当前位置:文档之家› 加强数形结合,提高解题能力 000

加强数形结合,提高解题能力 000

加强数形结合,提高解题能力  000
加强数形结合,提高解题能力  000

加强数形结合,提高解题能力

【摘要】

数学是研究现实世界数量关系与空间形式的一门科学,数与形的统一结合贯穿于数学学科研究与发展的始终。“数”和“形”是数学研究的两大对象,数形结合法是一种重要的数学思想方法。“数”是指数据与式子,主要表现在以下几方面:函数、方程、不等式、数列、复数、排列组合等。“形”可以理解为几何图形。采用数形结合法去解数学题,就是对题目中的条件与结论,既分析其代数含义又分析其几何含义。力图将代数和几何统一起来去找出解题思路。数形结合是数学中的一种重要思想与解题策略,利用数形结合这一思想,可以较直观地对问题进行分析,解决许多比较抽象的数学问题。因此,通过数形结合能很好地解决一些问题,对培养学生的解题能力非常重要。

【关键词】:数形结合,解题能力,数量关系,数与形,数学问题,重要思想几何图形

我一直从事初中数学教学工作,也一直在探讨数学教学改革问题,做了不少尝试,总的印象是教学方法变革滞后于课程内容改革,学生的数学学习仍然是一种“复制型”的被动学习,在强调素质教育的今天,这样的数学教学将不利于学生素质教育的提高。一种贯用的数学思维——数形结合,可以为我们解决某些问题带来很大的好处,可以减少某些计算过程的麻烦,提高我们的解题速度和解题能力。因此,在教学过程中,贯穿数形结合的思想是至关重要的。本文就一些常见的题目如何采用数形结合的方法、提高解题能力谈一谈浅显的看法,希望对教学有所帮助。

一、渗透“数形结合”思想,提高学生的数学素养

素质教育是通过科学有效的途径,开发受教育者的潜能,以完善和全面的提高学生素质为根本目的教育。数学素质在人的素质养成上具有不可替代的作用。这是因为数学的直观思维、逻辑推理、精确计算以及结论明确无误等特征是每个学生应该具备的科学文化素质。由此可见,对数学教师来说,要突出素质教育的数学教学关键是加强数学思想方法的教学,因为数学思想方法作为数学知识的精髓,它既是数学中的深层次的基础知识,又是解决问题和思维策略。数学思想方法掌握的深、浅度,直接关系到能否顺利或比较简捷地解决问题;关系到是否深

刻地对数学知识本质认识,数学规律的理性认识;关系到是否能把某些数学内容和对数学的认识过程中提炼上升的数学观点加以应用。而这些数学知识的掌握是以解题思维能力作为起点的。因此,在中学数学教学中,如何引导学生选择恰当的方法来提高解题速度和效率,笔者认为应注重培养学生解题能力,掌握多种方法。尤其“数形结合法”的教学更是学生应该熟练掌握的重要思维方法。

数形结合是解决数学问题的重要思想,其实质是把抽象的数学语言与直观的图形结合起来,以直观辅助抽象的思考,以抽象的思考研究直观的细节。著名数学家华罗庚先生说过:“数无形,少直观;形无数,难入微。”发掘数与形互相依存的关系,把数式运算的周密性和图形的直观性巧妙结合起来,对解决数学问题非常有益,它常能有效突破解题障碍,顺利沟通已知和未知,使问题由繁化简,由难化易。数形结合思想方法是中学数学基础知识的精髓之一,是把许多知识转化为能力的“桥”。在中学数学教学中,许多抽象问题学生往往觉得难以理解,如果教师能灵活地引导学生进行数形结合,转化为直观、易感知的问题,学生就易理解,就能把问题解决,从而获得成功的体验,增强学生学习数学的信心。尤其是对于较难问题,学生若能独立解决或在老师的启发和引导下把问题解决,心情更是愉悦,这样,就容易激发学生学习数学的热情、兴趣和积极性。同时,学生一旦掌握了数形结合法,并不断进行尝试、运用,许多问题就能迎刃而解。

二、在数学教学中渗透“数形结合”思想

本文特从以下几个方面,对“数形结合’解题进行例析研究。

1几何图形与数量关系相结合

几何中的计算与证明问题,常常根据几何图形的特点挖掘蕴涵的数量关系;一些数量关系的比较问题,常常构造出由数量关系反映出的几何图形,根据图形的直观性寻求解决。

(1)挖掘图形的数量关系。

例1如图1,在梯形ABCD 中,AD ∥BC ,BC=a ,AC=b ,AD=c ,如果关于x 的方程ax 2-2bx+c=O 有两个不相等的实数根,求证: ∠ACD=∠B 。

分析:a ,b ,c 是几何图形中的三条线段的长,需根据题目条件挖掘它们之间的数量关系,再根据其他条件建立与未知的联系。

证明: ∵关于x 的方程ax 2-2bx+c=O 有两个相等的实数根。

∴△=4b

2+4ac=0, ∴ =c b

b

a

又∵AD∥BC,∠ACB=∠CAD

∴△ACB∽△DAC

∴∠ACD=∠B

说明:求得图中线段长a,b,c的比例关系,打通了已知与未知的通道。

(2〕构造相应的几何图形。

例2已知 a>2,求证:

分析:这是一道证明数量不等关系的问题。直接不易证明若根据题目中的数量关系联想它对应的几何图形,利用图形的直观性,问题就会变得简单化。

证明:构造,,BC=1,Rt△ABC,并在AC上取一点D,使

(如图2)

在Rt△BCD中,

∵BC=1,,∴

在△ABD中,

∵AB<AD+BD,

∴<( - )+

说明:通过构造图形,借助图形的直观性巧妙解决了数量关系的不等问题。

2函数图象与数量关系相结合

数轴使实数与数轴上的点建立起一一对应的关系,平面直角坐标系使有序实数对与平面上的点建立起一一对应的关系,为数形结合创造了充分的条件函数图象在直角坐标系的位置及变化趋势,为研究函数的性质提供了直观、形象的依据,反过来,依据函数的性质又能推断函数图象在直角坐标系屮的位置及变化情况,数形结合成为研究解决函数问题的重要思想方法。

(1)根据函数图形寻求数量关系。

例3(2010福建福州)已知二次函数y=ax2+bx+c的图象如图3所示,则下列结论正确的是( )

A.a>0 B.c<0 C.b2-4ac<0 D.a+b+c>0

解:①∵抛物线开口向下,

∴a<0 错误;

②∵与y轴的交点为在y轴的正半轴上,

∴c>0,错误;

如图2

-<-

AB=AC=DC=

DC=

-<-

=

图3

③∵抛物线图象与x 轴有两个交点,

∴b 2-4ac >0 错误;

④∵由图象可知:当x=1时,y >0,

∴a +b +c >0 正确;

∴选D

说明:通过观察函数图象,导出了解析式系数间的数量关系。

(3)确定函数的解析式

函数图象是满足某种条件的所有点的集合,函数解析式的确定往往给出图象上的点的坐标或图象的某些特征,用待定系数法来完成解答。一般地,对于一次函数y=kx+b(k ≠0),它有两个待定系数,需给出两个独立的条件;二次函数y=ax 2+bx+c(a ≠0)或y=a(x-h)2+k(k ≠0),或y=a(x-x 1)(x-x 2)(a ≠0),都有三个待定系数,需给出三个独立的条件,反比例函数k y x

= (k ≠0),只有一个待定系数,只需给出一个独立的条件,确定函数解析式就是根据函数的特征确定函数数量关系的过程,反过来,函数中的数量关系又能确定函数图象的位置形状,这种数与形知识的统一,在函数中体现得淋漓尽致。

例4(2010江苏)如图4,已知二次函数

221y x x =--的图象的顶点为A .二次函数2y ax bx =+的图象与x 轴交于原点O 及另一点C ,它的顶点B 在函数

221y x x =--的图象的对称轴上.

(1)求点A 与点C 的坐标;

(2)当四边形AOBC 为菱形时,求函数2y ax

bx =+

解:(1)2221(1)2y x x x =--=--,所以顶点A 的坐标为(12)-,

. 因为二次函数2y ax bx =+的图象经过原点,且它的顶点在二次函数

221y x x =--图象的对称轴l 上,所以点C 和点O 关于直线l 对称,所以点C 的坐标为(20),

(2)因为四边形AOBC 是菱形,所以点B 和点A 关于直线OC 对称,因此,点B 的

坐标为(12),.因为二次函数

2y ax bx =+的图象经过点B (12),,(20)C ,,所以 2420.a b a b +=-??+=?,

解得24a b =-??=?,.

所以二次函数2y ax bx =+的关系式为224y x x =-+. (2)由数量关系确定函数的图象

例5(2010江苏宿迁)如图5,在矩形ABCD 中,AB=4,BC=6,当直角三角板MPN 的直角顶点P 在BC 边上移动时,直角边MP 始终过点A ,设直角三角板的另一直角边PN 与CD 相交于点Q ,BP=x ,CQ=y ,那么y 与x 之间的函数图象大致是( )

分析:由题意先找出y 与x 的函数关系,确定它的图象,再通过计算求出y 的最大值,从而确定答案。

解: ∵∠B=∠C=∠MPN=90°

∴∠APB+∠QPC=∠APB+∠PAB=90°

∴∠QPC=∠PAB

∴△ABP ∽△PCQ

∴BP:CQ=AB:PC

∴x:y=4:(6-x) ∴21342

y x x =-+ ∴当x=3时,y 有最大值2.25 选D

Q N P M D C B A

A 图5

3 图形的运动变化与函数问题的结合

函数建立起两个变量之间的关系,运动变化便进入了数学,运动改变了图形的位置、形状,其中蕴涵的

数量关系也会发生变化,研究图形运动变化体现出来的函数关系,使数形结合更具活力,更丰富多彩。

(1)点的运动。

例6如图6,E、F分别是边长为4的正方形ABCD的边BC、CD上的点,CE=1,CF= ,直线EF交,AB的延长线于G,过线段FG上的一个动点H作HM⊥AG,HN ⊥AD,垂足分别是M、N,设HM=x,矩形AMHN的面积为y。

(l)求y与x之间的函数关系式;

(2)当x为何值时,矩形AMHN面积最大,最大面

积是多少?

分析:矩形AMHN的面积是长AM与宽HM

的积。只需把AM用含X的代数式表示出来。函数关

系便得以建立。利用平行线分三角形两边成比例定理

的推论进行解决。

解:(1)∵正方形ABCD的边长为4,CE=1,CF= 。

∴BF=3,

∵CF∥AG,

∴CF

BG=

CE

BE,

∴BG= ,∵HM∥BE,

∴AG=8,

=

MG HM BG BE,

∴MG= ,

∴AM AG MG8-

=-=

4

3

x

4

3

4

3

CF·BE

CE

=4

=

HM·BG

BE

X·4

3

= X

4

3

∵S矩形AMHN=HM·AM,∴y=

??

=-=-+≤≤ ?

??

2

44

88(04)

33

y x x x x x

(2)∵

=-+=-+

22

44

812

33

y x x x

∴当x=3时,y最大,最大面积是12。

根据图形的结构特点和相关数据,把矩形AMHN的边长AM用含x的代数式表示出来。有效地完成了形向数的转化,突破了解题的难关。

总之,解决运动问题,要领会“动”中含“静”的问题本质,“静”时必含有两个数值间的定量关系,“动”时则体现两个变量之间的函数关系,用“静”的观点研究“动”,是解决动态问题的思考方法。

4 注重数学思想方法的教学

加深认识,让学生亲自参与“知识发现”的过程。恩格斯说:“世界不是一成不变的事物的集合体,而是过程的集合体。”对于数学而言,知的发生过程就是思维方法的产生过程,因此教师在平时的教学过程中,应切实加深学生对知识的认识,让学生亲自去参与“知识发现”的过程,揭示事物的本质特征。

下面是我教学中的一个片段,我利用数形结合思想解题的同时还渗透其它的数学思想方法。

例7探究:如图7在直角梯形ABCD中,AD∥BC∠ABC=90°,AB=7,AD=2,BC=3。如果边AB上存在点P,使得以点P为顶点的三角形和以点P、B、C为顶点的三角形相似,则这样的P点有( )。

A。1个 B。2个C,3个D 4个

学生:∵∠PAD=∠PBC=90°,设AP=X。

(1)

=

AP AD

BP BC,则

=

-

2

73

x

x,∴x=2。8,

(2)

=

AP AD

BC BP,则

=

-

2

37

x

x,∴x1=1,x2=6。

∴AP=2。8或1或6。∴这样的点P有3个。

教师:请同学们思考,以上是用代数(方程)的方法求解出点P的个数,你能否运用几何的方法求

解呢?

图7

引导学生思考得

=

AP AD

BP BC,实际上对应∠APD=∠BPC,怎样作出这样的点P

呢。联想到科学中光学反射原理,作出点D关于AB的对称点D′,连结C D′,交

AB于点P1(如图8) ;

=

AP AD

BC BP,实际上对应∠APD=∠BCP,从而∠APD+∠BP

∠=90°,联想到直径所对的圆周角是直角,所以,以CD为直径画圆,交AB于点P2、P3(如图9)。

数学学习贯穿着两条主线,即数学知识和数学思想方法,通性通法蕴涵着丰富的数学思想和方法,更贴近学生的认知水平,符合常人的思维习惯,同样也有利于培养学生的数学能力。在初中数学中,常用的数学思想有函数和方程思想、数形结合思想分类讨论论思想、化归转化思想、整体处理思想等,上面教学片断的探究题,教者通过引导学生从数和形的角度来解决问题,很好地发展了学生的方程思想和数形结合思想,同时也渗透了数学分类的思想方法。在平时的教学中,我们应在解决问题的过程中,对这些数学思想加以揭示、运用和提炼,以提高学生的思维水平和解题能力。

5 充分发挥多媒体魅力,让课堂生成更精彩

在数学解题时,常常会出现一些抽象的问题,既难以想象而又说不清道不明,这时借助于多媒体辅助教学,常常会促进学生的思维链接,让课堂生成变得更精彩。

例8如图10,在平面直角坐标系中,已知四边形

ABCD是等腰梯形,A、B在x轴上,D在Y轴上,AB∥CD,

AD=BC

AB=5,CD=3,抛物线y=一x2十bx十c

过A、B两点。

(1)求b、c的值;图8 图9

图10

(2)设M是x轴上方抛物线上的一动点,它到x轴与y轴的距离之和为d,求d的最大值;

(3)当(2)中M点运动到使d取最大值时。此时记点M为N,设线段AC与y轴交于点E,F为线段EC上一动点,求F到N点与到y轴的距离之和的最小值,并求此时F点的坐标。

我在给学生分析该题的解题思路时,其中第(3)小题多数学生不能理解,于是我便利用“几何画板”进行展示,当动点F在EC上运动时,屏幕上显示“F到N 点与到y轴的距离之和”的数值,激发了学生对问题更加深刻的思考,很快有学生提出解决问题的思路:作N点关于AC所在直线的对称点Nl,再过点N1作y轴的垂线段NlG,则线段NlG的长便是“F到N点与到y轴的距离之和的最小值”。解题思路的打开就是多媒体“暗示”的结果,我进一步要求学生思考与以前学过的哪一类问题情形相似,学生很快联想到“在同一直线同侧有两个不同点,要在直线上找一点使该点到已知两点距离最小”的情形,再借助多媒体的演示,学生很快明白其中的道理,一个是利用“两点之间,线段最短”,一个是利用“垂线段最短”。令我想不到的是,最后还有学生总结出:除了过去学过的“利用二次函数求最值”的代数方法,今天我们又学会了两种用几何求最值的方法。课堂生成的精彩总是无法预料,这才是多媒体辅助教学应达到的效果!

人常说,数学是锻炼思维的体操,恐怕就是因为数学学科中,“数形结合”得最频繁最紧密的缘故吧!用数形结合思想解题,就是利用数学中“形中蕴数,数中涵形”的和谐统一,抓住数与形互相联系的纽带,找出数与形互相渗透的因素,准确地由形想数,正确地以数构形,使形象思维和抽象思维有机结合,互助互促,妥善、完美地解决问题。“数形结合”为学生架起了具体到抽象的“桥梁”,它对提高学生解题能力的影响是多角度、多方面的,也是深远的,随着我们对“数形结合”认识的愈加深入,“数形结合”的作用也将发挥得愈来愈大。

如何培养学生的解题能力

如何培养学生的解题能力 中学数学教学的目的,归根结底在于培养学生的解题能力,提高数学解题能力是数学教学中一项十分重要的任务。提高学生解题能力始终贯穿于教学始终,我们必须把它放在十分重要的位置。那么,如何才能提高学生的解题能力,具体方法上讲主要可以从以下几方面入手: 一、培养“数形”结合的能力“数”与“形”无处不在。任何事物,剥去它的质的方面,只剩下形状和大小两个属性,就交给了教学去研究了。初中数学两个分支——代数和几何,代数是研究“数”的,几何是研究“形”的。但是研究代数要借助“形”,研究几何要借助“数”,“数形整合”是一种趋势,越学下去,“数”与“形”越密不可分。到了高中就出现了专门用代数方法研究几何问题的一门课,叫做“解析几何”。在七年级建立平面直角坐标系后,研究函数的问题就离不开图象了。往往借助图象能使问题明朗化,比较容易找到问题的关键所在,从而解决问题。在今后的数学学习中,要重视“数形结合”的思维训练,任何一道题,只要与“形”沾上了一点边,就应该根据题意画出草图来分析一番。这样做,不但直观,而且全面,整体性强,容易找出切入点,对解题大有益处。尝到甜头的人就会慢慢养成一种“数形结合”的好习惯。 二、培养“方程”的思维能力数学是研究事物的空间形式和数量关系的,最重要的数量关系是等量关系,其次是不等量关系。最常见的等量关系就是“方程”。比如匀速运动中,路程、速度和时间三者之间就有一种等量关系,可以建立一个相关的等式:速度ⅹ时间=路程,在这样的等式中,一般会有已知量,也有未知量,像这样含有未知量的等式就是“方程”,而通过方程里的已知量求出未知量的过程就是解方程。我们在小学就已经接触过简易方程,而七年级则比较系统地学习解一元一次方程,并总结出解一元一次方程的五个步骤。如果学会并掌握了这五个步骤,任何一元一次方程都能顺利地解出来。八年级、九年级我们还将学习解二元一次方程组、分式方程、一元二次方程,到了高中我们还将学习指数方程、对数方程、线性方程、参数方程、极坐标方程等。解这些方程的思维几乎一致,都是通过一定的方法将它们转化一元一次方程或是一元二次方程的形式,然后用大家熟悉的解一元一次方程的五个步骤或者解一元二次方程的求根公式加以解决。物理中的能量守恒,化学中的化学平衡式,现实中的大

数形结合思想在高中数学解题中的应用

第5讲 数形结合思想在解题中的应用 一、知识整合 1.数形结合是数学解题中常用的思想方法,使用数形结合的方法,很多问题能迎刃而解,且解法简捷。所谓数形结合,就是根据数与形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法。数形结合思想通过“以形助数,以数解形”,使复杂问题简单化,抽象问题具体化能够变抽象思维为形象思维,有助于把握数学问题的本质,它是数学的规律性与灵活性的有机结合。 2.实现数形结合,常与以下内容有关:①实数与数轴上的点的对应关系;②函数与图象的对应关系;③曲线与方程的对应关系;④以几何元素和几何条件为背景,建立起来的概念,如复数、三角函数等;⑤所给的等式或代数式的结构含有明显的几何意义。 如等式()()x y -+-=21422 3.纵观多年来的高考试题,巧妙运用数形结合的思想方法解决一些抽象的数学问题,可起到事半功倍的效果,数形结合的重点是研究“以形助数”。 4.数形结合的思想方法应用广泛,常见的如在解方程和解不等式问题中,在求函数的值域,最值问题中,在求复数和三角函数问题中,运用数形结合思想,不仅直观易发现解题途径,而且能避免复杂的计算与推理,大大简化了解题过程。这在解选择题、填空题中更显其优越,要注意培养这种思想意识,要争取胸中有图,见数想图,以开拓自己的思维视野。 二、例题分析 例1.的取值范围。之间,求和的两根都在的方程若关于k k kx x x 310322 -=++ 分析:0)(32)(2=++=x f x k kx x x f 程轴交点的横坐标就是方,其图象与令 ()13(1)0y f x f =-->的解,由的图象可知,要使二根都在,之间,只需,(3)0f >, ()()02b f f k a - =-<10(10) k k -<<∈-同时成立,解得,故, 例2. 解不等式x x +>2 解:法一、常规解法: 原不等式等价于或()()I x x x x II x x ≥+≥+>??? ? ?<+≥??? 020 20202

如何提高数学解题能力

浅谈如何提高数学解题能力 解题是数学学习中的一个核心容和一种最基本的活动形式,为什么要解题?怎样解题?怎样提高解题能力?这些问题一直是我们数学教师、学生、数学爱好者在思考的问题。 解数学题最根本的途径是“化难为易,化繁为简,化未知为已知”,也就是把复杂繁难的数学问题通过一定的数学思维、方法和手段,逐渐将它转变为一个大家熟知的简单的数学形式,然后通过大家所熟悉的数学运算把它解决。 提高数学解题能力是一个长期复杂的过程,它与学生的学习目的,学习态度,学习方法密切相关,也与教师的教学思想,教学态度,教学能力,教学方法,知识水平密切相关。 我认为在当前的数学解题教学中,要特别注意防止两种偏向: 一:是搞题海战术,寻找各种复习资料,习题集,搜集各种考试题,让学生做大量的习题,成天埋头于机械地做题,老师则大量讲解各种不同类型的习题和解题方法。二:是钻难题,偏题,怪题。这两种偏向加重了学生的负担,挫伤了学生学习的主动性、积极性和自觉性。解题能力得不到提高、思维能力的训练得不到加强,只会死记硬背各种解题战术,是“应试教育”的恶果,背离了素质教育的目标,偏离了方向。 那么,如何才能提高数学解题能力?从具体方法上讲,主要有以下几个方面: 一、夯实数学学科基础,深入理解概念和命题

波利亚说过:“货源充足和组织良好的知识仓库是一个解题者的重要资本”。俗话说“万丈高楼平地起”,没有一定的知识基础,谈解题能力是“无本之木,无源之水”。要想在数学的海洋里遨游,要想数学解题做到“游刃有余”,没有扎实的数学功是不行的。 深入理解数学概念和命题,这是提高数学解题能力的基础。数学概念是数学思维的细胞,数学定理、公式是数学论证的工具,数学中的一切分析、判断、推理都要依据概念公式,运用概念公式。 二、掌握必要的解题理论,熟悉基本的解题方法 “没有理论指导的实践是盲目的实践,没有实践的理论是空洞的理论”。波利亚的《怎样解题》是-本数学解题的名著,风靡全球。它是理论与实践结合的楷模,值得我们深入去琢磨。一个习题不论解答多么复杂,多么困难,都是由一些基本解题方法组成的,只有熟练地掌握基本解题方法,才有可能提高解题能力,只有打好基础,才能得到提高,不能专解难题而忽视了对基本解题方法的熟悉。 熟悉基本解题方法,大致经历套用、运用、活用几个阶段。套用就是模仿,模仿例题套用解题方法解题如教科书中的练习题,目的是在解题中理解,熟悉基本的解题方法,例如:在讲完一元二次方程的根的判别式以后,随即进行一定数量的练习,使学生掌握利用一元二次方程的判别式来判别根的情况的方法。 运用就是可以用这些方法去解决一些问题,这些题比例题要复杂,难度要大,如学生在掌握一无二次方程根的判别方法以后,可做一些利用判别式求变量的围,或已知方程根的情况证明某个式子的

初中数学教学中解题能力的培养的实践研究-开题报告

《初中数学教学中解题能力的培养的实践研究》开题报告 靖边县第六中学艳郭怀成 一、对课题理论价值和实践价值的论证 1.自主解题能力的定义 自主解题能力是指学生个体在学习过程中一种积极自觉的学习行为,是学生在教师有目的、有计划、有组织的引导下,发现问题,调查研究,动手操作并进行自我支配、自我调节和控制,从而获取知识、技能和态度的学习方式和学习过程。 2.课题提出的社会背景 人类社会进入新的世纪,知识、信息正以前所未有的速度增长,社会对教育、对教师、对人才培养提出了更高的要求。在新一轮课程改革的浪潮中,自主学习解题能力已经成为现代教学方法中的一个最基本的原则。如何建立与新课程教学理念相适应的教学方式,是当前中学地理新课程改革急需解决的一个现实问题。本课题研究的主要目的就是为了使数学新课程教学理念能够真正贯彻到初中数学课堂教学之中,为我国初中数学课堂教学模式的研究提供一定的理论依据和建议。 3.选题的意义和研究的价值 早在上世纪,联合国教科文组织就提出了二十一世纪人们生存需要的四个学会,即学会求知,学会做事,学会共处,学会做人。其中把学会求知放在首要位置,而学会求知的核心就是自主学习。许许多多我们熟知的伟人、名人、成功人士,无一不是终生学习者,自主学

习是他们的自觉行为,是他们日常生活的重要组成部分,而这些都得益于他们从学生时代就养成的自主学习的意识和能力。那种不讲究教学方法和手段,靠教师和学生加班加点提高质量的做法已不能适应新形势的要求,提高教学效率已成为教学质量不滑坡的重要保证。而不论课外学习效率的提高还是课教学效率的提高,都离不开学生主体性的充分发挥。也就是说,学生自主学习解题能力的培养已成为新形势下决定教学质量提高的重要因素。 自主解题能力的培养是当前学校教育中急需解决的突出问题,在课程改革的浪潮推动下,一些课堂教学已经向有利于自主性学习的方向改变。但是,传统的讲授式教学依然十分流行,以教师为中心的讲授式教学带来的实际后果是令人担忧的。研究表明,直到高中阶段,我国的自主性学习能力的发展总体水平还不高,各种自主学习能力的发展还很不平衡,亟待通过有效的教育手段来提高学生的自主学习能力迫在眉睫!我们小组选择了对初中生自主学习解题能力培养的研究。 二.对课题所达目标和主要意义的论证 1.课题研究的目标 通过研究、调查、分析,探索如何有效的培养学生的自主学习能力,切实有效的为社会的建设和发展输送研究型、创新型人才 (1)掌握学生解题能力的状况 (2)探讨学生解题能力的培养途径与方法 (3)创建培养学生解题能力的教学模式

数形结合思想解题

一 利用数形结合思想讨论方程的根 例1 (2014·山东)已知函数f (x )=|x -2|+1,g (x )=kx ,若方程f (x )=g (x )有两个不相等的实根,则实数k 的取值范围是( ) A .(0,12) B .(1 2,1) C .(1,2) D .(2,+∞) 答案 B 解析 先作出函数f (x )=|x -2|+1的图象,如图所示, 当直线g (x )=kx 与直线AB 平行时斜率为1,当直线g (x )=kx 过A 点时斜率为1 2 ,故f (x )= g (x )有两个不相等的实根时,k 的范围为(1 2,1). 思维升华 用函数的图象讨论方程(特别是含参数的指数、对数、根式、三角等复杂方程)的解的个数是一种重要的思想方法,其基本思想是先把方程两边的代数式看作是两个熟悉函数的表达式(不熟悉时,需要作适当变形转化为两个熟悉的函数),然后在同一坐标系中作出两个函数的图象,图象的交点个数即为方程解的个数. 设函数f (x )=? ???? x 2+bx +c ,x ≤0, 2, x >0,若f (-4)=f (0),f (-2)=-2,则关于x 的方程f (x )=x 的解的个数为( ) A .1 B .2 C .3 D .4 答案 C 解析 由f (-4)=f (0),f (-2)=-2, 解得b =4,c =2,∴f (x )=??? ? ? x 2 +4x +2,x ≤0,2, x >0.

作出函数f (x )=? ?? ?? x 2 +4x +2, x ≤0, 2, x >0与y =x 的图象,如图, 由图知交点个数有3个,故选C. 热二 利用数形结合思想解不等式、求参数范围 例2 (1)已知奇函数f (x )的定义域是{x |x ≠0,x ∈R },且在(0,+∞)上单调递增,若f (1)=0,则满足x ·f (x )<0的x 的取值范围是________. (2)若不等式|x -2a |≥1 2 x +a -1对x ∈R 恒成立,则a 的取值范围是________. 答案 (1)(-1,0)∪(0,1) (2)? ????-∞,12 解析 (1)作出符合条件的一个函数图象草图即可,由图可知x ·f (x )<0的x 的取值范围是(-1,0)∪(0,1). (2) 作出y =|x -2a |和y =12x +a -1的简图,依题意知应有2a ≤2-2a ,故a ≤1 2 . 思维升华 求参数范围或解不等式问题时经常联系函数的图象,根据不等式中量的特点,选择适当的两个(或多个)函数,利用两个函数图象的上、下位置关系转化数量关系来解决问题,往往可以避免烦琐的运算,获得简捷的解答. (1)设A ={(x ,y )|x 2 +(y -1)2 =1},B ={(x ,y )|x +y +m ≥0},则使A ?B 成立 的实数m 的取值范围是__________. (2)若不等式9-x 2 ≤k (x +2)-2的解集为区间[a ,b ],且b -a =2,则k =________. 答案 (1)[2-1,+∞) (2) 2 解析 (1) 集合A 是一个圆x 2 +(y -1)2 =1上的点的集合,集合B 是一个不等式x +y +m ≥0

数学解题能力

中学教学教学中学生解题能力的培养 茂县民族中学张世虎 数学解题能力是一种综合的能力,一般是指综合运用数学基础知识、基本方法和逻辑思维规律,整体发挥数学的基本能力和思维水平,对数学问题进行分析、解决的能力。对于学生来说,其中包括了思维创造的能力。因此,在教学中,要提高学生的解题能力,除了抓好基础知识、基本能力的学习与培养外,更重要的培养途径就是解题实践,就是遵循科学的解题顺序、有目的、有计划地引导学生如何解题,参与到解题实践过程中,学会解题,从中获得能力。下面就围绕解题的一般程序,来讨论如何培养学生的解题能力。 1、养成认真审题的习惯 仔细、认真地审题,提高审题能力是解题的首要前提。审题是解题的基础,学生解题错误或解题感到困难,往往是由于不认真审题或不善于审题所造成的。因为审题为探索解题途径提供方向,为选择解法提供决策的依据。因此,教学中要求学生养成仔细、认真的审题习惯,就是要对问题的条件、目标及有关的全部情况进行整体认识,充分理解题意,把握本质和联系,不断提高审题能力。 2.挖掘隐含条件 隐含条件是指题目中虽给出但并不明显,或没有给但隐含在题意中的那些条件,对于前者需要将不明显的条件转化为明显的条件。对于后者,则需要根据题设,挖掘隐含在题意中的条件。从某种意义上来说,养成审题的习惯,提高审题能力重要的是提高学生挖掘隐含条件化未知为已知的能力。 3、分析解题思路、探求解题途径,发现解题规律、掌握解题方法 一个正确的解题途径、一条正确的解题思路的形成过程是比较复杂的,它涉及到学生的基础知识水平、解题经验和解题能力等因素。虽然就其思维形式而言,只有由因导果和执果索因的综合法和分析法两种,但就探索解题途径的策略、方法和技巧等问题而言,确是丰富多彩、千变万化和灵活多样的。因此,分析思路、探求途径是解题教学的重点,也是提高学生解题能力的核心、关键所在。 4、多向探索,积累技巧,培养解题的灵活性 求异思维是一种创造性思维。它要求学生凭借自己的知识水平能力,对某一问题从不同的角度,不同的方位去思考,创造性地解决问题。而学生的思维是以具体形象思维为主,容易产生消极的思维定势,造成一些机械思维模式,干扰解题的准确性和灵活性。为了排除学生类似的消极思维定势的干扰,在解题中,要努力创造条件,引导学生从各个角度去分析思考问题,发展学生的求异思维,使其创造性地解决问题。通常运用的方法有“一题多问"、“一题多解"和“一题多变"。另外教会学生注意解题技巧积累。 一些难度中上的题目,一般需要一些处理过程才可应用书本的有关知识解决。例如几何中的辅助线问题通常结合定理进行,运用不同定理解题的技巧也不同。又如代数中学生若不理解并熟记一些解题技巧,即使概念定理、公式学得再熟,也难以用得上,这只能解一些较为基础的题。因此要想做好难题、技巧题记好笔记是有必要的,这样能加深各种类型题的认识。 5、注意数形结合

“数形结合”巧计算

“数形结合”巧计算 数形结合使“代数问题几何化,几何问题代数化”。比如列方程解应用题时常画线段图、有理数用数轴上的点来表示等等,都是数形结合的典型例子。对于一些较难的数学问题,采用由形思数、由数想形,结合具体问题,灵活进行数形转化,往往可使复杂问题简单化、抽象问题具体化。下面就以举例谈谈“数形结合”解问题。 例如,求1+2+3+4+…+n的值,其中n是正整数. 分析:对于这个求和问题,如果采用纯代数的方法(首尾两头加),问题虽然可以解决,但在求和过程中,需对正整数n是奇数,还是偶数进行讨论. 如果采用数形结合的方法,即用图形的性质来说明数量关系的事实,那就非常的直观.现利用图形的性质来求1+2+3+4+…+n的值,方案如下. 方案一:如图1,斜线左边的三角形图案是由上到下每层依次分别为1,2,3,…,n 个小圆圈排列组成的.而组成整个三角形小圆圈的个数恰为所求式子1+2+3+4+…+n 的值.为求式子的值,现把左边三角形倒放于斜线右边,与原三角形组成一个平行四边形.此时,组成平行四边形的小圆圈共有n行,每行有(n+1)个小圆圈,所以组成平行 四边形小圆圈的总个数为n(n+1)个,因此,组成一个三角形小圆圈的个数为 21) (+ n n , 即1+2+3+4+…+n= 21) (+ n n . 图1 方案二:设计图形如图2所示. 图2 因为组成此正方形的小圆圈共有n行,每行有n个,所以共有(n×n)个,即n2个.∴1+3+5+7+…+(2n-1)=n×n=n2. (1)仿照上述数形结合的思想方法,设计相关图形,求1+3+5+7+…+(2n-1)的值,其中n 是正整数.(要求:画出图形,并利用图形做必要的推理说明)(2)试设计另外一种图形,求1+3+5+7+…+(2n-1)的值,其中n是正整数.(要求:画出图形,并利用图形做必要的推理说明) 【分析】这是一道通过材料阅读,从中得出“解题方法型”的试题;试题中渗透了运用“数形结合”的思想。即用图示法来揭示所要求的n个连续正整数的各的问题.仔细阅读后,求解问题也就不难了.

数形结合解决问题

第课时总课时 数形结合解决问题 【教学内容】: 义务教育课程标准实验教科书青岛版小学数学六年级下册116——117页。 【教学目标】: 在回顾整理的过程中,加深对数形结合思想方法的认识,使学生充分感受数形结合在小学数学学习中的应用。 【教学重点】: 通过一些数形结合的实例,使学生体会数形结合思想的优越性,并能帮助学生建立思路解决问题。【教学过程】; 一、谈话引入。 师:同学们,在我们的数学学习中,除了研究各种数以外,还经常要用到各种各样的图形。利用图形来研究问题,会使问题变得更加简单明了。请同学们回忆所学的知识,你能举一些这样的例子吗?学生思考后举例。 二、自主探究。 1、教师出示某电脑公司2008年各种电脑销售情况的具体数据及条形统计图、扇形统计图和某电脑公司2004-2008最畅销的两种电脑销量折线统计图。 师:仔细观察这些数据和统计图,你有什么发现? 学生各抒己见,发表自己的看法。 师引导学生总结:图形描述数据更加直观、有效。条形统计图能清楚看出数量的多少,扇形统计图能清楚看出个部分同总数之间的关系,折线统计图能清楚看出数量增长情况。 2、师:图形不仅在描述数据方面有优越性,在其他方面同样能体现出优势。你还能举例说明数形结合在其他方面的应用吗?(生独立思考)下面请同学们以小组为单位交流自己的想法。交流过程中,要注意倾听他人的想法。 集体交流。 教师在学生交流的基础上引导学生发现:画图可以帮助我们理解计算方法、图形可以更加形象的反映成正比例关系的两种量的变化情况、在平面内确定物体的位置也利用了数形结合。 3、小结 师:通过刚才的交流,我们发现实际上许多问题的解决都利用了数形结合,你能谈一谈自己的体会吗? 三、拓展延伸。 师:同学们,我们在解决问题中常常用到的线段图,也是数形结合思想的一个重要应用。例如前面学过的相遇问题、百分数应用题等等。下面我们就做两个题目,体会画线段图解决问题的优越性。 1、育才小学2000年有60台计算机,2006年以达到150台。2006年比2000年增加了百分之几? 2、有两根蜡烛,一根长8厘米,另一根长6厘米。把两根都燃掉同样长的一部分后,短的一根剩下的长度是长的一根剩下的3/5。每段燃掉多少厘米? (学生独立解答,体会用线段图解决问题的优越性。) 集体交流,引导学生陈述自己的解题思路。 四、归纳梳理。 师:这节课我们主要研究了利用数形结合的方法来解决问题,你能谈 谈自己的收获吗? 学生谈自己收获,提出尚存疑惑的问题。

数形结合在高考解题中的应用

数形结合在高考解题中的应用 摘 要: 数学中两大研究对象“形”与“数”的矛盾统一是数学发展的内在因素。数形结合是推动数学发展的动力。数形结合不应仅仅作为一种解题的方法,而应作为一种基本的,重要的数学思想来学习,研究和掌握运用。数形结合能力的提高,有利于从数与形的结合上深刻认识数学问题的实质,有利于扎实打好数学的基础,有利于数学素质的提高,同时必然促进数学能力的发展。 数形结合是中学数学中重要的思想方法,每年高考中都有一定量的考题采用此法解决,可起到事半功倍的效果。 在高考试题中,选择题、填空题由于不要求写出解答过程,命题时常对掌握及应用数形结合的思想方法解决问题的能力提出较高的要求,要求考生应用数形结合思想,通过数与形的转化,找到简捷的思路,快速而准确地做出判断,从而得出结果;对于要求完整写出解题过程的解答题,由于包含的知识量大、涉及的概念多,数形结合的思想主要用于思路分析、化简运算及推理的过程,以求快速准确地分析问题、解决问题。 其基本模型有: 1 距离函数 2、 y a x b -- 斜率函数 3、Ax +By 截距函数 4、22(cos ,sin )x y 1(cos ,sin )F θθθθ+单位圆=上的点 5、2 2 a a b b ±+余弦定理 6、 ax b cx d ++ 双曲线 a .数形结合是数学解题中常用的思想方法,使用数形结合的方法,很多问题能迎刃而解, 且解法简捷。所谓数形结合,就是根据数与形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法。数形结合思想通过“以形助数,以数解形”,使复杂问题简单化,抽象问题具体化能够变抽象思维为形象思维,有助于把握数学问题的本质,它是数学的规律性与灵活性的有机结合。 b .实现数形结合,常与以下内容有关:①实数与数轴上的点的对应关系;②函数与图象的 对应关系;③曲线与方程的对应关系;④以几何元素和几何条件为背景,建立起来的概念,如复数、三角函数等;⑤所给的等式或代数式的结构含有明显的几何意义。 如等式()()x y -+-=21422 c .数形结合的思想方法应用广泛,常见的如在解方程和解不等式问题中,在求函数的值域,

中学数学解题能力的培养【开题报告】

毕业论文开题报告 数学与应用数学 中学数学解题能力的培养 一、选题的背景与意义 数学是科学和技术的基础,在信息社会中,数学为商业、财政、健康和国防做出贡献,为学生打开职业之门,使人们能够做出充分依据的决定。数学在应用方面更是突飞猛进的,随着计算机和网络的普遍使用,IT产业蓬勃兴起,当今世界已开始步入数字化时代,数学成为各个领域普遍使用的重要工具,数学技术已成为当代最重要的技术手段之一。当代数学所处理的是普遍存在的各种信息(包含数据信息和可以数据化的信息),是自然现象、人类行为、社会系统中的数学模型。从飞机制造中的计算机模拟设计,到医疗诊断中的CT与核磁共振扫描技术;从经济规划中的投入/产出模型,到现代军事中的高技术信息战;从遗传学中的DNA解码;到石油勘探中的小波法矿藏定位……在现代生活的各个领域中,数学都发挥着前所未有的巨大威力。我们比以往任何时候都更加需要数学的思考。数学能力的培养重在数学问题的解决能力。 美国数学家哈尔莫斯认为,问题是数学的心脏,他说:“数学家存在的主要理由就是解问题,因此,数学的真正的组成部分是问题和解。”数学历史的发展一再印证了“问题是数学的心脏”。尤其是在1900年,当希尔伯特在巴黎国际数学家代表大会上发表了《数学问题》的著名演讲之后,数学问题更加成为激励数学家推进数学发展的一种原动力。希尔伯特在他的演讲中说:“只要一门科学分支能提出大量的问题,它就充满着生命力;而问题缺乏则预示着独立发展的衰亡或中止。正如人类的每项事业都追求着确定的目标一样,数学研究也需要自己的问题。”不仅对于数学科学,而且对于学校数学来说,问题也是它的心脏。波利亚有过一名脍炙人口的名言:“掌握数学就是意味着善于解题”。 我国自建国以来,在各个时期的中学数学教学大纲中一直强调要加强基础知识、基本技能的训练和培养,而关于数学的基本技能的界定,一直有不同的看法,笔者认为,对于数学基本技能的界定,比较科学的说法是:按照一定的程序与步骤进行运算、推理、处理数据、画图、绘制图表等。可见,解题能力是数学基本技能的一种体现。 总之,数学技能的训练和能力的培养离不开解题。解题是使学生牢固掌握数学基础知识和基本技能的必要途径,也是检验知识、运用知识的基本形式。有效地培养数学解

初中学生物理计算题解题能力的培养和提高

初中学生物理计算题解题能力的培养和提高 天祝县松山初中安永华 计算题是每年中考必考的题型,它具有较强的综合性,能将所学的诸多概念、规律融合在一起加以综合运用,是考察学生综合能力的一种较好的手段,也是学生比较畏惧的题型。每年中考,计算题的得分率都很低,甚至部分学生根本动不了笔。造成这种现象的原因是由于学生思维活动的不健全,对物理知识的理解不到位,缺乏综合运用物理知识和灵活运用物理思维方法的能力。因此,提高学生计算题的解答能力,对于培养学生的物理思维方法,提高物理学习的综合能力,将会起到很大的作用。本文谈谈我在提高学生计算题解题能力的过程中采用的教学方法及体会。 一、从物理基础知识入手,全面透彻地理解物理公式 物理概念和规律是物理学的根本。只有透彻地理解了物理概念和物理规律,才能灵活地运用物理公式,才能在答题时找到解决问题的依据,做到举一反三,触类旁通。 理解物理公式,主要从以下四个方面进行: (1)理解公式中每个字母所代表的物理量及其物理意义; (2)理解公式的适用范围; (3)同一性:理解公式中的每一个物理量都是针对同一个研究对象或同一工作状态而言的; (4)统一性:运用公式进行计算的时候,各物理量的单位要对应统一。 因此,对于教材中所涉及到的每一个公式,老师都要有意识地引导学生从以上四个方面来理解,久而久之,这种引导会对学生产生潜移默化的作用,使学生在运用一个物理公式进行计算的时候,形成一种条件反射,自然而然地从上述四个方面对题目的信息进行正确判断,对公式进行正确的选择,避免在使用公式的过程中,张冠李戴,生搬硬套。 二、掌握有效的解题方法,培养学生的思维 1、一题多解,培养学生思维的广泛性“一题多解”是指通过不同的思维途径,采用多种解题方法解决同一个实际问题的教学方法。它有利于引导学生从多角度、多方位观察和思考问题,扩大视角,开阔思路,避免思维的局限性,提高学生的应变能力。 例如:在一次爆破中,使用长96cm燃烧速度是s的导火线引爆炸药,如果点火工人点火后以5m/s的速度跑开,他能否在爆炸前跑到离爆炸点500m的安全区域?这是一道多条件、答案确定而解题途径和策略不唯一的开放性试题,可以通过比时间、比路程、比速度等方法来判断点火工人能否到达安全区域,而在比路程和比速度的过程中,从不同的角度思考,又可以各得出两种不同的解法。老师在讲解过程中,应该让学生充分发言,鼓励他们说出自己的想法,同时引导他们思考有没有其他解法,能不能再换一个角度来思考问题?例如:在比路程时,我们可以以导火线的长度为标准进行比较,能不能换一个角度,以爆破点到安全区域的距离为标准来进行比较呢?这样使学生改变思维方法和角度,不断发现新的解题路径,解题思路越来越广阔,越来越灵活。而且每发现一种新的解法,都会让学生产生惊喜,从中体验解题的乐趣,享受成功的感觉。 2、一题多变,培养学生思维的灵活性“一题多变”是指从多角度、多方位对例题进行变化,引出一系列与本例题相关的题目,形成多变导向,达到熟悉并灵活应用与题目相关知识的目的。“一题多变”可以是老师“变”,即老师根据教学大纲的要求,恰当地对题目进行延伸、演变、拓展,呈现出一系列的变式题;也可以把“变”的权力教给学生,即引导学生在原题的基础上,改变条件或相关的物理场景,提出一些与教学内容相关联的、有价值的问题,并自己解决。 例如:一个“220V,100W”的灯泡,根据灯泡的铭牌,你可以计算出哪些物理量?

数形结合法在解题中的应用

目录 0 引言 (1) 1 以“数”化“形” (1) 1.1 利用韦恩图法解决集合之间的关系问题 (2) 1.2 利用二次函数的图象求一元二次不等式的解集 (3) 1.3 利用两点间距离公式辅助图形,解决代数综合题 (3) 2 以“形”变“数” (4) 2.1 用解析法解决平面解析几何中的圆锥曲线问题 (4) 3 “形”“数”互变 (6) 3.1 数轴在有理数化简中的应用 (6) 3.2 利用三角函数图象求角度 (7) 3.3 利用数形结合解决平面几何问题 (7) 结论 (9) 致谢 (9) 参考文献

提纲 1 以“数”化“形” 1.1 利用韦恩图法解决集合之间的关系问题 1.2 利用二次函数的图象求一元二次不等式的解集 1.3 利用两点间距离公式辅助图形,解决代数综合题 2 以“形”变“数” 2.1 用解析法解决平面解析几何中的圆锥曲线问题 3 “形”“数”互变 3.1 数轴在有理数化简中的应用 3.2 利用三角函数图象求角度 3.3 利用数形结合解决平面几何问题。

摘要:数形结合法是解决数学问题中最基本、也最常用的思想方法。本文就中学数学中的不等式、集合、函数、解析几何等内容,举例阐述数形结合法在解题中的三点应用。 关键词:数形结合;中学数学;应用;解决问题 引言 做事情,如果想要事半功倍,就必须讲究方法,其实,何止事半功倍,有时方法甚至起到了决定性的作用,缺乏有效的方法,不仅谈不上效率,而且问题不能解决,事情也就根本不能成功,数形结合法对解决某些数学问题就起到了决定性的作用,如果能将数与形巧妙地结合起来,一些看似无法入手的问题就会迎刃而解,产生事半功倍的效果。我国著名的数学家华罗庚曾精辟地概括了数形结合法的内涵:数与形,本是相倚依,焉能分作两边分,数缺形时少直觉,形少数时难入微,数形结合万般好,割离分家万事非,切莫忘,几何代数统一体,永远联系,切莫分离!可见,数与形存在着十分密切的联系。其实,在中学数学中,有很多内容就是集“数”“形”于一身的良好载体,例如:函数、解析几何等等,本文试从中学数学中的有理数、不等式、集合、三角函数、函数及其图象、平面几何、解析几何内容方面,举例说明数形结合法在中学数学解题中的三点应用:(1)以“数”化“形”;(2)以“形”变“数”;(3)“形”“数”互变。 1 以“数”化“形”

最新小学数学六年级下册《数形结合解决问题》

小学数学六年级下册《数形结合解决问 题》

青岛版小学数学六年级下册《数形结合解决问题》精品教案 【教学内容】: 义务教育课程标准实验教科书青岛版小学数学六年级下册116——117页。【教学目标】: 在回顾整理的过程中,加深对数形结合思想方法的认识,使学生充分感受数形结合在小学数学学习中的应用。 【教学重点】: 通过一些数形结合的实例,使学生体会数形结合思想的优越性,并能帮助学生建立思路解决问题。 【教学过程】; 一、谈话引入。 师:同学们,在我们的数学学习中,除了研究各种数以外,还经常要用到各种各样的图形。利用图形来研究问题,会使问题变得更加简单明了。请同学们回忆所学的知识,你能举一些这样的例子吗? 学生思考后举例。 【设计意图】教师给学生一定的思考时间,可以使学生对所学过的用图形来研究问题的有关知识进行初步的梳理,从而为本节课的学习做好铺垫。 二、自主探究。 1、教师出示某电脑公司2008年各种电脑销售情况的具体数据及条形统计图、扇形统计图和某电脑公司2004-2008最畅销的两种电脑销量折线统计图。 师:仔细观察这些数据和统计图,你有什么发现?

学生各抒己见,发表自己的看法。 师引导学生总结:图形描述数据更加直观、有效。条形统计图能清楚看出数量的多少,扇形统计图能清楚看出个部分同总数之间的关系,折线统计图能清楚看出数量增长情况。 【设计意图】将原始数据和统计图同时呈现,可以给学生造成视觉上的冲击。原始数据杂乱无章而统计图简单明了,能够帮助阅读的人有效的提取信息。对于用图形描述数据的优越性,学生一目了然。 2、师:图形不仅在描述数据方面有优越性,在其他方面同样能体现出优势。你还能举例说明数形结合在其他方面的应用吗?(生独立思考)下面请同学们以小组为单位交流自己的想法。交流过程中,要注意倾听他人的想法。 集体交流。 教师在学生交流的基础上引导学生发现:画图可以帮助我们理解计算方法、图形可以更加形象的反映成正比例关系的两种量的变化情况、在平面内确定物体的位置也利用了数形结合。 3、小结 师:通过刚才的交流,我们发现实际上许多问题的解决都利用了数形结合,你能谈一谈自己的体会吗? 【设计意图】学生个人的想法可能是粗浅的、片面的,而通过小组交流,倾听他人的想法和意见,可以进一步完善自己的想法。教师在学生交流的基础上运用多媒体呈现相关的例子,通过这些数形结合的直观的例子,让学生充分感受数形结合在数学学习中的应用。 三、拓展延伸。

用数形结合的方法解题

1引言 数与形是数学中最古老最基本的研究对象。华罗庚教授说过:“数缺形时少直观,形缺数时难入微。”数与形各有特定的含义、但他们之间相辅相成、相互渗透、相互转化。数形结合思想是重要的解题方法,是每年高考必考的重要内容,数形结合应用解题能力与学生成绩呈显着的正相关。解题时将问题转化为与之等价的图形问题,可以直观的使问题简捷获解。实现数形结合常与以下内容有关:①实数与数轴上的点的对应关系;②所给的等式或代数式的结构含有明显的几何意义;③以几何元素和几何条件为背景建立起的概念;④函数与图像的对应关系;⑤曲线与方程的对应关系。应用数形结合思想不仅直观易发现解题途径,而且能避免复杂的计算推理,大大简化解题过程,这在解选择、填空题中更为显着,培养这种思想意识能开拓自己的思维视野。 2文献综述 国内外研究现状 数形结合作为高中数学中非常重要的思想方法,很早就引起了许多专家学者的关注。自笛卡尔创造了平面直角坐标系,数形结合的思想得到了突飞猛进的发展。文献[1]中叶立军谈到:“数缺形时少直观,形少数时难入微。数形结合百般好,隔离分家万事休。”近些年来,国内外仍有许多学者发表了对数形结合思想的应用研究,文献[2-3]中介绍了数形结合在概率统计和数列中的应用。文献[4-6]通过总结图形结构与数式结构提出了数形结合的两个主要途径。文献[7-10]认为数形结合可以直观快速解决很多问题,但转化时要遵循转化等价原则。不过由于数形结合思想应用范围极其广泛,所以我认为目前对数形结合思想的研究仍有很大的空间。 国内外研究现状评价 文献[11-13]中介绍了许多数形结合的途径和方法,其中研究解决函数各类文章最多,集中于判断两函数图像交点个数及其他函数性质。对于数形结合在高中数学各种问题的研究并不够全面。 提出问题 如今数形结合有着广泛的应用,即把数学与几何图形相结合,化繁为简,化抽象为具体,直观快速地抓住问题的本质与要害,可使解题起到事半功倍的效果。然而一个不争的事实

用数形结合的方法解题

1 引言 数与形是数学中最古老最基本的研究对象。华罗庚教授说过:“数缺形时少直观,形缺数时难入微。”数与形各有特定的含义、但他们之间相辅相成、相互渗透、相互转化。数形结合思想是重要的解题方法,是每年高考必考的重要内容,数形结合应用解题能力与学生成绩呈显著的正相关。解题时将问题转化为与之等价的图形问题,可以直观的使问题简捷获解。实现数形结合常与以下内容有关:①实数与数轴上的点的对应关系; ②所给的等式或代数式的结构含有明显的几何意义;③以几何元素和几何条件为背景建立起的概念;④函数与图像的对应关系;⑤曲线与方程的对应关系。应用数形结合思想不仅直观易发现解题途径,而且能避免复杂的计算推理,大大简化解题过程,这在解选择、填空题中更为显著,培养这种思想意识能开拓自己的思维视野。 2 文献综述 2.1国内外研究现状 数形结合作为高中数学中非常重要的思想方法,很早就引起了许多专家学者的关注。自笛卡尔创造了平面直角坐标系,数形结合的思想得到了突飞猛进的发展。文献[1]中叶立军谈到:“数缺形时少直观,形少数时难入微。数形结合百般好,隔离分家万事休。”近些年来,国内外仍有许多学者发表了对数形结合思想的应用研究,文献[2-3]中介绍了数形结合在概率统计和数列中的应用。文献[4-6]通过总结图形结构与数式结构提出了数形结合的两个主要途径。文献[7-10]认为数形结合可以直观快速解决很多问题,但转化时要遵循转化等价原则。不过由于数形结合思想应用范围极其广泛,所以我认为目前对数形结合思想的研究仍有很大的空间。 2.2国内外研究现状评价 文献[11-13]中介绍了许多数形结合的途径和方法,其中研究解决函数各类文章最多,集中于判断两函数图像交点个数及其他函数性质。对于数形结合在高中数学各种问题的研究并不够全面。 2.3提出问题 如今数形结合有着广泛的应用,即把数学与几何图形相结合,化繁为简,化抽象为具体,直观快速地抓住问题的本质与要害,可使解题起到事半功倍的效果。然而一个不

利用数形结合思想方法解题

目录 目录..................................................... I 摘要. (Ⅱ) 引言 (Ⅲ) 1.数形结合思想方法概述 (1) 1.1 数形结合的思想方法 (1) 1.2 数形结合思想的价值 (1) 2.数形结合在中学数学解题中的应用 (3) 2.1 利用数形结合解决集合问题 (3) 2.1.1利用韦恩图解决集合题目 (3) 2.1.2 利用数轴来解决集合问题 (3) 2.2利用数形结合解决方程问题 (3) 2.2.1 数形结合在含有一次、二次式的方程中的应用 (3) 2.2.2数形结合在含对数、指数的方程的应用 (5) 2.3 数形结合在求不等式问题中的应用 (7) 2.3.1构造适当的平面图形,利用三角形三边的关系来证明不等式 (8) 2.3.2 构造适当的函数,利用函数图象性质证明不等式 (8) 2.4数形结合在解决三角函数问题中的应用 (9) 2.5 数形结合在求解极值问题中的应用 (11) 2.5.1 数形结合在几何极值问题中的应用 (11) 2.5.2 数形结合在函数极值问题中的应用 (12) 2.6 数学结合在解决线性规划问题中的应用 (12) 2.7 数形结合在复数中的应用 (14) 结语 (16) 参考文献 (18)

利用数形结合思想方法解题 摘要 数形结合思想是一种非常重要的数学解题方法,是数学学习普遍适用的方法,把知识的学习、能力的提升和智力的发展有效结合。形与数常常结合在一起,在内容上相互联系,在方法上互相渗透,在一定条件下互相转化。本文在概述数形结合思想的基础上,分析了数形结合在中学数学解题中的应用,主要体现在处理集合问题、方程根的存在性问题、不等式问题、三角函数问题、求极值问题、线性规划问题和复数问题等,并针对解决不同类型的数学题目给出了详细的例题分析,最终给出了在培养学生利用数形结合思想时需注意的问题,以激发学生的学习兴趣,提高学生的解题能力和思维能力。 关键词:数形结合;集合;方程;极值 The combination of number and shape in the problem solving application Abstract:The number shape union thinking is a very important mathematical method of solving problems, is a generally applicable method of mathematics learning, to enhance the development of effective combination of intelligence and knowledge learning, ability. Form and number often together, communicate with each other in the content, permeate each other in method, transform each other under certain conditions. In this paper, based on the number and shape of thought, analysis the number shape union application in middle school mathematics, mainly set problem, in dealing with the existence of root of an equation, inequality, triangle function extremum problems, problems, linear programming problems and complex problems, and to solve different types of mathematics the title gives a detailed analysis of the example, the need to pay attention to combine ideas in training students to use number shape when the problem is given, to stimulate students' interest in learning, improve student's problem solving ability and thinking ability. Key words: The combination of number and shape,set, equation, extrem

浅谈如何培养中学生的数学解题能力

浅谈如何培养中学生的数学解题能力 摘要 在中学数学教学中,要提高中学生的解题能力,除了抓好基础知识、基本能力的学习外,更重要的是培养学生的审题习惯和提高学生的审题能力,熟练的、灵活的运用知识的能力,引导学生探索正确的解题路径,提高分析能力和培养学生对知识的回顾意识。从而使学生在亲自参与的解题实践过程中,学会解题,从中获得能力。 关键词:中学生解题能力审题能力知识能力分析能力回顾意识

引言 学生牢固掌握基础知识、基本技能,是提高解题能力的根本,如何使学生融会贯通,灵活运用基础知识和基本技能来解决复杂问题,提高他们解题能力呢?在实际教学中,本人认为通过以下几点能有效地提高学生的解题能力。 一、养成仔细、认真地审查题意的习惯,提高审题能力 仔细、认真地审题,提高审题能力是解题的首要前提。因为审题为探索解途径提供方向,为选择解法提供决策的依据。因此,教学中要求学生养成仔细、认真的审题习惯,就是要对问题的条件、目标及有关的全部情况进行整体认识,充分理解题意,把握本质和联系,不断提高审题能力。具体地说,就是要做到以下三项要求: 1.了解题目的文字叙述,清楚地理解全部条件和目标,并能准确地复述问题、画出必要的准确图形或示意图 在审题中要能了解题目的文字,尤其是重要字眼,并且要理解已知条件。在几何中就需要画出草图。这是审题基本。 例如:已知 a, b, c 都是实数,且|c|>b>|a|,ab<0,bc<0,求证:b>a>c 这个题目只要求学生了解题目的文字叙述,清楚地理解全部条件即可。 证明: |c|>b>|a| 0b ∴>, 又ab<0,bc<0 即a<0,c<0,a>c 所以b>a>c 2.挖掘题设条件的内涵、沟通联系、审清问题的结构特征。并发现比较隐蔽的条件 这个要求是比较高的,主要是要能审出题目的条件之间的联系与条件的内涵或比较隐蔽的条件,从而推测这个问题结构特征。 例: 在实数范围内解方程:|x-2|+x -1=3 审查题意就要从题目的特征“含有绝对值和算术根符号”中,善于发现隐含条件。即 ∵1-x ≥0, ∴x ≤1. 有了这一条件,就可以将原方程转化为: 2-x+x -1=3, 即x -1=x+1. 解得x=0或x=-3 3.判明题型,预见解题的策略原则 这个问题又在高一层次的要求,他需要学生在审题的过程中能通过已知条件与结论能去判明这道题的题型,再然后有了解题的策略。 例:试比较3x-1与5-2x 的大小 解:∵3x-1-(5-2x )

相关主题
文本预览
相关文档 最新文档