当前位置:文档之家› 蛋白质组学研究进展与趋势综述

蛋白质组学研究进展与趋势综述

蛋白质组学研究进展与趋势综述
蛋白质组学研究进展与趋势综述

蛋白质组学研究进展与趋势

蛋白质组(proteome)一词,源于蛋白质(protein)与基因组(genome)两个词的杂合,意指“一种基因组所表达的全套蛋白质”,即包括一种细胞乃至一种生物所表达的全部蛋白质。1 994 年澳大利亚Macquaie 大学的Wilkins 和Williams 等在意大利的一次科学会议上首次提出了蛋白质组(Proteome)这个概念。2001 年的Science 杂志已把蛋白质组学列为六大研究热点之一,其“热度”仅次于干细胞研究,名列第二。蛋白质组学的受关注程度如今已令人刮目相看。本文就蛋白质组学研究相关技术与趋势等方面进行简要综述。

1.蛋白质组学研究的研究意义和背景

随着人类基因组计划的实施和推进,生命科学研究已进入了后基因组时代。在这个时代,生命科学的主要研究对象是功能基因组学,包括结构基因组研究和蛋白质组研究等。尽管现在已有多个物种的基因组被测序,但在这些基因组中通常有一半以上基因的功能是未知的。目前功能基因组中所采用的策略,如基因芯片、基因表达序列分析(Serial analysisof gene expression, SAGE)等,都是从细胞中mRNA 的角度来考虑的,其前提是细胞中mRNA 的水平反映了蛋白质表达的水平。但事实并不完全如此,从DNA mRNA 蛋白质,存在三个层次的调控,即转录水平调控(Transcriptional control ),翻译水平调控(Translational control),翻译后水平调控(Posttranslationalcontrol )。从mRNA 角度考虑,实际上仅包括了转录水平调控,并不能全面代表蛋白质表达水平。实验也证明,组织中mRNA 丰度与蛋白质丰度的相关性并不好,尤其对于低丰度蛋白质来说,相关性更差。更重要的是,蛋白质复杂的翻译后修饰、蛋白质的亚细胞定位或迁移、蛋白质-蛋白质相互作用等则几乎无法从mRNA 水平来判断。毋庸置疑,蛋白质是生理功能的执行者,是生命现象的直接体现者,对蛋白质结构和功能的研究将直接阐明生命在生理或病理条件下的变化机制。蛋白质本身的存在形式和活动规律,如翻译后修饰、蛋白质间相互作用以及蛋白质构象等问题,仍依赖于直接对蛋白质的研究来解决。虽然蛋白质的可变性和多样性等特殊性质导致了蛋白质研究技术远远比核酸技术要复杂和困难得多,但正是这些特性参与和影响着整个生命过程。

传统的对单个蛋白质进行研究的方式已无法满足后基因组时代的要求。这是因为:(1)生命现象的发生往往是多因素影响的,必然涉及到多个蛋白质。(2) 多个蛋白质的参与是交织成网络的,或平行发生,或呈级联因果。(3) 在执行生理功能时蛋白质的表现是多样的、动态的,并不象基因组那样基本固定不变。因此要对生命的复杂活动有全面和深入的认识,必然要在整体、动态、网络的水平上对蛋白质进行研究。因此在上世纪90 年代中期,国际上产生了一门新兴学科-蛋白质组学(Proteomics),它是以细胞内全部蛋白质的存在及其活动方式为研究对象。可以说蛋白质组研究的开展不仅是生命科学研究进入后基因组时代的里程碑,也是后基因组时代生命科学研究的核心内容之一。

虽然第一次提出蛋白质组概念是在1994 年,但相关研究可以追溯到上世纪90 年代中期甚至更早,尤其是80 年代初,在基因组计划提出之前,就有人提出过类似的蛋白质组计划,当时称为Human Protein Index 计划,旨在分析细胞内的所有蛋白质。但由于种种原因,这一计划被搁浅。90 年代初期,各种技术已比较成熟,在这样的背景下,经过各国科学家的讨论,才提出蛋白质组这一

概念。

国际上蛋白质组研究进展十分迅速,不论基础理论还是技术方法,都在不断进步和完善。相当多种细胞的蛋白质组数据库已经建立,相应的国际互联网站也层出不穷。1996 年,澳大利亚建立了世界上第一个蛋白质组研究中心:Australia Proteome Analysis Facility( APAF )。丹麦、加拿大、日本也先后成立了蛋白质组研究中心。在美国,各大药厂和公司在巨大财力的支持下,也纷纷加入蛋白质组的研究阵容。去年在瑞士成立的GeneProt公司,是由以蛋白质组数据库“SWISSPROT”著称的蛋白质组研究人员成立的,以应用蛋白质组技术开发新药物靶标为目的,建立了配备有上百台质谱仪的高通量技术平台。而当年提出Human Protein Index 的美国科学家Normsn G. Anderson 也成立了类似的蛋白质组学公司,继续其多年未实现的梦想。2001 年4 月,在美国成立了国际人类蛋白质组研究组织(Human Proteome Organization, HUPO),随后欧洲、亚太地区都成立了区域性蛋白质组研究组织,试图通过合作的方式,融合各方面的力量,完成人类蛋白质组计划(HumanProteome Project)。

2.蛋白质组学研究的策略和范围

蛋白质组学一经出现,就有两种研究策略。一种可称为“竭泽法”,即采用高通量的蛋白质组研究技术分析生物体内尽可能多乃至接近所有的蛋白质,这种观点从大规模、系统性的角度来看待蛋白质组学,也更符合蛋白质组学的本质。但是,由于蛋白质表达随空间和时间不断变化,要分析生物体内所有的蛋白质是一个难以实现的目标。另一种策略可称为“功能法”,即研究不同时期细胞蛋白质组成的变化,如蛋白质在不同环境下的差异表达,以发现有差异的蛋白质种类为主要目标。这种观点更倾向于把蛋白质组学作为研究生命现象的手段和方法。早期蛋白质组学的研究范围主要是指蛋白质的表达模式(Expression profile), 随着学科的发展,蛋白质组学的研究范围也在不断完善和扩充。蛋白质翻译后修饰研究已成为蛋白质组研究中的重要部分和巨大挑战。蛋白质蛋白质相互作用的研究也已被纳入蛋白质组学的研究范畴。而蛋白质高级结构的解析即传统的结构生物学,虽也有人试图将其纳入蛋白质组学研究范围,但目前仍独树一帜。

3.蛋白质组学研究技术

可以说,蛋白质组学的发展既是技术所推动的也是受技术限制的。蛋白质组学研究成功与否,很大程度上取决于其技术方法水平的高低。蛋白质研究技术远比基因技术复杂和困难。不仅氨基酸残基种类远多于核苷酸残基(20/ 4), 而且蛋白质有着复杂的翻译后修

饰,如磷酸化和糖基化等,给分离和分析蛋白质带来很多困难。此外,通过表达载体进行蛋白质的体外扩增和纯化也并非易事,从而难以制备大量的蛋白质。蛋白质组学的兴起对技术有了新的需求和挑战。蛋白质组的研究实质上是在细胞水平上对蛋白质进行大规模的平行分离和分析,往往要同时处理成千上万种蛋白质。因此,发展高通量、高灵敏度、高准确性的研究技术平台是现在乃至相当一段时间内蛋白质组学研究中的主要任务。当前在国际蛋白质组研究技术平台的技术基础和发展趋势有以下几个方面:

3.1 蛋白质组研究中的样品制备

通常可采用细胞或组织中的全蛋白质组分进行蛋白质组分析。也可以进行样品预分级,即采用各种方法将细胞或组织中的全体蛋白质分成几部分,分别进行蛋白质组研究。样品预分级的主要方法包括根据蛋白质溶解性和蛋白质在细胞中不同的细胞器定位进行分级,如专门分离出细胞核、线粒体或高尔基体等细胞

器的蛋白质成分。样品预分级不仅可以提高低丰度蛋白质的上样量和检测,还可以针对某一细胞器的蛋白质组进行研究。对临床组织样本进行研究,寻找疾病标记,是蛋白质组研究的重要方向之一。但临床样本都是各种细胞或组织混杂,而且状态不一。如肿瘤组织中,发生癌变的往往是上皮类细胞,而这类细胞在肿瘤中总是与血管、基质细胞等混杂。所以,常规采用的癌和癌旁组织或肿瘤与正常组织进行差异比较,实际上是多种细胞甚至组织蛋白质组混合物的比较。__而蛋白质组研究需要的通常是单一的细胞类型。最近在组织水平上的蛋白质组样品制备方面也有新的进展,如采用激光捕获微解剖(Laser Capture Microdissection, LCM) 方法分离癌变上皮类细胞。

3.2 蛋白质组研究中的样品分离和分析

利用蛋白质的等电点和分子量通过双向凝胶电泳的方法将各种蛋白质区分

开来是一种很有效的手段。它在蛋白质组分离技术中起到了关键作用。如何提高双向凝胶电泳的分离容量、灵敏度和分辨率以及对蛋白质差异表达的准确检测是目前双向凝胶电泳技术发展的关键问题。国外的主要趋势有第一维电泳采用窄

pH 梯度胶分离以及开发与双向凝胶电泳相结合的高灵敏度蛋白质染色技术,如新型的荧光染色技术。质谱技术是目前蛋白质组研究中发展最快,也最具活力和潜力的技术。它通过测定蛋白质的质量来判别蛋白质的种类。当前蛋白质组研究的核心技术就是双向凝胶电泳-质谱技术,即通过双向凝胶电泳将蛋白质分离,然后利用质谱对蛋白质逐一进行鉴定。对于蛋白质鉴定而言,高通量、高灵敏度和高精度是三个关键指标。一般的质谱技术难以将三者合一,而最近发展的质谱技术可以同时达到以上三个要求,从而实现对蛋白质准确和大规模的鉴定。目前对蛋白质组的分析工作大两个方面。一方面,通过二维胶电泳等技术得到正常生理条件下的机体、组织或细胞的全部蛋白质的图谱,相关数据将作为待测机体、组织或细胞的二维参考图谱和数据库。另一方面是比较分析在变化了生理条件下蛋白质组所发生的变化。

3.3 蛋白质组研究的新技术

做过双向凝胶电泳的人一定会抱怨它的繁琐、不稳定和低灵敏度等缺点。发展可替代或补充双向凝胶电泳的新方法已成为蛋白质组研究技术最主要的目标。目前,二维色谱(2DLC)、二维毛细管电泳(2DCE)、液相色谱-毛细管电泳(LCCE)等新型分离技术都有补充和取代双向凝胶电泳之势。另一种策略则是以质谱技术为核心,开发质谱鸟枪法(Shotgun)、毛细管电泳质谱联用(CEMS)等新策略直接鉴定全蛋白质组混合酶解产物。随着对大规模蛋白质相互作用研究的重视,发展高通量和高精度的蛋白质相互作用检测技术也被科学家所关注。此外,蛋白质芯片的发展也十分迅速,并已经在临床诊断中得到应用。

3.4 蛋白质组生物信息学

蛋白质组数据库是蛋白质组研究水平的标志和基础。瑞士的SWISSPROT拥有目前世界上最大,种类最多的蛋白质组数据库。丹麦、英国、美国等也都建立了各具特色的蛋白质组数据库。生物信息学的发展已给蛋白质组研究提供了更方便有效的计算机分析软件;特别值得注意的是蛋白质质谱鉴定软件和算法发展迅速,如SWISSPROT、Rockefeller大学、UCSF 等都有自主的搜索软件和数据管理系统。最近发展的质谱数据直接搜寻基因组数据库使得质谱数据可直接进行基因注释、判断复杂的拼接方式。随着基因组学的迅速推进,会给蛋白质组研究提供更多更全的数据库。另外,对肽序列标记的从头测序软件也十分引人注目。

4.蛋白质组学的研究进展

蛋白质组学强调的是针对蛋白质的一个整体思路。从整体的角度看,蛋白质组研究大致可分为两种类型:一种是针对细胞或组织的全部蛋白质,也就是着眼点是整个蛋白质组;而另一种是以与一个特定的生物学机制或机制相关的全部蛋白质为着眼点,在这里整体是局部性的。针对细胞蛋白质组的完整分析的工作已经比较全面地展开,不仅如大肠杆菌、酵母等低等模式生物的蛋白质组数据库在建立之中,高等生物如水稻和小鼠等的蛋白质研究也已开展,人类一些正常和病变细胞的蛋白质数据库也已在建立之中。与此同时,更多的蛋白质组研究工作则是将着眼点放在蛋白质组的变化或差异上,也就是通过对蛋白质组的比较分析。首先发现并去鉴定在不同生理条件下或不同外界条件下蛋白质组中有差异的蛋白质组分。本文不对这方面的工作做进一步论述。本文接下来重点介绍近期发表的关于蛋白质组学的几个工作,从中可以看到蛋白质组学的思想方法在蛋白质整体(或局部整体)水平上是如何解决生理学的一些重要问题的。

1999 年11 月《Nature》杂志发表了一篇用蛋白质组学方法研究蛋白质折叠的研究论文。在这篇文章中,Houry 等报道了在大肠杆菌胞质中的2500 种新生多肽链种只有近300 种以GroEL 作为分子伴侣来帮助其折叠成正确构象。在以往的相关研究中,通常只是针对某个或某些特定的蛋白质,观察它(们)在折叠过程中是否需要诸如GroEL 等分子伴侣的帮助。而在这个工作中,研究是从一个整体的思路出发,首先通过免疫共沉淀的方法获得所有与GroEL 结合的肽链,再通过二维电泳和数据库比较等蛋白质研究的手段对这些肽链进行分析鉴定,从而实现了对大肠杆菌近2500 条新生多肽链与分子伴侣GroEL 的关系的全面分析。在这个工作中,研究者还通过对其中50 种与GroEL 作用的肽链的鉴定,进一步揭示了决定这些蛋白质能与GroEL 相互作用的关键结构特征。应该说,这个工作很好地体现了蛋白质组学的思想方法和技术手段的运用。

过去在细胞生物学领域还没有得到过一个主要亚细胞结构的完整的分子图。核孔复合体是一个巨大的跨核膜的八角形结构,是控制大分子在胞质和核质间运输的通道。多年来很多方法被用来分析这一复合体的组成成分。虽然这些工作取得了很大的进展,但究竟在多大程度上反映了这一复合体的分子原貌仍然是一个未知数。最近通过使用蛋白质组学的手段,Rout 等鉴定了完整的酵母核孔复合体所有能检测到的多肽,并系统地对每种可能的蛋白质组分在细胞中定位,结合免疫电镜的方法将各组分在复合体内定位并定量,从而揭示了酵母核孔复合体的完整分子构造,并在此基础上揭示了其工作原理。这个工作可以说是蛋白质组学解决构造生物学问题的一个典范,为揭示其他巨大分子机器的"构造"和工作原理指出了一条新路。

通过分析一个蛋白质是否跟功能已知的蛋白质相互作用可得到揭示其功能的线索。因为经验告诉我们,如果两个蛋白质相互作用,那么它们一般参与相同或相关的细胞活动。从近期国际上蛋白质组学研究的发展动向可以看出,揭示蛋白质之间的相互作用关系,建立相互作用关系的网络图,已成为揭示蛋白质组复杂体系与蛋白质功能模式的先导,业已成为蛋白质组学领域的研究热点。2000 年初,《Science》登载了一篇应用蛋白质组学的大规模双杂交技术研究线虫生殖器发育的文章。在这个工作中,Walhout 等以线虫的生殖发育过程作为研究对象,从已知的27 个与线虫发育的蛋白质出发,构造了一个大规模的酵母双杂交系统,得到了100 多个相互作用的结果,初步建立了与线虫生殖发育相关的蛋白质相互作用图谱,从而为深入研究和揭示线虫发育的机制等提供了丰富的线索。这个工作不同于一般的应用酵母双杂交进行研究的地方在于,它出于对一个生物

学问题的整体思考,尽可能地从所有已知的蛋白质而不只是个别的蛋白质为出发点。这一个工作为以前专注于信号转导过程中单个蛋白质作用的科学家们提供了一个新的思路,即将整个途径的相关蛋白质一起考虑。

那么,能否通过酵母双杂交系统来分析一种细胞或特定组织的所有可能的蛋白质之间的相互作用呢?在今年初,《Nature》发表了一篇通过大规模双杂交技术研究酵母近6000个蛋白质之间相互作用的论文。啤酒酵母基因组DNA 的全序列业已测定,这为通过双杂交技术来鉴定酵母基因组编码的全部6000 种左右的蛋白质间的可能相互作用提供了非常有利的条件。在这个工作中,研究人员采用了两种不同的策略对酵母的蛋白质间的相互作用作了全面分析。一是所谓的列阵筛选法(array screening)。在此方法中,6000 株表达不同"猎物"蛋白的酵母单克隆分别加在微滴定板上,带有不同的"诱饵"蛋白的酵母株与前面6000 株细胞一一接合形成二倍体细胞,"猎物"蛋白与"诱饵"蛋白的相互作用通过报道基因的表达而被鉴定。这篇文章中报道了192 种不同的"诱饵"蛋白与近6000 种"猎物"蛋白的相互作用的结果。另一种方法是文库筛选法。该方法与前一种方法的区别是,将表达6000 种不同"猎物"蛋白的酵母细胞混在一起构成文库,再将这个文库分别与6000 株表达不同"诱饵"蛋白的酵母细胞接合,再进一步筛选鉴定阳性克隆,即"诱饵"与"猎物"发生相互作用的克隆。根据这篇报告,上述两种策略得到了不同的结果,相比之下阵列筛选法更为有效,而文库筛选法的长处是通量大。这一工作的重要意义在于我们已经看到,在基因组序列被了解的基础上,可以利用大规模双杂交技术全面地,当然也是初步地,分析其物种或其细胞、组织的所有蛋白质之间的相互作用关系。相信类似的工作将很快针对其他物种开展,特别是基因组序列已被揭示的物种。

由此可见,蛋白质组学已经开始从建立数据库走向解决生命科学的重大问题,成为研究生物学问题或机制的强有力手段。

5.蛋白质组学发展趋势

在基础研究方面,近两年来蛋白质组研究技术已被应用到各种生命科学领域,如细胞生物学、神经生物学等。在研究对象上,覆盖了原核微生物、真核微生物、植物和动物等范围,涉及到各种重要的生物学现象,如信号转导、细胞分化、蛋白质折叠等等。在未来的发展中,蛋白质组学的研究领域将更加广泛。

在应用研究方面,蛋白质组学将成为寻找疾病分子标记和药物靶标最有效的方法之一。在对癌症、早老性痴呆等人类重大疾病的临床诊断和治疗方面蛋白质组技术也有十分诱人的前景,目前国际上许多大型药物公司正投入大量的人力和物力进行蛋白质组学方面的应用性研究。因此,蛋白质组学研究不仅是探索生命奥秘的必须工作,也能为人类健康事业带来巨大的利益。

在技术发展方面,蛋白质组学的研究方法将出现多种技术并存,各有优势和局限的特点,而难以象基因组研究一样形成比较一致的方法。除了发展新方法外,更强调各种方法间的整合和互补,以适应不同蛋白质的不同特征。另外,蛋白质组学与其它学科的交叉也将日益显著和重要,这种交叉是新技术新方法的活水之源,特别是,蛋白质组学与其它大规模科学如基因组学,生物信息学等领域的交叉,所呈现出的系统生物学(System Biology)研究模式,将成为未来生命科学最令人激动的新前沿。

酶固定化技术

酶固定化技术有哪些酶固定化是指用固体材料将酶束缚或限制于一定区域内,进行其特有的催化反应,并可回收及重复利用的技术。根据固定酶材料与酶分子之间结合力的不同,可分为化学法和物理法。

化学法又可分为交联法和共价结合法。交联法需要双功能或多功能交联试剂,在酶分子和交联试剂之间形成共价键,从而把酶束缚在固体材料上。共价结合法是通过酶分子的非必须基团与载体表面的活性功能基团形成化学共价健实现不可逆结合的酶固定方法,故表现出良好的稳定性,有利于酶的连续使用,是目前应用和研究最为活跃的一类酶固定化方法,但共价偶联反应容易使酶变性而失活。。化学法所得的固定化酶与载体连接牢固,有良好的稳定性及重复使用性,成为目前研究最为活跃的一类酶固定化方法。但该法较其它固定方法反应剧烈,固定化酶活性损失更加严重。

物理法分为吸附法和包埋法。吸附法主要通过范德化力固定酶,把酶吸附在材料表面或内表面。根据吸附剂的特点又可分为物理吸附和离子交换吸附。该法具有操作简便、条件温和及吸附剂可反复使用等优点,但也存在吸附力弱,易在不适pH、高盐浓度、高底物浓度及高温条件下解吸脱落的缺点。包埋法将酶限定在载体的网格中,从而实现酶固定化,适合小分子底物的催化反应。包埋法包括网格包埋、微囊型包埋和脂质体包埋等,包埋法中因酶本身不参与化学结合反应,故可获得较高的酶活力回收,其缺点是不适用于高分子量底物的传质和用于柱反应系统,且常有扩散限制等问题。两种固定化方法条件温和,酶的构象变化较小或基本不变,因此对酶的催化活性影响小,但酶和载体之间结合力弱,在不适pH、高盐浓度、高温等条件下,酶易从载体脱落并污染催化反应产物等。

蛋白质组学的应用研究进展

蛋白质组学的应用研究进展 蛋白质组学的应用研究进展 尹稳1 伏旭2 李平1 (1. 兰州大学第二医院,兰州 730030 ;2. 兰州大学第二医院急救中心,兰州730030) 摘要:蛋白质组学(Proteomics)是一门大规模、高通量、系统化的研究某一类型细胞、组织或体液中的所有蛋白质组成 及其功能的新兴学科。虽然基因决定蛋白质的水平,但是基因表达的水平并不能代表细胞内活性蛋白的水平,蛋白质组学分析是对蛋白质翻译和修饰水平等研究的一种补充,是全面了解基因组表达的一种必不可少的手段。蛋白质组学相关技术的发展极大地推动了蛋白质组学的研究进展,使其在各研究领域得到了广泛的应用。对蛋白质组学相关技术及其在各领域的应用进行了综述,最后对蛋白质组学的发展趋势和应用前景作出展望。 关键词:蛋白质组学双向凝胶电泳 质谱 生物信息学 应用现状 Application Research Progress of Proteomics (1. Lanzhou University Second Hospital,Lanzhou 730030 ;2. Department of Emergency,Lanzhou University Second Hospital,Lanzhou 730030) Abstract: Proteomics is an emerging discipline for studying proteins composition and function in a type of cell, tissue or body fluids in a large-scale, high-throughput and systematic level. While genes determine the level of protein, but the level of gene expression can not represent the intracellular reactive protein levels. Proteomic analysis is a complement to the study of translation and modification and also an indispensable tool for a comprehensive understanding of genome expression. The development of proteomic technologies has greatly promoted the progress of proteomic research, and it has been widely used in various research fields.This paper revieweded the proteomic technologies and the applications in various fields are also briefly reviewed. Finally, some future issues are presented.

蛋白质组学的应用研究进展_尹稳

?综述与专论? 2014年第1期 生物技术通报 BIOTECHNOLOGY BULLETIN 随着基因组计划的完成,生命科学研究开始进入以基因组学、蛋白质组学、营养组学、代谢组学等“组学”为研究标志的后基因组时代。蛋白质组(proteome)一词最早是由澳大利亚科学家Wilkins 和Williams 于1994年提出[1],1995年7月最早见诸于Electrophoresis 杂志[2],意指一个细胞或组织中由基因组表达的全部蛋白质。蛋白质组学(proteomics)是一门大规模、高通量、系统化的研究某一类型细胞、组织、体液中的所有蛋白质组成、功能及其蛋白之间的相互作用的学科。 虽然基因决定蛋白质的水平,mRNA 只包含了转录水平的调控,其表达水平并不能代表细胞内活 收稿日期:2013-09-05基金项目:甘肃省科技计划基金资助项目(0708NKCA129),兰州大学第二医院医学研究基金项目(YJ2010-08)作者简介:尹稳,女,硕士,研究方向:蛋白质组学;E -mail :yinwen0508@https://www.doczj.com/doc/bf17982885.html, 通讯作者:伏旭,男,硕士,研究方向:生物化学与分子生物学;E -mail :fuxu0910@https://www.doczj.com/doc/bf17982885.html, 蛋白质组学的应用研究进展 尹稳1 伏旭2 李平1 (1.兰州大学第二医院,兰州 730030;2.兰州大学第二医院急救中心,兰州 730030) 摘 要: 蛋白质组学(Proteomics)是一门大规模、高通量、系统化的研究某一类型细胞、组织或体液中的所有蛋白质组成及其功能的新兴学科。虽然基因决定蛋白质的水平,但是基因表达的水平并不能代表细胞内活性蛋白的水平,蛋白质组学分析是对蛋白质翻译和修饰水平等研究的一种补充,是全面了解基因组表达的一种必不可少的手段。蛋白质组学相关技术的发展极大地推动了蛋白质组学的研究进展,使其在各研究领域得到了广泛的应用。对蛋白质组学相关技术及其在各领域的应用进行了综述,最后对蛋白质组学的发展趋势和应用前景作出展望。 关键词: 蛋白质组学 双向凝胶电泳 质谱 生物信息学 应用现状 Application Research Progress of Proteomics Yin Wen 1 Fu Xu 2 Li Ping 1 (1. Lanzhou University Second Hospital ,Lanzhou 730030;2. Department of Emergency ,Lanzhou University Second Hospital ,Lanzhou 730030) Abstract: Proteomics is an emerging discipline for studying proteins composition and function in a type of cell, tissue or body fluids in a large -scale, high -throughput and systematic level. While genes determine the level of protein, but the level of gene expression can not represent the intracellular reactive protein levels. Proteomic analysis is a complement to the study of translation and modification and also an indispensable tool for a comprehensive understanding of genome expression. The development of proteomic technologies has greatly promoted the progress of proteomic research, and it has been widely used in various research fields.This paper revieweded the proteomic technologies and the applications in various fields are also briefly reviewed. Finally, some future issues are presented. Key words: Proteomics Two -dimensional gel electrophoresis Mass spectrometry Bio -informactics Application status 性蛋白的水平[3],且转录水平的分析不能反应翻译后对蛋白质的功能和活性起至关重要作用的蛋白修饰过程[4],如酰基化、泛素化、磷酸化或糖基化等。而蛋白质组学除了能够提供定量的数据以外,还能提供包括蛋白定位和修饰的定性信息。只有通过对生命过程中蛋白质功能和蛋白质之间的相互作用以及特殊条件下的变化机制进行研究,才能对生命的复杂活动具有深入而又全面的认识。近年来,蛋白质组学技术取得了长足的发展,随着新技术的不断涌现,其应用范围也不断扩大。本文对蛋白质组学相关技术及其在各研究领域的应用进行了简要的归纳和评述,并对蛋白质组学的发展趋势和应用前景

代谢组学在医药领域的应用与进展

代谢组学在医药领域的应用与进展 一、学习指导 1.学习代谢组学的概念及内涵,掌握代谢组学的研究对象与分析方法。 2.熟悉代谢组学数据分析技术手段 3.了解代谢组学优势特点 4.了解代谢组学在医药领域的应用 5.了解代谢组学发展趋势 二、正文 基因组功能解析是后基因组时代生命科学研究的热点之一,由于基因功能的复杂性和生物系统的完整性,必然要从“整体”层面上来理解构成生物体系的各个模块功能。随着新的测量技术、高通量的分析方法、先进的信息科学和系统科学新理论的发展,加上生物学研究的深入和生物信息的大量积累,使得在系统水平上研究由分子生物学发现的组件所构成的生命体系成为可能[1]。系统生物学家们认为,将生命科学上升为“综合”科学的时机已经成熟,生命科学再次回到整合性研究的新高度,逐步由分子生物学时代进入到系统生物学时代[2]。系统生物学不同以往的实验生物学仅关注个别基因和蛋白质,它要研究所有基因、蛋白质,代谢物等组分间的所有相互关系,通过整合各组成成分的信息,以数学方法建立模型描述系统结构[3,4]。 (一)代谢组学的概念及内涵 代谢组学是继基因组学、转录组学和蛋白质组学之后,系统生物学的重要组成部分,也是目前组学领域研究的热点之一。代谢组学术语在国际上有两个英文名,即metabolomics 和metabonomics。Metabolomics是由德国的植物学家Fiehn等通过对植物代谢物研究提出来的,认为代谢组学(metabolomics)是定性和定量分析单个细胞或单一类型细胞的代谢调控和代谢流中所有低分子量代谢产物,从而监测机体或活细胞中化学变化的一门科学[5]。英国Nicholson研究小组从毒理学角度分析大鼠尿液成份时提出了代谢组学(Metabonomics)的概念,认为代谢组学是通过考察生物体系受扰动或刺激后(如某个特定基因变异或环境变化后),其代谢产物的变化或代谢产物随时间的变化来研究生物体系的代谢途径的一种技术[6]。国内的代谢组学研究小组基本用metabonomics一词来表示“代谢组学”。严格地说,代谢组学所研究的对象应该包括生物系统中所有的代谢产物。但由于实际分析手段的局限性,只对各种代谢路径底物和产物的小分子物质(MW<1Kd)进行测定和分析。 (二)代谢组学优势特点 代谢组学作为系统生物学的一个重要组成部分,代谢组可以更好地反映体系表型生物机体是一个动态的、多因素综合调控的复杂体系,在从基因到性状的生物信息传递链中,机体需通过不断调节自身复杂的代谢网络来维持系统内部以及与外界环境的正常动态平衡[7]。

代谢组学研究进展综述

代谢组学技术及其在中医研究中的探讨 姓名:郭欣欣学号:22009283 导师:刘慧荣 代谢组学(metabonomics) 是20世纪90年代中期发展起来的一门新兴学科,是关于生物体系受刺激或扰动后(如将某个特定的基因变异或环境变化后) 其代谢产物(内源代谢物质) 种类、数量及其变化规律的科学。它研究的是生物整体、系统或器官的内源性代谢物质的代谢途径及其所受内在或外在因素的影响。常用的方法是检测和量化一个生物整体代谢随时间变化的规律;建立内在和外在因素影响下,代谢整体的变化轨迹,反映某种病理(生理) 过程中所发生的一系列生物事件。 1 代谢组学研究技术平台 代谢组学研究的技术平台包括以下几个部分:前期的样品制备,中期的代谢产物检测、分析与鉴定以及后期的数据分析与模型建立。 前期代谢组学研究常用的检测技术,一般不需要对标本行特别的分离、纯化等。但离体条件下,细胞或组织内的代谢状态可迅速改变,代谢物的质与量亦随之变化,为正确反映在体的真实信息,须立即阻断内在酶的活性。最为常用的是冰冻/液氮降温法及冷冻、干燥的保存技术,尽管如此,细胞间仍始终有一低水平的代谢活动,需尽量避免氧化等活化因素。 中期代谢产物的检测、分析与鉴定是代谢组学技术的核心部分,最常用的是NMR及质谱(MS)两种。 核磁共振技术是利用高磁场中原子核对射频辐射的吸收光谱鉴定化合物结构的分析技术,生命科学领域中常用的是氢谱( 1H NMR ) 、碳谱(13C NMR)及磷谱(31P NMR)三种。可用于体液或组织提取液和活体分析两大类。 NMR技术在代谢组学中的应用越来越广泛,它具有如下优点: ①无损伤性,不破坏样品的结构和性质; ②可在一定的温度和缓冲范围内进行生理条件或接近生理条件的实验; ③与外界特定干预相结合,研究动态系统中机体化学交换、运动等代谢产物的变化规律; ④实验方法灵活多样。但仪器价格及维护费用昂贵限制了该技术的进一步普及。 质谱技术是将离子化的原子、分子或是分子碎片按质量或是质荷比(m/e)大小顺序排列成图谱,并在此基础上,进行各种无机物、有机物的定性或定量分析。新的离子化技术则使质谱技术的灵敏度和准确度均有很大程度的提高。NMR技术与MS技术相比,各有其优缺点,需要在研究中灵活选用。总体而言,NMR技术应用的更为广泛。此外,根据代谢组学的研究需要,还常用于其他的一些分析技术,如气相色谱(GC) ,高效液相色谱仪(HPLC) ,高效毛细管电泳(HPCE)等。它们往往与NMR或MS技术联用,进一步增加其灵敏性。但不容忽视的是,随着分析手段更新,敏感性及分辨率提高,“假阳性”的概率也就越大,可能是仪器技术方法固有的,亦或是数据分析过程中产生的。 后期代谢组学研究的后期需借助于生物信息学平台。它往往借助于一定的软件,联合多种数据分析技术,将多维、分散的数据进行总结、分类及判别分析,发现数据间的定性、定量关系,解读数据中蕴藏的生物学意义,阐述其与机体代谢的关系。如果说分析技术在我们面前打开了“一扇门”,正确的数据分析方法和模型建立便是“找到宝藏”的钥匙。 主成分分析法( PCA) 是最常用的分析方法。其将分散于一组变量上的信息集中于几个综合指标(PC)上,如糖代谢、脂质代谢、氨基酸代谢等,利用主成分描述机体代谢的变化情况,发挥了降维分析的作用,避免淹没于大量数据中。其他的模式识别技术,如聚类分析、辨别式功能分析、最小二乘法投影法等在代谢组学研究中亦有其重要的地位。 现实情况下,代谢组学的数据更为复杂,特别是NMR对病理生理过程的研究,将代谢物的表达谱与时间相联系,分析时更加困难,需要借助复杂的模型或是专家系统进行分析(在应用

比较蛋白质组学研究中的稳定同位素标记技术

进展评述 比较蛋白质组学研究中的稳定同位素标记技术 刘新1,2 应万涛1,2 钱小红1,23 (1军事医学科学院放射与辐射医学研究所 北京 100850;2北京蛋白质组研究中心 北京 102206) 摘 要 比较蛋白质组学是指在蛋白质组学水平上研究正常和病理情况下细胞或组织中蛋白质表达变化,以期发现具有重要功能的生物标识物,为疾病的早期诊断提供依据。近年来它正成为蛋白质组学研究的热点和发展趋势。比较蛋白质组学的研究方法和策略有多种,本文就最近几年来稳定同位素标记技术(体内代谢标记技术和体外化学标记技术)在比较蛋白质组学研究中的进展进行综述。 关键词 比较蛋白质组学 稳定同位素标记 体内代谢标记 体外化学标记 Application of Stable Isotope Labeling in Comparative Proteomics Liu X in1,2,Y ing Wantao1,2,Qian X iaohong1,23 (1Beijing Institute of Radiation Medicine,Beijing100850; 2Beijing Proteome Research Center,Beijing102206) Abstract C omparative proteomics is the research of protein expression changing between normal and pathological cell or tissue on the proteome level.P otential biomarkers w ould be discovered from the research by comparative proteomics, which will be helpful to the diagnosis and therapy of diseases.In the recent years,it has been becoming the hot spot of the proteomics research and many strategies used in comparative proteomics have been developed.During those approaches,the strategies based on stable is otopic labeling coupled with mass spectrometry have been extensively used and lots of success ful applications have been reported.In contrast to the traditional radioactive is otope labeling method,stable is otope labeling technique was not radioactive and the operation is simple.Metabolic labeling in viv o and chemical labeling in vitro are tw o parts of stable is otope labeling technique,which both have various advantages and disadvantages.This paper reviewed the progress of stable is otope labeling technique in comparative proteomics. K ey w ords C omparative proteomics,S table is otope labeling,Metabolic labeling in viv o,Chemical labeling in vitro 随着人类基因组精确图谱的公布,基因组功能的阐明已经成为生命科学研究中一项极重要的任务[1]。蛋白质是基因的最终产物同时也是基因功能的最终执行体,因而人类基因的表达及其功能有待于在蛋白水平上揭示。蛋白质组学的研究目的是分离和鉴定组织或细胞中的所有蛋白质。生物体在生长发育过程中,基因组是相对稳定的,而蛋白表达是高度动态变化的,并且具有严格调控的时间和空间特异性[2]。为了研究生物体在不同状态下表达的所有蛋白质的动态变化,比较蛋白质组学应运而生,即在蛋白组学水平上,研究在正常生理和病理状态,或受到不同的外部环境刺激下,或在突变等因素影响下,蛋白质表达的变化情况,以期发现生物体内关键的调控分子及与疾病相关的蛋白质标志物,最终为疾病的防诊治、新型疫苗的研发等提供理论依据。 为了研究蛋白质表达的动态变化,基因表达检测技术,如微阵列法[3]、DNA(脱氧核糖核酸)芯片法[4]等曾被广泛使用。这些方法虽然能够实现对mRNA(信使核糖核酸)进行定性和定量分析,但 刘新 男,27岁,博士生,现从事比较蛋白质组学研究。 3联系人,E2mail:qianxh1@https://www.doczj.com/doc/bf17982885.html, 国家自然科学基金(20505019、20505018)、国家重点基础研究发展规划项目(2004C B518707)和北京市科技计划重大项目(H030230280190)资助项目 2006207220收稿,2006209221接受

药用植物代谢组学的研究进展

药用植物代谢组学的研究进展 【摘要】从技术步骤、分析方法以及实际应用三个方面对当前药用植物代谢组学研究领域的一些理论问题和实践中面临的挑战进行综述。 【关键词】药用植物;代谢组学;功能基因组学 代谢组学是对生物体内代谢物进行大规模分析的一项技术[1],它是系统生物学的重要组成部分(如图1所示),药用植物代谢组学主要研究外界因素变化对植物所造成的影响,如气候变化、营养胁迫、生物胁迫,以及基因的突变和重组等引起的微小变化,是物种表型分析最强有力的工具之一。在现代中药研究中,代谢组学在药物有效性和安全性、中药资源和质量控制研究等方面具有重要理论意义和应用价值。另外,在对模式植物突变体文库或转基因文库进行分析之前,代谢组学往往是首先考虑采用的研究方法之一。目前,国外已有成功利用代谢组学技术对拟南芥突变株进行大规模基因筛选的例子,这为与重要性状相关基因功能的阐明和选育可供商业化利用的转基因作物奠定了基础 目前,还有许多经济作物的全基因组测序计划尚未完成,由于代谢组学研究并不要求对基因组信息的了解,所以在与这些作物有关的研究领域具有更大的利用价值,这也是其与转录组学和蛋白组学研究相比的优势之一。代谢组学研究涉及与生物技术、分析化学、有机化学、化学计量学和信息学相关的大量知识,Fiehn[2]对代谢组学有关的研究方向进行了分类(见表1)。 1代谢组学研究的技术步骤 代谢组学研究涉及的技术步骤主要包括植物栽培、样本制备、衍生化、分离纯化和数据分析5个方面(见图2)。 1.1植物栽培 对研究对象进行培育的目的是为了对样本的稳定性进行控制,相对于微生物和动物而言,植物的人工栽培需要考 表1代谢组学的分类及定义略 虑更多的问题,如中药材在不同年龄、不同发育阶段、不同部位以及光照、水肥、耕作等环境因素的微小差异都可引起生理状态的变化,而这些非可控及可控双重因素的影响很难进行精确的控制,从而影响药用植物代谢组研究的重复性。为了解决以上问题,推荐使用大容量的培养箱[3],定时更换培养箱中栽培对象的位置,以及使用无土栽培技术等,Fukusaki E[4]利用无土栽培系统将水和养分直接引入植物根部,并且对供给量进行精确地控制,大大提高了实验的重复性。 1.2样本制备 为了获得稳定的实验结果,样本制备需要考虑样本的生长、取样的时间和地点、取样量以及样本的处理方法等问题,并根据分析对象的分子结构、溶解性、极性等理化性质及其相对含量大小对提取和分离的方法进行选择,逐一优化试验方案。Maharjan RP等[5]用6种方法分别对大肠杆菌中代谢产物进行提取,发现用-40℃甲醇进行提取的效果最好。现阶段代谢组学的分析对象主要集中在亲水性小分子,尤其是初级代谢产物,气相色谱 质谱联用(GC MS)和毛细管电泳 质谱(CE MS)联用都是分析亲水小分子的重要技术。Fiehn O等[6]使用GC MS 对拟南芥叶片中的亲水小分子进行了分析,发现酒石酸半缩醛、柠苹酸、别苏氨酸、羟基乙酸等15种植物代谢物。 1.3衍生化处理 对目标代谢产物的衍生化处理取决于所使用的分析设备,GC MS系统只适

质谱技术在蛋白质组学研究中的应用

第35卷 第1期2011年1月 南京林业大学学报(自然科学版) Journa l o fN anji n g Forestry Un i v ersity (Natural Sc ience Ed ition) V o.l 35,N o .1Jan .,2011 htt p ://www.n l dxb .com [do :i 10.3969/.j issn .1000-2006.2011.01.024] 收稿日期:2009-12-31 修回日期:2010-10-26 基金项目:国家自然科学基金项目(31000287);江苏省高校自然科学基础研究项目(10KJ B220002) 作者简介:甄艳(1976)),副教授,博士。*施季森(通信作者),教授。E-m ai:l js h @i n jfu .edu .cn 。 引文格式:甄艳,施季森.质谱技术在蛋白质组学研究中的应用[J].南京林业大学学报:自然科学版,2011,35(1):103-108. 质谱技术在蛋白质组学研究中的应用 甄 艳,施季森 * (南京林业大学,林木遗传与生物技术省部共建教育部重点实验室,江苏 南京 210037) 摘要:随着蛋白质组学研究的迅速发展,质谱技术已成为应用于蛋白质组学研究中的强有力工具和核心技术。质谱技术的先进性在于为蛋白质组学研究提供的通量和分子信息。笔者重点概述了基于质谱路线的蛋白质组学研究,介绍了基于质谱的定量蛋白质组学﹑翻译后修饰蛋白质组学、定向蛋白质组学、功能蛋白质组学以及基于串联质谱技术的蛋白质组学数据解析的研究 进展。 关键词:质谱;蛋白质组学;定量蛋白质组学;翻译后修饰;定向蛋白质组学;功能蛋白质组学中图分类号:Q81 文献标志码:A 文章编号:1000-2006(2011)01-0103-06 Application of m ass spectro m etry i n proteo m ics studies Z HEN Yan ,SH I Jisen * (K ey Labo ra t o ry o f F orest G eneti cs and B i o techno l ogy M i n istry o f Educati on , N an ji ng Forestry U n i versity ,N an ji ng 210037,Chi na) Abstrac t :W ith the rap i d develop m ent o f pro teo m i cs ,m ass spec trom etry i s m aturi ng to be a po w erfu l too l and core tech -nology fo r proteo m ics st udies dur i ng the recen t years .The super i or ity o fm ass spectrom etry lies i n providi ng the through -pu t and the m olecu lar infor m ati on ,w hich no other techno logy can be m a tched i n proteom ics .In th i s rev ie w,w e m ade a g lance on the outli ne o fm ass spectrome try -based proteo m ics .A nd then w e addressed on t he advances o f data ana l y si s o f m ass spec trom etry -based proteom ics ,quantitati ve m ass spectro m etry -based pro teom i cs ,post -translati onal m odificati ons based m ass spectrom etry ,targeted proteo m ics and functiona l proteo m ics based -mass spectrome try .K ey word s :m ass spectrome try;proteo m ics ; quantitative pro teom i cs ; post -trans l ation m odifica ti on ; targ eted pro - teo m i cs ;f uncti ona l proteom ics 蛋白质组学(Pr o teo m ics)是从整体水平上研究细胞内蛋白质的组成、活动规律及蛋白质与蛋白质的相互作用,是功能基因组学时代一门新的学科。 目前蛋白质组学的研究主要有两条路线:一是基于双向电泳的蛋白质组学;二是基于质谱的蛋白质组学,其中基于双向电泳的蛋白质组学研究路线最终也离不开质谱技术的应用。自20世纪80年代末,两种质谱软电离方式即电喷雾电离(electro spray ion izati o n,ESI )和基质辅助激光解析离子化(m a -tri x assisted laser desorpti o n i o nization ,MALD I)的发明和发展解决了极性大、热不稳定蛋白质和多肽分 析的离子化和分子质量大的测定问题[1] ,蛋白质组学研究中常用的质谱分析仪包括离子阱(ion trap ,I T),飞行时间(ti m e of fli g h,t TOF),串联飞行时间(TOF -TOF),四级杆/飞行时间(quadr upo le /TOF hybrids),离子阱/轨道阱(I T /orbitrap hybri d )和离子阱/傅里叶变换串联质谱分析仪(I T /Four i e r transfor m ioncyclotron resonance m ass spectro m eters hybr i d s ,I T /FT M S),这些质谱仪具有不同的灵敏度、分辨率、质量精确度和产生不同质量的M S /M S 谱[2] 。质谱作为蛋白质组学研究的一项强有力的工具日趋成熟,并作为样品制备及数据分析的信息学工具被广泛地应用。因此,有学者指出质谱技术 已在蛋白质组学研究中处于核心地位[3] 。目前在通量及所包含的分子信息内容上,基于质谱的蛋白质组学技术在细胞生物学研究中可以鉴定和量化

代谢组学综述

代谢组学综述 摘要:代谢组学是20世纪90年代中期发展起来的对某一生物或细胞所有低相对分子质量代谢产物进行定性和定量分析的一门新学科,由于其广泛的应用前景,目前已成为系统生物学的重要组成部分。现简要介绍了代谢组学的含义、代谢组学研究的历史沿革、当前代谢组学研究中的分析技术、数据解析方法,综述了代谢组学在药物毒理学研究、疾病诊断、植物和中药等领域的应用情况,并对当前代谢组学研究中存在的问题及发展趋势进行探讨。 关键词:代谢组学研究技术 随着人类基因组计划等重大科学项目的实施,基因组学、转录组学及蛋白质组学在研究人类生命科学的过程中发挥了重要的作用, 与此同时, 代谢组学(metabolomics)在20世纪90年代中期产生并迅速地发展起来, 与基因组学、转录组学、蛋白质组学共同组成系统生物学。基因组学、转录组学、蛋白质组学和代谢组学等各种组学0在生命科学领域中发挥了重要的作用, 它们分别从调控生命过程的不同层面进行研究, 使人们能够从分子水平研究生命现象, 探讨生命的本质, 逐步系统地认识生命发展的规律。这些组学手段加上生物信息学, 成为系统生物学的重要组成部分。 代谢组学的出现和发展是必要的, 同时也是必须的。对于基因组学和蛋白质组学在生命科学研究中的缺点和不足, 代谢组学正好可以进行弥补。代谢组学研究的是生命个体对外源性物质(药物或毒物)的刺激、环境变化或遗传修饰所做出的所有代谢应答, 并且检测这种应答的全貌及其动态变化。代谢组学方法为生命科学的发展提供了有力的现代化实验技术手段, 同时也为新药临床前安全性评价与实践提供了新的技术支持与保障。 1 代谢组学的概念及发展 代谢组学最初是由英国帝国理工大学Jeremy N icholson教授提出的, 他认为代谢组学是将人体作为一个完整的系统, 机体的生理病理过程作为一个动态的系统来研究, 并且将代谢组学定义为生物体对病理生理或基因修饰等刺激产生的代谢物质动态应答的定量测定。2000年, 德国马普所的Fiehn等提出了代谢组学的概念, 但是与N icholson提出的代谢组学不同, 他是将代谢组学定位为一个静态的过程, 也可以称为/代谢物组学, 即对限定条件下的特定生物样品中所有代

蛋白质组学复习资料

蛋白质组学复习资料 一、名词解释 1、蛋白质组学:蛋白质组学是研究与基因对应的蛋白质组的学科,蛋白质组(proteome)一词,源于蛋白质(protein)与基因组(genome)两个词的杂合,意指“一种基因组所表达的全套蛋白质”,即包括一种细胞乃至一种生物所表达的全部蛋白质。 2、二维(双向)电泳原理:根据蛋白质的等电点和相对分子质量的特异性将蛋白质混合物在第一个方向上按照等电点高低进行分离,在第二个方向上按照相对分子质量大小进行分离。二维电泳分离后的蛋白质点经显色,通过图象扫描存档,最后是呈现出来的是二维方向排列的,呈漫天星状的小原点,每个点代表一个蛋白质。 3、三步纯化策略: 第一步:粗提。纯化粗样快速浓缩 (减少体积) 和稳定样品 (去除蛋白酶) 最适用层析技术: 离子交换/疏水层析 第二步:中度纯化。去除大部分杂质 最适用层析技术: 离子交换/疏水层析 第三步:精细纯化。达到最终纯度(去除聚合物,结构变异物) 最适用层析技术:凝焦过滤/离子交换/疏水层析/反相层析 4、高效纯化策略:在三步纯化蛋白质过程中,同时考虑到纯化的速度、载量、回收率及分辨率的纯化策略。 5、离子交换色谱:离子交换色谱中的固定相是一些带电荷的基团,这些带电基团通过静电相互作用与带相反电荷的离子结合。如果流动相中存在其他带相反电荷的离子,按照质量作用定律,这些离子将与结合在固定相上的反离子进行交换。固定相基团带正电荷的时候,其可交换离子为阴离子,这种离子交换剂为阴离子交换剂;固定相的带电基团带负电荷,可用来与流动相交换的离子就是阳离子,这种离子交换剂叫做阳离子交换剂。阴离子交换柱的功能团主要是-NH2,及-NH3 :阳离子交换剂的功能团主要是-SO3H及-COOH。其中-NH3 离子交换柱及-SO3H离子交换剂属于强离子交换剂,它们在很广泛的pH范围内都有离子交换能力;-NH2及-COOH 离子交换柱属于弱离子交换剂,只有在一定的pH值范围内,才能有离子交换能力。离子交换色谱主要用于可电离化合物的分离,例如,氨基酸自动分析仪中的色谱柱,多肽的分离、蛋白质的分离,核苷酸、核苷和各种碱基的分离等。 6、吸附色谱:吸附色谱系色谱法之一种,利用固定相吸附中对物质分子吸附能力的差异实现对混合物的分离,吸附色谱的色谱过程是流动相分子与物质分子竞争固定相吸附中心的过程。洗脱次序∶一般为正相,即:极性低的先被洗脱。 7、PCR扩增:PCR技术(polymerase chain reaction)技术能把单个目的基因大量扩增,这个方法必须在已知基因序列或已知该基因所翻译的氨基酸序列。进而推断出因序列的情况下使用。PCR的每次扩增循环包括三步:1)变性,在高温下把双链靶DNA 拆开; 2)在较低的温度下使引物与靶DNA互补; 3)在中间温度下,在DNA多聚酶作用下,引物按模板DNA延长。典型的PCR包括30~50循环,如此重复循环,使被扩增的靶核苷酸以几何级数扩增。 8、基因组文库 基因文库是指整套由基因组DNA片段插入克隆载体获得的分子克隆这总和。 广义的基因文库指来于单个基因组的全部DNA克隆,理想情况下应含有这一基因组的全部DNA序列(遗传信息),这种基因文库常通过鸟枪法获得。 狭义的基因文库有基因组文库和cDNA文库之分。基因文库可用于研究基因的结构、功能和筛选基因工程的目的基因。 9、cDNA文库:以mRNA为模板,经反转录酶催化,在体外反转录成cDNA,与适当的载体(常用噬菌体或质粒载体)连接后转化受体菌,则每个细菌含有一段cDNA,并能繁殖扩增,这样包含着细胞全部mRNA信息的cDNA克隆集合称为该组织细胞的cDNA 文库。真核生物基因组DNA庞大,复杂度是mRNA和蛋白质的100倍左右,而且含有大量的重复序列,和不被表达的间隔子。这是从染色体DNA出发材料直接克隆目的基因的主要困难。而从mRNA出发的cDNA克隆比基因组克隆要简单得多。 10、基因芯片 基因芯片又叫DNA芯片(DNA chip),DNA微阵列(DNA microarray), DNA集微芯片(DNA microchip),寡核苷酸阵列(oligonucleotide array)。 是一种将核酸分子杂交原理与微电子技术相结合而形成的高新生物技术。 将靶标样品核酸或探针中的任一方按阵列形式固定在固相载体(硅片、尼龙膜、聚丙烯膜、硝酸纤维素膜、玻璃片等)上,另一方用荧光分子标记后,加样至微阵列上杂交,然后用荧光扫描或摄像技术记录,通过计算机软件分析处理,获得样品中大量的基因序列和表达信息。 11、基因敲除:基因敲除(gene knock out),又称基因打靶(gene targeting),是指用外源的DNA与受体细胞基因组中顺序相同或非常相近的基因发生同源重组,整合至受体细胞基因组中并得以表达的一种外源DNA导入技术。对一个结构已知但功能未知的基因,从分子水平上设计实验,将该基因敲除,或用其他顺序相近基因取代,然后从整体观察实验动(植)物,推测相应基因的功能。 12、同源建模:是一种蛋白质结构预测方法,具体指是利用同同源蛋白质结构为模板来预测未知蛋白质的结构。同源性大于50%时,结果比较可靠;30~50%之间,其结果需要参考其它蛋白的信息。同源性小于30%时,人们一般采用折叠识别方法。同源性更小时,从无到有法更有效。 13、Gene:合成有功能的蛋白质或RNA所必需的全部DNA(部分RNA病毒除外),即一个基因不仅包括编码蛋白质或RNA的核酸序列,还应包括为保证转录所必需的调控序列。 14.genome:细胞或生物体中,一套完整单体的遗传物质的总和,即某物种单倍体的总DNA。对于二倍体高等生物来说,其配子的DNA总和即一组基因组,二倍体有两份同源基因组。 15.Protein:生物体中广泛存在的一类生物大分子,由核酸编码的α氨基酸之间通过α氨基和α羧基形成的肽键连接而成的肽链,经翻译后加工而生成的具有特定立体结构的、有活性的大分子。 16.exon:外显子(expressed region)是真核生物基因的一部分,它在剪接(Splicing)后仍会被保存下来,并可在蛋白质生物合成过程中被表达为蛋白质。 17.蛋白质组学研究的两条途径:一条是类似基因组学的研究,即力图"查清"人类大约3万到4万多基因编码的所有蛋白质,建立蛋白质组数据库,即组成蛋白质组学研究;另一条途径,则是着重于寻找和筛选引起2个样本之间的差异蛋白质谱产生的任何有意义的因素,揭示细胞生理和病理状态的进程与本质,对外界环境刺激的反应途径,以及细胞调控机制,同时获得对某些关键蛋白的定性和功能分析,即比较蛋白质组学研究。 18.组成蛋白质组学研究(结构蛋白质组学) 这是一种针对有基因组或转录组数据库的生物体或组织、细胞,建立其蛋白质或亚蛋白质组(或蛋白质表达谱)及其蛋白质组连锁群的一种全景式的蛋白组学研究,从而获得对有机体生命活动的全景式认识。 应该认识到,全基因组研究的发端和升温,是由于大规模基因组测序技术的实现和其后高通量的基因芯片技术的发展所推动的。而蛋白质组迄今还不具备相应的技术基础,且大规模的高通量DNA研究是建立在4种碱基及其配对性质的相对单一和简

质谱技术在蛋白质组学研究中的应用_甄艳

第35卷 第1期2011年1月 南京林业大学学报(自然科学版) J o u r n a l o f N a n j i n g F o r e s t r y U n i v e r s i t y (N a t u r a l S c i e n c e E d i t i o n ) V o l .35,N o .1 J a n .,2011 h t t p ://w w w .n l d x b .c o m [d o i :10.3969/j .i s s n .1000-2006.2011.01.024]  收稿日期:2009-12-31 修回日期:2010-10-26  基金项目:国家自然科学基金项目(31000287);江苏省高校自然科学基础研究项目(10K J B 220002) 作者简介:甄艳(1976—),副教授,博士。*施季森(通信作者),教授。E -m a i l :j s h i @n j f u .e d u .c n 。  引文格式:甄艳,施季森.质谱技术在蛋白质组学研究中的应用[J ].南京林业大学学报:自然科学版,2011,35(1):103-108. 质谱技术在蛋白质组学研究中的应用 甄 艳,施季森 * (南京林业大学,林木遗传与生物技术省部共建教育部重点实验室,江苏 南京 210037) 摘要:随着蛋白质组学研究的迅速发展,质谱技术已成为应用于蛋白质组学研究中的强有力工具和核心技术。质谱技术的先进性在于为蛋白质组学研究提供的通量和分子信息。笔者重点概述了基于质谱路线的蛋白质组学研究,介绍了基于质谱的定量蛋白质组学﹑翻译后修饰蛋白质组学、定向蛋白质组学、功能蛋白质组学以及基于串联质谱技术的蛋白质组学数据解析的研究 进展。 关键词:质谱;蛋白质组学;定量蛋白质组学;翻译后修饰;定向蛋白质组学;功能蛋白质组学中图分类号:Q 81 文献标志码:A 文章编号:1000-2006(2011)01-0103-06 A p p l i c a t i o n o f m a s s s p e c t r o m e t r y i n p r o t e o m i c s s t u d i e s Z H E NY a n ,S H I J i s e n * (K e y L a b o r a t o r y o f F o r e s t G e n e t i c s a n d B i o t e c h n o l o g y M i n i s t r y o f E d u c a t i o n , N a n j i n g F o r e s t r y U n i v e r s i t y ,N a n j i n g 210037,C h i n a ) A b s t r a c t :W i t ht h e r a p i d d e v e l o p m e n t o f p r o t e o m i c s ,m a s s s p e c t r o m e t r y i s m a t u r i n g t o b e a p o w e r f u l t o o l a n dc o r e t e c h -n o l o g y f o r p r o t e o m i c s s t u d i e s d u r i n g t h e r e c e n t y e a r s .T h e s u p e r i o r i t y o f m a s s s p e c t r o m e t r y l i e s i n p r o v i d i n g t h e t h r o u g h -p u t a n d t h e m o l e c u l a r i n f o r m a t i o n ,w h i c hn o o t h e r t e c h n o l o g y c a n b e m a t c h e di np r o t e o m i c s .I nt h i s r e v i e w ,w e m a d e a g l a n c e o n t h e o u t l i n e o f m a s s s p e c t r o m e t r y -b a s e d p r o t e o m i c s .A n dt h e nw e a d d r e s s e d o n t h e a d v a n c e s o f d a t a a n a l y s i s o f m a s s s p e c t r o m e t r y -b a s e dp r o t e o m i c s ,q u a n t i t a t i v em a s ss p e c t r o m e t r y -b a s e dp r o t e o m i c s ,p o s t -t r a n s l a t i o n a l m o d i f i c a t i o n s b a s e d m a s s s p e c t r o m e t r y ,t a r g e t e d p r o t e o m i c s a n df u n c t i o n a l p r o t e o m i c s b a s e d -m a s s s p e c t r o m e t r y . K e yw o r d s :m a s ss p e c t r o m e t r y ;p r o t e o m i c s ;q u a n t i t a t i v ep r o t e o m i c s ;p o s t -t r a n s l a t i o n m o d i f i c a t i o n ;t a r g e t e d p r o -t e o m i c s ;f u n c t i o n a l p r o t e o m i c s 蛋白质组学(P r o t e o m i c s )是从整体水平上研究细胞内蛋白质的组成、活动规律及蛋白质与蛋白质的相互作用,是功能基因组学时代一门新的学科。目前蛋白质组学的研究主要有两条路线:一是基于双向电泳的蛋白质组学;二是基于质谱的蛋白质组学,其中基于双向电泳的蛋白质组学研究路线最终也离不开质谱技术的应用。自20世纪80年代末,两种质谱软电离方式即电喷雾电离(e l e c t r o s p r a y i o n i z a t i o n ,E S I )和基质辅助激光解析离子化(m a -t r i x a s s i s t e d l a s e r d e s o r p t i o n i o n i z a t i o n ,M A L D I )的发明和发展解决了极性大、热不稳定蛋白质和多肽分 析的离子化和分子质量大的测定问题[1] ,蛋白质组学研究中常用的质谱分析仪包括离子阱(i o n t r a p ,I T ),飞行时间(t i m e o f f l i g h t ,T O F ),串联飞行时间(T O F -T O F ),四级杆/飞行时间(q u a d r u p o l e /T O F h y b r i d s ),离子阱/轨道阱(I T /o r b i t r a ph y b r i d ) 和离子阱/傅里叶变换串联质谱分析仪(I T /F o u r i e r t r a n s f o r m i o n c y c l o t r o nr e s o n a n c em a s s s p e c t r o m e t e r s h y b r i d s ,I T /F T M S ),这些质谱仪具有不同的灵敏度、分辨率、质量精确度和产生不同质量的M S /M S 谱[2] 。质谱作为蛋白质组学研究的一项强有力的工具日趋成熟,并作为样品制备及数据分析的信息学工具被广泛地应用。因此,有学者指出质谱技术 已在蛋白质组学研究中处于核心地位[3] 。目前在通量及所包含的分子信息内容上,基于质谱的蛋白质组学技术在细胞生物学研究中可以鉴定和量化

相关主题
文本预览
相关文档 最新文档