u a n t i t a t i v em a s ss p e c t r o m e t r y -b a s e dp r o t e o m i c s ,p o s t -t r a n s l a t i o n a l m o d i f i c a t i o n s b a s e d m a s s s p e c t r o m e t r y ,t a r g e t e d p r o t e o m i c s a n df u n c t i o n a l p r o t e o m i c s b a s e d -m a s s s p e c t r o m e t r y . K e yw o r d s :m a s ss p e c t r o m e t r y ;p r o t e o m i c s ;q u a n t i t a t i v ep r o t e o m i c s ;p o s t -t r a n s l a t i o n m o d i f i c a t i o n ;t a r g e t e d p r o -t e o m i c s ;f u n c t i o n a l p r o t e o m i c s 蛋白质组学(P r o t e o m i c s )是从整体水平上研究细胞内蛋白质的组成、活动规律及蛋白质与蛋白质的相互作用,是功能基因组学时代一门新的学科。目前蛋白质组学的研究主要有两条路线:一是基于双向电泳的蛋白质组学;二是基于质谱的蛋白质组学,其中基于双向电泳的蛋白质组学研究路线最终也离不开质谱技术的应用。自20世纪80年代末,两种质谱软电离方式即电喷雾电离(e l e c t r o s p r a y i o n i z a t i o n ,E S I )和基质辅助激光解析离子化(m a -t r i x a s s i s t e d l a s e r d e s o r p t i o n i o n i z a t i o n ,M A L D I )的发明和发展解决了极性大、热不稳定蛋白质和多肽分 析的离子化和分子质量大的测定问题[1] ,蛋白质组学研究中常用的质谱分析仪包括离子阱(i o n t r a p ,I T ),飞行时间(t i m e o f f l i g h t ,T O F ),串联飞行时间(T O F -T O F ),四级杆/飞行时间(q u a d r u p o l e /T O F h y b r i d s ),离子阱/轨道阱(I T /o r b i t r a ph y b r i d ) 和离子阱/傅里叶变换串联质谱分析仪(I T /F o u r i e r t r a n s f o r m i o n c y c l o t r o nr e s o n a n c em a s s s p e c t r o m e t e r s h y b r i d s ,I T /F T M S ),这些质谱仪具有不同的灵敏度、分辨率、质量精确度和产生不同质量的M S /M S 谱[2] 。质谱作为蛋白质组学研究的一项强有力的工具日趋成熟,并作为样品制备及数据分析的信息学工具被广泛地应用。因此,有学者指出质谱技术 已在蛋白质组学研究中处于核心地位[3] 。目前在通量及所包含的分子信息内容上,基于质谱的蛋白质组学技术在细胞生物学研究中可以鉴定和量化

蛋白质组学的研究进展及应用

《蛋白质工程》 (课程论文)题目名称:蛋白质组学技术的研究进展及应用 所在学院:生命科学与技术学院 专业(班级):生技131班 学生姓名:梁健 授课教师:韩晓菲

蛋白质组学技术的研究进展及应用 生技131班梁健13772025 摘要:随着人类基因组计划全部测序的初步完成,研究重点转到对基因功能的研究上。蛋白质作为基因功能的主要体现者,对其表达模式和功能的研究成为热点,出现了蛋白质组学。研究蛋白质组学有助于了解蛋白的结构、细胞的功能、生命的本质及活动规律,为疾病的诊断、治疗、疫苗及新药开发提供科学依据。关键词:蛋白质组学;进展;应用 蛋白质组学(proteomics)是产生于20世纪90年代中期的一门新兴学科,以 细胞内全部蛋白质的存在及其活动方式为研究对象,是后基因组时代生命科学研究的核心内容。蛋白质组学的产生与发展经历了一个漫长的过程,在这个过程中,研究者不断修正蛋白质组学的发展方向和推进蛋白质组学相关支撑技术的快速 发展,进而拓展蛋白质组学在整个生命科学和生物医学研究中的应用,成为后基因组时代重要的研究新领域,并成功地应用到基础研究及医学研究等各个领域,推进其迅速发展。 1 蛋白质组学的概念及研究内容 1.1蛋白质组学的概念 蛋白质组(proteome)源于protein和genome两词的杂合,最早是由澳大利亚 的WILKINS等于1995年提出,其定义为“一种基因组所表达的全部蛋白质”。早期相对狭义的蛋白质组的概念是指在某一特定的时间和空间条件下,1个细胞的基因组所表达的蛋白质数目的总和。随着研究的深入,人们提出了广义的蛋白质组的概念,用来描述1个细胞、组织、器官或1个物种的生命个体,在其不同的生存及发育条件下所表达的各种蛋白数目的总和。所以蛋白质组所含的蛋白数目及其表达量是随着时间和空间的不同而不断发生变化的。蛋白质组学最有价值的优势是它可以观察在特定的时间下一个完整的蛋白质组或蛋白亚型在某种生理 或病理状态中,发生的相应的变化。 1.2 研究内容 根据研究内容的不同,蛋白质组学可分为差异蛋白质组学(或称表达蛋白质 组学)、结构蛋白质组学和功能蛋白质组学,其中差异蛋白质组学在蛋白质组学 研究中十分常用且应用广泛。差异蛋白质组学主要是研究比较在2种或多种不同条件下蛋白质组表达的差异变化。结构蛋白质组学主要是蛋白质表达模式的研究,包括蛋白质氨基酸序列分析及空间结构的解析。蛋白质表达模式的研究是蛋白质组学研究的基础内容,主要研究特定条件下某一细胞或组织的所有蛋白质的表征问题。功能蛋白质组学主要是蛋白质功能模式的研究,包括蛋白质的功能和蛋白

相关主题
文本预览
相关文档 最新文档